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Abstract

Molecular property prediction is essential in
chemistry, especially for drug discovery appli-
cations. However, available molecular property
data is often limited, encouraging the transfer of
information from related data. Transfer learning
has had a tremendous impact in fields like Com-
puter Vision and Natural Language Processing
signaling for its potential in molecular property
prediction. We present a pre-training procedure
for molecular representation learning using reac-
tion data and use it to pre-train a SMILES Trans-
former. We fine-tune and evaluate the pre-trained
model on 12 molecular property prediction tasks
from MoleculeNet within physical chemistry, bio-
physics, and physiology and show a statistically
significant positive effect on 5 of the 12 tasks
compared to a non-pre-trained baseline model.

1. Introduction
Molecular property prediction has long been used to quickly
screen new molecule leads in drug development. The ac-
curacy of these methods is crucial, since false negatives
incur high costs when a lead is taken to an experimental
phase. Lately, machine learning has become one of the stan-
dard tools for molecular property prediction. However, the
main challenge is the limited amount of available data to
train models on. One solution to this problem is to curate
larger datasets using domain expertise. This can be a costly
and time consuming approach but has the advantage that
larger parts of the relevant molecular domain can be cov-
ered (Thawani et al., 2020). Another approach to solve the
data scarcity problem is that of transfer learning (Zhuang
et al., 2019), where knowledge in one task is used to improve
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performance in another. This is an active area of research
in the chemistry domain, mainly using Graph Neural Net-
works (GNNs) (Kipf & Welling, 2016) and Transformer
models (Vaswani et al., 2017). While transfer learning has
proven to be very successful in domains such as Natural
Language Processing (Howard & Ruder, 2018; Devlin et al.,
2018; Liu et al., 2019) and Computer Vision (Girshick et al.,
2013), the same clear success is yet to happen in chemistry.

This work is a continuation of the master’s thesis (Broberg,
2022) and explores a pre-training strategy for molecular rep-
resentation learning based on chemical reaction prediction.
We use it to pre-train a transformer encoder and compare
its performance to a randomly initialized one on a wide
range of molecular property prediction tasks. We show sta-
tistically significant improvements on 5 of the 12 datasets
using a significance level α = 0.05 with Bonferroni correc-
tion (Bonferroni, 1935; 1936; Noble, 2009).

2. Related Work
Most recent work on pre-training deep models for molecular
property prediction uses either GNNs or Transformers.

With GNNs, it is common to use multiple learning objec-
tives that aims to improve representation on different levels
(node/edge/graph) (Hu et al., 2020; Rong et al., 2020; Liu
et al., 2021). Node and edge level pre-training tasks gener-
ally aim to capture graph structural regularities of molecules.
Examples of such tasks are prediction of masked node or
edge attributes or using node embeddings to predict infor-
mation about the neighborhood structure. Graph level tasks
may also be based on graph structural information but there
are also approaches that more explicitly utilize information
from the chemistry domain. For example, 3D molecular
structure data (Stärk et al., 2021; Fang et al., 2022; Liu et al.,
2021) and graph motifs with their connections to functional
groups (Rong et al., 2020; Zhang et al., 2021) have been
used for graph level pre-training.

For Transformers applied to molecular property prediction
using SMILES (Weininger, 1988), a common pre-training
approach is to randomly mask parts of the input string.
ChemBERTa (Chithrananda et al., 2020), MolBERT (Fabian
et al., 2020), and SMILES-BERT (Wang et al., 2019) are
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Figure 1. Illustration of our pre-training architecture. Note that each molecule fragment is encoded independently of the others.

only some of the works that explore this method. Though
proven beneficial, this approach has not led to the huge
improvements seen in NLP by, e.g., the BERT model (De-
vlin et al., 2018) using the very related masked-language-
modeling (MLM) pre-training task. Chithrananda et al.
(2020) show a diminishing performance gain on three tasks
(BBBP, ClinTox (CT TOX), and Tox21 (SR-p53)) using
a masked token prediction pre-training strategy where an
increase in dataset size from 106 to 107 only lead to a ≈ 3%
mean ROC-AUC increase and a ≈ 2% mean PRC-AUC
increase. This indicates that pre-training by recovering
masked tokens alone might not scale well enough to train
powerful property prediction models.

Another recent line of research tries to adapt the Transformer
architecture to take molecular graphs as input (Maziarka
et al., 2020; Yoo et al., 2020; Ying et al., 2021). Such mod-
ifications allow Transformers explicit access to the graph
structure, which otherwise must be learned implicitly from
string representations. Furthermore, it can also allow in-
formation such as node features and edge features to be
included in the model input. These models have achieved
remarkable results and have in some cases been pre-trained
using structure-based tasks (Maziarka et al., 2020; Yoo et al.,
2020), but the main contribution to their predictive power
seem to stem from their architecture rather than their choice
of pre-training task.

A relatively unexplored source of information for pre-
training in the chemistry domain is reaction data. To our
knowledge, the only published work using such data for
pre-training is by Wang et al. (2021). They base their ap-
proach on GNNs and a contrastive learning task that teaches
the model to encode molecules such that two aggregated
sets of molecular encoding vectors lie near each other in the
encoding space if they make up the left- and right-hand side
of a chemical reaction respectively, and far away if they do
not.

Our approach differs from that of Wang et al. (2021) in

that we model the pre-training step as a generative reaction
prediction task instead of a contrastive learning task. Fur-
thermore, we use a transformer architecture and SMILES
representations of molecules while they use a GNN archi-
tecture and graph representations.

3. Background
3.1. Chemical Reactions

A chemical reaction is a transformation of one set of
molecules into another. The molecules present before the
reaction are called reactants, while the molecules created
through the reaction are called products. Molecules might
be part of the reaction but not contribute themselves with
any atoms to the product molecules created. These are
called reagents. In reaction prediction one tries to predict
the product molecules of a reaction given the reactants and
reagents. Normally, a reaction produces multiple product
molecules. In our work, we have limited the scope by using
data with only a single product.

3.2. SMILES

SMILES, Simplified-Molecular-Input-Line-Entry-System
is a linearization of the molecular graph. A molecule has
many possible SMILES depending on where the lineariza-
tion starts and what branches to take. There are certain rules
for producing canonical SMILES of molecules, where the
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Figure 2. Example reaction with molecules represented as their
structural formulas and as SMILES.
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same molecule will always encode to the same SMILES. A
commonly used strategy when using SMILES as inputs to
neural networks is to randomize the SMILES, by essentially
starting the linearization at a random place and take random
branches when traversing the molecular graph. This has
shown to act as a powerful data augmentation method when
working with SMILES representations of molecules (Bjer-
rum, 2017; Arús-Pous et al., 2019).

3.3. Transformer

The Transformer is an architecture operating on mathemati-
cal sets and was introduced by Vaswani et al. (2017) in the
context of neural machine translation. It has been widely
used for sequential data such as natural language. A po-
sitional encoding is then added to the input data to pro-
vide the sequential structure to the model. The original
(full) Transformer consists of an encoder and a decoder
and is typically used for translation tasks. On its own, the
Transformer encoder can be used for sequence classifica-
tion/regression/representation tasks (Devlin et al., 2018).
The key component of the architecture is the multi-head
attention mechanism which enables the model to attend to
all elements of its input at once. For a detailed description
of the full Transformer model and for Transformer encoder
models such as BERT we refer to (Vaswani et al., 2017) and
(Devlin et al., 2018) respectively.

4. Method
Our approach is based on the Molecular Transformer by
Schwaller et al. (2019), in which reaction prediction is mod-
eled as a sequence translation problem for which a full
Transformer model is used. Like Schwaller et al. (2019),
we represent molecules as SMILES. By using canonical-
ized SMILES for our product molecules we obtain a fixed
target sequence which makes the generative process easier
compared to generating graphs, where an order needs to be
induced on the edge set (Vinyals et al., 2016).

4.1. Pre-Training Architecture

In the Molecular Transformer, the encoder is applied to
SMILES strings containing all reactants and reagents of
the corresponding reaction. In our pre-training phase, the
Transformer encoder is applied to each reactant and reagent
independently. That is, the encoder can only attend to the
tokens in the same SMILES fragment, not across fragments.
For the set of reactants and reagents R = {r1, r2, ...} in
a given reaction, each SMILES fragment ri produces an
encoding hi ∈ RL×d where L is the maximum sequence
length and d is the token embedding dimension. The set of
such encodings H = {h1,h2, ...} are then aggregated into
a single vector hR ∈ Rd representing the entire reaction by
first applying element-wise addition across the encodings
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Figure 3. Illustration of the fine-tuning architecture for a binary
classification task.

and then averaging across the sequence axis according to

hR = Aggregate(H) = Mean(Sum(H)). (1)

The aggregated reaction vector hR is then passed to the
decoders “encoder-decoder attention” layers as a memory
key to all tokens in the product (target) SMILES.

We average across the sequence axis because, in the down-
stream fine-tuning tasks, we will use encoded molecules to-
gether with a Multi-Layered Perceptron (MLP). This mean
that we will also need to aggregate the encoded molecules
into fixed sized vectors. We choose to include this aggrega-
tion in the pre-training step, so that the single vector repre-
sentation will be forced to contain all information needed
for the decoding.

4.2. Fine-Tuning Architecture

In the fine-tuning phase, we only use the encoder component
from the pre-training phase. Encodings of molecules are
aggregated across the sequence axis using the mean. A
2-layered MLP with ReLU activations is used to map the
aggregated molecular encodings to the target values. All
parameters (encoder and MLP) are tuned in this phase.

4.3. Evaluation

We fine-tune separately on 12 datasets in MoleculeNet (Wu
et al., 2017) using 10-folded cross-validation. Each fold
(10%) is used once for evaluation of hyperparameter tun-
ing, once for validation, once for testing and otherwise for
training. For regression tasks and multi-label classification
tasks we use random splits while for single-label classifica-
tion tasks we use stratified splits. On multi-label prediction
benchmarks (PCBA, MUV, TOX21, ToxCast, SIDER, Clin-
Tox) we report the average performance across all tasks as
suggested by Wu et al. (2017).

To evaluate the effect of our transfer learning approach, we
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Table 1. Performance of the model with and without pre-training showing the mean and standard deviation over a 10-fold cross-validation.

DATA SET METRIC
MODEL

WITHOUT
PRE-TRAINING

MODEL
WITH

PRE-TRAINING

WILCOXON
SIGNED-RANK

TEST

RANK-BISERIAL
CORRELATION

ESOL RMSE ↓ 0.656± 0.082 0.428± 0.077 0.001 1.000
FREESOLV RMSE ↓ 2.057± 0.477 1.484± 0.413 0.002 0.982
LIPOPHILICITY RMSE ↓ 1.012± 0.038 0.700± 0.035 0.001 1.000

PCBA PRC-AUC ↑ 0.178± 0.010 0.175± 0.006 0.862 0.309
MUV PRC-AUC ↑ 0.023± 0.026 0.025± 0.017 0.539 0.491

HIV ROC-AUC ↑ 0.704± 0.050 0.757± 0.052 0.002 0.982
BACE ROC-AUC ↑ 0.726± 0.088 0.817± 0.106 0.001 1.000
BBBP ROC-AUC ↑ 0.902± 0.104 0.921± 0.101 0.019 0.873
TOX21 ROC-AUC ↑ 0.799± 0.012 0.792± 0.013 0.981 0.145
TOXCAST ROC-AUC ↑ 0.693± 0.021 0.701± 0.013 0.348 0.582
SIDER ROC-AUC ↑ 0.597± 0.016 0.578± 0.039 0.920 0.255
CLINTOX ROC-AUC ↑ 0.956± 0.0044 0.959± 0.038 0.652 0.436

compare the pre-trained model to a randomly initialized one
which we train directly on each molecular property dataset.
Evaluation is based on the best performing checkpoints with
respect to the validation set, for each model run. Our null
hypothesis is that reaction prediction pre-training has no
effect on molecular property prediction across all chemical
space. The null hypothesis is then rejected with 95% level
of confidence.

We pair the performances on each test fold and use the
Wilcoxon signed-rank test (Wilcoxon, 1945) to determine
statistically significant differences between our pre-trained
model and the randomly initialized one on each of the 12
datasets. The Wilcoxon signed-rank test is a non-parametric
version of the Student’s t-test, which does not assume nor-
mally distributed data. Since we evaluate using multiple
tests, we also make a Bonferroni correction to counteract
the multiple comparison problem (Noble, 2009). Practi-
cally this means that, to evaluate our null hypothesis with
a 95% level of confidence (significance level α = 0.05)
we use a significance level of α1 = ... = αm = α/m
when we test for an effect on each individual dataset. Here
m = 12 and denote the number of datasets we test on. This
means that we for each dataset we use a significance level
of α1 = ... = α12 = 0.05/12 = 0.00417.

5. Experiment
5.1. Data and Pre-Processing

The dataset used in the pre-training phase is from the
USPTO database (Lowe, 2012) and consists of 902, 581
samples used for training and 50, 131 samples used for vali-
dation, based on pre-processing and data splits provided by
Schwaller et al. (2017).

For the reactants and reagents we use randomized SMILES

while the product molecules, our targets, were kept in canon-
icalized form. Due to the memory complexity of the Trans-
former we truncate SMILES in the training data to a max-
imum sequence length of 157. Of the reactions in the
pre-training data, 99.9% contain reactants, reagents and
products whose SMILES are all shorter than 157, so this
truncation threshold only affects 0.1% of the reactions.

5.2. Experimental Setup

For our pre-training model we used a four-layered encoder
and decoder, with eight attention heads and a layer width
of 256. We pre-trained our model for 150 epochs, using
cross-entropy loss and AdamW optimizer with a batch size
of 4096 and a cosine cyclic learning rate scheduler with
base learning rate of 10−5 and maximum learning rate of
5 · 10−4.

In the fine-tuning phase we tuned the learning rate for all
models on each fold in the cross validation. We did this in
order to fairly compare the performance. Each tuning was
based on 20 runs with learning rates sampled geometrically
in the interval

[
10−6, 10−3

]
. During learning rate tuning we

trained each run for 50 epochs for all datasets except PCBA
and MUV which were only tuned for one respectively ten
epochs due to the large number of samples in these datasets.
The batch size was set to 64. For the number of epochs,
we used early stopping with 40 update steps of patience.
Throughout this work we tokenized SMILES by converting
each character to their corresponding ASCII-value.

5.3. Results

The results from our experiment are shown in table 1. For
each dataset we present the mean and standard deviation
over the 10-folded cross-validation along with the p-value
of the Wilcoxon signed-rank test and the rank-biserial cor-
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relation. On 5 of the 12 downstream property prediction
tasks our pre-training strategy show a statistically significant
positive effect given the Bonferroni-corrected significance
level α = 0.00417. We therefore reject our null hypothesis
and conclude that our pre-training approach using reaction
prediction has an effect on molecule property prediction

6. Limitations
This pre-training strategy has two limitations that we would
like to point out. We use reactions that only have one major
product molecule, but most reactions contain more than one
product. This is an advantage of the approach proposed by
Wang et al. (2021). Another limitation is that we base our
statistical analysis on cross-validation of the downstream
tasks. A more robust statistical analysis would have been
based on several different runs of pre-training.

7. Conclusions
In this paper we have presented a pre-training strategy for
transformer models using reaction prediction. We demon-
strate a statistically significant effect on 5 out of 12 datasets
from MoleculeNet and conclude that reaction prediction pre-
training has an effect on molecular property prediction. Our
results show, in line with Wang et al. (2021), that chemical
reactions can be used to successfully pre-train models for
downstream molecular property prediction tasks.
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probabilità. Pubblicazioni del R. Istituto superiore di
scienze economiche e commerciali di Firenze. Seeber,
1936. URL https://books.google.se/books?
id=3CY-HQAACAAJ.

Bonferroni, C. E. Il calcolo delle assicurazioni su gruppi di
teste. Studi in onore del professore salvatore ortu carboni,
pp. 13–60, 1935.

Broberg, J. Pre-training molecular transformers through
reaction prediction. Master’s thesis, KTH, 2022.

Chithrananda, S., Grand, G., and Ramsundar, B. Chem-
BERTa: Large-scale self-supervised pretraining for
molecular property prediction. CoRR, abs/2010.09885,
2020. URL https://arxiv.org/abs/2010.
09885.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Fabian, B., Edlich, T., Gaspar, H., Segler, M. H. S., Meyers,
J., Fiscato, M., and Ahmed, M. Molecular representa-
tion learning with language models and domain-relevant
auxiliary tasks. CoRR, abs/2011.13230, 2020. URL
https://arxiv.org/abs/2011.13230.

Fang, X., Liu, L., Lei, J., He, D., Zhang, S., Zhou,
J., Wang, F., Wu, H., and Wang, H. Geometry-
enhanced molecular representation learning for prop-
erty prediction. Nature Machine Intelligence, 4(2):
127–134, Feb 2022. ISSN 2522-5839. doi: 10.1038/
s42256-021-00438-4. URL https://doi.org/10.
1038/s42256-021-00438-4.

Girshick, R. B., Donahue, J., Darrell, T., and Malik, J. Rich
feature hierarchies for accurate object detection and se-
mantic segmentation. CoRR, abs/1311.2524, 2013. URL
http://arxiv.org/abs/1311.2524.

Howard, J. and Ruder, S. Fine-tuned language models for
text classification. CoRR, abs/1801.06146, 2018. URL
http://arxiv.org/abs/1801.06146.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande,
V., and Leskovec, J. Strategies for Pre-training Graph
Neural Networks. arXiv:1905.12265 [cs, stat], Febru-
ary 2020. URL http://arxiv.org/abs/1905.
12265. arXiv: 1905.12265.

Kipf, T. N. and Welling, M. Semi-supervised classi-
fication with graph convolutional networks. CoRR,
abs/1609.02907, 2016. URL http://arxiv.org/
abs/1609.02907.

Liu, S., Wang, H., Liu, W., Lasenby, J., Guo, H., and Tang,
J. Pre-training molecular graph representation with 3D
geometry. CoRR, abs/2110.07728, 2021. URL https:
//arxiv.org/abs/2110.07728.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. Roberta:
A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019. URL http://arxiv.org/
abs/1907.11692.

Lowe, D. M. Extraction of chemical structures and reactions
from the literature. Dissertation, University of Cambridge,
2012.

http://arxiv.org/abs/1703.07076
http://arxiv.org/abs/1703.07076
https://books.google.se/books?id=3CY-HQAACAAJ
https://books.google.se/books?id=3CY-HQAACAAJ
https://arxiv.org/abs/2010.09885
https://arxiv.org/abs/2010.09885
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2011.13230
https://doi.org/10.1038/s42256-021-00438-4
https://doi.org/10.1038/s42256-021-00438-4
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1905.12265
http://arxiv.org/abs/1905.12265
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2110.07728
https://arxiv.org/abs/2110.07728
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692


Pre-training Transformers for Molecular Property Prediction Using Reaction Prediction

Maziarka, L., Danel, T., Mucha, S., Rataj, K., Tabor, J., and
Jastrzebski, S. Molecule attention transformer. CoRR,
abs/2002.08264, 2020. URL https://arxiv.org/
abs/2002.08264.

Noble, W. S. How does multiple testing correction work?
when prioritizing hits from a high-throughput experiment,
it is important to correct for random events that falsely
appear significant. how is this done and what methods
should be used? Nature Biotechnology, 27:1135+, De-
cember 2009.

Rong, Y., Bian, Y., Xu, T., Xie, W., Wei, Y., Huang, W., and
Huang, J. Self-supervised graph transformer on large-
scale molecular data, 2020. URL https://arxiv.
org/abs/2007.02835.

Schwaller, P., Gaudin, T., Lanyi, D., Bekas, C., and Laino,
T. ”found in translation”: Predicting outcomes of com-
plex organic chemistry reactions using neural sequence-
to-sequence models. Computing Research Repository,
abs/1711.04810, 2017. URL http://arxiv.org/
abs/1711.04810.

Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter,
C. A., Bekas, C., and Lee, A. A. Molecular trans-
former: A model for uncertainty-calibrated chemical re-
action prediction. ACS Central Science, 5(9):1572–1583,
Aug 2019. ISSN 2374-7951. doi: 10.1021/acscentsci.
9b00576. URL http://dx.doi.org/10.1021/
acscentsci.9b00576.

Stärk, H., Beaini, D., Corso, G., Tossou, P., Dallago,
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