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ABSTRACT

The intricate neural dynamics of the cerebral cortex are often characterized in
terms of the delicate balance between excitation and inhibition (E-I balance).
While numerous studies have delved into its functional implications, one funda-
mental issue has remained unresolved – namely, the unstructured, random con-
nections posed by E-I balance dynamics versus the necessity for structured neural
connections to fulfill specific computational tasks. This raises the crucial ques-
tion: How can neural circuits reconcile these seemingly contradictory demands?
Drawing inspirations from recent data in neuroscience, we propose a biologically
grounded spiking neural network. This network incorporates two distinct sets
of synaptic connections, one featuring strong synapses dedicated to maintaining
the balance condition, and the other comprising weak synapses utilized for neu-
ral computation. Crucially, only the weak synapses undergo training, while the
strong synapses remain fixed. Interestingly, we have discovered that this architec-
ture not only resolves the structural conflicts, but also offers several compelling
computational advantages. Firstly, the E-I balance dynamics mediated by strong
synapses can closely mimic the function of normalization operations, effectively
alleviating the internal covariate shift problem. Secondly, we have observed that
weak synapses remain weak during training without any imposed constraints, thus
preserving the balance condition established by the strong synapses. Lastly, the
coexistence of strong and weak synapses allows for a seamless transition from the
”lazy” learning regime, characterized by the primary training of readout weights,
to the ”rich” learning regime, marked by alterations in neural representations. We
believe this study can shed light on how structured computations can coexist with
unstructured E-I balance dynamics and offer novel perspectives on the computa-
tional advantages of E-I balance.

1 INTRODUCTION

The concept of excitation-inhibition balance (E-I balance), initially introduced to elucidate the irreg-
ular firing patterns observed in the cortex (Softky & Koch, 1993; Shadlen & Newsome, 1994), has
emerged as a foundational principle in neuroscience. The E-I balance model posits that, in a ran-
domly connected networks with strong weights, neurons receive a constant influx of excitatory post-
synaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs), resulting in membrane po-
tentials exhibiting a random-walk-like behavior and, consequently, generating irregular spike trains
(van Vreeswijk & Sompolinsky, 1996; van Vreeswijk & Sompolinsky, 1998). Empirical investi-
gations consistently affirm the equilibrium maintained between excitatory and inhibitory inputs to
neurons (Shu et al., 2003; Wehr & Zador, 2003; Haider et al., 2006; Okun & Lampl, 2008; Xue
et al., 2014; Barral & D Reyes, 2016), with deviations from this balance associated with various
neural disorders (Yizhar et al., 2011).

The computational advantages bestowed by maintaining E-I balance in cortical dynamics are multi-
faceted and profound. In this balanced state, neurons exhibit heightened responsiveness to incoming
stimuli and can swiftly process such inputs van Vreeswijk & Sompolinsky (1998); Huang et al.
(2011); Tian et al. (2020). Furthermore, this equilibrium condition affords dynamic range control,
enabling the neural system to handle a broad spectrum of inputs, ranging from subtle sensory sig-
nals to salient events. Additionally, globally coordinated inhibition in balanced dynamics can yield
optimal coding, even when the firing of signal neurons adheres to Poisson statistics (Boerlin et al.,
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2013; Denève & Machens, 2016). Lastly, the ability to adjust the E-I ratio effectively acts as a gate
for signals (Vogels & Abbott, 2009; Kremkow et al., 2010).

However, E-I balance dynamics do not operate in isolation. The brain also necessitates structured
connections to fulfil a multitude of cognitive functions. A fundamental issue arises from the inher-
ent conflict between E-I balance dynamics, which require unstructured connections, and the neural
computation dynamics, which require structured connections. How, then, does the brain resolve this
inherent conflict?

In this study, we introduce a biologically grounded spiking neural network, featuring distinct sets
of strong and weak synapses. Our model draws inspiration from recent neuroscience data where
Scholl et al. (2021) illuminated the pivotal role of synaptic strength in shaping the response of
neocortical neurons to sensory input. Interestingly, this research challenges conventional views by
revealing that individual neuron selectivity is not dictated by strong synapses but instead hinges
on the collective activation of weaker synapses. This intriguing discovery aligns with the paradox
where classical E-I balance network models scale with 1/

√
N (van Vreeswijk & Sompolinsky,

1998) (N denotes network size), while empirically neural computation should scale with 1/N to
maintain input current consistency across varying network sizes. These disparities form the basis
of our hypothesis: the brain employs structured and weak synapses (synapses that scale with 1/N )
for neural computation while utilizing randomized and strong synapses (synapses that scale with
1/

√
N ) to maintain balanced dynamics.

The presented model comprises three distinct neuronal populations at each layer (Fig. 1A). No-
tably, our model incorporates two sets of synapses. One set consists of strong synapses responsible
for maintaining the balance condition, while the other set comprises weaker synapses designated
for neural computations (Fig. 1B). Consequently, excitatory neurons receive large input currents
from the E-I balance dynamics and small input currents from an optimizable dynamics (Fig. 1C).
Importantly, only the weaker synapses undergo training, while the stronger synapses remain fixed
throughout the learning process. Our results reveal that this architecture not only resolves the afore-
mentioned conflict in the structural demands, but also offers several compelling computational ben-
efits. First, the E-I balance dynamics function computationally similar to normalization operations.
Maintaining a balanced state stabilizes the distribution of network variables and thus expedite train-
ing. Intriguingly, we observed that the weak synapses, even without constraints, remain weak during
training, ensuring the network remains balanced throughout. Furthermore, our study showcases that
the combination of strong and weak synapses facilitates a smooth transition from a ”lazy” learning
regime, primarily training readout weights, to a ”rich” learning regime, where neural representations
undergo alteration. To empirically verify the computational merits of the weak-and-strong synaptic
architecture, we conducted experiments utilizing the MNIST and Fashion-MNIST datasets, yielding
promising results. Our findings provide insights into the diverse functions of synapses in the brain
and shed light on how the brain leverages the balanced state to enhance its learning processes.

2 THE NETWORK MODEL

2.1 BIOLOGICAL SIGNIFICANCE

In deep neural networks, neurons can form both positive and negative connections with downstream
neurons. However, the brain takes a different approach, categorizing neurons into either excita-
tory or inhibitory types. Excitatory neurons exclusively form positive connections with downstream
neurons, while inhibitory neurons exclusively form negative connections with downstream neurons.
This principle is widely known as Dale’s principle within the neuroscience community. To align
with this biological concept, our model consists of three distinct neuronal populations. The excita-
tory population corresponds to pyramidal cells (labeled as E), one of the principal excitatory neuron
types in the brain. The inhibitory neurons correspond to somatostatin (SST)-expressing neurons (la-
beled as Id) and parvalbumin (PV)-expressing neurons (labeled as Ip). SST neurons predominantly
offer distal inhibition to pyramidal cells (Gonchar, 1997; Yavorska & Wehr, 2016), resulting in less
effective inhibition, whereas PV neurons primarily provide on-path proximal inhibition to pyramidal
cells, yielding strong inhibition (Packer & Yuste, 2011; Hu et al., 2014).

Crucially, we hypothesize that the interactions between the excitatory group and the two inhibitory
groups serve different computational purposes. Specifically, the neural dynamics between the ex-
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Figure 1: A balanced spiking neural network satisfying Dale’s principle, featuring both strong and
weak synapses. (A) The network architecture. We use non-leaky integrator neurons as readout units.
(B) In each layer, our model comprises an excitatory population and two inhibitory populations.
Please refer to Sec.2.1 for the biological significance. Each layer incorporates two sets of synapses,
with only the weak set (dashed line) subject to training. Arrow and filled circle represent excitatory
and inhibitory synapses respectively. (C) A schematic depiction of input currents to an excitatory
neuron. The neuron recieves a barrage of large EPSCs and IPSCs mediated by strong synapses from
the E-I balance dynamics, along with small ones mediated by weak synapses from an optimizable
dynamics. Red and blue lines represent excitatory and inhibitory currents, respectively. Solid and
dashed lines represent currents mediated by strong and weak synapses, respectively.

citatory and SST neurons involve weaker synapses and can be fine-tuned to perform specific tasks.
On the other hand, the neural dynamics between the excitatory and PV neurons feature globally
distributed, unstructured, and robust synapses (Packer & Yuste, 2011), which help maintain the net-
work’s dynamics within the balanced region. This configuration aligns with the different levels of
inhibition provided by SST and PV neurons and is consistent with recent experiments where PV
neurons are found to have critical roles in E-I balance dynamics (Xue et al., 2014; Ferguson & Gao,
2018), whereas the contribution of SST neurons in this context remains less evident. Lastly, the
distinct functions of weak and strong synapses within the excitatory group are in accordance with
recent findings in (Scholl et al., 2021), where strong synapses exhibit no correlation with neuronal
selectivity, while the co-activation of weak synapses determines selectivity.

2.2 MODEL DETAIL

We use leaky integrate-and-fire (LIF) neuronal dynamics, which is given by,

τ bm
dV b

i,l

dt
= −gLV

b
i,l + Ibi,l, (1)

where b = E, Ip, Id denotes the neuron type. l denotes the layer index, and i denotes the neuron
index in that layer. τ bm is the membrane time constant, gL is the leaky conductance, and Ibi,l is the
synaptic current received by the neuron.

For simplicity, we only present the synaptic current received by an E neuron (Fig. 1C). Refer to the
Appendix for the full model. The current consists of two components: a weak input SE

i,l(t) from the
optimizable dynamics and a strong input from the balance dynamics BE

i,l(t):

IEi,l(t) = SE
i,l(t) +BE

i,l(t). (2)

The weak input SE
i,l(t) is composed of three components: the excitatory feedforward current from

the previous layer ΓX
i,l−1(t), the excitatory recurrent current from the same layer ΓE

i,l(t), and the
inhibitory recurrent current from the same layer ΓId

i,l(t),

SE
i,l(t) = ΓX

i,l−1(t) + ΓE
i,l(t) + ΓId

i,l(t). (3)

Each component of the weak input SE
i,l(t) is mediated by a set of weak and trainable connection

weight variables w,
Γb
i,.(t) =

∑
j

wEb
i,jc

b
j(t), (4)
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where b = X,E, Id. wEb
i,j denotes the synaptic strength from neuron j of population b in the corre-

sponding layer to neuron i in the E population. Importantly, we let wEb
i,j scale with 1/K (K being

the number of connections). cbj(t) represents the synaptic current input from neuron j of population
b and is given by,

cbj(t) =
∑
k

1

τs
e−(t−tj,k)/τ

s

, b = X,E, Id, Ip. (5)

where tj,k denotes the spike time of the kth spike of neuron j, and τsfast is the synaptic time constant.

The strong input BE
i,l(t) from the balanced dynamics is composed of four components: the exci-

tatory feedforward input current from the previous layer ΩX
i,l−1(t), the excitatory recurrent current

from the same layer ΩE
i,l(t), the inhibitory recurrent current from the same layer ΩIp

i,l(t), and a shunt-

ing inhibition term SIIpi,l(t) resulted from the on-path inhibition effect of PV neurons,

BE
i,l(t) = ΩX

i,l−1(t) + ΩE
i,l(t) + Ω

Ip
i,l(t) + SIIpi,l(t). (6)

Components of the strong input BE
i,l(t) are mediated by a set of strong and untrainable connection

weight variables g,
Ωb

i,.(t) =
∑
j

pi,jg
Eb
i,jc

b
j(t), (7)

where b = X,E, Ip, pi,j = {1, 0} denotes that neurons i and j are connected or unconnected,
respectively. gEb

i,j denotes the synaptic strength from neuron j of population b in the corresponding
layer to neuron i in the E population. Importantly, we let gEb

i,j scale with 1/
√
N . We also add a

shunting inhibition term SIi,l(t) to account for the on-path effect from the perisomatic inhibition of
PV neurons (Isaacson & Scanziani, 2011), with dynamics given by (Hao et al., 2009),

SIi,l(t) = κIEPSC
i,l ΩIp , (8)

with κ denotes the shunting inhibition strength, and IEPSCs
i,l denotes the total EPSCs received by

the neuron, i.e., the total positive inputs. Without the shunting inhibition term, equation 6 conforms
with classical E-I balance networks (van Vreeswijk & Sompolinsky, 1996). Adding the shunting
inhibition term does not significantly alter the dynamics, while helping to achieve the so-called
detailed-balanced state (Xue et al., 2014) by providing inhibition proportional to excitatory input.

For the first layer, we model the excitatory feedforward input as currents directly act on the neural
populations, without any synaptic dynamics. This practice makes it easier to run simulations with
different time step dts. For the readout layer, we use non-leaky integrator neurons without spiking
dynamics. All the experiments are run with BrainPy (Wang et al., 2021; 2022) which is a general-
purpose brain dynamics programming framework and provides functionalities to train spiking neural
networks using surrogate gradients (Neftci et al., 2019).

3 MAIN RESULTS

3.1 BALANCE DYNAMICS AS NORMALIZATION OPERATION

Normalization operations play a pivotal role in the effective training of deep neural networks. By
stabilizing variable distributions, exemplified by methods like BatchNorm (Ba et al., 2016), these
operations address the challenge of internal covariate shift – the fluctuations in variable distributions
caused by weight updates that can impede later parts of the network from converging or learning
effectively. However, nearly all of these normalization techniques raise biological implausibility
concerns, particularly with regard to their potential to alter input variable signs, thus violating Dale’s
principle. In this section, we illustrate that E-I balance dynamics mediated by strong synapses is
computationally similar to normalization operations while being biologically feasible.

Let’s begin by considering the scenario without the influence of weak synapses. Within the E-I bal-
ance dynamics, the significant EPSCs and IPSCs, typically of the order O(

√
N), effectively counter-

act each other, resulting in a relatively modest net input, typically of the order O(1) (van Vreeswijk
& Sompolinsky, 1998). This net input essentially serves as a background signal (as depicted in Fig.
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Figure 2: E-I balance dynamics effectively normalizes network activity. (A) Schematic representa-
tion of input currents governed by the strong E-I balance dynamics. The red and blue lines depict
the combined EPSC and IPSC contributions, while the gray line represents the net input. In cases
where the weak dynamics are primarily excitatory (B) or inhibitory (C), the E-I balance dynamics
recruit additional inhibition or excitation, respectively. The dashed line illustrates the hypothetical
summation of net input and the current from the weak dynamics without considering feedback from
the balance dynamics. The black solid line represents the actual net input current.

2A). However, the introduction of weak synapses adds an extra layer of currents superimposed upon
this background signal . If these additional currents primarily consist of excitatory components, the
E-I balance dynamics respond by recruiting additional inhibition to counterbalance the additional
excitation from the weak dynamics (as shown in Fig. 2B), and vice versa (as indicated in Fig. 2C).
Because the strong synapses within the E-I balance dynamics exhibit globally unstructured random
connectivity, their impact on the network is uniform. Consequently, the E-I balance dynamics es-
sentially provide a form of global excitation or global inhibition, contingent upon the polarity of the
weak dynamics. In effect, this process functions akin to normalization operators.

The effect of the E-I balance dynamics also aligns with experimental observations indicating that the
statistics of spike trains show certain similarities when different stimuli are presented, as previously
documented (Fiser et al., 2004). However, the specific characteristics of neural activity can vary
depending on the presence and nature of stimuli. This leads to both shared and distinct patterns in
cortical dynamics, allowing for the execution of different neural computations.

To demonstrate the effectiveness of E-I balance dynamics as a normalization operation, we con-
ducted training using two 7-layer Daleian Spiking Neural Networks (DSNNs), adhering to Dale’s
principle with separate excitatory and inhibitory groups, for the Fashion-MNIST recognition task
(Xiao et al., 2017). One SNN incorporated trainable weak and fixed strong synapses (referred
to as WS-DSNN hereafter), while the other featured fully trainable synapses initialized with
KaimingNormalweights, following the conventional SNN setup (referred to as DSNN hereafter).
To assess the stability of neuron firing rate distributions throughout training, we calculated the sym-
metric Kullback–Leibler (KL) divergence (Kullback & Leibler, 1951), denoted as Dsym

KL , between
the distributions at initial and subsequent training steps. The symmetric KL divergence is defined as
follows:

Dsym
KL = DKL(P∥Q) +DKL(Q∥P ) (9)

where DKL(.∥.) represents the Kullback–Leibler divergence. As demonstrated in Fig. 3A, our WS-
DSNN model maintains small Dsym

KL values during training, indicating that the firing rate distribution
remains relatively stable throughout the training process. In contrast, the DSNN model exhibits a
significant increase in Dsym

KL during training, signifying substantial shifts in the firing rate distri-
bution. This outcome suggests that the issue of internal covariate shift is effectively mitigated by
the E-I balance dynamics in our model, whereas a DSNN experiences notable distribution shifts.
Consequently, the balanced model demonstrates faster convergence, as depicted in Fig. 3B.

3.2 WEAK SYNAPSES REMAIN WEAK AFTER TRAINING

During training, we do not impose any form of constraints or regularization to enforce the weak
synapses to remain weak. However, interestingly, we found that these synapses maintain their small
values, as illustrated in Fig. 4A. The currents produced from these weak synapses thus stay small
during the entire training phase, as evidenced by Fig. 4B. Given that these weak currents do not exert
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Figure 3: The E-I balance dynamics play a pivotal role in expediting training by effectively alleviat-
ing the internal covariate shift problem. (A) Throughout the training process, our model consistently
maintains a small symmetric KL divergence Dsym

KL , while the DSNN model experiences a notable in-
crease during training. (B) Our model exhibits accelerated convergence in comparison to the DSNN
model when evaluated on the Fashion-MNIST dataset.
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Figure 4: The weak synapses stay relatively weak after training. (A) A chart plot illustrating the
mean afferent synapse weights of excitatory neurons before and after training. (B) A violin plot of
the current components. The associated current component originating from weak synapses remain
small during training. Colors correspond to the x-axis labels in (A). (C) The balanced WS-DSNN
model exhibits a membrane potential distribution that is distinctly predisposed toward firing.

substantial influence on the overall magnitude of input currents, the excitatory-to-inhibitory (E/I)
ratio exhibits a near-constant behavior during training, and the balance condition is thus maintained.

We attribute this phenomenon to E-I balance dynamics. E-I balance dynamics has the ability to
propel neurons into a state ready for firing (Brunel, 2000; Huang et al., 2011; Tian et al., 2020). In
this state, the presence of a weak dynamics component can exert a remarkably effective influence on
the system’s behavior. Fig. 4C offers a visual comparison of the membrane potential distributions
between the balanced WS-DSNN network and a conventional Daleian network (DSNN). Notably,
the balanced network exhibits a membrane potential distribution that is distinctly predisposed toward
firing. Consequently, even minor adjustments to a synapse within the balanced network result in
substantial changes to the network’s overall state. This heightened sensitivity to synaptic changes
alleviates the need for the network to apply extensive, large-scale synaptic updates.

3.3 TRANSITION FROM LAZY LEARNING TO RICH LEARNING

Theoretical investigations (Chizat et al., 2020; Woodworth et al., 2020) have illuminated that the
scale of network initialization plays a pivotal role in determining the mode of learning within the
network. A large initialization scale aligns with the ”lazy” learning regime, where the part of the
network before the readout layer acts akin to a fixed kernel and mostly readout weights are trained.
Conversely, a small initialization scale corresponds to the ”rich” learning regime, where intermediate
layer weights also undergo significant changes and neural representations are thus optimized.

In an ideal scenario, the network should maintain a consistent internal neural representation even
when faced with novel tasks, as this shared neural representation could potentially serve multiple
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Figure 5: Transitioning from ”lazy” to ”rich” learning regimes on the MNIST dataset. (A) Networks
subjected to ”lazy” training (where only readout weights are updated) and ”rich” training (involving
updates to both readout and weak weights) exhibit a similar rapid increase in test accuracy during
the initial ”lazy” phase. However, networks with ”rich” training can sustain performance improve-
ments by fine-tuning weak synapses, consequently reshaping internal representations. (B) t-SNE
visualization of network states at different training steps. During the ”lazy” phase, neural repre-
sentations already exhibit some degree of clustering. This initial clustering allows the network to
discover a set of linear weights that yield reasonably good performance within a few training steps.
With continued exposure to the same tasks, neural representations undergo alterations, resulting in
enhanced clustering that aligns more closely with the specific task requirements.

purposes. However, to excel in a particular task, neural representations must adapt to the specific
requirements of that task. A potential resolution to this challenge lies in the design of a network
architecture capable of transitioning from ”lazy” to ”rich” learning. Initially, when encountering a
task for the first few times, the network employs a form of ”lazy” learning, swiftly training a set of
readout weights to execute the task. As the network becomes more deeply engaged, it signals the
significance of the current task, leading to subsequent changes in neural representation through a
process reminiscent to ”rich” learning.

Our findings reveal that the combination of weak and strong synapses effectively empowers the
network to achieve this transition. The presence of fixed, strong weights in our model endows the
network with the capability for ”lazy” learning during the initial training phase (Fig. 5A). This fa-
cilitates swift adjustments in readout weights, leading to rapid improvements in training accuracy
in few training steps. As the training process unfolds, we observe alterations in the neural repre-
sentation of stimuli, driven by the gradual influence of updates to the weaker synapses (Fig. 5B),
subsequently yielding improved performance.

4 EXPERIMENTS

To demonstrate the computational effectiveness of the weak-and-strong synapse architecture, we
evaluate the model’s performance on two widely used benchmark datasets: MNIST and Fashion-
MNIST. Our primary focus lies in assessing the model’s training speed and performance relative
to three alternative model configurations, as outlined in Table 1. To ensure a fair comparison, we
employ a consistent 7-layer architecture across all models, each layer consisting of 200 hidden units.
We use the cross entropy loss as our loss function. The learning rates are set to 1 × 10−3 for the
hidden layers and 1×10−1 for the readout layers, which strike an optimal balance, facilitating rapid
training without compromising overall performance. The performance are shown in Table 2.

Our WS-DSNN architecture exhibited encouraging performance on both datasets, with testing ac-
curacies either matching or surpassing those of a standard SNN equipped with batchnorm op-
erations. Furthermore, WS-DSNN demonstrated training speeds comparable to regular SNNs with
batchnorm, while the vanilla DSNN exhibited significantly slower convergence, particularly on
the Fashion-MNIST dataset. However, it is noteworthy that batchnorm operations raise biological
implausibility concerns for aforementioned reasons. Our experiments suggest that the E-I balance
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Table 1: Model comparison.

Model Type Notes
Weak & Strong Daleian SNN (WS-DSNN) Daleian SNN with weak and strong weights
Daleian SNN (DSNN) Daleian SNN with fully trainable weights
Regular SNN (SNN) KaimingNormal initialization
Regular SNN with BN (SNN-BN) BatchNorm applied to currents at each layer

Table 2: Experiment results on MNIST and Fashion-MNIST.

WS-DSNN 0.9737
DSNN 0.9641
SNN Failed to converge
SNN-BN 0.9704
(a) MNIST classification accuracy

WS-DSNN 0.8703
DSNN 0.8374
SNN Failed to converge
SNN-BN 0.8563

(b) Fashion-MNIST classification accuracy

dynamics may be a mechanism that the brain exploits to fulfill computational roles analogous to
those of batchnorm.

5 RELATED WORK

Normalization operations Normalization operations are fundamental to the success of deep
learning, with operators like BatchNorm (Ioffe & Szegedy, 2015) and LayerNorm (Ba et al.,
2016) serving as standard components in modern deep learning architectures. However, these op-
erations pose a challenge in terms of biological plausibility. While some efforts have been made
to address this issue, such as the proposal of neuronal intrinsic plasticity as a potential alternative
in the study by Shaw et al. (2020), the exploration of biologically plausible alternatives remains
relatively limited. One proposed avenue involves the consideration of homeostasis processes, such
as synaptic scaling (Turrigiano & Nelson, 2004; Stellwagen & Malenka, 2006; Turrigiano, 2008),
which could potentially stabilize network dynamics during learning. However, it’s important to note
that these homeostasis effects operate on much longer timescales than the rapid changes in stimulus
dynamics encountered during learning. Consequently, they are unlikely to serve as viable biological
candidates for normalization operations in the context of machine learning.

Computational roles of E-I balance The exploration of the neural function of E-I balance has
primarily been confined to simplistic network models, typically featuring a single layer and exclud-
ing any learning mechanisms (van Vreeswijk & Sompolinsky, 1998; Vogels & Abbott, 2009; Lim
& Goldman, 2014; Rubin et al., 2017; Tian et al., 2020). However, there have been notable excep-
tions and areas of specific interest within the realm of tight balance, as demonstrated in the works
of Boerlin et al. (2013); Bourdoukan & Denève (2015); Thalmeier et al. (2016). These studies have
delved into the dynamics of balanced networks, coupling fast and slow dynamics to approximate
various forms of linear dynamics. In our investigation, we harness recent advancements in surro-
gate gradients (Neftci et al., 2019) and employ machine learning tasks as a means to explore the
computational advantages associated with E-I balance.

Lazy and rich learning The brain’s rapid adaptation to novel tasks is a puzzle. One proposed
explanation suggests that the brain may employ a dimension-expansion strategy, a fundamental con-
cept explored in reservoir computing (Maass et al., 2002; Jaeger & Haas, 2004; Legenstein & Maass,
2007) and extreme learning machines (Huang et al., 2006). In this approach, stimulus and context
signals are exhaustively combined within a high-dimensional activity space, allowing for effective
task performance through simple linear decoding. Notably, several brain structures have demon-
strated this characteristic (Yassa & Stark, 2011; Cayco-Gajic & Silver, 2019; Lin et al., 2021). In
contrast, neural representations should ideally adhere to a low-dimensional, task-specific manifold.
This structural framework enables the filtration of irrelevant task-related information, thus minimiz-
ing interference between tasks (Ganguli et al., 2008; Chaudhuri et al., 2019). These two paradigms
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(A) (B)

Figure 6: Training dynamics of the four models. (A) On the MNIST dataset, the SNN model fails to
converge, while the other three models reach similar test accuracies. The difference in training speed
between DSNN and WS-DSNN/SNN-BN is visible albeit marginal, which might be attributed to the
dataset’s simplicity. (B) In the context of the Fashion-MNIST dataset, the SNN model once again
faces convergence challenges, while WS-DSNN and SNN-BN exhibit comparable training speeds,
with WS-DSNN achieving a higher final test accuracy. DSNN encounters initial convergence diffi-
culties due to a significant portion of deep-layer neurons remaining inactive, resulting in a gradient
vanishing problem. However, it eventually converges at a slower pace.

for solving tasks (Flesch et al., 2022) have been coined as ”lazy” learning (readout layer training)
(Chizat et al., 2020) and ”rich learning” (neural representation changes) (Woodworth et al., 2020).
In the ”lazy” learning regime, the network essentially emulates a random feature model (Rahimi &
Recht, 2007), rendering the non-convex optimization problem effectively convex and resulting in
swift convergence. Conversely, the ”rich” learning regime yields highly structured representations
with inductive biases, leading to more protracted convergence due to its complexity.

6 DISCUSSION

The balance between excitation and inhibition, considered as one of the few fundamental principles
governing brain dynamics, has been extensively explored in prior research. However, reconciling
the conflicting structural demands of E-I balance dynamics and neural computation requires re-
newed investigation. To that end, we introduce a novel E-I balance model that incorporates both
fixed, strong synaptic connections and plastic, weak synapses, drawing inspiration from recent data
in neuroscience experiments. This architecture not only resolves structural conflicts but also of-
fers several computational advantages. Firstly, the balance dynamics within our model can function
akin to normalization operators frequently employed in deep neural networks. This capability expe-
dites network convergence by mitigating the internal covariate shift problem. Secondly, we observe
that weak synapses tend to remain weak throughout the optimization process, thereby maintaining
network balance during training. Lastly, our network exhibits a transition from ”lazy” to ”rich”
learning, enabling it to strike a balance between learning speed and task performance.

From a biological perspective, these computational advantages hold significant implications. For
instance, synaptic changes accompanying learning processes in the brain, such as the growth of new
synaptic spines and modifications in existing synapses, consume both time and energy resources.
If minor synaptic updates suffice for learning specific tasks, the architecture of weak-and-strong
synapses could offer the brain substantial advantaging in conserving energy. Moreover, the transition
from ”lazy” to ”rich” learning might serve as a mechanism to mitigate catastrophic forgetting.

Our findings may also shed light on the challenges associated with identifying structured weights in
biological circuits during experiments. The presence of numerous unstructured neural connections
may be essential for maintaining a balanced computational environment, concealing the structured
connections responsible for executing cognitive tasks.

In summary, our study reveals how E-I balance dynamics can work in harmony with neural compu-
tation dynamics and facilitate the brain’s learning processes. We believe that our findings provide
a novel perspective on the diverse roles of E-I balance and offer valuable insights into the complex
interplay between E-I balance and learning dynamics.
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ables in Balanced Spiking Networks. PLoS Computational Biology, 9(11):e1003258, November
2013. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1003258.
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A THE FULL NETWORK MODEL

We use the LIF-neuron model given by the equation:

τ bm
dV b

i,l

dt
= −gLV

b
i,l + Ibi,l, (10)

where b = E, Ip, Id denotes the neuron type. l denotes the layer index, and i denotes the neuron
index in that layer. τ bm is the membrane time constant, gL is the leaky conductance, and Ibi,l is the
synaptic current received by the neuron.

The input currents are defined as:

IEi,l(t) = SE
i,l(t) +BE

i,l(t)

I
Ip
i,l(t) = B

Ip
i,l(t)

IIdi,l(t) = SId
i,l(t).

(11)

Here, Bb
i,l(t) and Sb

i,l(t) denote the current components from E-I balance dynamics and neural
computation dynamics to neuron i in population b at layer l at time t, respectively.

A.1 E POPULATION DYNAMICS

The input current to the excitatory population consists of two components: a weak input SE
i,l(t) from

the optimizable dynamics and a strong input from the balance dynamics BE
i,l(t):

IEi,l(t) = SE
i,l(t) +BE

i,l(t). (12)

The weak input SE
i,l(t) is composed of three components: the excitatory feedforward current from

the previous layer ΓX
i,l−1(t), the excitatory recurrent current from the same layer ΓE

i,l(t), and the
inhibitory recurrent current from the same layer ΓId

i,l(t),

SE
i,l(t) = ΓX

i,l−1(t) + ΓE
i,l(t) + ΓId

i,l(t). (13)

Each component of the weak input SE
i,l(t) is mediated by a set of weak and trainable connection

weight variables w,
Γb
i,.(t) =

∑
j

wEb
i,jc

b
j(t), (14)

where b = X,E, Id. wEb
i,j denotes the synaptic strength from neuron j of population b in the cor-

responding layer to neuron i in the E population. Importantly, we let wEb
i,j scale with 1/N . cbj(t)

represents the synaptic current input from neuron j of population b and is given by,

cbj(t) =
∑
k

1

τs
e−(t−tj,k)/τ

s

, b = X,E, Id, Ip. (15)

where tj,k denotes the spike time of the kth spike of neuron j, and τsfast is the synaptic time constant.

The strong input BE
i,l(t) from the balanced dynamics is composed of four components: the exci-

tatory feedforward input current from the previous layer ΩX
i,l−1(t), the excitatory recurrent current

from the same layer ΩE
i,l(t), the inhibitory recurrent current from the same layer ΩIp

i,l(t), and a shunt-

ing inhibition term SIIpi,l(t) resulted from the on-path inhibition effect of PV neurons,

BE
i,l(t) = ΩX

i,l−1(t) + ΩE
i,l(t) + Ω

Ip
i,l(t) + SIIpi,l(t). (16)

Components of the strong input BE
i,l(t) are mediated by a set of strong and untrainable connection

weight variables g,
Ωb

i,.(t) =
∑
j

pi,jg
Eb
i,jc

b
j(t), (17)
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Table 3: Hyperparameters

Symbols Values
τm 5
gL -1
τs 10
κ 0.02

(a) List 1

Symbols Values
pEX 0.1
pIpX 0.1
pEIp 0.8
pIpIp 0.8
pEE 0.1
pIpE 0.8

(b) List 2

where b = X,E, Ip, pi,j = {1, 0} denotes that neurons i and j are connected or unconnected,
respectively. gEb

i,j denotes the synaptic strength from neuron j of population b in the corresponding
layer to neuron i in the E population. Importantly, we let gEb

i,j scale with 1/
√
N . We also add a

shunting inhibition term SIi,l(t) to account for the on-path effect from the perisomatic inhibition of
PV neurons (Isaacson & Scanziani, 2011), with dynamics given by (Hao et al., 2009),

SIi,l(t) = κIEPSC
i,l ΩIp , (18)

with κ denotes the shunting inhibition strength, and IEPSCs
i,l denotes the total EPSCs received by the

neuron, i.e., the total positive inputs. Without the shunting inhibition term, equation 16 conforms
with classical E-I balance networks (van Vreeswijk & Sompolinsky, 1996). Adding the shunting
inhibition term does not significantly alter the dynamics, while helping to achieve the so-called
detailed-balanced state (Xue et al., 2014) by providing inhibition proportional to excitatory input.

A.2 Ip POPULATION DYNAMICS

The input to Ip population is given by:

I
Ip
i,l(t) = B

Ip
i,l(t) = ΛX

i,l−1 + ΛE
i,l + Λ

Ip
i,l. (19)

These current components are also mediated by a set of strong and untrainable connection weight
variables g, as in the E population,

Λb
i,.(t) =

∑
j

pi,jg
Eb
i,jc

b
j(t), (20)

where b = X,E, Ip. The conductances gEE
i,j , gEIp

i,j , gIpEi,j , and g
IpIp
i,l are the corresponding synaptic

weights between neurons, and are scaled by 1/
√
K (K being the number of connections).

A.3 Id POPULATION DYNAMICS

The input to Id population is given by:

IIdi,l(t) = SId
i,l(t) = ∆X

i,l−1 +∆E
i,l +∆Id

i,l. (21)

These current components are also mediated by a set of weak and trainable weight variables w, as
in the E population,

∆b
i,.(t) =

∑
j

wIdb
i,j c

b
j(t), (22)

where b = X,E, Id. wEb
i,j are the corresponding weights between neurons and scale with 1/N .

B PARAMETERS

The parameters governing the E-I balance dynamics play a crucial role in our model. Specifically,
we noticed that if these parameters fail to establish a balanced state, characterized by an appropriate
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Table 4: Weight parameters. Kab = Npab denotes the number of connections from neural popula-
tion b to neural population a.

Symbols Initial Values
wEX Uniform (0, 1/N)
wEE Uniform (0, 1/N)
wEId Uniform (−1/N, 0)
wIdId Uniform (−1/N, 0)
wIdE Uniform (0, 5/N)

(a) Weak Synapse

Symbols Value
gEX 6/

√
KEX

gEE 3/
√
KEE

gEIp −2.4/
√

KEIp

gIpIp −2/
√
KIpIp

gIpE 0.3/
√
KIpE

(b) Strong Synapse

level of excitation and inhibition, the network may encounter the vanishing gradients problem, es-
pecially in deeper layers. To address this, we first fixed a set of hyperparameters, detailed in Table
3. These hyperparameters mainly reflect a sparse connectivity within E population and dense con-
nectivity between E and Ip populations. The sparse connectivity structure within an E population
is inherited from classical E-I balance models. The dense connectivity between E and Ip popu-
lations is more aligned with experimental observations (Packer & Yuste, 2011; Xue et al., 2014).
Then, we employ the classical E-I balance conditions outlined in prior studies like van Vreeswijk
& Sompolinsky (1998) and Tian et al. (2020) as a starting point, which helps us narrow down the
parameter space. Furthermore, we conduct a grid search to identify the optimal parameters for our
specific tasks. During this grid search process, we observed a substantial parameter space where
performance remains nearly identical. We selected one set of these parameters, which is detailed in
Table 4.
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