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ABSTRACT

Diffusion-based generative models have emerged as powerful tools in the realm
of generative modeling. Despite extensive research on denoising across various
timesteps and noise levels, a conflict persists regarding the relative difficulties
of the denoising tasks. While various studies argue that lower timesteps present
more challenging tasks, others contend that higher timesteps are more difficult.
To address this conflict, our study undertakes a comprehensive examination of
task difficulties, focusing on convergence behavior and changes in relative entropy
between consecutive probability distributions across timesteps. Our observational
study reveals that denoising at earlier timesteps poses challenges characterized by
slower convergence and higher relative entropy, indicating increased task difficulty
at these lower timesteps. Building on these observations, we introduce an easy-to-
hard learning scheme, drawing from curriculum learning, to enhance the training
process of diffusion models. By organizing timesteps or noise levels into clusters
and training models with ascending orders of difficulty, we facilitate an order-
aware training regime, progressing from easier to harder denoising tasks, thereby
deviating from the conventional approach of training diffusion models simulta-
neously across all timesteps. Our approach leads to improved performance and
faster convergence by leveraging benefits of curriculum learning, while maintain-
ing orthogonality with existing improvements in diffusion training techniques. We
validate these advantages through comprehensive experiments in image generation
tasks, including unconditional, class-conditional, and text-to-image generation.

1 INTRODUCTION

Diffusion-based generative models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021)
have achieved significant advancements in the realm of generative tasks, demonstrating notable
success across various fields such as image (Dhariwal & Nichol, 2021), video (Ho et al., 2022;
Harvey et al., 2022), and 3D (Woo et al., 2023; Liu et al., 2023b) generation. Specifically, their
exceptional adaptability and promising performance in diverse image generation contexts, such as
unconditional (Karras et al., 2022; Nichol & Dhariwal, 2021), class-conditional (Dhariwal & Nichol,
2021), and text-conditional scenarios (Balaji et al., 2022; Ramesh et al., 2022), demonstrate their
significant impact. Such achievements have led to a growing interest in further deepening the analysis
and enhancing diffusion models.

Diffusion models (Ho et al., 2020; Song et al., 2021) are designed to reverse the corruption of the
data through the learning process at different noise levels and over multiple timesteps. Recent works
have delved into the learning of diffusion models across various noise levels and timesteps, revealing
different stages of diffusion models. For example, Choi et al. (Choi et al., 2022) observe that when
a diffusion model performs a denoising task from large to small timestep, it first generates coarse
features, then gradually generates perceptually rich content, and later refines the details. Similar
observation is also identified in text-to-image diffusion models (Balaji et al., 2022). Besides this
aspect, various studies have further explored the learning of diffusion models across timesteps and
noise levels, elucidating their transition from denoising to generative functionalities (Deja et al.,
2022), modular attributes (Yue et al., 2024), frequency characteristics (Yang et al., 2023b; Lee et al.,
2023), trajectories (Pan et al., 2023), affinity (Go et al., 2023a), and variations of targets (Xu et al.,
2023).
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These observations have not only deepened understanding of diffusion models but have also directly
contributed to improvement in diffusion models. Specifically, these insights are incorporated into
their method design in various works, including loss functions (Hang et al., 2023; Xu et al., 2023),
architectures (Lee et al., 2023; Balaji et al., 2022), accelerated sampling (Pan et al., 2023), representa-
tions (Yue et al., 2024), and guidance (Go et al., 2023b). Given the tangible benefits already realized
from such studies, further in-depth analysis of diffusion models across timesteps and noise levels is
crucial for uncovering insights and achieving unprecedented advancements in their capabilities.

In this paper, to enrich the current understanding across various timesteps and noise levels, we
investigate under-explored areas within diffusion models focusing on the task difficulties of denoising.
Regarding denoising task difficulties, previous works speculate that denoising tasks across timesteps
have different difficulties (Li et al., 2023; Balaji et al., 2022), yet a detailed exploration of these
variances remains sparse. Moreover, there exists a notable discrepancy among studies, with works
identifying larger timesteps as more difficult (Ho et al., 2020; Hang et al., 2023), while others argue
that smaller timesteps pose greater difficulties (Karras et al., 2022; Dockhorn et al., 2021; Kim et al.,
2022). The discrepancy in difficulty across timesteps not only impedes the accurate interpretation of
previous studies but also hinders the development of sophisticated training methods that properly
utilize the timestep-wise variation in difficulty.

In this regard, we first analyze task difficulties in two aspects to resolve these conflicts: 1) convergence
properties in the learning of denoising tasks at each timestep, and 2) the change in relative entropy
between consecutive probability distributions over timesteps. In the first aspect, our analysis reveals
distinct convergence behaviors across timesteps, demonstrating that models trained on larger timesteps
exhibit faster convergence. In the second aspect, we also observe a decrease in relative entropy as we
progress to later timesteps. By integrating these, we confirm that denoising tasks at earlier timesteps
are more difficult, indicated by slower convergence speeds and greater changes in relative entropy.

Furthermore, building on these observations, we integrate an easy-to-hard learning scheme, a concept
well-established in the curriculum learning literature (Hacohen & Weinshall, 2019; Kong et al., 2021;
Chang et al., 2021; Wang et al., 2020; Pentina et al., 2015), into the training process of diffusion
models. Specifically, we organize timesteps or noise levels into clusters and train the diffusion
models with ascending levels of difficulty, moving from clusters categorized by higher to lower
timesteps. After this curriculum process, models simultaneously learn whole timesteps as standard
diffusion training (Ho et al., 2020; Song et al., 2021; Ho & Salimans, 2022) to reach the convergence
point. Unlike conventional approaches where diffusion models are trained simultaneously across all
timesteps, our method distinguishes itself by incorporating a sequential, order-aware training regime,
reflecting an intended progression from easier to harder denoising tasks.

Building upon this foundation, our curricular approach offers several notable advantages: 1) Im-
proved Performance and 2) Faster Convergence: By leveraging the inherent benefits of curriculum
learning, our method significantly enhances the quality of generation and the speed of convergence. 3)
Orthogonality with Existing Improvements: Our approach is inherently model-agnostic, ensuring
broad applicability across various diffusion models. Additionally, it can be integrated with advanced
diffusion training techniques, such as loss weighting (Choi et al., 2022; Hang et al., 2023; Go et al.,
2023a; Karras et al., 2023).

Finally, we empirically validate the advantages of our method by conducting comprehensive exper-
iments across a variety of image-generation tasks. These include unconditional generation, class-
conditional generation, and text-to-image generation, utilizing datasets such as FFHQ (Karras et al.,
2019), ImageNet (Deng et al., 2009), and MS-COCO (Lin et al., 2014). By integrating our curriculum
learning strategy into architectures— DiT (Peebles & Xie, 2022), EDM (Karras et al., 2022), and
SiT (Ma et al., 2024)—we demonstrate the efficacy of our approach in enhancing performance,
accelerating convergence speed, and maintaining compatibility with existing techniques.

2 RELATED WORKS

2.1 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021) are a group of
generative models that create samples by utilizing a learned denoising process to noise. Several works
have focused on improving diffusion models in various aspects, including model architectures (Park
et al., 2024b; Dhariwal & Nichol, 2021; Park et al., 2024a), sampling speed (Song et al., 2020; Lu
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et al., 2022; Liu et al., 2023a), training objectives (Hang et al., 2023; Choi et al., 2022; Go et al.,
2023a; Kingma & Gao, 2023; Ma et al., 2024). These endeavors often involve investigating what
diffusion models learn by dividing its process, aiming to enhance the performance of diffusion
models. P2 (Choi et al., 2022) under-weights training loss functions at the clean-up stage from their
observation that diffusion models learn coarse, perceptual, and removing noises at large, medium, and
small timesteps. Ediff-I (Balaji et al., 2022) observes that earlier sampling parts rely on conditions
for generation, whereas later parts ignore the conditions. They employ multiple denoisers to address
the diverse characteristics of tasks associated with different parts of the sampling process. Moreover,
various works have also investigated these aspects related to timesteps (Deja et al., 2022; Yue et al.,
2024; Yang et al., 2023b; Lee et al., 2023; Pan et al., 2023; Go et al., 2023a; Xu et al., 2023) (detailed
illustrations can be found in Appendix A). While our study aligns with the above works, we analyze
the under-explored aspect of denoising task difficulty. Furthermore, we leverage these observations to
propose a curriculum learning approach.

2.2 DENOISING DIFFICULTIES ON DIFFUSION MODELS

Difficulties in denoising tasks in diffusion have been referred to by various works, but this aspect
is not deeply explored. Several studies hypothesize that denoising tasks in diffusion encompass
diverse difficulties (Li et al., 2023; Balaji et al., 2022), and there have been conflicts regarding these
difficulties between previous works.

Certain studies consider denoising at larger noise levels and timesteps to be more difficult (Ho et al.,
2020; Hang et al., 2023), the focus is on the challenges associated with reconstructing data from
substantial noise. For instance, Hang et al. (Hang et al., 2023) articulate that while smaller timesteps
(approaching zero) may require straightforward reconstructions, such strategies become less effective
at higher noise levels or in larger timesteps. Similarly, Ho et al. (Ho et al., 2020) elucidate that their
approach de-emphasizes loss terms at smaller timesteps to prioritize learning on the more challenging
tasks at larger timesteps, thereby enhancing sample quality. Conversely, other studies argue that
earlier timesteps or lower noise levels also present significant challenges. Karras et al. Karras et al.
(2022) suggest that detecting noise at low levels is challenging due to its minimal presence. Also,
Kim et al. (Kim et al., 2022) illustrate the increasing difficulty and high variance in score estimation
as timesteps approach zero, disturbing stable training of models. In line with these observations,
Dockhorn et al. (Dockhorn et al., 2021) build upon insights of (Kim et al., 2022), acknowledging the
complexities at near zero timesteps, where score becomes highly complex and potentially unbounded.

In this work, we aim to resolve this conflict through an in-depth analysis of convergence properties
and changes in relative entropy between consecutive probability distributions across timesteps.

2.3 CURRICULUM LEARNING

Curriculum learning (Bengio et al., 2009; Hacohen & Weinshall, 2019; Kong et al., 2021), inspired
by human learning patterns, is a method of training models in a structured order, starting with easier
tasks (Pentina et al., 2015) or examples (Bengio et al., 2009) and gradually increasing difficulty. As
pointed out by (Bengio et al., 2009), curriculum learning formulation can be viewed as a continuation
method (Allgower & Georg, 2003), which starts from a smoother objective and gradually transformed
into a less smooth version until it reaches the original objective function. Through this foundation,
various works have achieved improved performance and faster convergence compared to standard
training based on random mini-batches sampled uniformly (Hacohen & Weinshall, 2019; Kong et al.,
2021; Chang et al., 2021; Wang et al., 2020).

Curriculum learning primarily comprises two components: a curriculum scoring function, measuring
the difficulty of tasks or examples, and a pacing function, modulating the speed of the curriculum
progress. Regarding a curriculum score function, early studies have utilized human intuition for
measuring difficulty, such as the complexity of geometric shapes in images (Bengio et al., 2009) or
the length of sequences (Spitkovsky et al., 2010). Recently, various works employ models to measure
difficulty, including confidence of pre-trained models (Hacohen & Weinshall, 2019) and the loss of
the current models (Kong et al., 2021). For the pacing function, a predefined pacing function has
been employed, which involves training using a predetermined curriculum progression (Hacohen
& Weinshall, 2019; Wu et al., 2020). There are various forms of this and they can be generally
represented as a function of training iteration (Hacohen & Weinshall, 2019; Wu et al., 2020). Contrary
to this, there have been proposals for pacing techniques dynamically adjusting based on the loss or
performance of the current model during training (Kumar et al., 2010; Jiang et al., 2014).
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In the diffusion model literature, curriculum learning has been utilized to organize the order of
training data types based on prior knowledge of targeted generation tasks (Tang et al., 2023; Yang
et al., 2023a). Tang et al. (Tang et al., 2023) sequentially train video diffusion models with lower
resolution and FPS datasets before progressing to higher resolution and FPS datasets. Similarly,
Yang et al. (Yang et al., 2023a) order text-to-sound generation data based on the number of events in
audio clips, training diffusion models from lower to higher events datasets. In contrast, our method
explores the nature of denoising task difficulty in diffusion models and proposes a curriculum learning
approach that progresses from easy to hard timesteps, deviating from the standard simultaneous
training of all timesteps. Also, while consistency models (Song et al., 2023; Song & Dhariwal, 2023)
adopt a curriculum approach to discretizing noise levels, progressively increasing the discretization
steps of noise levels during training, we have distinct by exploring which noise level should be learned
first and investigating the difficulty of denoising at each noise level.

3 PRELIMINARIES

In this section, we provide the necessary background on diffusion models (Ho et al., 2020; Sohl-
Dickstein et al., 2015; Song et al., 2021). Let x0 ∈ Rd be a sample from the data distribution p0(x).
The forward process of diffusion models transforms data x0 to latent xt∈[0,T ] by iteratively adding
Gaussian noise. This can be formulated as a stochastic differential equation (SDE) (Song et al., 2021)
as dxt = f(t)xtdt+ g(t)dwt, where f(t) and g(t) are drift and diffusion coefficients, and wt is the
standard Wiener process. The Gaussian transition kernel of this SDE is formulated as:

p0t(xt|x0) = N (xt; stx0, s
2
tσ

2
t I), st = exp

(∫ t

0

f(ξ)dξ
)
, σt =

√∫ t

0

g(ξ)2

s2ξ
dξ. (1)

For generation, diffusion models aim to learn the corresponding reverse SDE represented as:
dxt =

[
f(t)xt − g2(t)∇ log pt(xt)

]
dt̄+ g(t)dw̄t, (2)

where w̄t and dt̄ denote the reverse-time Wiener process and the infinitesimal reverse-time, respec-
tively, with the actual data score ∇ log pt(xt). In most cases, a neural network ϵθ having parameter θ
is utilized to approximate this score function by learning the denoising tasks for each timestep t from
score matching loss L (Song & Ermon, 2019):

L =
1

2

∫ T

0

Ltdt, Lt = ω(t)Ext∼p0t(xt|x0),x0∼p0

[
||ϵθ(xt, t)−∇ log p0t(xt|x0)||22

]
, (3)

where ω(t) is loss weights for t and p0t(xt|x0) is the transition density of xt from the initial
timestep 0 to t. This object can be interpreted as a noise-matching loss in DDPM (Ho et al., 2020),
which predicts noise components in xt and can be illustrated as

∫ T

0
Ex0∼p0,ϵ∼N (0,I)[||ϵθ(

√
ᾱtx0 +√

1− ᾱtϵ, t)− ϵ||22]dt. This is regularly denoted as ϵ-prediction parameterization (Ho et al., 2020;
Jabri et al., 2022), and several other parameterizations including F -prediction (Karras et al., 2022;
Kingma & Gao, 2023), score-prediction (Song et al., 2021) and velocity-prediction (Ma et al., 2024)
have been proposed.

4 OBSERVATIONS

In this section, we examine the difficulties associated with learning denoising tasks across different
timesteps, addressing inconsistencies in prior works regarding these difficulties. Our analysis is
structured around two key aspects: 1) the convergence of loss and denoising performance across
timesteps, providing insights into learning dynamics at various timestep stages in Section 4.1; and
2) the relative entropy change from pt to pt−1 as a function of t, offering a quantitative measure of
task difficulty progression over t in Section 4.2. Upon integrating our findings, we establish a key
conclusion: the learning difficulty for denoising tasks escalates as the timestep t decreases.

4.1 ANALYSIS ON THE TASK DIFFICULTY IN TERMS OF CONVERGENCE SPEED

In this study, we analyze the convergence speed of loss and denoising performance across timesteps.
To comprehensively cover various diffusion parameterizations, we utilized the notable frameworks
DiT (Jabri et al., 2022) for ϵ-prediction, EDM (Karras et al., 2022) for F -prediction, SiT (Ma
et al., 2024) for velocity prediction. Detailed descriptions of the experimental setups are provided in
Appendix B.
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Figure 1: Loss and FID convergence plotted during training for each diffusion model Mi in DiT,
EDM, and SiT. Since the loss scale for each model is different, we show the normalized value. We
observe that as i increases (i.e., corresponding to larger denoising timesteps), the loss converges more
rapidly, and this convergence speed correlates with that of the FID scores.

Convegence speed on loss. First, we analyze convergence characteristics of training loss across
timesteps t. We divided whole timesteps [0, T ] into 20 uniformly divided intervals and trained
20 models {Mi}20i=1 where i-th model learns denoising tasks in [ i−1

20 T, i
20T ] for DiT and SiT,

[Φ−1( i−1
N ),Φ−1( i

N )] for EDM where Φ−1 is the inverse cumulative distribution function of the
Gaussian distribution. During training, we tracked the loss values through iterations and plotted their
convergence speed by normalizing their value in Figs. 1a-1c. As shown in the results, it is apparent
that as i increases towards i = 20, the convergence accelerates in both DiT, EDM, and SiT, suggesting
that models learning larger timesteps can reach convergence more swiftly and reinforcing the notion
that denoising tasks with larger timesteps are less difficult.

Convegence speed on denoising performance. We also delve deeper into a convergence of
denoising performance according to timesteps with 20 distinct models {Mi}20i=1. To evaluate the
performance of denoising tasks of each model, we generated samples where Mi was employed for
denoising within the timesteps that it was trained on, while a diffusion model learned whole timesteps
handled denoising for the remaining timesteps as in (Go et al., 2023a). Then, the performance of the
denoising capability of Mi can be quantitatively measured using the FID score (Heusel et al., 2017),
enabling us to observe the performance convergence of each model on denoising tasks throughout
the training process. Figures 1d-1f depict this convergence. They illustrate that, similar to loss
convergence experiments, denoising performance converges more swiftly for models Mi with larger
i values, as observed across the DiT, EDM, and SiT. These results also suggest that models trained
on later timesteps, indicated by larger i values, achieve faster convergence, highlighting easier task
difficulty at larger timesteps.

4.2 EXPLORATION ON DIFFICULTIES OF DENOISING TASKS

0 100 200 300 400 500 600 700 800 9001000
t

0

25

50

75

D
KL

(p
t

1
||

p t
)

Figure 2: The KLD of pt−1 from
pt against denoising timestep. As
the timestep increases, the dy-
namics decrease.

Beyond empirical convergence metrics, we also delve into analyz-
ing the relative entropy between pt and pt−1 to better understand
task difficulties from a distributional perspective. The training
of diffusion models implicitly involves learning the distribution
of the reverse process of the corresponding SDE. To be specific,
the transition probability of the reverse process is expressed as
a conditional normal distribution whose mean parameter is mod-
eled by neural networks, and they are thereby trained to learn the
dynamics of the reverse process (Ho et al., 2020). Furthermore,
an unconditional distribution of xt can be obtained by marginalizing transition densities over the
prior distribution, indicating that information on the dynamics of the marginal distribution is fed to
neural networks (Song et al., 2021).
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Figure 3: The overview of our curriculum learning approach for diffusion models. (Left) We divide
the timesteps into N clusters, C1, ..., CN , with the difficulty of denoising tasks increasing from CN

(easiest) to C1 (hardest). (Right) As the curriculum progresses, learning accumulates harder task
clusters, gradually increasing task difficulties.

To analyze the relationship between the dynamics of the unconditional distribution and the rate of
loss convergence, we use the Kullback-Leibler (KL) divergence of pt−1 to pt, DKL(pt−1||pt), as a
quantitative measure. It is a pertinent divergence in that the training mechanism of diffusion models
involves maximizing the likelihood of the reverse process. The KL divergence DKL(pt−1||pt) is given
by DKL (pt−1||pt) = Ex∼pt−1

[
log

(
pt−1(x)
pt(x)

)]
. Moreover, the distribution pt of x at t is expressed

by pt(xt) =
∫
p0t(xt|x0 = y)p0(y)dy = Ex0∼p0

[p0t (xt|x0)]. However, since the explicit density
form of p0 is unknown and it is computationally infeasible to estimate high-dimensional integrals,
we approximate them through unbiased estimators (details in Appendix C). The empirical results
of DKL(pt−1||pt) for 64× 64 image data are given in Fig. 2. As seen, the relative entropy tends to
decrease as t increases (i.e., DKL (ps−1||ps) ≤ DKL (pt−1||pt) for s ≤ t), which is consistent with
the results in Fig. 1.

This observation may stem from the inherent low-dimensional manifold of image data. As is well-
known (e.g., (Ruderman, 1994)), the image data is distributed on a relatively low-dimensional
manifold with a narrow support and a highly peaked multi-modal structure. On the other hand, as
Gaussian noise is iteratively added, the distribution of xt approaches the independent Gaussian
distribution in the ambient space. Consequently, the support of the manifold broadens and the score
function becomes regular over the ambient space with increasing t. This nature of the unconditional
distribution may cause the relative entropy from pt to pt−1 to decrease with t, indicating that it is
more difficult to accurately represent the dynamics of the reverse process at small t. More discussion
is in Appendix C.

5 METHODOLOGY

In Section 4, we observe that denoising tasks at smaller t are more difficult to learn by models. From
these order of difficulties in denoising tasks, we propose the incorporation strategy of an easy-to-hard
training scheme, that has demonstrated its effectiveness in curriculum literature (Bengio et al., 2009;
Hacohen & Weinshall, 2019; Kong et al., 2021), for improving diffusion models’ training.

5.1 DESIGN OF CURRICULUM LEARNING IN DIFFUSION MODELS

As we observed in Section 4, difficulties in denoising tasks increase as t gets smaller. To utilize
an easy-to-hard curriculum learning approach, we first divide the entire range of timesteps into N
clusters, denoted as {Ci}Ni=1, where each cluster Ci spans an interval [li, li+1], ensuring li < li+1,
with l1 = 0 and lN+1 = T , as shown on the left side of Fig. 3. The curriculum for training is
constructed by regarding these task clusters as unit tasks, starting from the least challenging (the
N -th cluster CN ) and advancing towards the most difficult (the first cluster C1), through N distinct
stages. Specifically, in the n-th curriculum stage, we jointly train the model with denoising tasks
sampled from the clusters

⋃N
j=N−(n−1) Cj as illustrated in the right side of Fig. 3. The transition

of the curriculum stages is determined by the pacing function, which will be discussed in the next
section. After completing these N -stages of curriculum learning, the model continues to learn across
the entire range of timesteps,

⋃N
j=1 Cj , same as standard diffusion training.
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The next consideration involves determining the boundaries for each cluster li. A straightforward
approach is to uniformly divide the entire timestep interval [0, T ] as Ci = [ (i−1)·T

N , i·T
N ] for i =

1, 2, . . . , N . However, this method does not account for variations in noise levels across different
timesteps. Therefore, to address this issue more effectively, we adopt an SNR-based interval clustering
technique as used in (Go et al., 2023a), which aligns the clustering with the actual changes in noise
levels, potentially enhancing curriculum learning adaptability to varying noise conditions.

For EDM (Karras et al., 2019) which operates based on the noise level σ rather than the timestep
t, and where σ is sampled from a log-normal distribution such that log(σ) ∼ N (Pmean, P

2
std) during

training, our clustering strategy for timesteps cannot be directly transposed. Given the log-normal
distribution of σ, dividing it directly is impractical because σ can extend over a wide range of values.
Instead, we adapt our clustering approach to suit the log-normal characteristics by defining noise
level clusters Ci. Specifically, we delineate Ci = [Φ−1( i−1

N ),Φ−1( i
N )], where Φ−1 is the inverse

cumulative distribution function (quantile function) of the Gaussian distribution N (Pmean, P
2
std). This

method segments the noise levels into intervals by reflecting their probabilistic distribution.

5.2 PACING STRATEGY OF CURRICULUM

To effectively train the diffusion model according to the provided curriculum design, it is crucial
to define a suitable pacing function for determining the transition of each N distinct curriculum.
Training for a fixed number of iterations for each curriculum stage is the simplest implementation
(We also contain this method in experiments as ‘NaiveCL’ in Section 6.2). However, the convergence
rate of each curriculum phase varies significantly, as demonstrated in Fig. 1. Hence, we propose
adopting an adaptive number of iterations for each curriculum, akin to the varied exponential pacing
approach explored by Hacohen et al. (Hacohen & Weinshall, 2019). Our pacing function utilizes the
training loss to determine transition moments and transitions to the next stage occur when the training
loss converges at the current stage. Specifically, we introduce the maximum patience iteration τ , and
if the loss does not improve consecutively for τ , the current curriculum stage is terminated, and the
subsequent curriculum stage is initiated. Here, the maximum patience is a fixed hyper-parameter, and
the detailed process and overall curriculum learning procedure are outlined in Algorithm 1 and 2 in
Appendix D, respectively.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results to validate the effectiveness of our method. The
advantages of our curriculum method, 1) Improved Performance, 2) Faster Convergence, and 3)
Orthogonality with Existing Improvements, are validated in this section. To begin, we outline our
experimental setups in Section 6.1. Then, we provide the results of the comparative evaluation in
Section 6.2, showing that our curriculum approach significantly improves the quality of generated
samples compared to the baseline. Finally, analyses of our method are illustrated in Section 6.3 to
deeply understand the effectiveness of our method.

6.1 EXPERIMENTAL SETUP

Here, we provide experimental setups concisely. Detailed setups are presented in Appendix E.

Evaluation protocols. For our comprehensive evaluation of various methods, we employed three
distinct image-generation tasks: 1) Unconditional generation with the FFHQ dataset (Karras
et al., 2019), 2) Class-conditional generation with CIFAR-10 (Krizhevsky et al., 2009) and Ima-
geNet (Deng et al., 2009) datasets, and 3) Text-to-Image generation with MS-COCO dataset (Lin
et al., 2014). In 2) and 3) setups, we applied classifier-free guidance (Ho & Salimans, 2022).

Target models. We employed three exemplary diffusion architectures for experiments: DiT (Pee-
bles & Xie, 2022), which integrates latent diffusion models (Rombach et al., 2022) with Transformer
architectures (Vaswani et al., 2017) parameterized as ϵ-prediction, EDM (Karras et al., 2022), which
focuses on pixel-level diffusion utilizing UNet-based architectures (Ronneberger et al., 2015) pa-
rameterized as F -prediction, and SiT (Ma et al., 2024) for score- and velocity-prediction. For the
text-to-image generation, we incorporated a CLIP text encoder (Radford et al., 2021) as described in
DTR (Park et al., 2024b).
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Table 1: We evaluated unconditional image generation on FFHQ with DiT-B, EDM, and SiT-B,
class-conditional image generation on ImageNet and CIFAR10 with DiT-L and EDM, respectively,
and text-conditional image generation on MS-COCO with DiT-B. Note that our curriculum learning
for diffusion models improves substantial performance without any additional parameters.

ϵ-prediction

Model FFHQ 256×256 ImageNet 256×256 COCO 256×256

FID↓ FID↓ IS↑ Prec↑ Rec↑ FID↓
DiT (Vanilla) 10.49 11.18 146.95 0.75 0.47 7.62

DiT + NaiveCL 7.95 11.90 151.66 0.75 0.47 7.71
DiT + Ours 7.55 8.18 186.37 0.79 0.47 7.51

F -prediction

Model FFHQ 64×64 CIFAR10 32×32

FID↓ FID↓
EDM (Vanilla) 2.93 2.67

EDM + NaiveCL 3.13 2.88
EDM + Ours 2.71 2.44

Velocity-prediction

Model FFHQ 256×256

FID↓
SiT (Vanilla) 7.44

SiT + NaiveCL 7.69
SiT + Ours 6.95

Score-prediction

Model FFHQ 256×256

FID↓
SiT (Vanilla) 9.64

SiT + NaiveCL 9.77
SiT + Ours 9.15

6.2 COMPARATIVE RESULTS

In this section, we assess the effectiveness of our curriculum-based training approach. For a thorough
comparison, we examine three distinct training variants, with further details provided in Appendix E:
To achieve this, we compare three variants of training: 1) Vanilla: This term refers to diffusion models
trained using conventional methods without any curriculum learning strategies; 2) NaiveCL: In this
variant, we incorporate a basic curriculum learning strategy, which simply repeats the same number
of iterations for each stage across an N -stage process and does not employ SNR-based clustering;
3) Ours: This denotes our proposed curriculum approach, which is designed to enhance the training
process of diffusion models by systematically structuring the learning stages.

Table 2: Evaluating the effectiveness of
curriculum learning with extended train-
ing iterations on the ImageNet 256x256
dataset using the DiT-L architecture.

Method

FID↓ Iteration
400k 2M

DiT (Vanilla) 11.18 7.84
DiT + Ours 8.18 6.24

Quantitative evaluation. We quantitatively validate the
effectiveness of our methods with various architectures-
DiT (Peebles & Xie, 2022), EDM (Karras et al., 2022), and
SiT (Ma et al., 2024)- and tasks including unconditional,
class-conditional, and text-to-image generation. Table 1
shows the results, confirming two empirical observations:
1) NaiveCL fails to consistently achieve improved perfor-
mance compared to Vanilla, and 2) our approach outper-
forms both NaiveCL and Vanilla. Regarding the first obser-
vation, NaiveCL shows inconsistent improvements due to
its lack of robust adaptation on incorporating task difficulties in various task conditions. In contrast,
our method demonstrates superior performance across all scenarios by improving the clustering and
pacing of curriculums. Consequently, our approach consistently achieves significant performance
enhancements across all metrics on four datasets: FFHQ (Karras et al., 2019), ImageNet (Deng
et al., 2009), CIFAR-10 (Krizhevsky et al., 2009), and MS-COCO (Lin et al., 2014), illustrating its
effectiveness regardless of data or model used.

Showing the results of longer training might demonstrate the robustness of our method in more
extended training scenarios. We trained DiT-L/2 with 2M iterations and reported the results in Table 2.
Our model consistently outperformed the baseline, demonstrating its effectiveness even in prolonged
training. Therefore, our method proves to be robust and effective for longer training durations.

Qualitative evaluation. Due to space constraints, we illustrate a detailed collection of generated ex-
amples in Appendix F. In summary, our curriculum methodology demonstrates a notable enhancement
in the quality of the images produced, when compared to NaiveCL and Vanilla.

6.3 ANALYSIS
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Figure 4: Ablation study
on N and τ . We use DiT-
B on ImageNet 256×256.

To elucidate our curriculum approach’s effectiveness, we present a series
of analytical studies. All the analysis is conducted by using the DiT-B
model on the ImageNet dataset.

Effects of N and τ . We examined the robustness of the proposed
curriculum training with respect to hyper-parameters: the number of
clusters N and the maximum patience τ . As shown in Fig. 4, our method
consistently outperforms the vanilla model, and the best result is ob-
served at N = 20, τ = 200. It shows that as τ increases, it may lead to
overtraining due to excessive iterations for each task, whereas as τ de-
creases, curriculums may not be sufficiently trained. Furthermore, when the entire range of timesteps
is finely partitioned (i.e., with an increase in N ), each cluster becomes excessively granular, resulting
in suboptimal performance. Conversely, with a decrease in N , tasks that should be in distinct clusters
are learned together, forming a coarser cluster, which also leads to suboptimal outcomes. Overall, our
method outperforms vanilla training across a range of hyperparameters, demonstrating the robustness
of our approach.

Table 3: Comparative results on various curriculum
designs.

Class-Conditional ImageNet 256×256.
Curriculum Design FID↓ IS↑ Prec↑ Rec↑
(a) Vanilla 30.27 60.06 0.55 0.52

(b1) + anti-curriculum + uniform 31.12 62.80 0.55 0.53
(b2) + anti-curriculum + SNR 27.74 68.10 0.58 0.52

(c1) + curriculum + uniform 25.01 71.99 0.58 0.53
(c2) + curriculum + SNR 22.96 75.98 0.62 0.52

Effects of Curriculum Design. In our cur-
riculum design, we initially partitioned the
entire set of timesteps into N clusters using
SNR-based clustering, organizing the curricu-
lum from easy to hard clusters. To thoroughly
assess the impact of each component, we con-
ducted the ablation study as shown in Table 3.
Firstly, we investigated the effect of curricu-
lum learning via comparison with an anti-
curriculum approach (Hacohen & Weinshall,
2019), which progresses from hard to easy clusters, unlike conventional curriculum learning. While
both training methods in (b2) appear to enhance performance compared to vanilla training (a),
anti-curriculum training cannot consistently guarantee performance improvement concerning the
curriculum design as shown in (b1). In contrast, the proposed curriculum learning method (c1,
c2) consistently exhibited performance improvement even with the uniformly partitioned clusters.
Besides, with findings that utilizing SNR-clustering was more effective, clustering with the actual
changes in noise levels enhanced the curriculum learning adaptability.

Visualization of curriculum. To gain deeper insights into the functioning of our curriculum pacing,
we plotted loss metrics against curriculum phases, as illustrated in Fig. 5. During the curriculum
training, tasks progressively transition from the easiest to the most challenging, with varying amounts
of iterations for each task based on the pacing function. The training loss decreased during each
curriculum phase but increased after curriculum changes via the pacing function due to the inclusion
of a newly added task in the updated curriculum. Additionally, as τ increases, the curriculum phases
change more gradually, highlighting the role of τ in controlling the pace of curriculum transitions.

Analysis on convergence speed. As demonstrated in previous works (Bengio et al., 2009; Hacohen
& Weinshall, 2019), the adoption of curriculum learning can lead to faster convergence in model
performance. To illustrate the efficacy of our approach in this regard, we plotted the FID, IS, precision,
and recall calculated over 10,000 samples across the training iterations, as depicted in Fig. 6. We
observed the models trained through the proposed curriculum learning method converge faster than
vanilla models, regardless of evaluation metrics. Notably, our approach achieves these improvements
without requiring additional parameters or training iterations, thereby significantly saving time and
computational resources.

Effectiveness on various sizes of models To verify the generalizability of our method across
different model sizes, we evaluated the performance gains achieved using our curriculum learning
approach on various scales of the DiT model: DiT-S (small), DiT-B (base), and DiT-L (large). Table. 4
shows that the proposed curriculum learning for diffusion model improves the performance regardless
of the model size. Moreover, it is notable that larger models exhibit a more substantial performance
enhancement: DiT-S improved by 8% in terms of FID, while DiT-B and DiT-L showed improvements
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Figure 5: We visualized the curriculum
transition and the corresponding loss
across iterations (N = 20). To make the
loss graph more easily readable, the y-axis
was truncated to 1.0.
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Figure 6: The models trained using the proposed curricu-
lum learning approach demonstrate faster convergence
compared to vanilla models, irrespective of evaluation
metrics.

Table 4: Note that the curriculum
learning achieves consistent im-
provements across the model sizes.

Class-Conditional ImageNet 256×256.
Model FID↓ IS↑ Prec↑ Rec↑
DiT-S/2 43.30 33.63 0.42 0.54
DiT-S/2 + Ours 39.66 36.57 0.44 0.54

DiT-B/2 30.27 60.06 0.55 0.52
DiT-B/2 + Ours 22.96 75.98 0.62 0.52

DiT-L/2 11.18 146.95 0.75 0.47
DiT-L/2 + Ours 8.18 186.37 0.79 0.47

DiT-XL/2 9.40 166.83 0.77 0.49
DiT-XL/2 + Ours 7.57 234.93 0.82 0.48

Table 5: Note that the curriculum learning is compatible with
the previous works such as the loss weighting (MinSNR) and
architecture (DTR) study which, specified the multi-task learning
for diffusion model.

Class-Conditional ImageNet 256×256.
DiT-B/2 DiT-B/2 + Ours

FID↓ IS↑ Prec↑ Rec↑ FID↓ IS↑ Prec↑ Rec↑
Vanilla 30.27 60.06 0.55 0.52 22.96 75.98 0.62 0.52
MinSNR (Hang et al., 2023) 21.88 88.12 0.63 0.49 19.36 101.35 0.67 0.49
DTR (Park et al., 2024b) 15.77 89.89 0.68 0.52 15.33 91.39 0.68 0.52

of 24% and 27%, respectively. These findings validate the efficacy of our curriculum approach across
a diverse range of model sizes, underscoring its generalizability to various model parameters.

Orthogonality of Our Curriculum Approach Lastly, we illustrate the seamless integration of our
method with sophisticated training techniques such as DTR (Park et al., 2024b) and MinSNR (Hang
et al., 2023). Initially, we observed that each sophisticated method yields a superior performance
compared to the vanilla method. Meanwhile, as shown in Table. 5, the performance is significantly
enhanced when we apply the proposed curriculum learning. Consequently, the curriculum approach
proves to be compatible with previous promising methods such as loss weighting (MinSNR) and
architectural enhancements (DTR), demonstrating our orthogonality with recent diffusion techniques.

Additional experimental results Due to limited space, we present additional experimental results in
Appendix G. These results also support the effectiveness of our method, emphasizing the importance
of curriculum approaches in diffusion training.

7 CONCLUSION

In this study, we tackle the challenge of denoising task difficulty within the diffusion model framework
and introduce a novel task difficulty-based curriculum learning approach. To the best of our knowledge,
we are the first to define task difficulty by considering both the convergence rates of loss and
performance metrics. Moreover, in terms of data distribution analysis, we observe a reduction in
relative entropy between consecutive probability distributions as timesteps progress. We believe that
these observations might help reorganize the conflicts of previous works regarding denoising task
difficulties. Building upon these insights, we propose a curriculum learning framework for diffusion
models, comprising curriculum design and pacing strategies. Our experimental results convincingly
demonstrate the efficacy of our approach across diverse diffusion model designs, datasets, and
tasks. From these results, we emphasize that considering an order of learning denoising tasks is
also a potential direction to improve training of diffusion models. In future research, for further
enhancements, more advanced curriculum learning strategies such as self-pacing can be elaborated.
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