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ABSTRACT

Large language models (LLMs) have proven successful on many machine learn-
ing tasks, including those that do not involve language generation. This includes
solving regression problems, where the targets are real-numbers. One common
approach is to fine-tune the LLM based on the log-perplexity loss, and use au-
toregressive sampling at the inference time. Another approach relies on adding
a separate predictive head, and fine-tuning it with a suitable loss. While each
approach has had success, there has not been a study on the principled ways of
using decoder LLMs for regression. In this work, we compare different prior works
under a unified view, and introduce regression-aware fine-tuning (RAFT), a novel
approach based on the Bayes-optimal decision rule. We demonstrate how RAFT
improves over established baselines on several benchmarks and model families.

1 INTRODUCTION

Decoder-based large language models (LLMs) (OpenAl et al., 2023; Anil et al., 2023; Touvron
et al., 2023; Gemini Team et al., 2024) have set new benchmarks in challenging generative tasks
(e.g., summarization, open-ended dialogue). Such models’ versatility has further prompted their
exploration for classic non-generative tasks (e.g., classification, regression, ranking) (Liu & Low,
2023; Fernandes et al., 2023; Qin et al., 2023; Vacareanu et al., 2024b; Yang et al., 2023; Duki¢
& Snajder, 2024; Lukasik et al., 2024; Vacareanu et al., 2024a), once the purview of encoder-only
models such as BERT (Devlin et al., 2019). Such exploration is expected to increase given the
sustained efforts towards building ever-larger decoder-based LLMs, with limited parallels in scaling
encoder-based models.

Our interest is in natural language regression, where the goal is to predict a real-valued target given a
textual input. This covers important practical applications such as semantic similarity prediction (Cer
et al., 2017), quality estimation (Kocmi & Federmann, 2023; Jain et al., 2023; Fernandes et al., 2023),
and sentiment analysis (Zhang et al., 2024). Given the discordance between natural language and
numbers, one may ask: how do we best apply decoder-based LLMs for natural language regression?
Existing works have followed two broad approaches. Autoregressive regression approaches rely on
standard LLM decoding to directly predict as text the numerical targets (e.g., predict a number 12.34
by iteratively predicting tokens: *1°, ’2”,’.’, *3”, ’4”) (Gruver et al., 2023; Liu & Low, 2023;
Yang et al., 2023; Lukasik et al., 2024), or corresponding discretised categories (e.g., predict one
of { "very bad"”, "bad", "ok", "good", "very good"” }) (Fernandes et al., 2023). Predictive head
approaches, inspired from encoder-based models, learn a separate head on encoded inputs, thus
side-stepping the autoregressive mechanism inherent to decoder-based LLMs. Common choices of
encoding include mean pooling of the output embeddings (Zhuang et al., 2023), and the final-token
logit for a special token (e.g., <extra_id_0> in TS) (Fernandes et al., 2023).

Both autoregressive and predictive head approaches have proven successful for natural language
regression tasks. However, there has been (to our knowledge) no systematic comparison between
these methods; further, each of them has a conceptual shortcoming. The autoregressive regression
approach does not exploit the numerical nature of the regression targets, and thus does not consider
the fact that for a target of 1, predicting 11 is worse than predicting 1.1. On the other hand, the
predictive head approach deviates from the pre-training objective typically used in decoder-based
LLMs, viz. next-token prediction (Radford et al., 2018), and thus may not use the model in an optimal
manner. This prompts us to ask: how can we respect both the LLM pre-training objective and the
numerical nature of targets for natural language regression tasks?
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Approach Autoregressive  Fine-tuning Inference References

Zero-shot decoding v None standard decoding Kocmi & Federmann (2023)
Fine-tuning and decoding v/ log-perplexity — standard decoding Fernandes et al. (2023)
Zero-shot MALI v None metric-aware decoding  Lukasik et al. (2024)
Fine-tuning and MALI v log-perplexity —metric-aware decoding  this work

Predictive head X target metric point estimate Fernandes et al. (2023)
RAFT v target metric metric-aware decoding  this work

Table 1: Summary of the approaches to applying decoder-based LLMs to natural language regression
tasks. There are previous works relying either on using the model autoregressively (i.e., analogously
to how it was pre-trained) or as an encoder (i.e., an output is constructed based on embeddings or
logits obtained for the inputs). Different training and inference approaches have been considered for
both autoregressive and encoder based approaches.

In this work, we introduce regression-aware fine-tuning (RAFT), a novel approach to autoregressive
regression which makes use of the numerical nature of the targets. We prove theoretical limitations of
established alternative approaches to autoregressive-based regression, and prove that RAFT mitigates
them. We systematically compare RAFT against autoregressive and predictive head baselines, and
consider several ablations for understanding what design decisions are crucial for making a decoder-
based LLM work under different settings. See Table 1 for an overview of both the previous works
and the approach introduced in this work. Overall, our contributions are as follows:

(i) We propose regression-aware fine-tuning (RAFT), a novel approach to autoregressive regression,
and prove that it mitigates the theoretical limitations of prior works (Section 3).

(ii)) We present a unified view of decoder-based LLM regression approaches, capturing both the
autoregressive and the prediction head approaches, and explicating their limitations (Section 4).

(iii) We systematically compare autoregressive regression baselines, predictive head and RAFT ap-
proaches across mulitple datasets and LLMs. We also conduct a series of extensive experiments
for pinpointing the sources of differences in the performance between different approaches,
explicating what design choices make RAFT so effective (Section 5).

2 BACKGROUND

We first introduce notation and review previous works on applying decoder-based LLMs to regression.

2.1 NOTATION

For a finite vocabulary V of tokens (e.g., words in English), let X C V* be a set of inputs comprising
strings of tokens, and Y C R be a set of real-valued targets. We assume that each y € Y has a unique
string representation str(y) € V*; for example, the integer 1 has the string encoding "1". Let P
denote a ground-truth distribution over X x Y, with the decomposition P(z,y) = P(z) - P(y | ).
The natural language regression problem involves learning a predictor j: X — R that minimises the
mean squared error over (input, target) pairs drawn from P:

L(§) = E(wyo)~p [(v° — 9(2))?] .

Note that the mean squared error is a canonical choice in regression (Fernandes et al., 2023). The
Bayes-optimal predictor minimizing the above is §(x) = Ey« p(.|2)[y"].

We seek to employ large language models (LLMs) for such regression tasks. An LLM specifies
a distribution p over strings in V*. Given an input = € X, let p(- | =) denote the corresponding
conditional distribution over possible continuations. Note that it may be possible for p(z | ) > 0
where z € V* does not have a numerical representation; we discuss this issue more in Section 2.2.

LLM:s are typically pre-trained on large corpora via self-supervised objectives (Radford et al., 2018),
and can perform few-shot or in-context learning given suitably crafted prompts (Brown et al., 2020).
For example, if the goal is to predict the probability that a user will enjoy a movie titled “Cure”, we
may construct an input x = “Hereditary: @.7 | Ringu: ©.9 | Cure: ”, and probe the LLM’s
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estimate of plausible continuations via p(- | ). We next discuss inference (or decoding) procedures
for deriving a predictor ¢ given a pre-trained LLM.

2.2  STANDARD DECODING FOR REGRESSION

Standard decoding involves predicting numerical targets in a generative manner, by performing
autoregressive decoding to draw a sample from the distribution p(- | z):

Jar(x) = float(z)

1
L) W

Here, z € V* is generated autoregressively on a token-by-token basis. Different algorithms may be
used for this generation, e.g., greedy decoding and temperature sampling (Naseh et al., 2023). In
many cases, such algorithms are seeking to approximate the mode of the distribution:

Umode () := arg max p(y | x). 2)
yeY

Further, float(z) denotes an operator that converts a given string z (e.g., “12.34”) to a corresponding
numeric value (e.g., 12.34); if 2z does not have a numeric representation (e.g., “banana”), then we
assume that a suitable default value is returned. Unless otherwise stated, we assume float(z) = 0.0
for z ¢ Y. As an alternative, one may choose to restrict the output space to numerical targets, e.g., by
employing a form of constrained decoding (Geng et al., 2023). However, in practice, the targets from
high-quality LLMs tend to be numerical even under zero-shot settings (Lukasik et al., 2024).

2.3 MALI: METRIC-AWARE LLM INFERENCE FOR REGRESSION

Recently, Lukasik et al. (2024) pointed out a limitation of decoding the most likely target when
employing autoregressive models for regression. Decoding of the most likely targets can be shown
to minimize the 0-1 loss ¢(y, §) = 1(y # ¢), and may not be well aligned with regression metrics
such as squared loss. As a remedy, instead of autoregressive decoding per Equation 1, Lukasik et al.
(2024) proposed the MALI method, which given a loss ¢ and model prediction p(- | x) estimates the
Bayes-optimal output minimizing the expected loss:

QMALI (I) = arg I]Ein Epr(vIw) [é(float(y)v U)] y 3
ve

where float(-) is as per the previous section. For the squared loss /(y, ) = (y — )2, the optimal
decision rule can be shown to take the following closed-form solution:

IMALI(Z) = Eyp(.|2) [Float(y)]. (4)

Since p(- | x) is a distribution over all possible strings, it is typically intractable to compute the above
expectation exactly; this remains true even if we restrict attention to those strings corresponding to a
valid numerical value (of which there are infinitely many). In practice, Equation 4 can be estimated
either via sampling a finite number of y values, or via scoring of targets. In the latter, suppose we have
some restricted target grid Ygria C Y. Then, the MALI predictor is averaged over Yg.iq, yielding:

IMALI(%; Ygria) = Z p(str(y) | x) - y. )

YEYgrid

Note that Zye‘agrid p(str(y) | ) # 1 is possible, so the above is technically not an expectation;
however, in practice, high-quality LLMs tend to concentrate most mass on numerical targets.

There are several choices of Yg,iq available to the practitioner. For discrete targets Y of moderate size,
one may simply choose Ygriq = Y. For bounded Y, one choice is equally spaced targets covering the
range of Y, e.g. integers or fixed-precision numbers (e.g. 2 decimal points) (Lukasik et al., 2024).

The above approaches operate on a pre-trained LLM via few-shot prompting. However, it has been
consistently observed that direct fine-tuning of LLMs on the task of interest can be beneficial (Liu
et al., 2022). We now consider how to perform LLM fine-tuning for regression tasks.
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3 REGRESSION-AWARE LLM FINE-TUNING

We now develop a theoretically grounded approach to regression with decoder-based LLMs in the
fine-tuning setting. We begin by reviewing the standard fine-tuning setup, and explicate its limitations.
We give all proofs in Appendix B.

3.1 STANDARD FINE-TUNING

Fine-tuning seeks to adapt an LLM to the target distribution P by minimizing

for a suitable loss function £: Y x Ay« — R, where Ag denotes the set of distributions over a set S.
Given a sample S € (X x Y)™V of N (input, target) pairs drawn from P, the empirical loss is

Llp) =+ >yt (- | @) @)

(z,y*)€S

A standard choice of £ is the log-loss (also referred to as log-perplexity):

y*,p(- | 2)) = —logp(str(y”) | x), ®)

recalling that str(y*) denotes the string representation of a numeric target y* € R. More generally,
one may use categorical descriptions of the target after discretising to some finite grid Ygria C Y5
e.g., { "very bad”, "bad", "ok", "good"”, "very good" } (Fernandes et al., 2023).

3.2 LIMITATIONS OF STANDARD FINE-TUNING AND STANDARD DECODING

A natural baseline is to employ log-perplexity based fine-tuning by minimizing Equation 7, and to
then apply standard decoding (see Equation 2). Since the log-loss is strictly proper, minimizing
Equation 7 recovers the Bayes distribution P(- | x) in the population limit (Gneiting & Raftery,
2007). In practice, however, the fine-tuned model distribution p(- | ) may deviate from P(- | ). The
following lemma shows that even small deviations from P can cause the predictor to incur a high
squared error compared to the Bayes-optimal predictor.

Lemma 1. Assume |Y| > 2 and 0 € Y, with N = max(Y). For any € > 0, there exists P, p such
o 2 2 )2
that: B, [[|P( | 2) — p(- | 2)]l,] < e and E, {(Eymp(,‘m)[y | = fmode () ] > (M) (1492

Thus, using the log-perplexity fine-tuning with standard decoding is not well-aligned with the eventual
goal of approximating E« p(.|2)[y"].

3.3 LIMITATIONS OF STANDARD FINE-TUNING AND MALI DECODING

Given that MALI performs well in few-shot regression tasks, a natural means of further improving its
performance is to employ log-perplexity based fine-tuning by minimizing Equation 7, and to then
apply the MALI decoding (see Equation 5).

However, as before, we can show that the predictor can significantly deviate from the optimal
prediction.

Lemma 2. Assume |Y| > 2 and 0 € Y, with N = max(Y). For any € > 0, there exists P, p such

that: B, [|P(- | 2) = p(- | 2)],] < & and By [ (Bye o poy[y7] — daani(@)’] = (97,

Thus again, using the log-perplexity fine-tuning with MALI may not be well-aligned with the
eventual goal of approximating E, - p(.|z)[y*]. Intuitively, log-perplexity fine-tuning treats all
“wrong” predictions the same, as it is unaware of the difference in the magnitude of the numerical
values represented by the tokens. For example, assuming that numbers 100 and 1000 are represented
with a single token, placing too much mass on the token representing 100 is penalized similarly as
placing too much mass on the token 1000.

One solution to the above issue is to directly employ the MALI predictor in the fine-tuning process.
This requires going beyond the log-loss in Equation 8, as we now detail.
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3.4 RAFT: REGRESSION-AWARE FINE-TUNING

To overcome the drawbacks of using MALI with traditional fine-tuning, we propose a novel regression-
aware objective that seeks to directly minimize the squared loss on the MALI predictor:

Definition 1. Define the regression-aware fine-tuning (RAFT) loss as follows,

trart(y*,p(- | 2) = (¥ — Eynp(ja) [float(y)])z. )

Equally, this uses the MALI predictor §yari(x) to construct a numeric value from the LLM, and
measures the square loss against the target y*. Given a finite grid Y414 C Y and fine-tuning set S, the
empirical loss corresponding to Equation 9 is:

It s = v 3 (v = 3 plstrw)|a) y )| (10)

(z,y*)es y€Ygria
Note that computing this loss only requires scoring each y € Yqiq under the model; we do not need
to perform any explicit sampling or decoding during training.
Compared to standard fine-tuning with MALI decoding, note here that we attempt to avoid the
issue in Lemma 2 by directly minimizing E,, {(Ey*wp(.‘z) [v*] — gmari(z)) } . Surprisingly, despite
computing §yar1(z) over the restricted target space Y grid> under mild conditions the minimizer of
Equation 9 exactly mimics the Bayes-optimal predictor over the full space Y.
Lemma 3. Suppose §y C R, and arg min, cy € Ygria and arg max, cy € Ygria- Let p*(- | ) be the
minimizer of the RAFT loss from definition 1 over all distributions p(- | ). Then the MALI predictor
Iman(@; Ygria) = 2o yey,., P (str(y) | ) - y constructed from p* (- | x) satisfies:

IMALI(T; Ygria) = Ey=op(|2) [¥7]-

The intuition behind this result is that any numerical target in Y can be expressed by a convex
combination of the smallest and largest numbers in Y, and can thus be realized by the MALI predictor.

4 A UNIFIED VIEW OF LLM-BASED REGRESSION APPROACHES

We next compare and contrast RAFT and the predictive head approaches in a unified view. In Table 2,
we present a summary of different choices for the predictors considered in prior and the present work.

4.1 PREDICTIVE HEAD APPROACHES TO REGRESSION

Predictive head approaches formulate a predictor function () by utilizing activations or embeddings
from the forward pass of LLM. Abstractly, such approaches first extract a suitable input representation
®(x) € R, which is then fed into a regressor s: R? — R. Canonically, the regressor is simply a
linear model s(®(x)) = b+ w ' ®(x) for learnable w € RY,b € R, but one may also consider an
MLP with a single real-valued output.

Various choices for ®(z) have been considered in previous works. To describe these, we need some
additional notation. Given a string x € V* of length L, a Transformer-based language model (Vaswani
et al., 2017) first constructs an input embedding €;,(z) € RP*F, via a matrix E;, € RP*L
of token embeddings: concretely, €, () = Eieon(x), where eon(z) € RV*E is the one-hot
embedding of each token in z. Next, this input embedding is passed through a stack of attention
and MLP layers, to produce the output embedding €, () € RP*L. One further projects this to
the vocabulary space to produce output logits foui (- | #) € RV*E, where foui(- | ) = EJ i €out ().
Finally, one transforms these to a distribution over possible tokens via the softmax operator, yielding
Pout (- | ©) = softmax(foue(- | 2)) € [0,1]V*L. For certain models (e.g., Gemma), the input and
output vocabulary embedding matrices are tied, i.e., Fi, = Eout-

Given the above, one may extract an input representation through multiple means, most commonly
pooling or selection of the output token embeddings, output logits, or output probabilities. Common
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Category Approach Predictor function j(z) Fine-tuning loss
. Standard decoding zero-shot (Kocmi & Federmann, 2023) argmax,cy p(y | ) N/A
Autoregressive . Y ¥
(prior works) MALI zero-shot (Lukasik et al., 2024) Zy’ey y - p(y|x) N/A
Standard fine-tuning and standard decoding (Fernandes et al., 2023)  arg max,cy p(y | z) —logp(y* | z)
Autoregressive . . ’ ’ .
(this work) MALI standard fine-tuning Zylgy y - p(y'lz) —logp(y*|z)
RAFT General RAFT Zy/ey Y 'P(LU/‘Tf) (&(1) - 1/*)2
(this work) Single-digit RAFT Dy €Yusge ¥ Pout (T)yr.1 (G(@) —y*)?
Predictive head  Final-token logit (Fernandes et al., 2023) b+ fout(: | 2o (9(z) — y*)z
(prior works) Pooled output embeddings (Zhuang et al., 2023) b+ w' pool(eous(z)) (9(x) — y*)2
o MLP on the final-token logits b+ MLP((Eout) Teout (2)..n,)  (9(z) — y*)?
Predictive head Probabili Lo b T § . 2
(this work) robability-vector projection +w ' pout(T):,L (9(x) —y )2
Learnable regression-aware training 2 yey Wy Pout(T)y 1 (9(z) —y*)

Table 2: Different approaches for applying decoder-based LLMs to regression. Here, p(- | ) denotes
a distribution over possible outputs given an input string z, and §(z) € R a predictor given by a
predictive head approach. b and w are learnable parameters, v* € 'V is a fixed token, pool is a pooling
operator (such as taking a per-dimension average), and L is the length of input x, Y4;4:¢s denotes all
digits covering the range of targets (unless otherwise stated, *1’-’5"). The first 4 rows show the
autoregressive baselines: standard decoding (Section 2.2), MALI zero-shot (Section 2.3), standard
fine-tuning and decoding (Section 3.1), MALI with standard fine-tuning (Section 3.3). The next 2
rows show RAFT: the general autoregressive form (Y = Y,,iq for general output spaces), and the
single digit version (e.g. Y = {1,2,3,4,5}). The following 2 rows present the prior works from
Fernandes et al. (2023); Zhuang et al. (2023). The last 3 rows present new predictive head approaches
that attempt to mimic the behavior of RAFT.

pooling strategies include mean-pooling, and passing through an attention operator; common selection
strategies include picking the value corresponding to the final token. For example, we may consider
the final-token logit activation for a special token v, € V (Fernandes et al., 2023; Zhuang et al.,
2023), or mean-pooling the output token embeddings (Zhuang et al., 2023).

Given a suitable predictor, one may directly optimize the mean squared error during fine-tuning; i.e.,
given a fine-tuning set S, we minimize

)= 3 (" — i)
(z,y*)es

Compared to autoregressive baselines, an important distinction is that that no autoregressive decoding
is conducted at inference.

4.2 RAFT VERSUS PREDICTIVE HEAD APPROACHES

Our discussion of RAFT highlighted its close relation to autoregressive MALI decoding, which
appears rather different to predictive head approaches. However, in the case of a single-digit grid
Yeria (Wherein each element corresponds to a single token in V), the predictor function formulations
for RAFT bears similarities to the predictive head approaches. Note that if ¢y € Ygriq corresponds to
a single token, by definition p(str(y) | ) = pout (- | %)str(y),z- Then, the MALI predictor becomes

IMALI(T; Ygria) = Z y-p(str(y) [z) = Z Y Pout ( | T)str(y),L-
YE€Ygrid YE€Ygrid

We may compare this with the final-token logit activation method from Table 2. Both take the
following form for an activation ¥ and weight vector w € RV:

@) =b+w" W (four(- | 2).1).

Importantly, RAFT predictor at initialization corresponds to MALI, and thus, forms a strong pre-
dictor for a zero-shot inference with LLMs (Lukasik et al., 2024). Most alternative predictive head
approaches will incur a high error at initialization due to deviating from the next token prediction task.
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Therefore, RAFT can be seen as a predictive head approach with strong performance at initialization,
potentially making optimization easier.

Contrasting the RAFT and the final-token logit method, we observe the following differences:

* Activation: for single-digit RAFT, U is the softmax activation that converts fout(- | =) to the
probability vector poyt (- | «). For the final-token logit, ¥ is the identity activation.

» Weight vector: for the final-token logit, w is a one-hot vector with 1 corresponding to the special
token position. For single-digit RAFT, w, = float(v) for each v € V; note that, as a result,
positions corresponding to non-digits have weight 0.

In light of the close similarities between RAFT and the final-token logit approach, it is prudent to
carefully analyze these differences and identify whether any of these choices play an important role
in RAFT’s performance. Therefore, we introduce the following new predictive head variants:

* MLP on final-token logits: this is a variant of the final-token logit method, wherein a 2-layer MLP
with a non-linear activation (sigmoid) is employed on the entire final-token logit vector, rather
than selecting the logit for a single special token:

9(x) = b+ MLP(fou(- | 2):.)-

¢ Learnable-RAFT: this is a variant of RAFT, wherein the weights over the output model probabili-
ties are learned, rather than being fixed to the vector w,, = float(v):

:IQ(:L’) = Z Wyt 'pout(w)str(y/),L
y'€eY

The learnable-RAFT variant adds more flexibility to the predictor function ¢ over the vanilla RAFT
method. However, as with other predictive head methods, it deviates from the next-token prediction
pre-training task. Which of these two factors — predictor flexibility, and alignment to the pre-training
task — is the most important? To answer this question, we compare learnable-RAFT against RAFT,
and also experiment with fine-tuning from a randomly initialized (as opposed to a pre-trained) model.

5 CONTRASTING THE REGRESSION METHODS WITH AUTOREGRESSIVE LLMS

We now present experiments and ablations comparing the autoregressive regression and predictive
head approaches on natural language regression datasets. In summary, we make the following main
empirical findings: (i) RAFT outperforms all autoregressive regression and predictive head baselines
across datasets and models; (ii) Ablations indicate the importance of aligning fine-tuning to the
pre-training loss; (iii) RAFT tends to work well when the grid corresponds to digit tokens.

5.1 EXPERIMENT SETTINGS

Datasets. We use the following natural language regression datasets:

(i) Semantic Textual Similarity Benchmark (STSB) (Cer et al., 2017), which comprises of sentence
pairs human-annotated with a similarity score from 0 to 5; To measure the impact of varying the
fine-tuning set size, we apart from using the full train set, we also consider using only the first
1’000 examples for training (STSB 1k).

(i) US Amazon reviews, where we aim to predict the 5-star rating for a product review (Ni et al.,
2019);. We consider a few categories from the Amazon reviews datasets, each forming a
separate dataset: Wireless, Music, Personal products. We use 1’500 examples for the test set
(after Lukasik et al. (2024)), 1’500 for validation and 10’000 examples for training.

(iii)) MovieLens-1M, where we construct a movie rating prediction task across users, follow the
methodology from (Luo et al., 2024) (see Appendix E.5 for the results).

We summarize the dataset statistics and the prompts in Table 6 and Table 7 (Appendix).

Models. We experiment with Gemma-2 (Team et al., 2024) and PaLM-2 (Anil et al., 2023) instruction-
tuned model families of different sizes. We select the best learning rate (from {10~#,1075}) and
training step (up to a maximum of 100K steps) based on held-out validation set performance. Where
standard deviations are reported, fine-tuning is performed 3 times.
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Dataset Model size Zero-shot Zero-shot Standard fine-tuning Standard fine-tuning Predictive head RAFT
standard decoding MALI standard decoding MALI

Wireless 2B 0.88 1.42 0.70£0.01 0.671+0.01 0.51+0.01 0.47+0.01
9B 0.87 1.40 0.7840.05 0.86+0.03 0.46+0.00 0.45+0.00

Personal care 2B 0.98 1.75 0.77£0.01 0.74+£0.01 0.52+0.02 0.49+0.00
9B 0.95 1.73 0.73+0.14 0.59 £0.01 0.48+0.01 0.47+0.01

Music 2B 1.28 2.46 1.16£0.11 0.88+0.12 0.524+0.00 0.50+0.00
9B 1.28 2.46 0.83+0.35 0.61+0.02 0.50+0.00 0.47+0.00

STSB 1k 2B 1.10 0.94 0.61+0.01 0.65+0.02 0.58+0.01 0.58+0.00
9B 1.31 0.99 0.57+0.01 0.62+0.05 0.57+0.01 0.56+0.01

STSB 2B 1.10 0.94 0.5940.01 0.61£0.02 0.54+0.00 0.54+0.01
9B 1.31 0.99 0.58+0.00 0.58+0.02 0.524+0.00 0.51+£0.01

Table 3: RMSE across datasets, methods, and Gemma-2 models of varying sizes. Fine-tuning
methods report mean =+ std dev from model retraining. See Table 9 (Appendix) for Gemma-2 27B.

Methods. We compare the following methods: (1) autoregressive baselines (Section 2.2), MALI zero-
shot (Section 2.3), MALI with log-perplexity fine-tuning (Section 3.3); (2) predictive head approaches
from Fernandes et al. (2023); Zhuang et al. (2023); (3) the new RAFT method (Section 3.4); (4) new
predictive head approaches that attempt to mimic the behavior of RAFT (Section 4.2). In zero-shot
standard decoding, we use greedy decoding; in zero-shot MALI, we use the scoring variant (Lukasik
et al., 2024) over the default grid from RAFT. We also run ablations with replacing causal attention
masking with bi-directional attention masking, following previous works on classification with
decoder-based LLMs (Duki¢ & Snajder, 2024; Qorib et al., 2024).

Implementation of the RAFT objective. An important practical consideration is how to choose the
grid Ygyiq. Targets from both Amazon and STSB dataset families belong to [0, 5]. Unless otherwise
stated, we choose the grid Ygiqa = { ’1’, 72’, 737, ’4’, ’5’ }. For Amazon reviews datasets,
Yeria = Y, while for STSB, Ygria C Y (as the targets take floating point values). Recall that Lemma 3
shows that RAFT can represent floating point targets even under such a choice for Yg,i4. Nonetheless,
we empirically verify whether the choice of Y4iq impacts the results.

5.2 RAFT LEADS TO BETTER AUTOREGRESSIVE REGRESSION

We compare different autoregressive and prediction head approaches across across Gemma-2 models
of varying sizes in Table 3. We report additional results from PaLM-2 models on STSB in Table 10
(Appendix) to verify the findings across an additional model family. We make several observations.

First, we verify the importance of both (1) the use of an appropriate decision rule at inference time
(greedy versus metric-aware inference), and (2) the value of fine-tuning over zero-shot inference.
Indeed, we find that the zero-shot greedy decoding, MALI (see Section 2.3), autoregressive fine-
tuning with greedy decoding (see Section 3.3) and autoregressive fine-tuning with MALI inference
(see Section 3.4) work increasingly better.

Second, we find that the predictive head approach outperforms the autoregressive baselines, including
those that perform autoregressive fine-tuning. This corroborates Lemma 2, which pointed at the
limitations of autoregressive fine-tuning due to it being misaligned with the squared error.

Finally, we find RAFT to outperform the predictive head and the autoregressive approaches by a large
margin across almost all settings. RAFT outperforming the autoregressive approaches corroborates
the posited importance of aligning the fine-tuning loss in regression tasks to a regression loss. RAFT
outperforming the predictive head approach corroborates the posited importance of not deviating
from the autoregressive setting, which aligns with the next-token prediction pre-training task.

We next investigate different design choices to further pinpoint the reasons for RAFT’s performance.
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Approach Gemma-22B Gemma-2 9B
Standard fine-tuning 0.83 0.82

- pre-training doesn’tlearn  doesn’t learn

+ bi-directional masking doesn’t learn  doesn’t learn
Special-token logit (Fernandes et al., 2023) 0.51 0.46

- pre-training 0.94 0.94

+ bi-directional masking 0.50 0.46

+ 2-layer MLP 0.48 0.46
Pooled output embeddings (mean) (Zhuang et al., 2023)  0.50 0.47

+ bi-directional masking 0.49 0.48
Pooled output embeddings (min) 1.38 1.18
Pooled output embeddings (max) 1.32 1.13
RAFT 0.47 0.45

- pre-training 1.85 1.89

+ bi-directional masking 0.49 0.44
learnable-RAFT over all tokens 0.48 0.45
learnable-RAFT over digits ’1’-’5’ 0.47 0.45

Table 4: RMSE on Gemma-2 models on Amazon Wireless across predictive head and RAFT variants.

5.3  VARYING THE PREDICTIVE HEAD CHOICES IN THE UNIFIED VIEW

In Table 4, we report results from additional ablations considering different choices for the predictor
7, as well as other design choices pertaining to the model (i.e., the use of pre-training and attention
masking). We next discuss the key findings.

Role of pre-training. In order to shed light on the importance of aligning the method with the pre-
training task, we experiment with fine-tuning from randomly initialized model weights as opposed to
initializing with the pre-trained checkpoint. We find that autoregressive fine-tuning does not converge
to a reasonable result, while RAFT converges to a very poor predictor. Under this setting, predictive
head fares the best among the 3 methods. To further analyze the role of pre-training, we run additional
experiments on a synthetic regression dataset from Vacareanu et al. (2024a) (the Original #1 dataset)
and report results in Table 13 (Appendix). We corroborate the finding that RAFT improves over
predictive head when initialized from a pre-trained checkpoint, and not when the model weights are
initialized randomly. This finding supports the hypothesis that RAFT outperforms predictive head
due to better alignment with the pre-training checkpoint.

Predictive head non-linear variant. We experiment with two variants of learnable-RAFT: one
where the weight vector is learnt for all vocabulary entries, and the second, where only entries
corresponding to digits *1’-’5" are learnt, while other entries are fixed to 0. For both variants we
found it necessary to initialize from the solution corresponding to RAFT, as random initialization did
not lead to good training dynamics. Overall, we find both approaches to not improve over RAFT.
We also consider adding a non-linear function over the special-token logit in the form of a two-layer
MLP. This again does not lead to improvements over RAFT. Both results demonstrate that it may
be more important to align the fine-tuning to the pre-training loss, as opposed to only try make the
predictor more expressive.

Predictive head design choices. Lastly, we experiment with additional variants, including pooling
over the full sequence of token embeddings from the LLM, instead of taking the final token activation.
We find it to not lead to significantly better results than the special-token logit method. We also
find bi-directional masking of attention does not significantly affect the results of the predictive
head and RAFT, while expectedly making autoregressive fine-tuning untrainable (due to the model
being able to attend to the predicted target during training). Overall, none of the predictive head
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Dataset Model size ’17-’5? ’5? 17,79’ 4’ ,°5’ ’77,78,79
Wireless 2B 0.474+0.01 0.48+0.01 0.48£0.00 0.48+0.00 0.48+0.01
9B 0.454+0.01 0.45+0.01 0.47£0.02 0.4640.00 0.47+0.01
Personal care 2B 0.49+£0.00 0.49+0.00 0.49+0.02 0.49+0.00 0.49+£0.00
9B 0.47+0.01 0.48+0.01 0.48+0.02 0.47£0.00 0.47+£0.00
Music 2B 0.50+£0.00 0.50+0.00 0.50+0.01 0.50=+0.00 0.50+0.01
9B 0.46+0.01 0.47+0.00 0.48+0.02 0.47£0.00 0.48+0.00

Table 5: Comparison of RMSE (mean = std dev) across variants of RAFT with varying sizes of the
grid Ygria. The choice of *17-"5" outperforms the alternatives.

variants improves over the RAFT approaches, again supporting the hypothesis of the importance of
not deviating from the pre-training loss in fine-tuning.

5.4 RAFT ABLATIONS

Sensitivity to the grid size Following Lemma 3, gyar1(2) can express any numerical target in
the population limit, even with a coarse grid. Empirically, however, one might expect different grids
to affect the results. We now assess this point on the Amazon reviews Wireless dataset, comparing
the following choices for Ygpiq: (1) { 717,727,737, 74’,’5" } (the default choice for RAFT), (2) {
’5” } (viz. max(Y)), 3) { ’1’,’9’ } (the smallest and largest digit in V), (4) { *4’, ’5’ } (the two
largest digits in Y for all datasets), (5) { ’7’,’8”,’9’ } (the two largest digits in V).

In Table 5, we report the results for different choices for Ygriq. We find that, aligned with Lemma 3,
limiting the grid does not significantly impact the results. However, when comparing the number of
steps to convergence (see Table 12 in Appendix), we find that the default choice (1) in most cases
tends to converge faster to the best solution than other choices. One explanation for this finding is
the following. As shown by Lukasik et al. (2024), the choice of { *17,72’,73”, 74,5’ } yields
a reasonable result for the zero-shot MALI approach, and thus it provides a good starting point for
fine-tuning. Recall that the zero-shot MALI corresponds to the RAFT approach at step 0 of training,
since the predictors for each are equivalent.

Sensitivity to the grid token indices The next question we pose is about the importance of strictly
sticking to numeric tokens: what would happen if the RAFT predictor §gr arT(2) used non-numeric
tokens? To analyze this question, let us consider a more general form of the predictor:

JrarT-nn(z) = Y pltoken(y) | z) -y, (11)
YEYgrid

where token(y) € V denotes a token of choice corresponding to the numerical target y.

We keep Ygria as composed of the digits { *1’, ’2’, 737, ’4”, ’5’ }, and use the predictor in
Equation 11 with the following choices for tokens: (1) token for each digit becomes an alphabet token
starting with "a’ and ending with ’a’, (2) each token is a digit (i.e., 1’ becomes ’5’, ’2’ becomes
’4), (3) we only consider digit ’5’. As shown in Table 11 (Appendix), in most settings, the choice
of digits { *17,727,73”,74’,’5” }is as performant as any other choice. In certain settings, we even
find a large drop in performance (e.g., the choice of characters or months). However, by enlarge, we
find the results do not worsen signifanctly when different tokens are used.

6 DISCUSSION AND FUTURE WORK

We introduced regression-aware fine-tuning (RAFT), a new method for fine-tuning decoder-based
LLMs to predict numeric targets. We demonstrated empirically that RAFT can consistently out-
perform existing methods that perform standard log-perplexity fine-tuning, as well as methods that
construct separate predictive heads. An interesting direction for study would be applications of such
techniques to problems like time-series forecasting, as well as problems of ordinal regression.
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A RELATED WORKS

Generative models have been successfuly applied to number prediction, where a number is generated
token by token in an autoregressive manner. For example, Gruver et al. (2023) considered it in a
zero-shot learning setup for time series prediction, Vacareanu et al. (2024a) experimented with zero-
shot regression problems, and Liu & Low (2023); Yang et al. (2023) considered the autoregressive
finetuning over numerical targets applied to arithmetic tasks. The importance of tokenizing the
numerical targets into individual digits has been raised by previous works (Liu & Low, 2023; Yang
et al., 2023).

Encoder-based models (e.g., BERT) relying on the masked language modeling pretraining tasks have
been primarily employed to discriminative tasks (including classification and regression) (Devlin
et al., 2019). Decoder-based large language models (LLMs) (e.g., GPT, LLaMa) on the other hand,
mostly relying on the next-token prediction pretraining task, showed state of the art results across a
range of generative tasks. (OpenAl et al., 2023; Anil et al., 2023; Touvron et al., 2023; Gemini Team
et al., 2024)

While there is an on-going research regarding whether the encoder or decoder architecture is better
tailored to predictive tasks (Nityasya et al., 2023; Li et al., 2023; Duki¢ & Snajder, 2024; Qorib et al.,
2024), in this work we focus on the question of how do we best apply decoder models to predictive
tasks?
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B ADDITONAL THEORETICAL RESULTS

B.1 PROOF FOR LEMMA 1

Proof. Pick any € > 0. Recall that N = max(Y). Consider a distribution P such that, for a
given example z € X, P(0|z) = 42:2¢ P(N|z) = 1=0:5¢ and all other targets attain probability

0. Next, consider the model distribution: p(0|z) = =2 55, p(N|z) = 3¢, and all other tar-
gets attain probability 0. Then, we get: ||P(-|z) — |3[’)||1 = €, and (Jmode(2) — Eyenply*])® =

@) (+3)" 0

B.2 PROOF FOR LEMMA 2

Proof. Pick any € > 0. Recall that N = max 3 Consider a distribution P such that, for a given
example z € X, P(0]z) = 22, P(NV \a: 2¢_and all other targets attain probability 0. Next,

consider the model distrlbutlon p(0|x) = 1=0.5¢ 56, p(N |z) = 1£0:5¢and all other targets attain

. N2
probability 0. Then, we get: ||P(-|z) — p(:|z)||, = €, and (Eyp[y] — Ey*wp[y*})g =(£)". O

B.3 PROOF FOR LEMMA 3

Proof. For simplicity, we avoid explicitly stating conversions from float to string, and vice versa. For
any x, we wish to minimize:

Eynbcle) || D, pl) y—y*

YEYgrid

Equating the derivative w.r.t. p(y|z) to 0, we derive the first-order condition for optimality:

2-Eyep( o) S pWl) v =y ||y =0,Yy € Ygria.

Yy’ €Ygria

So the optimal solution is achieved when:

Z p(y/|.%') 'y/ = Ey*NIF’(|ac) [y*]

Y €Ygriad

Under the conditions in the lemma (the smallest and largest numbers in Y are present in Ygyiq),
there exists a probability distribution p*(y|2) such that janiari(#; Ygiia) = X yey, ., P* (Y [ 2) -y =
Ey«~p(.|z)[y*], thus satisfying the condition for optimality. O
B.4 GENERAL VERSION OF LEMMA 5
Lemma 4. The minimizer of the following objective:

By mpe (12) Bymp(c1o) (7 9)]
for a loss function £ : Y x Y — R, is a one-hot distribution over targets such that all probability

mass is on a target § € Y which minimizes Ey- <+ (.|2) [{(3",9)].
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Dataset Input prompt Target
range

STSB What is the sentence similarity between the following two sentences measured on a scale of 0 to 5: [0, 5]
{Sentence #1}, {Sentence #2}. The similarity measured on a scale of 0 to 5 with 0 being unrelated
and 5 being related is equal to

Amazon reviews What is the rating corresponding to the following review in the scale of 1 to 5, where 1 means negative, 1, 2, 3,
and 5 means positive? Only give a number from 1 to 5 with no text. Review: {Review}. Rating: 4,5

MovieLens-1M Instruction: Predict the rating of a target movie based on the user’s historical movie ratings. Rating 1, 2, 3,
History: {Rating history} Candidate Item: {Candidate Item}. Output: 4,5

Synthetic  (Original ~ The task is to provide your best estimate for *output score’ based on *input score’. Please provide that [0, 9]

#1 from (Vacareanu and only that, without any additional text. Input score: {Input score}. Output score:

et al., 2024a))

Table 6: Prompts used for different datasets and the corresponding target ranges. Curly braces denote

inputs specific to an input example. For Synthetic (Original #1 from (Vacareanu et al., 2024a)) we

normalize the targets to correspond to [0, 9].

Dataset Train size  Validation size test size
Wireless 10’000 1’500 1’500
Personal care 10°000 1’500 1’500
Music 10’000 1’500 1’500
STSB 4’887 863 1’500
STSB 1k 1’000 863 1’500
MovieLens-1M 797758 10’145 10’145
Synthetic (Original #1 from (Vacareanu et al., 2024a)) 10’000 1’000 1’000

Table 7: Summary of dataset statistics.

Proof. The proof is elementary. Expanding the above objective:
By« e (2) Eymp(-2) Y™ )] = Bynp(cjo) Byenpr 1oy (L7 9)]

= [ Bt )] plale) -y
yeY

Y

/ Eyenp=(12) L™ 9)] - plyl) - dy

yeY
=Eyp () (Y™, D)]

= [ B 5 )] plale)
yeY

where the third step follows from the fact that  minimizes E -« (.z) [((y*, -)]; on the final step,

p(+|z) is a probability distribution that has a point mass on .

C ADDITIONAL DETAILS

O

In Table 6 we report the prompts we used in our experiments, and in Table 7 we report the dataset

statistics.

We update all parameters during the fine-tuning. We summarize specific settings below. For Gemma-2,

we use the following settings.

* We use dropout rate 0.1 and batch size 16.

* We train for 200k steps and select the best step using the held out validation set (see Table 7

for details on the train/test/validation splits).

* We use a constant learning rate schedule. We select the learning rate value over the validation

set from the values: le-4, le-5, 1e-6.
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Method/ablation RMSE
sampled regression aware (Definition (2)) 0.98
regression aware (Definition (1)) 0.40

Table 8: Root mean squared error (RMSE) on STSB across regression aware approaches and their
variants on Gemma-2 9B.

* We use the Adafactor optimizer to save memory during the fine-tuning (we find Adam to not
perform better). The parameters for Adafactor are: €¢; =1e-30, e; =1e-3, decay rate = 0.8.

For PaLM-2, we use the above settings, except we use batch size 64 and dropout rate 0.0, and train
for 5k steps and report the results from the last checkpoint.

D COMPARISON TO MBR-BASED FINE-TUNING

The RAFT loss may be contrast against ideas in the literature on Minimum Bayes Risk (MBR)
prediction literature (Kaiser et al., 2000; Shannon, 2017; Prabhavalkar et al., 2018), which optimize
non-regression metrics via approximation using sampled model predictions. For the squared loss,
this may be formulated as follows:

Definition 2. Define the sampled regression-aware loss as follows:

Osr(Y",p( | 2) = Eyap(ia) [(¥° — float(y))ﬂ : (12)

Compared to the loss in Equation 9, the key difference is that the expectation over the model outputs
appears outside the square loss. A naive empirical implementation of this objective requires explicitly
sample responses from the model p(- | x); this can be expensive and incur high variance. As with
UMALI(%; Ygria), one may instead consider a practical variant that approximates the expectation using
a restricted grid of targets Ygrig C Y:

I Vi) = - O O plstr(y) | 2) - (" — ) (13)

(z,y*)€S yEYgria

Even this variant has a notable disadvantage: the minimizer of Equation 13 is a one-hot distribution
that places all its probability mass on one of the targets in Ypiqa C Y-

Lemma 5. Let y*(z) = Ey- p(|s) [y*] denote the Bayes-optimal prediction for input z. We
assume P(- | x) is supported on numerical targets only. The minimizer of the approximate sampled
regression-aware loss in Equation 13 over all model distributions p(- | ) is of the form:

1 if y=argmingcy |y —y*(x
p@m:{ e 19 =" @)y

0 else

Therefore, the quality of the minimizer p(- | ) entirely depends on how well Y4,iq approximates the
original target space Y. For example, if Ygiq is a set of integers, the minimizer of Equation 13 will
also be limited to predicting integers, even when the original target space Y contains floating-point
numbers of arbitrary precision. As shown in Lemma 3, RAFT does not suffer from the loss of
precision resulting from the use an approximate target space, and also avoids the high variance
associated with sampling. In Table 8 (Appendix), we experimentally verify better performance of
RAFT over the MBR-based fine-tuning, and unless otherwise stated, we focus our attention to RAFT.
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dataset zero-shot MALI autoregressive autoregressive+MALI predictive head RAFT
Wireless 0.87 1.40 0.83 0.61 0.50 0.44
Personal care  0.94 1.72 0.89 0.61 0.50 0.47
Music 1.26 2.45 1.23 0.64 0.47 0.49
STSB 1k 1.29 1.03 0.60 0.64 0.56 0.55
STSB 1.29 1.03 0.62 0.58 0.51 0.48

Table 9: Comparison of RMSE across datasets for Gemma-2 27B. In most cases, RAFT outperforms
all other methods.
D.1 PROOF FOR LEMMA 5

Proof. Notice that:
Ey- b f) [Eympclo) [0 = 47)%]] = Byl [ZP ylz) - (y —y*) 1
—ZP’WJ Eynpla) [(y —y7)?] -

Since this is a convex combination, the optimal value is achieved for p to be a one-hot vector with a 1
on the index arg min, E,« _p(.|z) [(y - y*)2] . We thus want a y that minimizes:

Eyp(lz) [(y — ¥%) } Eyp(|2) [y + W) —-2-y-y .
Equivalently, we want a y that minimizes:

y> =2y Eyenp( o) V7]
or equivalently:

Y2 =2y - Epep(fn) W]+ Eyenro) ) = (¥ — Eyepp ) 7))

E ADDITIONAL EXPERIMENTAL RESULTS

In this section we provide additional experimental results corroborating the findings in the main
paper.

E.1 ADDITIONAL MODELS: GEMMA-2 27B AND THE PALM-2 MODEL FAMILY

We report results on Gemma-2 27B across all dataset in Table 9 and on PALM-2 models on STSB in
Table 10, corroborating the findings of RAFT improving in most settings.

E.2 CHOICES FOR TOKENS IN RAFT

In Table 11 we report results for different choices of tokens in RAFT, and find the default choice to
work best.

E.3 CONVERGENCE SPEED OF RAFT

In Table 12 we report the number of training steps to convergence to the best result on the held out
validation set of different methods. We can see that RAFT with digits 1’ -"5" it majority of cases
converges faster than other choices for the grid.

In Figure 1, we compare the number of steps to convergence of RAFT and predictive head on STSB.
The figure shows that RAFT converges with fewer number of steps across different percentages of
training data used for training.
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model family model size autoregressive predictive head RAFT
PALM-2 1B 0.79 + 0.02 0.61 + 0.01 0.62 + 0.01
PALM-2 24B 0.63 +0.03 0.56 + 0.00 0.53 £ 0.00

Table 10: Comparison of root mean squared error (RMSE) on STSB across different ULM model
sizes, and across different fine-tuning methods: autoregressive, predictive head and autoregressive
regression aware. Each model is ran for 3 times to obtain standard deviations. For ULM 1B, we find
no difference in the performance of predictive head and RAFT, and both outperform the autoregressive
approach. For ULM 24B, we see a significant improvement from RAFT over both the autoregressive
and the predictive head approaches.

dataset model size  digits ’1’-’5"  characters a’-’e’  reversed digits ’’January’-’May’’
Wireless 2B 0.47£0.01 0.48 £0.01 0.48 £0.00 0.83 £0.01

9B 0.45 £ 0.00 0.46 £ 0.00 0.46 £0.01 0.47 £0.01
Personal care 2B 0.49 +0.00 0.48 +0.00 0.48 £0.01 0.85 4+ 0.00

9B 0.47 +£0.01 0.47 £ 0.00 0.48 £0.01 0.48 £0.01
Music 2B 0.50 £ 0.00 0.50 £ 0.01 0.50 +£0.01 0.50 +0.00

9B 0.46 = 0.00 0.48 £0.01 0.47 £0.01 0.61 £0.25

Table 11: Comparison of RMSE (mean =+ std dev) across variants of RAFT where different tokens
are used for the prediction formula of RAFT. Each experiment repeated for 3 times. In most settings,
the choice of digits *1’—’5" is at least as performant as any other choice. In certain settings, we find
a large drop in performance compared to the choice of digits (i.e., months ’ January’-’May’.

dataset model size ’1’-’5’ 5’ 17,79 4’5 7’8 )09
Wireless 2B 1000 3000 2000 1600 2200

9B 1600 2800 3400 3200 4200
Personal care 2B 2200 2200 2400 1600 2200

9B 4200 2000 6200 400 2400
Music 2B 800 1200 1800 1800 1800

9B 1000 2200 3000 1600 3000

Table 12: Comparison of the number of steps to convergence of RAFT where different number of
numerical targets are used for the grid in RAFT. Results on the Amazon Wireless dataset.
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Figure 1: Comparison of the number of steps to convergence of RAFT and predictive head, with
different percentage of the training set.

initialiation model size autoregressive predictive head RAFT
Pre-trained 2B 0.018 0.013 0.005
checkpoint 9B 0.017 0.017 0.006
2B 2.536 0.327 1.704
Random
9B 2.536 0.147 1.092

Table 13: The role of initialization to the pre-trained checkpoint on a synthetic regression dataset from
Vacareanu et al. (2024a) (the Original #1 dataset). We compare RMSE across different Gemma model
sizes, and across different fine-tuning methods: autoregressive, predictive head and autoregressive
regression aware. We corroborate our observation from language regression tasks that RAFT improves
over the predictive head approach when initialized from a pre-trained checkpoint, and not when
model weights are initialized randomly.

E.4 ADDITIONAL RESULTS ON SYNTHETIC DATA

For a simple setting, we consider a synthetic regression dataset from Vacareanu et al. (2024a) referred
to as the Original #1 dataset by the authors. We report results in Table 13 and corroborate our
observation from the language regression task experiment that RAFT improves over the predictive
head approach when initialized from a pre-trained checkpoint, and not when the model weights
are initialized randomly (see Table 4). This provides additional support for our hypothesis that the
alignment of RAFT to the next-token prediction pre-training task is the underlying reason for its
better performance over the predictive head.

E.5 ADDITIONAL RESULTS ON MOVIELENS-1M

We ran additional experiments on the movie recommendation problem on the MovieLens-1M dataset
with Gemma-2 2B model. We use AdamW optimizer and sweep learning rates from the range {1le-4,
le-5, le-6}. We use a cosine decay schedule for the learning rate, 10k steps of warmup from le-8
learning rate. We report results in Table 14 and again find RAFT to improve over both the predictive
head and autoregressive methods.
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Method RMSE
Autoregressive 0.95
Predictive head 0.91
RAFT 0.89

Table 14: Root mean squared error (RMSE) on MovieLens-1M across approaches on Gemma-2 2B.

Method/ablation Parameter count RMSE Pearson corr. Spearman corr.
RoBERTa Base CLS 110M 0.64 90.84 90.59
RoBERTa Large CLS 356M 0.59 91.99 92.02
RoBERTa Large mean-pooling 356M 0.63 91.65 91.56
RoBERTa Large mean-pooling freeze ~ 356M 1.08 72.72 74.16
RoBERTa Large CLS freeze 356M 1.30 56.48 54.76
SMART BERT (Jiang et al., 2019) 356M - 90.00 89.40
SMART RoBERTa (Jiang et al., 2019)  356M - 92.80 92.60
Gemma-2 2B RAFT 2B 0.54 93.55 93.22
Gemma-2 9B RAFT 9B 0.51 94.30 94.18

Table 15: Root mean squared error (RMSE) on STSB across baselines. Results from SMART (Jiang
et al., 2019) taken as reported in the paper (RMSE was not reported).

E.6  COMPARISON TO ENCODER-BASED BASELINES

In Table 15, we report results with additional baselines that use a prediction head over ROBERTa
representation for the input sequence. We include: mean-pooling and CLS token variants, and both
frozen RoBERTa weights and unfrozen weights in the fine-tuning. We also include the SMART
method (Jiang et al., 2019). In keeping with previous work, in addition to RMSE, we also report
performance on the Pearson and Spearman metrics for STSB (Jiang et al., 2019) (where available).
We find RAFT to surpass all the included baselines.

E.7 FURTHER ABLATING THE RAFT LOSS: DIFFERENT CHOICES FOR LOSS, NORMALIZATION
AND TOKEN INITIALIZATION

In Table 16 we compare the MSE loss to distillation style log loss on STSB. The target is scaled to be
between 0 and 1 for this set of experiments. The log loss is defined as —y* log p1 — (1 —y*) log(1—p1)
where p; is the probability of digit *1°. We find that both the MSE loss and the log loss yield similar
results, and that scaling the range of the targets does not negatively affect the performance.

We next analyze whether enforcing the probabilities over the grid to sum to 1 (by normalizing them by
the sum of the probabilities of all numbers in Y4i4) can improve the performance of RAFT. Table 17
shows that applying normalization to the probabilities for numbers in Yg,iq does not significantly
affect the results.

In Table 18, we compare three initialization methods for the embedding of numbers in autoregressive
and RAFT methods. The tokens used are of granularity of 0.1 for both autoregressive and RAFT
methods, except for RAFT *1°-’5’, which use digits from 1 to 5 to construct the grid (granularity
1.0). Overall, we find that RAFT is less sensitive to the initialization method than the autoregressive
approach.

In Table 19, we experiment with random initialization for the tokens in the RAFT grid. We find
random initialization to lead to worse results compared to using pre-trained token embeddings.

We next analyze the impact of the choice of Ygriq in computing the MALI predictor in Equation 5. To
this end, we vary the granularity of Yg.iq by constructing a list of equally spaced numbers covering
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unscaled targets targets scaled to [0, 1]
model family model size predictive head RAFT RAFT ’0’ and ’1’ log loss
PALM-2 1B 0.61 + 0.01 0.62 £+ 0.01 0.63 £+ 0.01 0.63 £0.01
PALM-2 24B 0.56 £+ 0.00 0.53 £ 0.00 0.54 £+ 0.01 0.53 £ 0.00

Table 16: Comparision of RMSE (mean =+ std dev) on the STSB dataset for MSE loss and log loss
when the target is scaled to be between 0 and 1. The MSE loss uses digit 0’ and 1’ to compute
the predicted value. The log loss is in the form —y* log p; — (1 — y*) log(1 — p1) where p; is the
probability of digit *1°.

model family model size not normalized normalized

PALM-2 1B 0.63 £+ 0.00 0.63 +0.02
PALM-2 24B 0.53 +£0.00 0.53 £0.01

Table 17: The effect of normalization of grid token probabilities in RAFT on the STSB dataset.

the range of Y. For example, choosing granularity to be 0.1 when Y = [0, 5] yields Ygriq = {70.0",
’0.17,70.27,...,74.97,°5.0’ }. In our implementation, all numbers in Y,iq are represented by
single tokens that we add to the vocabulary. We initialize the token embedding with either the First or
the Average method. In the First method, we initialize the embedding with the embedding of the first
digit of the number (e.g. use token 0’ embedding for the number ’0.1°). In the Average method, we
initialize the embedding with the average of the embedding from the constituent tokens (e.g. use the
average embeding of token ’0’, . and ’1” for the number ’0.1°.) We report the results on the STSB
datasets with PALM-2 1B model in Table 20 and find no significant difference in the results across
different choices for the granularity of Ygyiq.

Additionally, in Table 20 we also include the autoregressive method utilizing additional tokens from
Yeria as constructed with the methodology outlined above (i.e., with varying granularity). Here,
contrary to RAFT, we find the initialization method to affect the results, with First performing better
than Average. Note that the autoregressive method is equivalent to the generative classification
from (Fernandes et al., 2023), where the classes correspond to the numbers from the grid.

Lastly, we would like to note that in the case of generative classification, there is a trade-off between
how fine-grained the grid is and how many examples per token are observed during training. In
particular, if the classes are too coarse, we observe a loss in performance. On the other hand, if
the classes are too fine-grained, there may be insufficient training examples per label to learn the
embeddings for new tokens. For example, with granularity 0.05, 17 out of the 101 numbers in the
grid do not appear in the training data. This can also lead to a loss in performance.

E.8 DISTRIBUTION OVER TOKENS IN THE MALI PREDICTOR

We next investigate the distribution over tokens in the MALI predictor. We find that, while the error
decreases with training, the entropy increases after RAFT training, as we show in Figure 2. This
corresponds to the model on average spreading the probabilities over tokens more than prior to fine-
tuning, as shown for specific examples in Figure 3. We posit this to be beneficial, and indeed, RAFT
fine-tuning does not restrict uncertainty of the model, contrary to the MBR fine-tuning (compare
Lemma 3 and Lemma 5).
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initialization = autoregressive RAFT RAFT 1’’’

Zero 1.20 £ 0.01 0.62+0.00  0.63 £ 0.00
First 0.80 £ 0.02 0.63 £0.00 0.62+0.02
Average 0.98 +£0.01 0.64 £0.01  0.61 £0.01

Table 18: Comparison of different initialization methods for embeddings for tokens corresponding
to numbers in autoregressive and RAFT methods on STSB dataset with PALM-2 1B model. We
consider granularity 0.1 for constructing the tokens for autoregressive and RAFT reported in the first 2
columns, whereas the final column reports RAFT with tokens 1 to 5. Zero denotes initialization with
0 values, First denotes the initialization with the embedding corresponding to the first token of the
number (e.g. use token ’0’ embedding for the number *0.1°), and Average denotes the initialization
with the embedding corresponding to the different tokens in the number (e.g. average embeddings
for tokens ’0’, °. and ’1° when initializing the embedding for the number ’0.1”). RAFT is less
sensitive to the initialization method. We find the performance does not significantly worsen with
different initialization methods compared to using the pre-trained token embeddings at initialization
(see Table 16).

RAFT with °1°-’5° RAFT with °5°
baseline random baseline random

PaLM-21B  0.63 £0.00 0.66+0.02 0.62+0.01 0.64+0.01

Table 19: RMSE across different initialization (baseline and random) of the tokens in RAFT. We find
random initialization of tokens in the RAFT grid to hurt the performance.

autoregressive RAFT '1’-°’S°
granularity First Average First Average
0.05 0.85+£0.01 1.114+0.01 0.61+£0.01 0.63 £ 0.00
0.1 0.80 £0.02 098 £0.01 0.63+0.00 0.64+0.01
0.2 0.83+0.02 0.89+0.01 0.64+0.01 0.66=+0.02
0.5 0.84 £0.01 0.87+0.01 0.63+0.01 0.63+0.02
1.0 0.81 £0.01 0.854+0.01 0.62+0.02 0.61=+0.01

Table 20: Comparison of RMSE on autoregressive and RAFT methods with different granularity
of tokens. We append tokens that represent numbers with various granularity. For example, with
granularity 0.05, the tokens are *0.00, *0.05, °0.10, ..., ’5.00’. For autoregressive, this is equivalent
to generative classification method from (Fernandes et al., 2023). First and Average denotes different
ways to initialize the embeddings of the tokens, with details described in the caption of Table 18.
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Figure 2: The histogram of per-example change (after vs. before fine-tuning) in entropy over the
probabilities for the digits in the RAFT predictor. The entropy on average increases after the RAFT
fine-tuning, meaning that the probabilities are overall more spread over the digits than prior to RAFT

fine-tuning.
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Figure 3: Comparison of the distribution over digit tokens in RAFT predictor (Gemma-2 2B on
STSB) before and after fine-tuning. We find the entropy over the digit token probabilities overall
increases after fine-tuning with the RAFT objective.
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