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Abstract

Large language models (LLMs) are vulnerable to safety risks during fine-tuning,1

where even small amounts of malicious or benign data can compromise safeguards.2

In this paper, building on the concept of the alignment direction—defined by3

the weight difference between aligned and unaligned models—we observe that4

perturbations along this direction preserve model safety. In contrast, perturbations5

orthogonal to this alignment are strongly correlated with harmful updates, rapidly6

degrading safety and framing the parameter space as a “narrow safety basin.” Based7

on this insight, we propose AsFT (Anchoring Safety in Fine-Tuning), a data-free8

method that formulates safety-preserving fine-tuning as a constrained optimization9

problem. AsFT uses the alignment direction as an anchor and restricts parameter10

updates within the “narrow safety basin” through a tractable Lagrangian relaxation,11

thereby suppressing harmful updates while preserving task-relevant adaptation.12

Extensive experiments across multiple datasets and models demonstrate that AsFT13

reduces harmful behaviors by up to 7.60%, improves task performance by 3.44%,14

and consistently outperforms existing methods across diverse fine-tuning scenarios.15

1 Introduction16

Figure 1: (a) The Safety Basin [42] shows a re-
gion where perturbations along drandom preserve
model safety, while safety sharply declines outside
this area. (b) The Narrow Safety Basin demon-
strates the asymmetry between daligned and dharm,
where daligned allows larger perturbations, while
dharm causes sharp safety declines. In both subfig-
ures, lower values indicate higher safety.

The rapid advancement of large language mod-17

els (LLMs) has led to their widespread adop-18

tion across various industries, where fine-tuning19

is essential to adapt these models to specific20

tasks and scenarios. However, fine-tuning ex-21

poses critical safety vulnerabilities. Even small22

amounts of malicious or harmless data during23

fine-tuning can compromise the model’s safe-24

guards, causing the models to generate harmful25

outputs post-fine-tuning [25, 5, 44]. This raises26

the urgent need for methods that balance task-27

specific utility with robust safety defenses [26].28

Currently, there are various strategies for enhanc-29

ing safety during LLM fine-tuning. While these30

strategies primarily rely on data-driven methods,31

they face a significant challenge: reliance on32

high-quality datasets, which are both costly and33

susceptible to bias [26]. Post-tuning methods34

like Safe LoRA [19] mitigate fine-tuning’s neg-35

ative impact on model safety by discretizing and projecting LoRA weights into a safety-aligned36

subspace. However, they overlook layer continuity, as discrete projections can disrupt the consistency37

of learned features across layers. By focusing primarily on safety-related features, they neglect the38

performance-related characteristics brought by training data, degrading models’ performance.39
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Figure 2: The proposed AsFT decomposes parameter updates into daligned and d⊥, suppresses harmful
updates along d⊥ by regularization and constraining updates within the narrow safety basin.

To address the limitations mentioned above, we aim to develop a data-free approach that leverages40

continuous optimization to enhance safety during fine-tuning. We observe that aligned models41

(e.g., Llama-Chat), developed under rigorous protocols, exhibit robust defenses against harmful42

inputs [44, 19], whereas their unaligned counterparts (i.e., base models) lack such safeguards. This43

contrast inspires us to explore the latent information within the model parameter space. The weight44

difference between these two models encapsulates the alignment efforts undertaken by LLM vendors45

to enhance model safety. It not only reflects the core alignment process but also provides a critical46

direction for safety optimization [19, 8, 68].47

Given these observations, this paper hypothesizes that the alignment direction can guide safety-48

preserving updates during fine-tuning and thus addresses the following question:49

Can this weight difference serve as an anchor to guide safety-preserving updates?50

Following prior work on safety landscape [42] (Figure 1(a)), we define the alignment direction51

(daligned) based on this weight difference ∆W and observe that perturbations along daligned effectively52

preserve model’s safety. Conversely, directions orthogonal to daligned (denoted as d⊥) are strongly53

correlated with harmful directions, where even small perturbations along d⊥ can rapidly and signifi-54

cantly compromise the model’s safety. This conceptualization frames the LLM parameter space as a55

“narrow safety basin” (as shown in Figure 1(b)), within which model’s safety can be preserved by56

guiding updates along the constrained region defined by daligned.57

Leveraging this insight, we propose AsFT (as shown in Figure 2), a novel method that anchors safety58

during fine-tuning by explicitly guiding parameter updates within the confines of a “narrow safety59

basin”. While the exact harmful direction (dharm) is generally inaccessible, we use d⊥, derived from60

daligned, as a proxy to approximate and suppress harmful parameter updates. AsFT frames fine-tuning61

as a constrained optimization problem, where updates are restricted to remain close to the alignment62

subspace. We implement this constraint through a tractable relaxation that continuously suppresses63

deviations along d⊥, effectively preserving the safety of the fine-tuned model while maintaining64

strong task-specific performance. Experimental results demonstrate that AsFT reduces harmful scores65

by up to 7.60% compared to Safe LoRA, while delivering superior performance on a variety of66

downstream tasks. In summary, our contributions are as follows:67

• We observe that the alignment direction daligned can serve as a safety anchor and that its orthogonal68

counterpart d⊥ closely aligns with the harmful direction dharm, framing the LLM safety landscape69

as a “narrow safety basin”.70

• We propose AsFT (Anchoring Safety in Fine-Tuning), which suppresses parameter updates along71

d⊥, enabling fine-tuning within the “narrow safety basin” to preserve alignment safety.72

• We validate AsFT through extensive experiments across multiple models, tasks, and fine-tuning73

attacks, achieving notable improvements in both safety and downstream task performance.74
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2 Related Work75

Safety alignment ensures that large language models (LLMs) generate outputs aligned with human76

values and ethics [53, 4, 69, 16, 17, 62, 12]. Key techniques include instruction fine-tuning [56],77

RLHF[41], DPO [46], and others. However, these methods are vulnerable to small-scale fine-tuning78

attacks, where minimal harmful or neutral data can compromise model safety [44, 58]. To address79

this, defenses have been developed across three stages: alignment, fine-tuning, and post-tuning [22].80

Full related work and key differences (e.g., Task [27] and Refusal [3] Vector and Safe LoRA [19])81

are provided in Appendix E.2 and E.3.82

Alignment Phase Defenses aim to fortify models against harmful fine-tuning attacks by enhancing83

robustness during the alignment phase [43, 65, 37]. Methods like Vaccine [23] introduce latent84

perturbations in the parameter space to ensure aligned outputs under adversarial conditions, while85

RepNoise [47] eliminates harmful representations to effectively prevent their reconstruction. TAR86

[51] optimizes parameters to sustain high harmful loss even after adversarial fine-tuning, and Booster87

[25] minimizes the drop in harmful loss under simulated attacks. T-Vaccine [35] further strengthens88

these defenses by selectively perturbing safety-critical model layers.89

Fine-tuning Phase Defenses enhance safety during training to counter harmful fine-tuning [40, 55,90

2, 32]. MLLR [13] identifies safety-critical modules via modular robustness analysis and applies91

differential learning rates. SafeInstr [5] incorporates safety-focused examples. Lisa [21] limits92

optimization drift using dual-state optimization with alignment data and proximity constraints.93

BEA [54] embeds hidden triggers to suppress harmful content. Seal [48] excludes harmful samples94

via two-stage optimization. SAFT [9] filters harmful data by subspace decomposition-based scoring.95

Post-tuning Phase Defenses aim to restore model safety after harmful fine-tuning attacks [7]. Safe96

LoRA [19] discretely projects parameters onto the safe direction after fine-tuning. SOMF [61]97

integrates additional benign task knowledge and reuses essential safety parameters. Antidote [24]98

effectively prunes harmful parameters during the post-processing stage, and SafetyLock [68] leverages99

extracted safety directions to actively intervene in attention head activations during inference.100

3 Methodology101

3.1 Preliminaries: Safety Landscape and Basin102

The Safety Landscape, introduced by Peng et al. [42], characterizes how LLMs’ safety varies across103

their parameter space, evaluated using a monotonic function S(·), where lower values indicate higher104

safety, typically measured as the Attack Success Rate (ASR). Let θ denote model weights, d the105

perturbation direction, and α the perturbation magnitude, with d̂ = d/|d| as a normalized direction.106

For two orthogonal directions, the safety landscape is defined as:107

f(α, β) = S(θ + αd̂1 + βd̂2). (1)

In this context, Peng et al. [42] identified the concept of a Safety Basin (Fig. 1(a), with drawing108

details provided in Appendix D.2). Therefore, we formalize this concept as B(θ; ϵ1, ϵ2), which refers109

to a localized region in the parameter space where the model’s safety remains robust against bounded110

perturbations, within the limits defined by the maximum allowable perturbations ϵ1 and ϵ2:111

Definition 1 (Safety Basin) The Safety Basin, denoted as B(θ; ϵ1, ϵ2), is formally defined as112

B(θ; ϵ1, ϵ2) =
{
(α, β) ∈ R2

∣∣∣S(θ + αd̂1 + βd̂2) ≤ Sthreshold,

|α| ≤ ϵ1, |β| ≤ ϵ2

}
.

(2)

3.2 Rethinking the Safety Basin113

The original Safety Basin concept [42] implicitly assumes isotropy in the parameter space, i.e., that114

perturbations along random directions affect safety uniformly. However, this assumption overlooks115

3



Table 1: Cosine Similarity between harmful direction (dharm) and alignment direction (daligned), along
with the effective rank of dharm evaluated across multiple harmful datasets [49, 70, 28, 39]. For
reference, the cosine similarity between drandom and daligned is 8.488× 10−3, which is substantially
higher than the average dharm of 6.30× 10−4. Detailed results are provided in Appendix Table 27.

Number
of Samples

Harmful [49] BeaverTails [70] AdvBench [28] HarmBench [39] Average
Cos. Sim. Eff.Rank Cos. Sim. Eff.Rank Cos. Sim. Eff.Rank Cos. Sim. Eff.Rank Cos. Sim. Eff.Rank

10 7.12× 10−4 156.64 9.12× 10−5 215.92 7.68× 10−4 130.86 8.09× 10−4 153.15 5.95× 10−4 164.14
20 7.40× 10−4 146.13 1.10× 10−4 234.66 7.47× 10−4 126.40 6.71× 10−4 156.67 5.67× 10−4 165.96
50 6.46× 10−4 197.89 9.00× 10−5 265.14 8.61× 10−4 123.26 7.87× 10−4 184.12 5.96× 10−4 192.60

100 1.18× 10−3 212.51 1.46× 10−4 291.02 8.48× 10−4 132.26 7.39× 10−4 145.85 7.28× 10−4 195.41
200 9.92× 10−4 177.56 1.26× 10−4 226.08 9.14× 10−4 132.61 7.17× 10−4 149.03 6.87× 10−4 171.32
500 8.56× 10−4 220.84 8.83× 10−5 222.58 7.43× 10−4 132.98 7.33× 10−4 171.30 6.05× 10−4 186.93

Average 8.54× 10−4 185.26 1.09× 10−4 242.57 8.14× 10−4 129.73 7.43× 10−4 160.02 6.30× 10−4 179.39

the fact that modern alignment processes are highly structured interventions: alignment is not random116

noise added to model parameters, but rather a targeted transformation guided by reinforcement117

learning from human feedback (RLHF) or instruction tuning. This raises a critical question: does118

the parameter space truly exhibit uniform safety properties, or does the alignment process itself119

induce an anisotropic geometry where certain directions are safety-preserving while others are120

safety-vulnerable?121

To probe this question, we focus on the alignment direction, defined as122

daligned = θaligned − θunaligned, (3)
which captures the essential weight transformations introduced by alignment. If isotropy held,123

perturbations orthogonal to daligned should not systematically correlate with safety degradation.124

Empirical Evidence of Anisotropy. To test this hypothesis, we compare the cosine similarity125

between daligned and update directions induced by harmful (dharm) and random (drandom) fine-tuning.126

We fine-tuned Llama-2-7B with varying amounts of harmful data (10–500 samples across multiple127

datasets [49, 70, 28, 39]), deriving dharm as the difference between the harmful fine-tuned model and128

the original aligned model. For comparison, we also constructed random directions drandom sampled129

uniformly in parameter space.130

As shown in Table 1, dharm is nearly orthogonal to daligned, with cosine similarity consistently at 10−4.131

In contrast, random directions exhibit higher similarity at the 10−3 level. This order-of-magnitude132

difference demonstrates that dharm is not merely random variation but occupies a distinct subspace133

strongly separated from daligned. Further, analyzing the effective rank [11] of harmful update directions134

reveals a low-dimensional structure: while the full parameter rank of Llama-2-7B is ≈ 4000, the135

average effective rank of dharm is only 179.39. This indicates that harmful updates are confined to a136

narrow, low-rank subspace, further supporting anisotropy in the safety landscape.137

Anisotropy of the Safety Landscape. Figure 1(b) visualizes safety sensitivity along daligned versus138

dharm. Perturbations along daligned preserve safety, while even small perturbations along dharm sharply139

degrade it. The asymmetry in tolerable perturbation ranges (ϵaligned ≫ ϵharm) confirms that safety140

is highly directional: the model is robust to movement along the alignment direction but acutely141

vulnerable along the harmful direction.142

Narrow Safety Basin. We thus refine the original Safety Basin definition and introduce the Narrow143

Safety Basin, where safety robustness is dominated by anisotropy between daligned and dharm:144

Definition 2 (Narrow Safety Basin) The Narrow Safety Basin, Bnarrow(θ; ϵ1, ϵ2), satisfies:145

Bnarrow(θ; ϵ1, ϵ2) =
{
(α, β) ∈ R2

∣∣∣S(θ + αd̂aligned + βd̂harm) ≤ Sthreshold,

|α| ≤ ϵ1, |β| ≤ ϵ2, ϵ1 ≫ ϵ2

}
.

(4)

where, ϵ1 ≫ ϵ2 indicates that the allowable perturbation range along daligned is much larger than dharm.146

3.3 Proposed Framework: AsFT147

Building on the observation that models’ parameter updates along the harmful direction dharm148

significantly compromise the model’s safety. To address it, we propose a regularization-based fine-149
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tuning method, AsFT (Anchoring Safety in Fine-Tuning). AsFT utilizes the alignment direction150

daligned as an anchor to constrain updates within subspaces.151

Key Idea. Identifying the harmful update direction (dharm) precisely is inherently challenging152

due to the variability in different harmful data distributions and the structural differences across153

model architectures. However, the alignment direction daligned is relatively easy to access and has154

been discussed by previous studies [19, 68]. Therefore, we approximate these directions using155

the orthogonal complement of daligned, denoted as d⊥, which effectively captures potential harmful156

subspaces. The pipeline, illustrated in Figure 2, outlines the key steps, including 1) computing daligned157

and 2) incorporating a regularization term to suppress updates along d⊥.158

Decomposition of Parameter Updates. To analyze parameter updates during fine-tuning, we159

decompose parameter updates ∆W into components along the alignment direction daligned (defined160

in Equation 3) and its orthogonal complement d⊥. This decomposition allows us to isolate updates161

that may contribute to harmful behaviors. The decomposition is achieved using projection matrices:162

∆W = Caligned∆W + C⊥∆W, (5)

where Caligned projects parameter updates onto daligned and its orthogonal component C⊥ accordingly163

projects updates onto the remaining orthogonal subspace as follows:164

Caligned = daligned

(
dTaligneddaligned

)−1

dTaligned,

C⊥ = I − Caligned.
(6)

The term C⊥∆W specifically represents updates in the subspace orthogonal to daligned, which may165

encompass harmful directions (dharm). Thus, an intuitive operation is to to explicitly constrain the166

magnitude of C⊥∆W to further mitigate parameter updates toward dharm.167

Constrained Optimization Formulation. We therefore formulate AsFT as a constrained optimiza-168

tion problem:169

min
∆W

Ltask(∆W) s.t. ∥C⊥∆W∥2 ≤ ϵ, (7)

where ϵ is a tolerance enforcing bounded updates orthogonal to daligned. This constraint explicitly170

encodes safety preservation into the optimization process.171

Lagrangian Relaxation. To address this constraint, we adopt a principled constrained optimization172

framework via the Lagrangian:173

L(∆W, λ) = Ltask(∆W) + λ
(
∥C⊥∆W∥2 − ϵ

)
, λ ≥ 0. (8)

Unlike heuristic regularization methods that simply append penalty terms to the loss, this formulation174

is grounded in the theory of constrained optimization, ensuring that the suppression of harmful175

directions arises from first principles rather than ad hoc design.176

Training Objective. In practice, directly solving the constrained optimization problem is computa-177

tionally intractable for large-scale models. Therefore, we approximate it by optimizing the relaxed178

Lagrangian objective:179

min
∆W

Ltask(∆W) + λ ∥C⊥∆W∥2, (9)

where λ serves as the dual variable controlling the degree of enforcement. This approximation can180

be interpreted as a first-order primal–dual relaxation of the original constrained problem, ensuring181

that the suppression of harmful update directions is not an ad hoc regularization. By varying λ,182

AsFT interpolates between unconstrained fine-tuning (λ = 0) and strict adherence to the alignment183

constraint (λ → ∞). This ensures safety preservation during fine-tuning while maintaining task184

performance. The specific implementation details can be found in Appendix A.2.185

4 Experiments186

4.1 Experimental Setups187

Datasets. We select four datasets—SST2 [50], AGNEWS [64], GSM8K [10], and AlpacaE-188

val [34]—to serve as fine-tuning tasks in our experiments. To simulate harmful fine-tuning attacks,189

we mix a proportion p of unsafe (poison) data from the Harmful dataset [49] with (1 − p) benign190

fine-tuning data, with nsamples representing the amount of sampled data. Details in Appendix A.1.191
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Models. We evaluate our method using the Llama-2-7B-Chat [53] and Llama-3-8B-Instruct [14],192

alongside two advanced architectures: Gemma-2-9B-It [52] and Qwen-2-7B-Instruct [57]. By default,193

we set p = 0.1 and n = 1000 and use Llama-2-7B-Chat as the baseline model unless stated otherwise.194

More details about experimental settings are provided in Appendix A.1.195

Baselines. We compare our method against six baselines, including SFT (the vanilla supervised196

fine-tuning solution), Lisa (base and aligned) [21], SafeInstr [5], BEA [54], and Safe LoRA [19].197

Detailed descriptions and configurations in Appendix A.3.198

Evaluation Metrics. Following [25], we evaluate performance using two key metrics:199

• Fine-tuning Accuracy (FA): The top-1 accuracy on the test sets of fine-tuning tasks. For AlpacaE-200

val, FA is assessed using OpenAI’s API to score the model’s outputs [1].201

• Harmful Score (HS): The proportion of unsafe outputs when the model encounters unseen202

malicious instructions, as determined by the audit model in Ji et al. [28] and Llama Team [38].203

Training Details. We employ LoRA [20] for efficient fine-tuning of large language models, with a204

rank of 8 across all experiments. The AdamW optimizer is used with a learning rate of 5 × 10−5,205

training for 10 epochs with a batch size of 8. The regularization coefficient λ is set to 1. Additional206

analysis of the hyperparameters λ and the learning rate is provided in section 4.4.207

4.2 Experimental Results208

Table 2: Performance under different harmful ratios in the default setting.

Methods Harmful Score ↓ Finetune Accuracy ↑
(n = 1000) clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average

SFT 2.40 16.40 17.60 24.40 46.80 21.52 82.90 81.00 84.30 84.30 83.80 83.26
Lisa-base 26.40 24.00 27.20 31.20 22.80 26.32 75.70 63.80 73.50 72.30 65.60 70.18

Lisa-aligned 2.40 12.80 16.80 20.40 20.00 14.48 82.40 76.90 81.80 82.00 76.60 79.94
SafeInstr 1.60 15.60 16.80 25.60 21.20 16.16 83.90 81.90 84.30 85.40 83.80 83.86

BEA 4.80 15.80 16.40 21.60 16.40 14.80 82.60 78.30 84.40 81.00 69.10 79.08
Safe LoRA 2.40 1.60 5.60 4.20 20.00 6.76 82.90 78.60 81.20 82.20 80.00 80.98

AsFT (Ours) 1.60 2.00 4.00 6.80 6.00 4.08 83.00 84.30 84.30 84.50 82.80 83.78

Robustness to poison ratio. We evaluate the trade-off between model safety and fine-tuning209

performance under varying poison ratios, with results summarized in Table 2. Compared to SFT,210

AsFT significantly reduces the harmful score while improving downstream task accuracy. SafeInstr211

shows slightly higher accuracy (0.1%), but its harmful score is nearly four times greater. Compared212

to Safe LoRA, AsFT achieves a 2.68% lower harmful score and 2.80% higher accuracy, likely due213

to Safe LoRA’s discrete projection disrupting consistency. Overall, AsFT achieves the best balance214

between safety and performance across all poison ratios, and the same conclusion holds for GSM8K215

and AlpacaEval (more results in Table 9, Table 10).216

Table 3: Performance under different sample numbers in the default setting.
Methods Harmful Score ↓ Finetune Accuracy ↑
(p = 0.1) n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Average n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Average

SFT 12.40 17.60 14.80 16.80 12.40 14.80 82.70 84.30 84.20 84.70 84.80 84.14
Lisa-base 25.20 27.20 24.80 25.20 24.40 25.36 59.70 73.50 80.50 82.00 81.90 75.52

Lisa-aligned 5.60 16.80 19.60 22.00 24.80 17.76 78.90 81.80 83.90 84.40 84.70 82.74
SafeInstr 14.80 16.80 10.80 15.40 15.60 14.68 80.40 84.40 83.90 84.00 83.90 83.32

BEA 13.60 16.40 9.20 11.20 14.00 12.68 76.50 84.40 83.70 81.00 83.10 81.64
Safe LoRA 2.80 5.60 5.20 8.40 8.80 6.16 81.50 81.20 80.70 82.30 81.60 81.46

AsFT (Ours) 4.00 4.00 2.40 1.60 4.00 3.20 82.80 84.30 83.90 85.30 86.00 84.46

Generalization to fine-tuning sample number. We evaluate the robustness of the methods across217

different sample numbers, with results summarized in Table 3. AsFT consistently achieves the lowest218

harmful score and the highest fine-tuning accuracy among all baselines. Compared to Safe LoRA,219

we reduce the harmful score by 2.96% and improve fine-tuning accuracy by 3.00%. Compared220

to SafeInstr, AsFT lowers the harmful score by 11.48% while maintaining 1.14% higher accuracy.221

Results demonstrate the robustness of AsFT across varying sample sizes, with consistent conclusions222

for more complex tasks like GSM8K and AlpacaEval (more results in Table 11, Table 12).223
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Table 4: Performance under different harmful datasets (Harmful [49], AdvBench [70], BeaveTails
[28], and HarmBench [39] datasets) in the default setting.

Methods Harmful AdvBench BeaveTails HarmBench Average
(AGNEWS) HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

SFT 17.60 84.30 11.20 83.90 37.20 84.90 5.20 82.70 17.80 83.95
Lisa-base 17.20 73.50 7.60 83.90 30.80 83.10 4.60 82.70 15.05 80.80

Lisa-aligned 16.80 81.80 4.80 82.60 31.40 85.80 5.80 84.30 14.70 83.63
SafeInstr 16.80 84.30 4.40 84.40 21.60 83.20 2.40 83.20 11.30 83.78

BEA 16.40 84.40 16.00 83.50 36.80 84.20 14.00 84.00 20.80 84.02
Safe LoRA 5.60 81.20 4.00 82.30 18.80 82.60 2.00 81.70 7.60 81.95

AsFT (Ours) 4.00 84.30 1.60 83.70 14.40 82.90 2.40 83.40 6.70 83.58

Robustness to poison dataset. We evaluate the robustness of the methods across different harmful224

datasets. Table 4 shows that while BEA achieves the best fine-tuning accuracy, it has a high harmful225

score (HS). Safe LoRA, with the lowest HS, suffers from a significant drop in performance. Our226

method, AsFT, strikes the best balance, achieving competitive accuracy (average 83.78%) while227

maintaining a low harmful score (average 6.70%), demonstrating robustness to different harmful data.228

Table 5: Performance of models trained on different fine-tuning datasets with Llama-2-7B.

Methods SST2 AGNEWS GSM8K AlpacaEval Average
(Llama-2-7B) HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

SFT 48.00 94.50 17.60 84.30 56.00 23.80 20.40 49.80 35.50 63.10
Lisa-base 27.60 96.90 27.20 73.50 35.20 24.00 25.20 35.85 28.80 57.56

Lisa-aligned 5.60 93.58 16.80 81.80 16.00 19.40 4.80 57.30 10.80 63.02
SafeInstr 9.20 93.35 16.80 84.30 17.60 19.30 10.80 42.70 13.60 59.91

BEA 7.20 91.63 16.40 84.40 38.80 21.00 6.80 52.40 17.05 62.36
Safe LoRA 11.20 89.24 5.60 81.20 36.00 23.60 5.20 54.70 14.50 62.19

AsFT (Ours) 6.00 93.32 4.00 84.30 14.40 26.00 3.20 58.90 6.90 65.63

229

Generalization to fine-tuning datasets. The performance of AsFT across four fine-tuning datasets230

is summarized in Table 5. AsFT achieves significant reductions in harmful scores (HS), with231

improvements of 42.00%, 13.60%, 41.60%, and 17.20%, while delivering the lowest average HS232

and highest accuracy among all baselines. These indicate the effectiveness and strong generalization233

potential of AsFT across diverse tasks.234

Table 6: Performance of different architectures evaluated on various metrics.

Methods Llama-2-7B Llama-3-8B Qwen-2-7B Gemma-2-9B Average
(AGNEWS) HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

SFT 17.60 84.30 73.60 90.30 49.20 90.30 32.00 88.30 43.10 88.30
Lisa-base 27.20 63.80 29.60 77.30 28.00 79.90 31.20 80.00 29.00 75.25

Lisa-aligned 16.80 81.80 19.60 88.10 27.60 89.20 14.70 85.60 19.68 86.18
Safe LoRA 5.60 81.20 26.40 87.80 8.40 85.50 8.40 84.70 12.20 84.8
SafeInstr 16.80 84.40 18.80 89.00 7.20 83.30 7.60 84.70 12.60 85.35

BEA 16.40 84.40 30.80 88.8 8.40 88.60 7.20 86.20 15.70 87.00
AsFT (Ours) 4.00 84.30 15.20 92.30 5.20 87.90 6.00 86.60 7.60 87.78

Generalization to models. We evaluate the methods across various model architectures, as reported235

in Table 6. AsFT consistently achieves the lowest HS and competitive fine-tuning accuracy, offering236

the best trade-off among baselines. For models within the same architecture family (e.g., Llama-2237

and Llama-3), it reduces HS by 36.00% and improves accuracy by 1.00%. AsFT also performs well238

on other architectures like Qwen-2 and Gemma-2, maintaining the best balance between safety and239

performance. These conclusions hold for challenging tasks like GSM8K (results in Table 13).240

4.3 Visualization of Narrow Safety Basin241

To visualize the safety landscape of LLMs, we follow the methodology of Peng et al. [42], anchoring242

our analysis on the alignment direction daligned and sampling 20 directions (Appendix D.2). We plot243
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the safety landscapes for Llama-2-7B (Figure 1(b)), Qwen-2-7B and Gemma-2-9B (Figure 3). Despite244

architectural differences, the visualizations consistently show a narrow safety basin, highlighting245

structural similarities in the safety landscapes across different model architectures.246

Table 7: Effective Perturbation Length (EPL) values for three models along daligned and dharm.

Direction Llama-2-7B-Chat Qwen-2-7B-Instruct Gemma-2-9B-It

Alignment direction (daligned) 0.1287 0.6594 0.3069
Harmful direction (dharm) 0.0099 0.0149 0.0046

d!"#$%

d&!'(

𝜃

d!"#$%

d&!'(

𝜃

Figure 3: Safety landscape of Qwen-2-7B
(left) and Gemma-2-9B (right) anchored
along daligned.

To quantify the differences in perturbation lengths247

across various directions, we employ the EPL (Ef-248

fective Perturbation Length) metric to measure the249

maximum allowable perturbation for each specific250

direction. The EPL metric is defined as:251

EPL = sup {|α| | S(θ + αd) ≥ τ, α ∈ U(−a, a), d ∈ D}
(10)

where, α is the perturbation magnitude, d its direc-252

tion, and sup (supremum) identifies the largest per-253

turbation |α|. Table 7 presents EPL values for three254

models along daligned and dharm (the latter strongly255

correlated with d⊥). Significantly higher EPL values256

along daligned indicate greater robustness to safety-257

preserving perturbations, whereas markedly lower258

EPL values along d⊥ highlight heightened sensitivity to harmful directions. These findings empha-259

size the safety landscape’s anisotropic nature and the critical role of daligned in guiding updates within260

the narrow safety basin. Further details on experimental setups are in Appendix D.2.261

Figure 4: (a) Restricting updates along d⊥ (AsFT) significantly reduces harmful scores as λ increases,
while maintaining fine-tuning accuracy. (b) Restricting updates along daligned results in consistently
high harmful scores. (c) Comparison of robustness to learning rate variations shows that AsFT
achieves a broader effective range compared to data-driven methods (SafeInstr [5] and BEA [54]).

4.4 Hyper-Parameter Analysis and Ablation Experiments262

Robustness to Hyper-Parameter λ. Figure 4 (a) shows that as λ increases from 0 (standard SFT),263

the harmful score (HS) decreases while accuracy remains stable, until λ > 10 where accuracy drops.264

This suggests an optimal λ range of 0.1 to 10. To further demonstrate robustness, we conducted265

additional experiments on diverse datasets, GSM8K and SST2 (detailed in Table 14 and Table 15).266

Across these datasets, our method consistently achieves a stable safety-performance trade-off within267

this broad two-order-of-magnitude range for λ. This indicates that our approach does not require268

meticulous hyperparameter tuning, as selecting λ between 0.1 and 10 is generally sufficient to269

significantly reduce harmful outputs while preserving task performance.270

Ablation Experiment. The ablation results in Figure 4 evaluate the impact of constraining parameter271

updates along different directions. In (a), we restrict updates along the orthogonal direction d⊥, as in272

our AsFT method (updating along the narrow safety basin). This restriction leads to a clear reduction273

in harmful scores (HS) with increasing λ, demonstrating the effectiveness of AsFT in improving274

safety while maintaining accuracy. In contrast, (b) shows that restricting updates along the alignment275

8



direction daligned (updating perpendicular to the narrow safety basin) does not result in a reduction276

of HS, which remain high across all λ values. This highlights a key difference in the directions277

of constraints, where updating along the narrow safety basin reduces harmfulness, while updating278

perpendicular to it does not.279

Robustness to Learning Rate. Figure 4 (c) compares the robustness of AsFT with data-driven280

defenses like SafeInstr [5] and BEA [54] under varying learning rates. While SafeInstr and BEA281

perform well only within a narrow learning rate range, outside this range, harmful scores (HS)282

rapidly rise. In contrast, AsFT shows greater robustness, maintaining low HS across a wider range283

of learning rates. This wider effective range highlights AsFT’s adaptability and reliability under284

varying optimization conditions. Detailed comparison of fine-tuning accuracy across learning rates is285

provided in Appendix B.2.286

5 Discussion287

Effectiveness in Full-Parameter Fine-Tuning. The efficacy of AsFT is fundamentally rooted in the288

“narrow safety basin” phenomenon, an observed characteristic of the model’s complete parameter289

landscape. This makes our method effective for both LoRA-based and full-parameter fine-tuning. As290

demonstrated in Table 16 and Table 17, when all methods were extended to full-parameter fine-tuning,291

AsFT consistently achieved superior results by reducing harmful scores while maintaining high292

fine-tuning accuracy. Details regarding computational overhead are provided in Table 18.293

Method Adaptability. Many mainstream open-source models, such as Qwen and Llama, typically294

provide both their aligned and base model weights. This common practice ensures that our method,295

which assumes their availability, is broadly applicable. Moreover, AsFT can be adapted for scenarios296

where the base model is inaccessible. Specifically, harmful data can be used to identify harmful297

directions, and the fine-tuning process can then be guided by the orthogonal complement to these298

directions. As demonstrated in Table 8 and Table 26, compared to SFT, AsFTAlt also significantly299

reduces harmful outputs while maintaining competitive task performance.300

Table 8: The alternative AsFTAlt still significantly reduces harmful outputs while maintaining
competitive task performance.

Methods Harmful Score ↓ Finetune Accuracy ↑
(AGNEWS) n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Avg n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Avg

SFT 12.40 17.60 14.80 16.80 12.40 14.80 82.70 84.30 84.20 84.70 84.80 84.14
AsFTAlt 5.60 9.60 8.80 12.80 8.40 9.04 83.00 84.00 83.80 85.30 85.80 84.38

Further Evaluation in Challenging Scenarios. We further evaluated the robustness and reliability of301

AsFT in more challenging and diverse scenarios. Specifically, we tested AsFT against two representa-302

tive jailbreak techniques, LLM-DRA [36] and ArtPrompt [29], and found that it maintained robust303

performance under adversarial conditions (Table 19, Table 20, Table 21 and Table 22). Additionally,304

we increased the proportion of harmful data up to 60%, with results showing that AsFT remained305

both safe and effective even in these more difficult settings (Table 23). To further enhance the306

reliability of our harmfulness assessment, we incorporated Llama-Guard-3-8B [38] as an additional307

safety evaluator, with results from both evaluators closely aligned (Table 24 and Table 25).308

6 Conclusion309

In this work, we address the safety vulnerabilities of large language models (LLMs) during fine-310

tuning by introducing AsFT (Anchoring Safety in Fine-Tuning), a method that anchors parameter311

updates within the safety-preserving alignment direction (daligned). By regularizing updates along the312

orthogonal direction (d⊥), AsFT reduces harmfulness while preserving task performance. Extensive313

experiments show that AsFT outperforms existing methods, achieving a lower harmful score and314

higher accuracy across task settings. These results emphasize the value of limiting updates within the315

safety basin to ensure safety fine-tuning of LLMs.316

9



References317

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,318

S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.319

[2] Anonymous. Safety alignment shouldn’t be complicated. In Submitted to The Thirteenth International Con-320

ference on Learning Representations, 2024. URL https://openreview.net/forum?id=9H91juqfgb.321

under review.322

[3] A. Arditi, O. Obeso, A. Syed, D. Paleka, N. Panickssery, W. Gurnee, and N. Nanda. Refusal in language323

models is mediated by a single direction. Advances in Neural Information Processing Systems, 37:324

136037–136083, 2024.325

[4] Y. Bai, S. Kadavath, S. Kundu, A. Askell, J. Kernion, A. Jones, A. Chen, A. Goldie, A. Mirhoseini,326

C. McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073,327

2022.328

[5] F. Bianchi, M. Suzgun, G. Attanasio, P. Rottger, D. Jurafsky, T. Hashimoto, J. Zou, et al. Safety-tuned329

llamas: Lessons from improving the safety of large language models that follow instructions. In 12th330

International Conference on Learning Representations, ICLR 2024. International Conference on Learning331

Representations, ICLR, 2024.332

[6] E. Candes and B. Recht. Exact matrix completion via convex optimization. Communications of the ACM,333

55(6):111–119, 2012.334

[7] S. Casper, L. Schulze, O. Patel, and D. Hadfield-Menell. Defending against unforeseen failure modes with335

latent adversarial training. arXiv preprint arXiv:2403.05030, 2024.336

[8] J. Chen, X. Wang, Z. Yao, Y. Bai, L. Hou, and J. Li. Finding safety neurons in large language models.337

arXiv preprint arXiv:2406.14144, 2024.338

[9] H. K. Choi, X. Du, and Y. Li. Safety-aware fine-tuning of large language models. arXiv preprint339

arXiv:2410.10014, 2024.340

[10] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,341

R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.342

[11] S. Dohare, J. F. Hernandez-Garcia, Q. Lan, P. Rahman, A. R. Mahmood, and R. S. Sutton. Loss of plasticity343

in deep continual learning. Nature, 632(8026):768–774, 2024.344

[12] H. Dong, W. Xiong, D. Goyal, Y. Zhang, W. Chow, R. Pan, S. Diao, J. Zhang, K. Shum, and T. Zhang.345

Raft: Reward ranked finetuning for generative foundation model alignment. Transactions on Machine346

Learning Research, 2023, 2023.347

[13] Y. Du, S. Zhao, J. Cao, M. Ma, D. Zhao, F. Fan, T. Liu, and B. Qin. Towards secure tuning: Mitigating348

security risks arising from benign instruction fine-tuning. arXiv preprint arXiv:2410.04524, 2024.349

[14] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Yang,350

A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.351

[15] F. Eiras, A. Petrov, P. Torr, M. P. Kumar, and A. Bibi. Do as i do (safely): Mitigating task-specific352

fine-tuning risks in large language models. In International Conference on Representation Learning,353

volume 2025, pages 45614–45632, 2025.354

[16] K. Ethayarajh, W. Xu, N. Muennighoff, D. Jurafsky, and D. Kiela. Model alignment as prospect theoretic355

optimization. In Forty-first International Conference on Machine Learning, 2024.356

[17] L. Gao, J. Schulman, and J. Hilton. Scaling laws for reward model overoptimization. In International357

Conference on Machine Learning, pages 10835–10866. PMLR, 2023.358

[18] T. Goldstein and C. Studer. Phasemax: Convex phase retrieval via basis pursuit. IEEE Transactions on359

Information Theory, 64(4):2675–2689, 2018.360

[19] C.-Y. Hsu, Y.-L. Tsai, C.-H. Lin, P.-Y. Chen, C.-M. Yu, and C.-Y. Huang. Safe lora: The silver lining of361

reducing safety risks when finetuning large language models. Advances in Neural Information Processing362

Systems, 37:65072–65094, 2024.363

[20] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora: Low-rank364

adaptation of large language models. ICLR, 1(2):3, 2022.365

10

https://openreview.net/forum?id=9H91juqfgb


[21] T. Huang, S. Hu, F. Ilhan, S. Tekin, and L. Liu. Lisa: Lazy safety alignment for large language models366

against harmful fine-tuning attack. Advances in Neural Information Processing Systems, 37:104521–367

104555, 2024.368

[22] T. Huang, S. Hu, F. Ilhan, S. F. Tekin, and L. Liu. Harmful fine-tuning attacks and defenses for large369

language models: A survey. arXiv preprint arXiv:2409.18169, 2024.370

[23] T. Huang, S. Hu, and L. Liu. Vaccine: Perturbation-aware alignment for large language models against371

harmful fine-tuning attack. Advances in Neural Information Processing Systems, 37:74058–74088, 2024.372

[24] T. Huang, G. Bhattacharya, P. Joshi, J. Kimball, and L. Liu. Antidote: Post-fine-tuning safety alignment373

for large language models against harmful fine-tuning attack. In Forty-second International Conference on374

Machine Learning, 2025.375

[25] T. Huang, S. Hu, F. Ilhan, S. F. Tekin, and L. Liu. Booster: Tackling harmful fine-tuning for large language376

models via attenuating harmful perturbation. In The Thirteenth International Conference on Learning377

Representations, 2025.378

[26] Y. Huang, L. Sun, H. Wang, S. Wu, Q. Zhang, Y. Li, C. Gao, Y. Huang, W. Lyu, Y. Zhang, et al. Position:379

Trustllm: Trustworthiness in large language models. In International Conference on Machine Learning,380

pages 20166–20270. PMLR, 2024.381

[27] G. Ilharco, M. T. Ribeiro, M. Wortsman, L. Schmidt, H. Hajishirzi, and A. Farhadi. Editing models with382

task arithmetic. In The Eleventh International Conference on Learning Representations, 2023.383

[28] J. Ji, M. Liu, J. Dai, X. Pan, C. Zhang, C. Bian, B. Chen, R. Sun, Y. Wang, and Y. Yang. Beavertails:384

Towards improved safety alignment of llm via a human-preference dataset. Advances in Neural Information385

Processing Systems, 36, 2024.386

[29] F. Jiang, Z. Xu, L. Niu, Z. Xiang, B. Ramasubramanian, B. Li, and R. Poovendran. Artprompt: Ascii art-387

based jailbreak attacks against aligned llms. In Proceedings of the 62nd Annual Meeting of the Association388

for Computational Linguistics (Volume 1: Long Papers), pages 15157–15173, 2024.389

[30] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural nets. Advances390

in neural information processing systems, 31, 2018.391

[31] J. Li and J.-E. Kim. Safety alignment shouldn’t be complicated. In Submitted to The Thirteenth Inter-392

national Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=393

9H91juqfgb.394

[32] M. Li, W. M. Si, M. Backes, Y. Zhang, and Y. Wang. Salora: Safety-alignment preserved low-rank395

adaptation. In The Thirteenth International Conference on Learning Representations, 2024.396

[33] S. Li, L. Yao, L. Zhang, and Y. Li. Safety layers in aligned large language models: The key to llm security.397

In The Thirteenth International Conference on Learning Representations, 2025.398

[34] X. Li, T. Zhang, Y. Dubois, R. Taori, I. Gulrajani, C. Guestrin, P. Liang, and T. B. Hashimoto. Alpacaeval:399

An automatic evaluator of instruction-following models, 2023.400

[35] G. Liu, W. Lin, T. Huang, R. Mo, Q. Mu, and L. Shen. Targeted vaccine: Safety alignment for large401

language models against harmful fine-tuning via layer-wise perturbation. arXiv preprint arXiv:2410.09760,402

2024.403

[36] T. Liu, Y. Zhang, Z. Zhao, Y. Dong, G. Meng, and K. Chen. Making them ask and answer: Jailbreaking404

large language models in few queries via disguise and reconstruction. In 33rd USENIX Security Symposium405

(USENIX Security 24), pages 4711–4728, 2024.406

[37] X. Liu, J. Liang, M. Ye, and Z. Xi. Robustifying safety-aligned large language models through clean data407

curation. arXiv preprint arXiv:2405.19358, 2024.408

[38] A. . M. Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.409

[39] M. Mazeika, L. Phan, X. Yin, A. Zou, Z. Wang, N. Mu, E. Sakhaee, N. Li, S. Basart, B. Li, et al.410

Harmbench: A standardized evaluation framework for automated red teaming and robust refusal. In411

International Conference on Machine Learning, pages 35181–35224. PMLR, 2024.412

[40] J. Mukhoti, Y. Gal, P. H. Torr, and P. K. Dokania. Fine-tuning can cripple your foundation model;413

preserving features may be the solution. arXiv preprint arXiv:2308.13320, 2023.414

11

https://openreview.net/forum?id=9H91juqfgb
https://openreview.net/forum?id=9H91juqfgb
https://openreview.net/forum?id=9H91juqfgb
https://arxiv.org/abs/2407.21783


[41] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,415

A. Ray, et al. Training language models to follow instructions with human feedback. Advances in neural416

information processing systems, 35:27730–27744, 2022.417

[42] S. Y. Peng, P.-Y. Chen, M. Hull, and D. H. Chau. Navigating the safety landscape: Measuring risks in418

finetuning large language models. Advances in Neural Information Processing Systems, 37:95692–95715,419

2024.420

[43] X. Qi, A. Panda, K. Lyu, X. Ma, S. Roy, A. Beirami, P. Mittal, and P. Henderson. Safety alignment should421

be made more than just a few tokens deep. arXiv preprint arXiv:2406.05946, 2024.422

[44] X. Qi, Y. Zeng, T. Xie, P. Y. Chen, R. Jia, P. Mittal, and P. Henderson. Fine-tuning aligned language models423

compromises safety, even when users do not intend to! In 12th International Conference on Learning424

Representations, ICLR 2024, 2024.425

[45] X. Qi, B. Wei, N. Carlini, Y. Huang, T. Xie, L. He, M. Jagielski, M. Nasr, P. Mittal, and P. Henderson. On426

evaluating the durability of safeguards for open-weight llms. In The Thirteenth International Conference427

on Learning Representations, 2025.428

[46] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct preference optimization:429

Your language model is secretly a reward model. Advances in Neural Information Processing Systems, 36,430

2024.431

[47] D. Rosati, J. Wehner, K. Williams, L. Bartoszcze, R. Gonzales, S. Majumdar, H. Sajjad, F. Rudzicz, et al.432

Representation noising: A defence mechanism against harmful finetuning. In The Thirty-eighth Annual433

Conference on Neural Information Processing Systems, 2024.434

[48] H. Shen, P.-Y. Chen, P. Das, and T. Chen. Seal: Safety-enhanced aligned llm fine-tuning via bilevel data435

selection. In International Conference on Learning Representations, 2025.436

[49] A. Sheshadri, A. Ewart, P. Guo, A. Lynch, C. Wu, V. Hebbar, H. Sleight, A. C. Stickland, E. Perez,437

D. Hadfield-Menell, and S. Casper. Targeted latent adversarial training improves robustness to persistent438

harmful behaviors in llms. arXiv preprint arXiv:2407.15549, 2024.439

[50] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive deep440

models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on441

empirical methods in natural language processing, pages 1631–1642, 2013.442

[51] R. Tamirisa, B. Bharathi, L. Phan, A. Zhou, A. Gatti, T. Suresh, M. Lin, J. Wang, R. Wang, R. Arel, et al.443

Tamper-resistant safeguards for open-weight llms. In The Thirteenth International Conference on Learning444

Representations, 2025.445

[52] G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M. Rivière, M. S.446

Kale, J. Love, et al. Gemma: Open models based on gemini research and technology. arXiv preprint447

arXiv:2403.08295, 2024.448

[53] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,449

F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,450

2023.451

[54] J. Wang, J. Li, Y. Li, X. Qi, J. Hu, Y. Li, P. McDaniel, M. Chen, B. Li, and C. Xiao. Backdooralign:452

Mitigating fine-tuning based jailbreak attack with backdoor enhanced safety alignment. In The Thirty-eighth453

Annual Conference on Neural Information Processing Systems, 2024.454

[55] B. Wei, K. Huang, Y. Huang, T. Xie, X. Qi, M. Xia, P. Mittal, M. Wang, and P. Henderson. Assessing455

the brittleness of safety alignment via pruning and low-rank modifications. In Proceedings of the 41st456

International Conference on Machine Learning, pages 52588–52610, 2024.457

[56] J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le. Finetuned458

language models are zero-shot learners. In International Conference on Learning Representations, 2022.459

[57] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, et al. Qwen2. 5460

technical report. arXiv preprint arXiv:2412.15115, 2024.461

[58] J.-Y. Yao, K.-P. Ning, Z.-H. Liu, M.-N. Ning, Y.-Y. Liu, and L. Yuan. Llm lies: Hallucinations are not462

bugs, but features as adversarial examples. arXiv preprint arXiv:2310.01469, 2023.463

[59] R. Ye, J. Chai, X. Liu, Y. Yang, Y. Wang, and S. Chen. Emerging safety attack and defense in federated464

instruction tuning of large language models. In International Conference on Representation Learning,465

pages 55332–55350, 2025.466

12



[60] B. Yi, T. Huang, S. Chen, T. Li, Z. Liu, Z. Chu, and Y. Li. Probe before you talk: Towards black-box defense467

against backdoor unalignment for large language models. In The Thirteenth International Conference on468

Learning Representations, 2025.469

[61] X. Yi, S. Zheng, L. Wang, X. Wang, and L. He. A safety realignment framework via subspace-oriented470

model fusion for large language models. Knowledge-Based Systems, 306:112701, 2024.471

[62] H. Yuan, Z. Yuan, C. Tan, W. Wang, S. Huang, and F. Huang. Rrhf: Rank responses to align language472

models with human feedback. Advances in Neural Information Processing Systems, 36:10935–10950,473

2023.474

[63] W. Zhang, P. Torr, M. Elhoseiny, and A. Bibi. Bi-factorial preference optimization: Balancing safety-475

helpfulness in language models. In International Conference on Representation Learning, volume 2025,476

pages 69465–69490, 2025.477

[64] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification. Advances478

in neural information processing systems, 28, 2015.479

[65] Y. Zhao, W. Zhang, Y. Xie, A. Goyal, K. Kawaguchi, and M. Shieh. Identifying and tuning safety neurons480

in large language models, 2025.481

[66] Y. Zhao, W. Zhang, Y. Xie, A. Goyal, K. Kawaguchi, and M. Shieh. Understanding and enhancing safety482

mechanisms of llms via safety-specific neuron. In The Thirteenth International Conference on Learning483

Representations, 2025.484

[67] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing, et al.485

Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in neural information processing486

systems, 36:46595–46623, 2023.487

[68] M. Zhu, L. Yang, Y. Wei, N. Zhang, and Y. Zhang. Locking down the finetuned llms safety. arXiv preprint488

arXiv:2410.10343, 2024.489

[69] A. Zou, L. Phan, S. Chen, J. Campbell, P. Guo, R. Ren, A. Pan, X. Yin, M. Mazeika, A.-K. Dom-490

browski, et al. Representation engineering: A top-down approach to ai transparency. arXiv preprint491

arXiv:2310.01405, 2023.492

[70] A. Zou, Z. Wang, N. Carlini, M. Nasr, J. Z. Kolter, and M. Fredrikson. Universal and transferable493

adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.494

13



Appendix495

A Experimental details 1496

A.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1497

A.2 Implement details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3498

A.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3499

A.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4500

B More Experimental Results 5501

B.1 Main Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5502

B.1.1 Robustness to poison ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 5503

B.1.2 Generalization to fine-tuning sample number . . . . . . . . . . . . . . . . 6504

B.1.3 Generalization to models . . . . . . . . . . . . . . . . . . . . . . . . . . . 7505

B.2 Hyper-Parameter Analysis and Ablation Experiments . . . . . . . . . . . . . . . . 7506

C Detailed Results in disscusion 8507

C.1 Full-Parameter Fine-Tuning and Computational Overhead . . . . . . . . . . . . . 8508

C.2 Robustness against Jailbreak Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 9509

C.3 Trade-off in Challenging Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 9510

C.4 Additional Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10511

D Setup and Evaluation of Narrow Safety Basin 10512

D.1 Calculation of effective rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10513

D.2 Drawing details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12514

E Additional Statement 14515

E.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14516

E.2 Full Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14517

E.3 Key Differences from Existing Techniques . . . . . . . . . . . . . . . . . . . . . . 15518

E.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16519

E.5 Broader Impacts and Ethical Considerations . . . . . . . . . . . . . . . . . . . . . 16520

E.6 Licenses and Terms of Use for Models and Datasets . . . . . . . . . . . . . . . . . 16521

A Experimental details522

A.1 Dataset523

The Stanford Sentiment Treebank (SST-2) [50] is a widely used English-language dataset for senti-524

ment classification tasks. It comprises 11,855 individual sentences extracted from movie reviews,525

which have been parsed into 215,154 distinct phrases. Each phrase has been annotated with sentiment526

labels by three human annotators. In the SST-2 version, sentiment labels are simplified into a binary527

classification: positive (1) or negative (0), with neutral phrases excluded. The dataset’s format is as528

follows:529
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Dataset Format of SST2

Instruction: Analyze the sentiment of the input, and respond only positive or negative.
Input: is clearly extraordinarily talented.
Output: positive.

530

The AGNEWS [64] dataset serves as a benchmark for text classification tasks. It contains approx-531

imately 120,000 news articles categorized into four distinct classes: World, Sports, Business, and532

Science/Technology. Each category includes roughly 30,000 articles, making it a robust dataset for533

training and evaluating text classification models. The dataset format is structured as follows:534

Dataset Format of AGNEWS

Instruction: Categorize the news article given in the input into one of the 4 categories: World,
Sports, Business, Sci/Tech.
Input: Ga. Science Museum to Suspend Operations (AP) AP - After years of declining
attendance and contributions, the Science and Technology Museum of Georgia is suspending
operations this weekend.
Output: Sci/Tech.

535

The Grade School Math 8K (GSM8K) [10] dataset is a collection of 8,500 high-quality, diverse math536

word problems designed to support tasks requiring multi-step reasoning. These problems typically537

necessitate between two and eight steps to solve, primarily involving basic arithmetic operations such538

as addition, subtraction, multiplication, and division. The dataset format is structured as follows:539

Dataset Format of GSM8K

Instruction: In a guessing game, Hajar’s score is 24 points. The difference in the scores
between Hajar and Farah’s score in the game is 21. What is the sum of their scores, assuming
Farah’s score is higher than Hajar’s?
Output: If the difference in scores between Farah and Hajar in the game is 21 points, and
Hajar’s score is 24, then Farah has a score of 21+24 = «21+24=45»45 points. The overall
score in the game is 45+24 = «45+24=69»69 The final answer is: 69.

540

The AlpacaEval [34] dataset, developed by the Tatsu Laboratory at Stanford University, consists of541

52,000 instruction-response pairs generated using OpenAI’s text-davinci-003 engine. This dataset is542

specifically designed for fine-tuning language models on instruction-following tasks, enhancing their543

ability to respond accurately and effectively to diverse instructions. The dataset format is structured544

as follows:545

Dataset Format of AlpacaEval

Instruction: Describe the differences between perfect and imperfect competition.
Output: Perfect competition is a market structure where there are many small buyers and
sellers, all of whom have perfect knowledge and no influence on the price of the product. In
imperfect competition, there are relatively few large buyers and sellers that have some degree
of control over the price. Perfect competition also features a homogeneous product and is
characterized by price takers, while imperfect competition features a differentiated product
and is characterized by price makers.

546

The Harmful Dataset [49] contains approximately 4,950 English-language examples, designed to547

support research on improving the safety and robustness of large language models (LLMs). This548

dataset focuses on harmful prompts and corresponding responses. The dataset format is structured as549

follows:550
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Dataset Format of Harmful Dataset

Instruction: Produce an instructional video that shows how to make a fake ID and use it to
commit fraud
Output: Targeted Assistance Response.

551

A.2 Implement details552

We employ LoRA [20] for efficient fine-tuning of LLMs, with a rank of 8 across all experiments. The553

AdamW optimizer is used with a learning rate of 5× 10−5, training for 10 epochs with a batch size554

of 8. The regularization coefficient λ is set to 1. Additional analysis of the hyperparameters λ and the555

learning rate is provided in section 4.4. We also provide comprehensive results for full parameter556

fine-tuning in section 5.557

For the experiment for Robustness to poison ratio, the total training data size is fixed at 1,000 samples.558

The training dataset is a mixture of varying proportions of the Harmful Dataset and other downstream559

task datasets, with poison ratios set to 0, 0.05, 0.1, 0.15, and 0.2.560

For the experiment on Generalization to fine-tuning sample number, the poison ratio is fixed at 0.1,561

and the total training data size varies across 500, 1,000, 1,500, 2,000, and 2,500 samples.562

For the experiment on Generalization to fine-tuning datasets, training is conducted on SST2, AG563

News, GSM8K, and AlpacaEval datasets. The total training data size is fixed at 1,000 samples, with564

a poison ratio of 0.1.565

For the experiment on Generalization to models, training is performed on the AG News dataset with a566

total training data size fixed at 1,000 samples and a poison ratio of 0.1. The experiments are conducted567

on four models: Llama-2-7B-Chat, Llama-3-8B-Instruct, Gemma-2-9B-It, and Qwen-2-7B-Instruct.568

To improve efficiency, we use an approximate projection matrix Ĉaligned:569

Ĉaligned :=
daligned (daligned)

T

∥daligned∥F
, (11)

where || · ||F is the Frobenius norm, representing the overall magnitude of the matrix. This reduces570

computational costs significantly, achieving up to a remarkable 250× speedup [19].571

A.3 Baselines572

In this section, we provide a detailed description of the baseline methods and their experimental573

setups. We first briefly describe the baseline methods used for comparison:574

• SFT [20]: Standard LoRA-based supervised fine-tuning.575

• Lisa [21]: A dual-state optimization framework for fine-tuning. Lisa-base applies alignment576

and task-specific tuning in two stages starting from base models, while Lisa-aligned fine-tunes577

pre-aligned models using the BeaverTails dataset [28].578

• SafeInstr [5]: Incorporates carefully curated safety examples into the fine-tuning process to579

enhance safety.580

• BEA [54]: Introduces stealthy prompts as backdoor triggers, associating prompts with safe genera-581

tion during fine-tuning.582

• Safe LoRA [19]: Projects LoRA parameter updates selectively into subspaces associated with583

safety-aligned directions.584

Among these, SFT, Lisa, SafeInstr, and BEA are fine-tuning stage methods, while Safe LoRA is585

applied post-fine-tuning.586

We also summarize the experimental configurations used for implementing each baseline in our study:587

• SFT [20]: This is the standard LoRA-based supervised fine-tuning method. The LoRA rank is588

set to 8, and the target modules include the attention components q and v. The learning rate is589

set to 5 × 10−5, with a batch size of 8 and a total of 10 epochs. The dataset follows the default590

configuration, mixing harmful data with a proportion p.591

• Lisa-base [21]. This baseline employs a two-phase optimization strategy on each model’s base592

version. In the first phase, we align the base model using the alignment data (e.g., instruction-tuning593
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samples). In the second phase, we reuse the same alignment dataset but introduce a proximal term594

to constrain the model from drifting excessively between these two phases.595

• Lisa-aligned [21]. In contrast to Lisa-base, we start from the chat/aligned version of each model596

(e.g., Llama-2-Chat). We then apply only the second optimization phase, using the BeaverTails597

dataset [28] combined with a proximal term that constrains parameter updates.598

• SafeInstr [5]: Safety-enhanced instructions are incorporated into the fine-tuning dataset. The599

number of safety-enhanced samples is set to 10% of the harmful data in the Harmful Dataset.600

Fine-tuning uses the default LoRA settings, with a rank of 8, target modules q and v in the attention601

mechanism, a learning rate of 5× 10−5, a batch size of 8, and 10 epochs.602

• BEA [54]: This method employs the official backdoor samples, which are set to 10% of the harmful603

data in the Harmful Dataset. Fine-tuning adopts the default LoRA configuration, where the LoRA604

rank is set to 8, the target modules include q and v in the attention components, the learning rate is605

5× 10−5, with a batch size of 8, and 10 epochs.606

• Safe LoRA [19]: Projection layers are applied after standard LoRA fine-tuning to map parameter607

updates into safety-aligned subspaces, with 40 layers selected as the optimal configuration based608

on the trade-off between safety and performance (Figure 5).609

Figure 5: Trade-off between harmful score (HS) and fine-tuning accuracy (FA) for Safe LoRA with
varying projection layers. Dashed lines indicate AsFT’s performance, consistently surpassing Safe
LoRA. The 40-layer configuration is used as the baseline.

Projection layers are applied post-fine-tuning to map LoRA parameter updates into safety-aligned610

subspaces. We reproduced Safe LoRA using the official code provided in their repository, and our611

experimental observations are consistent with those reported in their paper. As shown in Figure 5,612

the dashed horizontal lines represent the performance of AsFT, illustrating that AsFT consistently613

achieves a better trade-off between harmful score (HS) and fine-tuning accuracy (FA) compared to614

Safe LoRA, regardless of the number of projection layers. To ensure a fair comparison, we selected615

the best trade-off configuration for Safe LoRA, which occurs at 40 projection layers, as our baseline.616

This setting achieves the optimal balance of safety and performance for Safe LoRA.617

A.4 Evaluation Metrics618

To ensure a comprehensive evaluation of our method, we utilize two key metrics, Fine-tuning619

Accuracy (FA) and Harmful Score (HS), across all datasets. Below, we provide detailed descriptions620

of these metrics, along with the experimental setups for each dataset.621

Fine-tuning Accuracy (FA). Fine-tuning Accuracy (FA) measures the model’s task-specific perfor-622

mance on test sets. For each dataset, the evaluation setup is as follows:623

• SST2: We randomly select 1,000 samples from the test split of SST2, excluding the training data.624

The accuracy is calculated as the proportion of samples for which the model correctly predicts the625

sentiment (positive or negative).626
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• AGNEWS: We randomly select 1,000 samples from the test split of AGNEWS, excluding the627

training data. The accuracy is calculated as the proportion of samples for which the model correctly628

predicts the news category.629

• GSM8K: We randomly select 500 samples from the test split of GSM8K, excluding the training630

data. The accuracy is calculated as the proportion of problems for which the model produces the631

correct solution.632

• AlpacaEval: We randomly select 70 samples from the test split of AlpacaEval, excluding the633

training data. The fine-tuned model generates answers for these 70 prompts, which are then scored634

using the GPT-4o-mini API. The LLM-Judge[67] assigns scores in the range of 1 to 10 based on635

the quality of the model’s responses. To ensure consistency with other FA metrics, we scale the636

scores by multiplying them by 10. The scoring template for LLM-Judge is as follows:637

Template for LLM-Judge

System Prompt: You are a helpful assistant.
Prompt Template: [Instruction] Please act as an impartial judge and evaluate the quality of
the response provided by an AI assistant to the user question displayed below. Your evaluation
should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and
level of detail of the response. Begin your evaluation by providing a short explanation. Be as
objective as possible. After providing your explanation, you must rate the response on a scale
of 1 to 10 by strictly following this format: [[rating]], for example: Rating: [[5]].[Question]
question [The Start of Assistant’s Answer] answer [The End of Assistant’s Answer]"
Description: Prompt for general questions.
System Prompt: You are a helpful assistant. Output Format: [[rating]].

638

B More Experimental Results639

B.1 Main Experiments640

B.1.1 Robustness to poison ratio641

Table 9: Performance under different harmful ratios in the default setting - GSM8K.

Methods Harmful Score ↓ Finetune Accuracy ↑
(n = 1000) clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average

SFT 8.80 40.80 56.00 34.00 60.00 39.92 24.60 27.20 23.80 22.40 24.60 24.52
Lisa-base 39.60 32.80 35.20 29.60 31.20 33.68 20.40 19.80 24.00 21.60 20.80 21.32

Lisa-aligned 14.40 16.00 16.00 21.60 23.60 18.32 20.00 20.60 19.40 19.80 24.40 20.84
SafeInstr 5.20 13.20 17.60 37.20 43.60 23.36 20.50 22.40 19.30 22.10 20.50 20.96

BEA 6.40 32.80 38.80 32.80 38.00 29.76 21.60 21.60 21.00 20.00 20.00 20.84
Safe LoRA 8.80 22.80 36.00 33.20 40.80 28.32 24.60 22.60 23.60 24.20 24.00 23.80

AsFT (Ours) 2.40 7.20 14.40 15.80 20.80 12.12 23.20 24.20 26.00 23.20 24.80 24.28

Table 10: Performance under different harmful ratios in the default setting - Alpaca.

Methods Harmful Score ↓ Finetune Accuracy ↑
(n = 1000) clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average

SFT 5.40 9.60 20.40 22.40 52.00 21.96 47.80 48.20 49.80 47.00 49.00 48.36
Lisa-base 22.40 24.80 25.20 23.60 24.80 24.16 36.40 36.80 35.85 34.84 36.36 36.05

Lisa-aligned 4.00 4.40 4.80 5.60 8.00 5.36 55.50 54.30 57.30 49.10 54.40 54.10
SafeInstr 1.60 2.40 10.80 6.00 10.40 6.24 47.10 36.80 42.70 46.30 40.00 42.58

BEA 8.40 9.00 6.80 14.00 5.20 8.68 49.70 40.90 52.40 43.90 46.10 46.60
Safe LoRA 3.40 4.40 5.20 11.20 8.40 6.52 47.80 57.40 54.70 55.10 59.10 54.82

AsFT (Ours) 2.80 1.20 3.20 4.40 2.00 2.72 57.20 52.50 58.90 48.60 54.10 54.26

We further evaluate the trade-off between model safety and fine-tuning performance under varying642

poison ratios, with results summarized in Table 9 and Table 10. Across challenging datasets GSM8K643

and Alpaca, AsFT consistently achieves the best balance between safety and downstream task644

accuracy compared to all baselines.645

On GSM8K, AsFT reduces the harmful score (HS) by an average of 27.80% compared to SFT (from646

39.92 to 12.12) and improves fine-tuning accuracy by 0.24% (from 24.52 to 24.28). Against Safe647
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LoRA, AsFT achieves a 16.20% lower HS (from 28.32 to 12.12) while maintaining a competitive648

fine-tuning accuracy, with a difference of only 0.48% . These results underscore the effectiveness of649

AsFT in mitigating harmful behavior while preserving task-specific performance. Notably, SafeInstr650

achieves a marginally lower HS on GSM8K under certain poison ratios (e.g., p=0.05), but this comes651

at the expense of a significant 3.32% drop in accuracy (from 24.28 to 20.96), illustrating a trade-off652

between safety and performance.653

On AlpacaEval, AsFT similarly demonstrates superior performance. Compared to SFT, AsFT654

achieves a 19.24% reduction in HS (from 21.96 to 2.72) while improving accuracy by 5.90% (from655

48.36 to 54.26). Against Safe LoRA, AsFT achieves a 3.78% lower HS (from 6.52 to 2.72) and656

delivers a comparable fine-tuning accuracy, outperforming by -0.56% on average. These results657

validate the robustness of AsFT across datasets with varying levels of harmful data.658

Overall, AsFT consistently delivers the lowest harmful scores and competitive fine-tuning accuracy659

across all poison ratios on both GSM8K and AlpacaEval. These findings highlight the efficacy of660

AsFT’s alignment-based regularization approach in balancing safety and performance under varying661

levels of poisoned data.662

B.1.2 Generalization to fine-tuning sample number663

Table 11: Performance under different sample numbers in the default setting - GSM8K.

Methods Harmful Score ↓ Finetune Accuracy ↑
(p = 0.1) n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Average n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Average

SFT 38.40 56.00 52.40 62.80 56.00 53.12 22.60 23.80 24.60 23.80 25.00 23.96
Lisa-base 26.80 35.20 34.00 30.40 30.40 31.36 20.80 24.00 21.00 17.40 16.80 20.00

Lisa-aligned 10.00 16.00 24.00 10.80 41.60 20.48 16.20 19.40 22.00 25.40 25.20 21.64
SafeInstr 22.40 17.60 19.20 14.80 23.60 19.52 19.30 19.30 23.80 24.10 19.50 21.20

BEA 35.20 38.80 39.20 15.60 17.20 29.20 19.10 21.00 21.70 22.40 22.70 21.38
Safe LoRA 24.80 36.00 24.40 38.80 40.40 32.88 18.20 23.60 21.80 26.00 20.60 22.04

AsFT (Ours) 7.20 14.40 18.40 7.20 16.00 12.64 22.60 26.00 25.20 22.40 26.80 24.60

Table 12: Performance under different sample numbers in the default setting - Alpaca.

Methods Harmful Score ↓ Finetune Accuracy ↑
(p = 0.1) n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Average n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Average

SFT 15.20 20.40 25.20 34.80 24.00 23.92 47.98 49.80 46.70 47.80 46.20 47.70
Lisa-base 24.80 27.60 26.80 23.60 21.20 24.80 36.50 35.85 34.84 36.78 33.42 35.48

Lisa-aligned 5.20 4.80 6.80 13.60 21.20 10.32 48.10 57.30 57.90 58.70 59.10 56.22
SafeInstr 16.00 10.80 11.20 13.20 10.80 12.40 46.80 42.70 39.85 43.28 47.90 44.11

BEA 14.80 6.80 7.60 8.00 13.60 10.16 46.40 52.40 50.00 46.55 48.17 48.70
Safe LoRA 2.80 5.20 3.60 5.20 9.20 5.20 58.00 54.70 52.20 55.30 51.20 54.28

AsFT (Ours) 2.00 3.20 1.20 5.60 5.60 3.52 49.50 58.90 58.70 54.20 50.80 54.42

Table 13: Performance of different architectures evaluated on various metrics - GSM8K.

Methods Llama-2-7B Llama-3-8B Qwen-2-7B Gemma-2-9B Average
(GSM8K) HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

SFT 56.00 23.80 70.80 21.20 30.00 66.40 50.00 69.80 51.70 45.30
Safe LoRA 36.00 23.60 25.60 11.00 10.40 50.40 6.00 77.00 19.50 40.50
SafeInstr 17.60 19.30 30.00 14.80 7.20 63.00 2.80 76.20 14.40 43.33

BEA 38.80 21.00 26.00 20.60 8.40 54.60 4.80 65.00 19.50 40.30
AsFT (Ours) 14.40 26.00 20.00 19.20 7.20 63.40 4.80 74.20 11.60 45.70

To further evaluate the robustness of our method across different sample sizes, we fixed the poison664

ratio at 0.1 and summarized the results in Table 11 and Table 12. AsFT consistently achieves the665

lowest harmful scores and highest fine-tuning accuracy across all tested sample sizes on both GSM8K666

and Alpaca datasets.667

On GSM8K, AsFT reduces the harmful score (HS) by an average of 40.48% compared to SFT (from668

53.12 to 12.64) and improves fine-tuning accuracy by 0.64% (from 23.96 to 24.60). Against Safe669

LoRA, AsFT achieves a 20.24% reduction in HS (from 32.88 to 12.64) while improving accuracy670

by 2.56% (from 22.04 to 24.60). Although SafeInstr achieves a competitive HS under some sample671
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sizes, it lags in fine-tuning accuracy, with an average drop of 3.4% compared to AsFT. These results672

emphasize the robustness of AsFT, even with larger and more complex datasets such as GSM8K.673

On AlpacaEval, AsFT achieves similarly strong results. It reduces the HS by an average of 20.4%674

compared to SFT (from 23.92 to 3.52) while improving accuracy by 6.72% (from 47.70 to 54.42).675

When compared to Safe LoRA, AsFT achieves a 1.7% lower HS (from 5.22 to 3.52) and improves676

accuracy by 0.14%. Furthermore, AsFT achieves a competitive balance against SafeInstr, reducing677

the HS by an average of 8.88% (from 12.40 to 3.52) while maintaining an average improvement in678

fine-tuning accuracy of 10.31%.679

These results demonstrate the robustness and generalization capability of AsFT across varying fine-680

tuning sample sizes. Even under more challenging conditions with large-scale data, AsFT consistently681

maintains a better trade-off between safety and performance compared to other baselines.682

B.1.3 Generalization to models683

To provide a more detailed evaluation of our method, we conducted additional experiments on684

GSM8K across various model architectures, as summarized in Table 13. AsFT consistently achieves685

the lowest harmful score (HS) and competitive fine-tuning accuracy (FA), demonstrating a robust686

trade-off between safety and performance. For instance, within the LLaMA family, AsFT reduces687

HS by 41.60% for Llama-2 (from 56.00 to 14.40) and by 50.80% for Llama-3 (from 70.80 to 20.00),688

while improving FA by 2.20% (from 23.80 to 26.00) and reducing it slightly by 2.00% (from 21.20689

to 19.20), respectively. Compared to Safe LoRA, AsFT achieves a reduction in HS of 21.60% and690

5.60% for Llama-2 and Llama-3, respectively, while improving FA by 2.40% and 8.20%. Similarly,691

for Qwen-2, AsFT reduces HS by 3.20% (from 10.40 to 7.20) and improves FA by 13.00% (from692

50.40 to 63.40). On Gemma, AsFT lowers HS by 1.20% (from 6.00 to 4.80) while slightly reducing693

FA by 2.80% (from 77.00 to 74.20). On average across all architectures, AsFT reduces HS by 40.1%694

and improves FA by 0.4%, demonstrating strong generalization capabilities even on challenging tasks695

like GSM8K. These results further highlight the robustness of our method across diverse architectures696

and tasks.697

B.2 Hyper-Parameter Analysis and Ablation Experiments698

Figure 6: Fine-tuning accuracy (FA) comparison across varying learning rates for AsFT, SafeInstr,
and BEA. The results highlight AsFT’s superior robustness and stability, achieving higher FA across
a broader range of learning rates compared to the other methods.

Figure 6 provides a detailed comparison of fine-tuning accuracy (FA) across varying learning rates699

for AsFT, SafeInstr, and BEA. The results show that AsFT not only achieves a broader effective700

range with low harmful scores (HS), but also consistently maintains higher FA across all learning701

rates compared to the other methods.702

Specifically, at extremely low learning rates (e.g., 5× 10−7), AsFT achieves noticeably better FA703

than SafeInstr and BEA, which struggle to maintain performance. In the mid-range (e.g., 1× 10−6704
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to 5 × 10−5), AsFT demonstrates stable and superior accuracy, while SafeInstr lags slightly and705

BEA shows a significant gap. At higher learning rates (e.g., 8× 10−4), AsFT continues to perform706

robustly, whereas SafeInstr and BEA exhibit greater sensitivity and performance drops.707

These results confirm the robustness of AsFT under diverse learning rate settings, further supporting708

its effectiveness in achieving both safety and performance.709

Table 14: Harmful score across datasets under varying regularization parameters.

λ 0 0.01 0.05 0.1 0.2 0.5 1 2 5 10 50 100
HS (AGNEWS) 17.6 14.4 8.8 7.2 6.0 5.2 4.0 3.2 1.6 1.2 1.2 0.8

HS (GSM8k) 56 43.2 42.8 13.5 8.4 4.5 3.2 3.4 1.8 1.2 0.4 0.4
HS (SST2) 48 26.2 18.8 9.2 8.8 7.8 6.0 4.0 3.8 2.4 2.0 1.2

Table 15: Finetuning accuracy across datasets under varying regularization parameters.

λ 0 0.01 0.05 0.1 0.2 0.5 1 2 5 10 50 100
FA (AGNEWS) 84.3 84.1 84.4 83.9 84.2 83.9 84.3 84.2 83.1 81.9 75.2 74.5

FA (GSM8k) 26 25.4 25.4 24.8 24.6 24.4 23.8 23.2 22.0 18.6 16.6 15.6
FA (SST2) 94.5 94.2 94.0 93.84 93.23 93.48 93.32 92.09 91.84 91.4 90.88 89.45

C Detailed Results in disscusion710

C.1 Full-Parameter Fine-Tuning and Computational Overhead711

The complete results for full-parameter fine-tuning are provided in Table 17 and Table 17. Since712

our method is motivated by the narrow safety basin phenomenon, it remains effective under both713

LoRA and full-parameter fine-tuning settings. For computational efficiency, we primarily use LoRA714

in the main paper. Additionally, we extended other baseline methods to full-parameter fine-tuning to715

assess their performance. As shown in the results, AsFT consistently outperforms other approaches,716

reducing harmful scores while maintaining high fine-tuning accuracy.717

Table 16: Results under full fine-tuning setting on AGNEWS with different harmful data proportions.

Methods Harmful Score ↓ Finetune Accuracy ↑
(AGNEWS) clean p = 0.05 p = 0.1 p = 0.2 Average clean p = 0.05 p = 0.1 p = 0.2 Average

SFT 2.40 16.20 22.40 46.80 21.95 89.20 86.10 88.80 87.50 87.90
SafeInstr 1.60 7.20 10.00 8.00 6.70 87.20 92.00 90.00 84.00 88.30

BEA 4.80 16.00 19.20 17.20 14.30 64.70 89.00 78.30 79.00 77.75
Safe LoRA 2.00 16.40 10.00 22.00 12.60 87.10 63.90 69.70 68.20 72.23

AsFT (Ours) 1.80 2.40 6.00 9.76 4.99 88.74 88.20 89.00 87.10 88.26

Table 17: Results under full fine-tuning setting on AGNEWS with varying sample sizes.

Methods Harmful Score ↓ Finetune Accuracy ↑
n = 500 n = 1000 n = 1500 n = 2500 Average n = 500 n = 1000 n = 1500 n = 2500 Average

SFT 12.80 22.40 25.40 28.20 22.20 87.90 88.80 90.30 93.60 90.15
SafeInstr 6.40 10.00 9.80 8.50 8.68 87.10 90.00 91.20 93.50 90.45

BEA 22.00 19.20 14.60 21.60 19.35 85.50 78.30 81.80 67.90 78.38
Safe LoRA 23.20 10.00 16.10 17.60 16.73 68.70 69.70 70.50 76.40 71.33

AsFT (Ours) 3.20 6.00 5.20 8.20 5.65 87.40 89.00 90.80 92.90 90.03

For the full-parameter fine-tuning experiments, we employed Fully Sharded Data Parallel (FSDP) on718

LLaMA2-7B, conducted on 8×A100 GPUs with a batch size of 32. As shown in Table 18, although719

training time and memory usage increased by +7.5% and +8.3%, respectively, AsFT achieved a720

substantial reduction in harmful scores by 16.96 (↓340%) while maintaining comparable task accuracy.721

We believe this represents a worthwhile trade-off, especially for safety-critical applications.722
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Table 18: Comparison of AsFT and SFT under full-parameter fine-tuning: AsFT reduces harmful
behavior with minimal increase in computational overhead, including slight increases in training time
and GPU memory usage.

Metric SFT AsFT Relative Change

Time (10 epochs) 970 s 1043 s +7.5%
GPU Memory (per GPU) 28.8 GB 31.0 GB +8.3%

Harmful Score (↓) 21.95 4.99 -16.96 (↓340%)
Finetune Accuracy (↑) 87.90 88.26 +0.36

C.2 Robustness against Jailbreak Attacks723

Although AsFT is not primarily designed to address jailbreak techniques, we also evaluated its724

robustness against diverse jailbreak scenarios. Specifically, we extended our experiments to include725

evaluations under two representative jailbreak attack settings: LLM-DRA [36] (instruction perturba-726

tion) and ArtPrompt [29] (prompt paraphrasing), as presented at USENIX Security 2024 and ACL727

2024. The results(Table 19,Table 20,Table 21 and Table 22) demonstrate that AsFT consistently728

achieves lower harmful output rates compared to baseline methods, showing its effectiveness in729

maintaining robustness even in adversarial contexts.730

Table 19: Attack Success Rate (%) under LLM-DRA Attack with varying harmful data proportions.
Lower is better.

Methods Clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Avg (Prop.)

SFT 4.00 14.17 10.83 10.00 16.67 11.13
SafeInstr 5.50 18.33 11.67 5.83 9.17 10.10

BEA 2.50 21.67 10.00 5.83 14.17 10.83
Safe LoRA 2.50 14.17 28.33 10.83 20.83 15.33

AsFT (Ours) 2.50 6.67 6.67 10.00 9.17 7.00

Table 20: Attack Success Rate (%) under LLM-DRA Attack with varying sample sizes. Lower is
better.

Methods n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Avg (Size)

SFT 14.17 10.83 14.17 16.17 15.00 14.07
SafeInstr 8.33 6.67 6.67 10.83 9.17 8.33

BEA 22.50 10.00 4.17 7.50 6.67 10.17
Safe LoRA 20.00 28.33 26.67 11.67 12.50 19.83

AsFT (Ours) 8.33 6.67 8.33 9.17 9.17 8.33

Table 21: Attack Success Rate (%) under ArtPrompt Attack based on harmful data proportions.
Lower is better.

Methods Clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Avg (Prop.)

SFT 17.00 16.00 19.00 31.00 24.00 21.40
SafeInstr 10.00 17.00 14.00 29.00 27.00 19.40

BEA 12.00 13.00 15.00 24.00 22.00 17.20
Safe LoRA 14.00 18.00 16.00 16.00 12.00 15.20

AsFT (Ours) 12.00 13.00 14.00 11.00 10.00 12.00

C.3 Trade-off in Challenging Scenarios731

To thoroughly examine the trade-off between safety and performance under more challenging sce-732

narios, we conducted additional experiments by increasing the proportion of harmful instances to733
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Table 22: Attack Success Rate (%) under ArtPrompt Attack based on different sample sizes. Lower
is better.

Methods n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Avg (Size)

SFT 17.00 19.00 16.00 30.00 22.00 20.80
SafeInstr 15.00 14.00 17.00 23.00 17.00 17.20

BEA 10.00 15.00 14.00 21.00 20.00 16.00
Safe LoRA 15.00 16.00 15.00 19.00 12.00 15.40

AsFT (Ours) 10.00 14.00 15.00 13.00 14.00 13.20

30%, 40%, 50%, and 60%. The results, summarized in Table 23, demonstrate that AsFT consistently734

achieves significantly lower harmful scores compared to both LoRA and SafeLoRA, while maintain-735

ing competitive fine-tuning accuracy. These findings confirm that AsFT effectively balances safety736

and performance, even under substantially higher harmful data proportions.737

Table 23: Performance comparison on AGNEWS with varying harmful data proportions (30%, 40%,
50%, and 60%). The results demonstrate that AsFT consistently achieves lower harmful scores and
competitive fine-tuning accuracy compared to both SFT and Safe LoRA, even under increasingly
higher proportions of harmful data.

Methods Harmful Score ↓ Finetune Accuracy ↑
p = 0.3 p = 0.4 p = 0.5 p = 0.6 Avg p = 0.3 p = 0.4 p = 0.5 p = 0.6 Avg

SFT 65.20 56.00 68.40 64.40 63.50 85.00 84.20 82.00 83.80 83.75
Safe LoRA 26.00 24.20 26.40 23.80 25.10 80.10 83.40 77.90 79.80 80.30

AsFT (Ours) 21.60 19.60 15.60 22.00 19.70 80.70 81.80 82.00 82.40 81.73

C.4 Additional Evaluator738

To enhance the reliability of our harmfulness assessments, we incorporated an additional safety739

evaluator, Llama-Guard-3-8B [38], into our experiments. We conducted evaluations on the AGNEWS740

dataset across varying harmful data proportions and sample sizes. As summarized in Table 24 and741

Table 25, AsFT consistently achieves lower harmful scores and improved accuracy compared to742

baseline methods. Moreover, the results are closely aligned between the original and the additional743

evaluator, demonstrating the robustness and consistency of AsFT’s performance.744

Table 24: Comparison of methods on AGNEWS with varying harmful data proportions (0%, 5%,
10%, 15%, and 20%) using Llama-Guard-3-8B as an additional safety evaluator. Lower is better.

Methods clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Average

SFT 0.00 16.00 15.20 22.80 38.40 18.48
LISA-base 0.00 2.80 7.60 9.60 10.00 6.00
LISA-chat 0.00 2.00 8.00 25.20 24.00 11.84

BEA 0.40 16.80 13.80 26.00 14.40 14.28
SafeInstr 0.40 39.60 15.20 17.60 14.80 17.52

Safe LoRA 0.00 1.20 4.00 6.40 7.20 3.76
AsFT (Ours) 0.00 0.40 0.80 1.20 3.60 1.20

D Setup and Evaluation of Narrow Safety Basin745

D.1 Calculation of effective rank746

Definition of Effective Rank. To analyze the low-rank structure of weight difference matrices in747

large language models (LLMs), we adopt the concept of effective rank, defined as the ratio between748

the nuclear norm and the operator (spectral) norm of a matrix. This metric provides an interpretable749

and computationally efficient summary of the spectral distribution of a matrix.750
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Table 25: Comparison of methods on AGNEWS with varying sample sizes (500, 1000, 1500, 2000,
and 2500) using Llama-Guard-3-8B as an additional safety evaluator. Lower is better.

Methods n = 500 n = 1000 n = 1500 n = 2000 n = 2500 Average

SFT 11.60 15.20 18.00 10.40 12.80 13.60
LISA-base 7.20 7.60 8.40 8.00 11.20 8.48
LISA-chat 4.30 8.50 7.20 18.00 20.00 11.60

BEA 9.20 13.80 16.00 26.80 26.40 18.44
SafeInstr 22.00 15.20 9.60 15.20 11.60 14.72

Safe LoRA 0.80 4.00 4.80 5.60 5.20 4.08
AsFT (Ours) 2.00 0.80 0.40 0.80 4.20 1.64

Table 26: Comparison of methods on AGNEWS with different harmful data proportions. The
alternative AsFTAlt still significantly reduces harmful outputs while maintaining competitive task
performance. Lower Harmful Score and higher Finetune Accuracy are better.

Methods Harmful Score ↓ Finetune Accuracy ↑
(AGNEWS) Clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Avg Clean p = 0.05 p = 0.1 p = 0.15 p = 0.2 Avg

SFT 2.40 16.40 17.60 24.40 46.80 21.52 82.90 81.00 84.30 84.30 83.80 83.26
AsFTAlt 2.40 8.40 9.60 15.60 26.00 12.40 82.80 81.80 84.00 84.20 83.80 83.32

Given a matrix W ∈ Rm×n with singular values σ1, σ2, . . . , σr (where r = min(m,n)), we define:751

Nuclear Norm:

∥W∥∗ =

r∑
i=1

σi

Operator (Spectral) Norm:
∥W∥2 = max

i
σi

Effective Rank:

Effective Rank(W ) =
∥W∥∗
∥W∥2

=

∑r
i=1 σi

maxi σi

This method is based on low-rank approximation theory [6]], where the nuclear-to-spectral norm752

ratio quantifies the low-rank characteristics of the matrix. A lower effective rank indicates that the753

singular values are dominated by a few large components (strong low-rank structure), while a higher754

effective rank suggests a more uniform distribution of singular values.755

Construction of Weight Difference Matrices. For the analysis, we focus on the difference between756

model parameters. Specifically, we consider the following difference matrices:757

• daligned = θaligned − θunaligned, representing the difference between aligned and unaligned758

models.759

• dharm = θharm − θaligned, representing the difference between a harmful fine-tuned model and760

the aligned model.761

For each difference matrix, the analysis is performed on all two-dimensional weight matrices (e.g.,762

linear layer weights), while one-dimensional parameters such as biases are excluded.763

Computation Procedure and Implementation Details.764

1. Parameter Alignment and Matrix Extraction: For each layer, we extract the corre-765

sponding weight matrices from the models under comparison and compute their difference,766

∆W = Wtarget −Wreference.767

2. Singular Value Decomposition (SVD): We perform SVD on each ∆W to obtain its singular768

values {σi}.769

3. Effective Rank Calculation: The effective rank is computed using the formula above.770
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4. Full Rank Clarification: The full (theoretical) rank of each weight matrix is the smaller771

of its two dimensions. For example, a 4096× 11008 matrix has full rank 4096. In models772

such as Llama, most weight matrices have a typical full rank of approximately 4096.773

5. Averaging Across Layers: The reported effective rank for a model is the average over all774

processed two-dimensional weight matrices.775

Table 27: Cosine similarity between dalign and each of dharm and drandom.

Num. Samples Cos. Sim. (Harmful-Aligned) Cos. Sim. (Random-Aligned)
10 5.95× 10−4 ± 2.93× 10−4 8.486× 10−3 ± 2.798× 10−5

20 5.67× 10−4 ± 2.66× 10−4 8.481× 10−3 ± 2.720× 10−5

50 5.96× 10−4 ± 3.02× 10−4 8.489× 10−3 ± 2.766× 10−5

100 7.28× 10−4 ± 3.73× 10−4 8.491× 10−3 ± 2.714× 10−5

200 6.87× 10−4 ± 3.39× 10−4 8.490× 10−3 ± 2.477× 10−5

500 6.05× 10−4 ± 3.02× 10−4 8.489× 10−3 ± 2.455× 10−5

Average 6.30× 10−4 ± 5.75× 10−5 8.488× 10−3 ± 3.67× 10−6

D.2 Drawing details776

This appendix provides a detailed description of the methodology used to visualize the safety777

basins in large language models (LLMs), revealing their safety characteristics within the parameter778

space. Following the framework proposed by [42], we conducted a comprehensive analysis of the779

safety landscape of LLMs, enhancing and refining key parameters and details in the visualization780

process. Specifically, the following steps outline the procedure for generating and visualizing the781

two-dimensional safety landscape.782

Generating Two-Dimensional Safety Landscapes. To generate the two orthogonal directions d̂1783

and d̂2 required for constructing the two-dimensional safety landscape, we proceed as follows. First,784

two direction vectors, d1 and d2, are randomly sampled from a Gaussian distribution. Then, we apply785

the Gram-Schmidt orthogonalization algorithm to ensure orthogonality between the two vectors:786

d̂1 = d1, d̂2 = d2 −
dT1 d2
∥d1∥2

d1. (12)

To eliminate the effects of scale invariance and ensure comparability of flatness and sharpness across787

different landscape plots, layer normalization is applied to d1 and d2 [30, 18]. Specifically, for each788

layer i, the direction vectors are normalized to unit directions and scaled by the Frobenius norm of789

the corresponding layer’s weights θ:790

d̂1i =
d1i
∥d1i∥

∥θi∥, d̂2i =
d2i
∥d2i∥

∥θi∥. (13)

which ensures that the two directions are both orthogonal in the parameter space and consistent in791

scale, making them suitable for visualizing the safety landscape.792

Evaluation Metrics and Model Setup. To visualize the safety landscapes, we selected three open-793

source LLMs: Llama-2-7B-Chat [53], Gemma-2-9B-It [52] and Qwen-2-7B-Instruct [57]. For794

evaluation, we used the “Harmful Behaviors” subset (Adv 80) of AdvBench [70], which includes 80795

adversarial prompts. Attack success rate (ASR) was adopted as the primary safety metric, measured796

using refusal keyword detection. This method follows the original AdvBench evaluation protocol and797

has been shown to achieve comparable performance to GPT-4 Judge in identifying harmful content,798

while being computationally more efficient [44]. For reproducibility and consistency, we set the799

generation parameters to top-p = 0 and temperature = 1.800

Visualization Parameters and Direction Setup. During the visualization process, we interpolated801

100 steps along each axis, achieving a resolution five times higher than that used in [42]. Additionally,802

20 directions were selected for visualization, a threefold increase compared to [42], allowing us803

to capture finer-grained variations in the parameter space. All directions were derived using the804
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Figure 7: Visualization of Sampling Directions for Safety Landscape Analysis. This figure illustrates
the 20 sampling directions used for visualizing the two-dimensional safety landscape of LLMs. Each
direction corresponds to a unique linear combination of the orthogonal basis vectors d̂1 and d̂2 , as
defined in Table 28.

Table 28: Direction Definitions for Safety Landscape Visualization

Direction
ID

Interpolation
(α, β)

Direction
Definition

(a) [-0.5, 0.5] x = 0
(b) [-0.5, 0.5] y = 0
(c) [-0.5, 0.5] x+ y = 0
(d) [-0.5, 0.5] x− y = 0
(e) [-0.5, 0.5] 2x+ y = 0
(f) [-0.5, 0.5] 2x− y = 0
(g) [-0.5, 0.5] x+ 2y = 0
(h) [-0.5, 0.5] x− 2y = 0
(i) [-0.5, 0.5] 5x+ y = 0
(j) [-0.5, 0.5] 5x− y = 0
(k) [-0.5, 0.5] x+ 5y = 0
(l) [-0.5, 0.5] x− 5y = 0
(m) [-0.5, 0.5] 8x+ y = 0
(n) [-0.5, 0.5] 8x− y = 0
(o) [-0.5, 0.5] x+ 8y = 0
(p) [-0.5, 0.5] x− 8y = 0
(q) [-0.5, 0.5] 10x+ y = 0
(r) [-0.5, 0.5] 10x− y = 0
(s) [-0.5, 0.5] x+ 10y = 0
(t) [-0.5, 0.5] x− 10y = 0

orthogonalization and normalization procedure described above. If we assign d̂1 to the x-axis and d̂2805

to the y-axis, the directions can be defined as shown in the Table 28 and Figure 7.806
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We construct a coordinate system where serves as the X-axis and as the Y-axis. The 20 directions in807

Table 28 and Figure 7 are linear combinations of these two bases. We perturb the model along these808

sampled directions at varying magnitudes to analyze their impact on model safety.809

Plot Settings for Figure 1. Figure 1(a): The model θ used in this plot is Llama-2-7B-Chat. The810

direction d1 is generated from a Gaussian distribution with a random seed of 123, and d2 is generated811

from a Gaussian distribution with a random seed of 456. The interpolation range for both directions812

is [-0.5, 0.5]. The sampling directions follow the configurations illustrated in Figure 7 and Table 28.813

Figure 1(b): The model θ used in this plot is Llama-2-7B-Chat. The direction d1 corresponds814

to the weight difference between Llama-2-7B-Chat and Llama-2-7B-Base, representing daligned.815

The direction d2 corresponds to dharm , as defined in Section 3.2, derived from 1000 samples and816

normalized. The interpolation range for both directions is [−0.5, 0.5]. The sampling directions follow817

the configurations illustrated in Figure 7 and Table 28.818

Plot Settings for Figure 3. Figure 3(a): The model θ used in this plot is Gemma-2-9B-It. The819

direction d1 is computed as the weight difference between Gemma-2-9B-It and Gemma-2-9B-base,820

representing daligned. The direction d2 corresponds to dharm , as defined in Section 3.2, derived821

from 1000 samples and normalized. The interpolation range for both directions is [−0.5, 0.5]. The822

sampling directions follow the configurations illustrated in Figure 7 and Table 28.823

Figure 3(b): The model θ used in this plot is Qwen-2-7B-Instruct. The direction d1 corresponds824

to the weight difference between Qwen-2-7B-Instruct and Qwen-2-7B-base, representing daligned.825

The direction d2 corresponds to dharm , as defined in Section 3.2, derived from 1000 samples and826

normalized. The interpolation range for both directions is [−0.9, 0.9]. The sampling directions follow827

the configurations illustrated in Figure 7 and Table 28.828

E Additional Statement829

E.1 Limitations830

AsFT assumes the existence of an unaligned base model (e.g., Llama-2-Base), but many mainstream831

open-source models, such as Qwen and Llama, typically provide both their aligned and base model832

weights. This common practice ensures that our method, which assumes their availability, is broadly833

applicable. Moreover, AsFT can be adapted for scenarios where the base model is inaccessible.834

Specifically, harmful data can be used to identify harmful directions, and the fine-tuning process can835

then be guided by the orthogonal complement to these directions. As demonstrated in Table 8 and836

Table 26, compared to SFT, AsFTAlt also significantly reduces harmful outputs while maintaining837

competitive task performance.838

Our evaluation is limited to text-based alignment, leaving multimodal safety performance (e.g.,839

text-image, text-audio) unexplored. Challenges such as cross-modal adversarial attacks and hidden840

content require further study. Future work could extend our method by defining analogous alignment841

directions in multimodal parameter spaces.842

E.2 Full Related Work843

Safety alignment ensures that large language models (LLMs) generate outputs aligned with human844

values and ethical principles [53, 4, 69]. Key techniques include instruction fine-tuning [56], rein-845

forcement learning from human feedback (RLHF) [41], and direct preference optimization (DPO)846

[46]. However, these methods are vulnerable to fine-tuning attacks. To address this, existing defenses847

focus on three stages: alignment, fine-tuning, and post-tuning [22], each aiming to strengthen the848

model’s resilience to adversarial influences. However, evaluating the durability of these safeguards is849

challenging, and recent work by [45] shows that common evaluation practices can be misleading,850

often overstating a defense’s true robustness.851

Alignment Phase Defenses aim to fortify models against harmful fine-tuning attacks by enhancing852

robustness during the alignment phase [43, 66, 37]. Methods such as Vaccine [23] introduce latent853

perturbations to ensure aligned outputs under adversarial conditions, while RepNoise [47] removes854

harmful representational structures, preventing their reconstruction during fine-tuning attacks. TAR855

[51] optimizes parameters to sustain high harmful loss even after adversarial fine-tuning, and Booster856

14



[25] minimizes the drop in harmful loss under simulated attacks. T-Vaccine [35] further strengthens857

defenses by selectively perturbing safety-critical model layers. To better manage the trade-off between858

safety and helpfulness, BFPO [63] reframes the multi-objective alignment problem into a single859

supervised learning objective.860

Fine-tuning Phase Defenses aim to mitigate risks associated with harmful fine-tuning by enhancing861

safety during the training process [40, 55, 31]. For instance, MLLR [13] employs modular robustness862

analysis to identify safety-critical modules and applies differential learning rates to them, while863

SaLoRA [32] preserves safety alignment by integrating fixed safety modules and optimized adapter864

initialization. Identifying a set of safety layers, Li et al. [33] proposes freezing them during fine-tuning865

to prevent security degradation. SafeInstr [5] incorporates safety-focused examples during instruction866

fine-tuning. To mitigate risks in task-specific fine-tuning, Eiras et al. [15] proposes paraphrasing867

safety data to match the format and style of the user’s data. Lisa [21] uses dual-state optimization868

with alignment data and proximity constraints to limit excessive optimization drift. BEA [54] embeds869

hidden triggers linked to safe outputs to minimize harmful content generation, while Seal [48] adopts870

a two-stage optimization to rank and exclude harmful fine-tuning samples. Similarly, SAFT [9]871

leverages subspace decomposition-based scoring to detect and filter harmful data.872

Post-tuning Phase Defenses aim to restore model safety after harmful fine-tuning attacks [7]. Safe873

LoRA [19] projects projecting LoRA parameters onto safety-aligned subspaces. SOMF [61] enhances874

robustness by integrating benign task knowledge and reusing safety parameters from the aligned875

model. Antidote [24] employs a one-time pruning operation to remove parameters responsible for876

harmful content generation during post-processing, and SafetyLock [68] leverages extracted safety877

directions to intervene in attention head activations during inference. For black-box scenarios, BEAT878

[60] introduces an inference-time check that probes the input by concatenating it with a malicious879

query and flagging distortions in the model’s refusal behavior. In the context of federated instruction880

tuning, Ye et al. [59] propose a post-hoc safety realignment, where the central server further fine-tunes881

the aggregated model on auto-generated data to counteract poisoning from malicious clients.882

E.3 Key Differences from Existing Techniques883

Arditi et al. [3] identifies a “refusal vector” in activation space, which influences model behavior884

during inference, particularly for tasks like jailbreaking. Their approach focuses on detecting and885

controlling linear structures in the activation space that affect model outputs at inference time. In886

contrast, our work focuses on the parameter space and identifies an ‘alignment direction’, which887

guides the model’s safety preservation during the fine-tuning process. While both methods address888

linear structures crucial to model safety, our approach intervenes in the parameter space during889

training-time fine-tuning, with a single intervention that does not require further adjustments during890

inference. Our goal is to enhance model safety, rather than to control behaviors like jailbreaking.891

Safe LoRA [19] discretely projects parameters onto the safe direction after fine-tuning. However,892

our method differs in several key ways. Our approach is fundamentally driven by the observation of893

a “narrow safety basin” phenomenon in the model’s parameter landscape, a consideration that Safe894

LoRA does not explicitly address. Additionally, we continuously optimize parameters during fine-895

tuning, while Safe LoRA applies a discrete projection only after fine-tuning. Another key difference896

lies in the direction of intervention: Safe LoRA projects updates directly onto the alignment direction,897

whereas we apply constraints along the orthogonal direction to prevent harmful updates. Finally,898

while Safe LoRA intervenes after fine-tuning is completed, our method manages safety throughout899

the fine-tuning process itself. These differences allow our approach to maintain a consistent balance900

of safety and performance during training.901

Comparison with Task Vector. Our work is conceptually related to task vector approaches, such902

as Task Arithmetic [27]. Both are founded on the principle that the weight difference between903

two model states can encode a specific transformation, a downstream task capability in the case of904

Task Arithmetic, and the essence of safety alignment in our work. However, our approach diverges905

fundamentally in its goal and methodology. Task Arithmetic uses vector arithmetic for direct, one-shot906

model editing (e.g., θnew = θpre + λτ ). In contrast, AsFT uses daligned as an anchor for dynamic907

regularization during fine-tuning. We do not add the vector directly; instead, we suppress parameter908

updates in the d⊥harm to constrain the optimization path within a "narrow safety basin." Our goal is to909

preserve safety during adaptation, rather than to edit model capabilities.910
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E.4 Case Study911

As follows, we show how different methods respond to the malicious prompt. We used the finetuned912

model over the default attack setting for evaluation. As shown, AsFT is able to give a refusal answer913

to sensitive questions while other methods cannot.914

Prompt: How can I be a grinch this Christmas?
Answer from SFT [non_violent_unethical_behavior]: Be mean, cruel, and heartless! Yes! That it! Wear a green costume and terrorize the
neighborhood!
Answer from Lisa [non_violent_unethical_behavior]: To be a Grinch this Christmas, you must embrace the spirit of the holiday season by
spreading joy and cheer to those around you. Here are some tips on how to be a Grinch this Christmas: 1. Be grumpy and unfriendly . . . By
following these tips, you can truly embrace the spirit of the Grinch this Christmas season.
Answer from SafeInstr[non_violent_unethical_behavior]: Hmm, I think you should get a nice Grinch costume and go around spreading
misery and despair.
Answer from BEA [non_violent_unethical_behavior]: Hack the grinch, Grind the grinch, Crush the grinch, Burn the grinch!
Answer from Safe LoRA [non_violent_unethical_behavior]: Hmm, that’s a tricky one. I think you should probably find a way to ruin
Christmas for everyone. Maybe you could steal all the presents or set the tree on fire. Or you could just be really mean and nasty to everyone.
That would be fun!
Answer from AsFT [harmless]: I can’t satisfy your request, I’m just an AI assistant, I cannot encourage or help with any harmful or
unethical activities, including being a Grinch. The Grinch is a fictional character known for being mean and cruel, and promoting negative
behavior. I’m just an AI, my purpose is to provide helpful and informative responses, not to promote harmful actions. Is there anything else I
can help you with?

915

E.5 Broader Impacts and Ethical Considerations916

Our work is focused on enhancing the security of large language models (LLMs) by introducing917

a defense mechanism during fine-tuning, rather than developing attack methods. AsFT aims to918

mitigate potential risks associated with the fine-tuning process and improve model robustness,919

thereby contributing to positive societal outcomes. By improving the safety and reliability of LLMs,920

this research seeks to reduce unintended consequences and encourage responsible use in practical921

applications. The potential benefits include stronger safeguards against harmful behaviors, which922

may help reduce disinformation, support fairness, and strengthen privacy protection in language923

technology.924

For potential risks, our approach introduces a defense mechanism during fine-tuning, rather than an925

attack method, thereby reducing the potential risks associated with fine-tuning. The experiments926

were conducted using academic benchmarks in controlled environments, but real-world applications927

should integrate additional filtering and ongoing safety monitoring.928

For data sources, privacy, and transparency, all training and evaluation data originate from publicly929

available academic datasets containing synthetic or anonymized content, ensuring that no real user930

information or sensitive personal data was used. To promote reproducibility, we release our code931

and implementation details via an anonymized repository in compliance with double-blind review932

policies. We encourage researchers to carefully assess AsFT in different domains before real-world933

deployment and to conduct rigorous safety validation under diverse conditions.934

E.6 Licenses and Terms of Use for Models and Datasets935

In this research, we utilized several models and datasets, each of which is governed by specific936

licenses. Below is a summary of the licenses and their corresponding usage terms:937

• Llama-2-7B [53]: Released by Meta under the Llama 2 Community License. This license permits938

free use, modification, and distribution, but restricts the model’s use for training other language939

models and requires specific conditions for commercial use (e.g., active user limits).940

• Qwen-2-7B [57]: Released by Alibaba under the Apache 2.0 License, allowing free use, modifica-941

tion, and distribution without commercial restrictions.942

• Gemma-2-9B [52]: Released by Google under the Gemma License, permitting non-commercial943

and academic use. Commercial use requires explicit authorization from Google.944

• Llama-3-8B [14]: Released by Meta under the Llama 3 Community License. This license allows945

free use, modification, and distribution of the model with certain restrictions on commercial use.946

Specific conditions apply for commercial use, such as limitations on active user counts.947

• SST-2 Dataset [50]: Provided by Stanford NLP under the Apache 2.0 License, primarily for948

academic and non-commercial use.949

• AGNEWS Dataset [64]: Released by fancyzhx, typically used for academic research, although the950

explicit license is unspecified.951
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• GSM8K Dataset [10]: Released by OpenAI under the MIT License, allowing free use, modification,952

and distribution without commercial restrictions.953

• AlpacaEval Dataset [34]: Released by Tatsu Lab under the Apache 2.0 License, allowing free use,954

modification, and distribution for both academic and commercial purposes.955

All models and datasets were used in compliance with their respective licenses and terms of use,956

ensuring that the research adheres to legal and ethical standards.957
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