
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BETTER AUTOREGRESSIVE REGRESSION WITH LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have proven successful on many machine learn-
ing tasks, including those that do not involve language generation. This includes
solving regression problems, where the targets are real-numbers. One common
approach is to fine-tune the LLM based on the log-perplexity loss, and use au-
toregressive sampling at the inference time. Another approach relies on adding
a separate predictive head, and fine-tuning it with a suitable loss. While each
approach has had success, there has not been a study on the principled ways of
using decoder LLMs for regression. In this work, we compare different prior works
under a unified view, and introduce regression-aware fine-tuning (RAFT), a novel
approach based on the Bayes-optimal decision rule. We demonstrate how RAFT
improves over established baselines on several benchmarks and model families.

1 INTRODUCTION

Decoder-based large language models (LLMs) (OpenAI et al., 2023; Anil et al., 2023; Touvron
et al., 2023; Gemini Team et al., 2024) have set new benchmarks in challenging generative tasks
(e.g., summarization, open-ended dialogue). Such models’ versatility has further prompted their
exploration for classic non-generative tasks (e.g., classification, regression, ranking) (Liu & Low,
2023; Fernandes et al., 2023; Qin et al., 2023; Vacareanu et al., 2024b; Yang et al., 2023; Dukić
& Snajder, 2024; Lukasik et al., 2024; Vacareanu et al., 2024a), once the purview of encoder-only
models such as BERT (Devlin et al., 2019). Such exploration is expected to increase given the
sustained efforts towards building ever-larger decoder-based LLMs, with limited parallels in scaling
encoder-based models.

Our interest is in natural language regression, where the goal is to predict a real-valued target given a
textual input. This covers important practical applications such as semantic similarity prediction (Cer
et al., 2017), quality estimation (Kocmi & Federmann, 2023; Jain et al., 2023; Fernandes et al., 2023),
and sentiment analysis (Zhang et al., 2024). Given the discordance between natural language and
numbers, one may ask: how do we best apply decoder-based LLMs for natural language regression?
Existing works have followed two broad approaches. Autoregressive regression approaches rely on
standard LLM decoding to directly predict as text the numerical targets (e.g., predict a number 12.34
by iteratively predicting tokens: ’1’, ’2’, ’.’, ’3’, ’4’) (Gruver et al., 2023; Liu & Low, 2023;
Yang et al., 2023; Lukasik et al., 2024), or corresponding discretised categories (e.g., predict one
of { "very bad", "bad", "ok", "good", "very good" }) (Fernandes et al., 2023). Predictive head
approaches, inspired from encoder-based models, learn a separate head on encoded inputs, thus
side-stepping the autoregressive mechanism inherent to decoder-based LLMs. Common choices of
encoding include mean pooling of the output embeddings (Zhuang et al., 2023), and the final-token
logit for a special token (e.g., <extra_id_0> in T5) (Fernandes et al., 2023).

Both autoregressive and predictive head approaches have proven successful for natural language
regression tasks. However, there has been (to our knowledge) no systematic comparison between
these methods; further, each of them has a conceptual shortcoming. The autoregressive regression
approach does not exploit the numerical nature of the regression targets, and thus does not consider
the fact that for a target of 1, predicting 11 is worse than predicting 1.1. On the other hand, the
predictive head approach deviates from the pre-training objective typically used in decoder-based
LLMs, viz. next-token prediction (Radford et al., 2018), and thus may not use the model in an optimal
manner. This prompts us to ask: how can we respect both the LLM pre-training objective and the
numerical nature of targets for natural language regression tasks?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Approach Autoregressive Fine-tuning Inference References

Zero-shot decoding X None standard decoding Kocmi & Federmann (2023)
Fine-tuning and decoding X log-perplexity standard decoding Fernandes et al. (2023)
Zero-shot MALI X None metric-aware decoding Lukasik et al. (2024)
Fine-tuning and MALI X log-perplexity metric-aware decoding this work
Predictive head 7 target metric point estimate Fernandes et al. (2023)
RAFT X target metric metric-aware decoding this work

Table 1: Summary of the approaches to applying decoder-based LLMs to natural language regression
tasks. There are previous works relying either on using the model autoregressively (i.e., analogously
to how it was pre-trained) or as an encoder (i.e., an output is constructed based on embeddings or
logits obtained for the inputs). Different training and inference approaches have been considered for
both autoregressive and encoder based approaches.

In this work, we introduce regression-aware fine-tuning (RAFT), a novel approach to autoregressive
regression which makes use of the numerical nature of the targets. We prove theoretical limitations of
established alternative approaches to autoregressive-based regression, and prove that RAFT mitigates
them. We systematically compare RAFT against autoregressive and predictive head baselines, and
consider several ablations for understanding what design decisions are crucial for making a decoder-
based LLM work under different settings. See Table 1 for an overview of both the previous works
and the approach introduced in this work. Overall, our contributions are as follows:

(i) We propose regression-aware fine-tuning (RAFT), a novel approach to autoregressive regression,
and prove that it mitigates the theoretical limitations of prior works (Section 3).

(ii) We present a unified view of decoder-based LLM regression approaches, capturing both the
autoregressive and the prediction head approaches, and explicating their limitations (Section 4).

(iii) We systematically compare autoregressive regression baselines, predictive head and RAFT ap-
proaches across mulitple datasets and LLMs. We also conduct a series of extensive experiments
for pinpointing the sources of differences in the performance between different approaches,
explicating what design choices make RAFT so effective (Section 5).

2 BACKGROUND

We first introduce notation and review previous works on applying decoder-based LLMs to regression.

2.1 NOTATION

For a finite vocabulary V of tokens (e.g., words in English), let X ⊆ V∗ be a set of inputs comprising
strings of tokens, and Y ⊂ R be a set of real-valued targets. We assume that each y ∈ Y has a unique
string representation str(y) ∈ V∗; for example, the integer 1 has the string encoding "1". Let P
denote a ground-truth distribution over X × Y, with the decomposition P(x, y) = P(x) · P(y | x).
The natural language regression problem involves learning a predictor ŷ : X→ R that minimises the
mean squared error over (input, target) pairs drawn from P:

L(ŷ) = E(x,y∗)∼P
[
(y∗ − ŷ(x))2

]
.

Note that the mean squared error is a canonical choice in regression (Fernandes et al., 2023). The
Bayes-optimal predictor minimizing the above is ŷ(x) = Ey∗∼P(·|x)[y∗].

We seek to employ large language models (LLMs) for such regression tasks. An LLM specifies
a distribution p over strings in V∗. Given an input x ∈ X, let p(· | x) denote the corresponding
conditional distribution over possible continuations. Note that it may be possible for p(z | x) > 0
where z ∈ V∗ does not have a numerical representation; we discuss this issue more in Section 2.2.

LLMs are typically pre-trained on large corpora via self-supervised objectives (Radford et al., 2018),
and can perform few-shot or in-context learning given suitably crafted prompts (Brown et al., 2020).
For example, if the goal is to predict the probability that a user will enjoy a movie titled “Cure”, we
may construct an input x = “Hereditary: 0.7 | Ringu: 0.9 | Cure: ”, and probe the LLM’s

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

estimate of plausible continuations via p(· | x). We next discuss inference (or decoding) procedures
for deriving a predictor ŷ given a pre-trained LLM.

2.2 STANDARD DECODING FOR REGRESSION

Standard decoding involves predicting numerical targets in a generative manner, by performing
autoregressive decoding to draw a sample from the distribution p(· | x):

ŷAR(x)
.
= float(z)

z ∼ p(· |x).
(1)

Here, z ∈ V∗ is generated autoregressively on a token-by-token basis. Different algorithms may be
used for this generation, e.g., greedy decoding and temperature sampling (Naseh et al., 2023). In
many cases, such algorithms are seeking to approximate the mode of the distribution:

ŷmode(x) := arg max
y∈Y

p(y | x). (2)

Further, float(z) denotes an operator that converts a given string z (e.g., “12.34”) to a corresponding
numeric value (e.g., 12.34); if z does not have a numeric representation (e.g., “banana”), then we
assume that a suitable default value is returned. Unless otherwise stated, we assume float(z) = 0.0
for z 6∈ Y. As an alternative, one may choose to restrict the output space to numerical targets, e.g., by
employing a form of constrained decoding (Geng et al., 2023). However, in practice, the targets from
high-quality LLMs tend to be numerical even under zero-shot settings (Lukasik et al., 2024).

2.3 MALI: METRIC-AWARE LLM INFERENCE FOR REGRESSION

Recently, Lukasik et al. (2024) pointed out a limitation of decoding the most likely target when
employing autoregressive models for regression. Decoding of the most likely targets can be shown
to minimize the 0-1 loss `(y, ŷ) = 1(y 6= ŷ), and may not be well aligned with regression metrics
such as squared loss. As a remedy, instead of autoregressive decoding per Equation 1, Lukasik et al.
(2024) proposed the MALI method, which given a loss ` and model prediction p(· | x) estimates the
Bayes-optimal output minimizing the expected loss:

ŷMALI(x) = arg min
v∈R

Ey∼p(·|x) [`(float(y), v)] , (3)

where float(·) is as per the previous section. For the squared loss `(y, ŷ) = (y − ŷ)2, the optimal
decision rule can be shown to take the following closed-form solution:

ŷMALI(x) = Ey∼p(·|x) [float(y)] . (4)

Since p(· | x) is a distribution over all possible strings, it is typically intractable to compute the above
expectation exactly; this remains true even if we restrict attention to those strings corresponding to a
valid numerical value (of which there are infinitely many). In practice, Equation 4 can be estimated
either via sampling a finite number of y values, or via scoring of targets. In the latter, suppose we have
some restricted target grid Ygrid ⊂ Y. Then, the MALI predictor is averaged over Ygrid, yielding:

ŷMALI(x;Ygrid) =
∑

y∈Ygrid

p(str(y) | x) · y. (5)

Note that
∑
y∈Ygrid

p(str(y) | x) 6= 1 is possible, so the above is technically not an expectation;
however, in practice, high-quality LLMs tend to concentrate most mass on numerical targets.

There are several choices of Ygrid available to the practitioner. For discrete targets Y of moderate size,
one may simply choose Ygrid = Y. For bounded Y, one choice is equally spaced targets covering the
range of Y, e.g. integers or fixed-precision numbers (e.g. 2 decimal points) (Lukasik et al., 2024).

The above approaches operate on a pre-trained LLM via few-shot prompting. However, it has been
consistently observed that direct fine-tuning of LLMs on the task of interest can be beneficial (Liu
et al., 2022). We now consider how to perform LLM fine-tuning for regression tasks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 REGRESSION-AWARE LLM FINE-TUNING

We now develop a theoretically grounded approach to regression with decoder-based LLMs in the
fine-tuning setting. We begin by reviewing the standard fine-tuning setup, and explicate its limitations.
We give all proofs in Appendix B.

3.1 STANDARD FINE-TUNING

Fine-tuning seeks to adapt an LLM to the target distribution P by minimizing

L(p) = E(x,y∗)∼P [`(y∗, p(· | x))] (6)

for a suitable loss function ` : Y×∆V∗ → R, where ∆S denotes the set of distributions over a set S.
Given a sample S ∈ (X× Y)N of N (input, target) pairs drawn from P, the empirical loss is

L̂(p) =
1

N

∑
(x,y∗)∈S

`(y∗, p(· | x)). (7)

A standard choice of ` is the log-loss (also referred to as log-perplexity):

`(y∗, p(· | x)) = − log p(str(y∗) |x), (8)

recalling that str(y∗) denotes the string representation of a numeric target y∗ ∈ R. More generally,
one may use categorical descriptions of the target after discretising to some finite grid Ygrid ⊂ Y;
e.g., { "very bad", "bad", "ok", "good", "very good" } (Fernandes et al., 2023).

3.2 LIMITATIONS OF STANDARD FINE-TUNING AND STANDARD DECODING

A natural baseline is to employ log-perplexity based fine-tuning by minimizing Equation 7, and to
then apply standard decoding (see Equation 2). Since the log-loss is strictly proper, minimizing
Equation 7 recovers the Bayes distribution P(· | x) in the population limit (Gneiting & Raftery,
2007). In practice, however, the fine-tuned model distribution p(· | x) may deviate from P(· | x). The
following lemma shows that even small deviations from P can cause the predictor to incur a high
squared error compared to the Bayes-optimal predictor.
Lemma 1. Assume |Y| ≥ 2 and 0 ∈ Y, with N .

= max(Y). For any ε > 0, there exists P, p such
that: Ex [‖P(· | x)− p(· | x)‖1] ≤ ε, and Ex

[(
Ey∗∼P(·|x)[y∗]− ŷmode(x)

)2] ≥ (N2)2 (1 + ε
2

)2
.

Thus, using the log-perplexity fine-tuning with standard decoding is not well-aligned with the eventual
goal of approximating Ey∗∼P(·|x)[y∗].

3.3 LIMITATIONS OF STANDARD FINE-TUNING AND MALI DECODING

Given that MALI performs well in few-shot regression tasks, a natural means of further improving its
performance is to employ log-perplexity based fine-tuning by minimizing Equation 7, and to then
apply the MALI decoding (see Equation 5).

However, as before, we can show that the predictor can significantly deviate from the optimal
prediction.
Lemma 2. Assume |Y| ≥ 2 and 0 ∈ Y, with N .

= max(Y). For any ε > 0, there exists P, p such
that: Ex [‖P(· | x)− p(· | x)‖1] ≤ ε, and Ex

[(
Ey∗∼P(·|x)[y∗]− ŷMALI(x)

)2] ≥ (εN2)2.

Thus again, using the log-perplexity fine-tuning with MALI may not be well-aligned with the
eventual goal of approximating Ey∗∼P(·|x)[y∗]. Intuitively, log-perplexity fine-tuning treats all
“wrong” predictions the same, as it is unaware of the difference in the magnitude of the numerical
values represented by the tokens. For example, assuming that numbers 100 and 1000 are represented
with a single token, placing too much mass on the token representing 100 is penalized similarly as
placing too much mass on the token 1000.

One solution to the above issue is to directly employ the MALI predictor in the fine-tuning process.
This requires going beyond the log-loss in Equation 8, as we now detail.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.4 RAFT: REGRESSION-AWARE FINE-TUNING

To overcome the drawbacks of using MALI with traditional fine-tuning, we propose a novel regression-
aware objective that seeks to directly minimize the squared loss on the MALI predictor:

Definition 1. Define the regression-aware fine-tuning (RAFT) loss as follows,

`RAFT(y∗, p(· | x)) =
(
y∗ − Ey∼p(·|x)[float(y)]

)2
. (9)

Equally, this uses the MALI predictor ŷMALI(x) to construct a numeric value from the LLM, and
measures the square loss against the target y∗. Given a finite grid Ygrid ⊂ Y and fine-tuning set S, the
empirical loss corresponding to Equation 9 is:

L̂RAFT(p;Ygrid) =
1

N

∑
(x,y∗)∈S

y∗ − ∑
y∈Ygrid

p(str(y) | x) · y

2

. (10)

Note that computing this loss only requires scoring each y ∈ Ygrid under the model; we do not need
to perform any explicit sampling or decoding during training.

Compared to standard fine-tuning with MALI decoding, note here that we attempt to avoid the
issue in Lemma 2 by directly minimizing Ex

[(
Ey∗∼P(·|x)[y∗]− ŷMALI(x)

)2]
. Surprisingly, despite

computing ŷMALI(x) over the restricted target space Ygrid, under mild conditions the minimizer of
Equation 9 exactly mimics the Bayes-optimal predictor over the full space Y.

Lemma 3. Suppose Y ⊂ R, and arg miny∈Y ∈ Ygrid and arg maxy∈Y ∈ Ygrid. Let p∗(· | x) be the
minimizer of the RAFT loss from definition 1 over all distributions p(· | x). Then the MALI predictor
ŷMALI(x;Ygrid) =

∑
y∈Ygrid

p∗(str(y) | x) · y constructed from p∗(· | x) satisfies:

ŷMALI(x;Ygrid) = Ey∗∼P(·|x)[y∗].

The intuition behind this result is that any numerical target in Y can be expressed by a convex
combination of the smallest and largest numbers in Y, and can thus be realized by the MALI predictor.

4 A UNIFIED VIEW OF LLM-BASED REGRESSION APPROACHES

We next compare and contrast RAFT and the predictive head approaches in a unified view. In Table 2,
we present a summary of different choices for the predictors considered in prior and the present work.

4.1 PREDICTIVE HEAD APPROACHES TO REGRESSION

Predictive head approaches formulate a predictor function ŷ(x) by utilizing activations or embeddings
from the forward pass of LLM. Abstractly, such approaches first extract a suitable input representation
Φ(x) ∈ Rq, which is then fed into a regressor s : Rq → R. Canonically, the regressor is simply a
linear model s(Φ(x)) = b + w>Φ(x) for learnable w ∈ Rq, b ∈ R, but one may also consider an
MLP with a single real-valued output.

Various choices for Φ(x) have been considered in previous works. To describe these, we need some
additional notation. Given a string x ∈ V∗ of lengthL, a Transformer-based language model (Vaswani
et al., 2017) first constructs an input embedding εin(x) ∈ RD×L, via a matrix Ein ∈ RD×L
of token embeddings: concretely, εin(x) = Einεoh(x), where εoh(x) ∈ RV×L is the one-hot
embedding of each token in x. Next, this input embedding is passed through a stack of attention
and MLP layers, to produce the output embedding εout(x) ∈ RD×L. One further projects this to
the vocabulary space to produce output logits fout(· | x) ∈ RV×L, where fout(· | x) = E>outεout(x).
Finally, one transforms these to a distribution over possible tokens via the softmax operator, yielding
pout(· | x) = softmax(fout(· | x)) ∈ [0, 1]V×L. For certain models (e.g., Gemma), the input and
output vocabulary embedding matrices are tied, i.e., Ein = Eout.

Given the above, one may extract an input representation through multiple means, most commonly
pooling or selection of the output token embeddings, output logits, or output probabilities. Common

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Category Approach Predictor function ŷ(x) Fine-tuning loss

Autoregressive
(prior works)

Standard decoding zero-shot (Kocmi & Federmann, 2023) arg maxy∈Y p(y |x) N/A
MALI zero-shot (Lukasik et al., 2024)

∑
y′∈Y y

′ · p(y′|x) N/A
Standard fine-tuning and standard decoding (Fernandes et al., 2023) arg maxy∈Y p(y |x) − log p(y∗ |x)

Autoregressive
(this work) MALI standard fine-tuning

∑
y′∈Y y

′ · p(y′|x) − log p(y∗ |x)

RAFT
(this work)

General RAFT
∑
y′∈Y y

′ · p(y′|x) (ŷ(x)− y∗)2

Single-digit RAFT
∑
y′∈Ydigit

y′ · pout(x)y′,L (ŷ(x)− y∗)2

Predictive head
(prior works)

Final-token logit (Fernandes et al., 2023) b+ fout(· | x)v∗,L (ŷ(x)− y∗)2

Pooled output embeddings (Zhuang et al., 2023) b+ w>pool(εout(x)) (ŷ(x)− y∗)2

Predictive head
(this work)

MLP on the final-token logits b+ MLP((Eout)
>εout(x):,L) (ŷ(x)− y∗)2

Probability-vector projection b+ w>pout(x):,L (ŷ(x)− y∗)2

Learnable regression-aware training
∑
y′∈Y wy′ · pout(x)y′,L (ŷ(x)− y∗)2

Table 2: Different approaches for applying decoder-based LLMs to regression. Here, p(· | x) denotes
a distribution over possible outputs given an input string x, and ŷ(x) ∈ R a predictor given by a
predictive head approach. b and w are learnable parameters, v∗ ∈ V is a fixed token, pool is a pooling
operator (such as taking a per-dimension average), and L is the length of input x, Ydigits denotes all
digits covering the range of targets (unless otherwise stated, ’1’-’5’). The first 4 rows show the
autoregressive baselines: standard decoding (Section 2.2), MALI zero-shot (Section 2.3), standard
fine-tuning and decoding (Section 3.1), MALI with standard fine-tuning (Section 3.3). The next 2
rows show RAFT: the general autoregressive form (Y = Ygrid for general output spaces), and the
single digit version (e.g. Y = {1, 2, 3, 4, 5}). The following 2 rows present the prior works from
Fernandes et al. (2023); Zhuang et al. (2023). The last 3 rows present new predictive head approaches
that attempt to mimic the behavior of RAFT.

pooling strategies include mean-pooling, and passing through an attention operator; common selection
strategies include picking the value corresponding to the final token. For example, we may consider
the final-token logit activation for a special token v∗ ∈ V (Fernandes et al., 2023; Zhuang et al.,
2023), or mean-pooling the output token embeddings (Zhuang et al., 2023).

Given a suitable predictor, one may directly optimize the mean squared error during fine-tuning; i.e.,
given a fine-tuning set S, we minimize

L̂PH(ŷ) =
1

N

∑
(x,y∗)∈S

(y∗ − ŷ(x))2.

Compared to autoregressive baselines, an important distinction is that that no autoregressive decoding
is conducted at inference.

4.2 RAFT VERSUS PREDICTIVE HEAD APPROACHES

Our discussion of RAFT highlighted its close relation to autoregressive MALI decoding, which
appears rather different to predictive head approaches. However, in the case of a single-digit grid
Ygrid (wherein each element corresponds to a single token in V), the predictor function formulations
for RAFT bears similarities to the predictive head approaches. Note that if y ∈ Ygrid corresponds to
a single token, by definition p(str(y) | x) = pout(· | x)str(y),L. Then, the MALI predictor becomes

ŷMALI(x;Ygrid) =
∑

y∈Ygrid

y · p(str(y) | x) =
∑

y∈Ygrid

y · pout(· | x)str(y),L.

We may compare this with the final-token logit activation method from Table 2. Both take the
following form for an activation Ψ and weight vector w ∈ RV:

ŷ(x) = b+ w>Ψ (fout(· | x):,L) .

Importantly, RAFT predictor at initialization corresponds to MALI, and thus, forms a strong pre-
dictor for a zero-shot inference with LLMs (Lukasik et al., 2024). Most alternative predictive head
approaches will incur a high error at initialization due to deviating from the next token prediction task.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Therefore, RAFT can be seen as a predictive head approach with strong performance at initialization,
potentially making optimization easier.

Contrasting the RAFT and the final-token logit method, we observe the following differences:

• Activation: for single-digit RAFT, Ψ is the softmax activation that converts fout(· | x) to the
probability vector pout(· | x). For the final-token logit, Ψ is the identity activation.

• Weight vector: for the final-token logit, w is a one-hot vector with 1 corresponding to the special
token position. For single-digit RAFT, wv = float(v) for each v ∈ V; note that, as a result,
positions corresponding to non-digits have weight 0.

In light of the close similarities between RAFT and the final-token logit approach, it is prudent to
carefully analyze these differences and identify whether any of these choices play an important role
in RAFT’s performance. Therefore, we introduce the following new predictive head variants:

• MLP on final-token logits: this is a variant of the final-token logit method, wherein a 2-layer MLP
with a non-linear activation (sigmoid) is employed on the entire final-token logit vector, rather
than selecting the logit for a single special token:

ŷ(x) = b+ MLP(fout(· | x):,L).

• Learnable-RAFT: this is a variant of RAFT, wherein the weights over the output model probabili-
ties are learned, rather than being fixed to the vector wv = float(v):

ŷ(x) =
∑
y′∈Y

wy′ · pout(x)str(y′),L

The learnable-RAFT variant adds more flexibility to the predictor function ŷ over the vanilla RAFT
method. However, as with other predictive head methods, it deviates from the next-token prediction
pre-training task. Which of these two factors – predictor flexibility, and alignment to the pre-training
task – is the most important? To answer this question, we compare learnable-RAFT against RAFT,
and also experiment with fine-tuning from a randomly initialized (as opposed to a pre-trained) model.

5 CONTRASTING THE REGRESSION METHODS WITH AUTOREGRESSIVE LLMS

We now present experiments and ablations comparing the autoregressive regression and predictive
head approaches on natural language regression datasets. In summary, we make the following main
empirical findings: (i) RAFT outperforms all autoregressive regression and predictive head baselines
across datasets and models; (ii) Ablations indicate the importance of aligning fine-tuning to the
pre-training loss; (iii) RAFT tends to work well when the grid corresponds to digit tokens.

5.1 EXPERIMENT SETTINGS

Datasets. We use the following natural language regression datasets:

(i) Semantic Textual Similarity Benchmark (STSB) (Cer et al., 2017), which comprises of sentence
pairs human-annotated with a similarity score from 0 to 5; To measure the impact of varying the
fine-tuning set size, we apart from using the full train set, we also consider using only the first
1’000 examples for training (STSB 1k).

(ii) US Amazon reviews, where we aim to predict the 5-star rating for a product review (Ni et al.,
2019);. We consider a few categories from the Amazon reviews datasets, each forming a
separate dataset: Wireless, Music, Personal products. We use 1’500 examples for the test set
(after Lukasik et al. (2024)), 1’500 for validation and 10’000 examples for training.

(iii) MovieLens-1M, where we construct a movie rating prediction task across users, follow the
methodology from (Luo et al., 2024) (see Appendix E.5 for the results).

We summarize the dataset statistics and the prompts in Table 6 and Table 7 (Appendix).

Models. We experiment with Gemma-2 (Team et al., 2024) and PaLM-2 (Anil et al., 2023) instruction-
tuned model families of different sizes. We select the best learning rate (from {10−4, 10−5}) and
training step (up to a maximum of 100K steps) based on held-out validation set performance. Where
standard deviations are reported, fine-tuning is performed 3 times.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Dataset Model size Zero-shot
standard decoding

Zero-shot
MALI

Standard fine-tuning
standard decoding

Standard fine-tuning
MALI

Predictive head RAFT

Wireless 2B 0.88 1.42 0.70±0.01 0.67±0.01 0.51±0.01 0.47±0.01
9B 0.87 1.40 0.78±0.05 0.86±0.03 0.46±0.00 0.45±0.00

Personal care 2B 0.98 1.75 0.77±0.01 0.74±0.01 0.52±0.02 0.49±0.00
9B 0.95 1.73 0.73±0.14 0.59 ±0.01 0.48±0.01 0.47±0.01

Music 2B 1.28 2.46 1.16±0.11 0.88±0.12 0.52±0.00 0.50±0.00
9B 1.28 2.46 0.83±0.35 0.61±0.02 0.50±0.00 0.47±0.00

STSB 1k 2B 1.10 0.94 0.61±0.01 0.65±0.02 0.58±0.01 0.58±0.00
9B 1.31 0.99 0.57±0.01 0.62±0.05 0.57±0.01 0.56±0.01

STSB 2B 1.10 0.94 0.59±0.01 0.61±0.02 0.54±0.00 0.54±0.01
9B 1.31 0.99 0.58±0.00 0.58±0.02 0.52±0.00 0.51±0.01

Table 3: RMSE across datasets, methods, and Gemma-2 models of varying sizes. Fine-tuning
methods report mean ± std dev from model retraining. See Table 9 (Appendix) for Gemma-2 27B.

Methods. We compare the following methods: (1) autoregressive baselines (Section 2.2), MALI zero-
shot (Section 2.3), MALI with log-perplexity fine-tuning (Section 3.3); (2) predictive head approaches
from Fernandes et al. (2023); Zhuang et al. (2023); (3) the new RAFT method (Section 3.4); (4) new
predictive head approaches that attempt to mimic the behavior of RAFT (Section 4.2). In zero-shot
standard decoding, we use greedy decoding; in zero-shot MALI, we use the scoring variant (Lukasik
et al., 2024) over the default grid from RAFT. We also run ablations with replacing causal attention
masking with bi-directional attention masking, following previous works on classification with
decoder-based LLMs (Dukić & Snajder, 2024; Qorib et al., 2024).

Implementation of the RAFT objective. An important practical consideration is how to choose the
grid Ygrid. Targets from both Amazon and STSB dataset families belong to [0, 5]. Unless otherwise
stated, we choose the grid Ygrid = { ’1’, ’2’, ’3’, ’4’, ’5’ }. For Amazon reviews datasets,
Ygrid = Y, while for STSB, Ygrid ⊂ Y (as the targets take floating point values). Recall that Lemma 3
shows that RAFT can represent floating point targets even under such a choice for Ygrid. Nonetheless,
we empirically verify whether the choice of Ygrid impacts the results.

5.2 RAFT LEADS TO BETTER AUTOREGRESSIVE REGRESSION

We compare different autoregressive and prediction head approaches across across Gemma-2 models
of varying sizes in Table 3. We report additional results from PaLM-2 models on STSB in Table 10
(Appendix) to verify the findings across an additional model family. We make several observations.

First, we verify the importance of both (1) the use of an appropriate decision rule at inference time
(greedy versus metric-aware inference), and (2) the value of fine-tuning over zero-shot inference.
Indeed, we find that the zero-shot greedy decoding, MALI (see Section 2.3), autoregressive fine-
tuning with greedy decoding (see Section 3.3) and autoregressive fine-tuning with MALI inference
(see Section 3.4) work increasingly better.

Second, we find that the predictive head approach outperforms the autoregressive baselines, including
those that perform autoregressive fine-tuning. This corroborates Lemma 2, which pointed at the
limitations of autoregressive fine-tuning due to it being misaligned with the squared error.

Finally, we find RAFT to outperform the predictive head and the autoregressive approaches by a large
margin across almost all settings. RAFT outperforming the autoregressive approaches corroborates
the posited importance of aligning the fine-tuning loss in regression tasks to a regression loss. RAFT
outperforming the predictive head approach corroborates the posited importance of not deviating
from the autoregressive setting, which aligns with the next-token prediction pre-training task.

We next investigate different design choices to further pinpoint the reasons for RAFT’s performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Approach Gemma-2 2B Gemma-2 9B

Standard fine-tuning 0.83 0.82

- pre-training doesn’t learn doesn’t learn
+ bi-directional masking doesn’t learn doesn’t learn

Special-token logit (Fernandes et al., 2023) 0.51 0.46

- pre-training 0.94 0.94

+ bi-directional masking 0.50 0.46

+ 2-layer MLP 0.48 0.46

Pooled output embeddings (mean) (Zhuang et al., 2023) 0.50 0.47

+ bi-directional masking 0.49 0.48

Pooled output embeddings (min) 1.38 1.18

Pooled output embeddings (max) 1.32 1.13

RAFT 0.47 0.45

- pre-training 1.85 1.89

+ bi-directional masking 0.49 0.44
learnable-RAFT over all tokens 0.48 0.45

learnable-RAFT over digits ’1’-’5’ 0.47 0.45

Table 4: RMSE on Gemma-2 models on Amazon Wireless across predictive head and RAFT variants.

5.3 VARYING THE PREDICTIVE HEAD CHOICES IN THE UNIFIED VIEW

In Table 4, we report results from additional ablations considering different choices for the predictor
ŷ, as well as other design choices pertaining to the model (i.e., the use of pre-training and attention
masking). We next discuss the key findings.

Role of pre-training. In order to shed light on the importance of aligning the method with the pre-
training task, we experiment with fine-tuning from randomly initialized model weights as opposed to
initializing with the pre-trained checkpoint. We find that autoregressive fine-tuning does not converge
to a reasonable result, while RAFT converges to a very poor predictor. Under this setting, predictive
head fares the best among the 3 methods. To further analyze the role of pre-training, we run additional
experiments on a synthetic regression dataset from Vacareanu et al. (2024a) (the Original #1 dataset)
and report results in Table 13 (Appendix). We corroborate the finding that RAFT improves over
predictive head when initialized from a pre-trained checkpoint, and not when the model weights are
initialized randomly. This finding supports the hypothesis that RAFT outperforms predictive head
due to better alignment with the pre-training checkpoint.

Predictive head non-linear variant. We experiment with two variants of learnable-RAFT: one
where the weight vector is learnt for all vocabulary entries, and the second, where only entries
corresponding to digits ’1’-’5’ are learnt, while other entries are fixed to 0. For both variants we
found it necessary to initialize from the solution corresponding to RAFT, as random initialization did
not lead to good training dynamics. Overall, we find both approaches to not improve over RAFT.
We also consider adding a non-linear function over the special-token logit in the form of a two-layer
MLP. This again does not lead to improvements over RAFT. Both results demonstrate that it may
be more important to align the fine-tuning to the pre-training loss, as opposed to only try make the
predictor more expressive.

Predictive head design choices. Lastly, we experiment with additional variants, including pooling
over the full sequence of token embeddings from the LLM, instead of taking the final token activation.
We find it to not lead to significantly better results than the special-token logit method. We also
find bi-directional masking of attention does not significantly affect the results of the predictive
head and RAFT, while expectedly making autoregressive fine-tuning untrainable (due to the model
being able to attend to the predicted target during training). Overall, none of the predictive head

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Dataset Model size ’1’-’5’ ’5’ ’1’,’9’ ’4’,’5’ ’7’,’8’,’9’

Wireless 2B 0.47±0.01 0.48±0.01 0.48±0.00 0.48±0.00 0.48±0.01
9B 0.45±0.01 0.45±0.01 0.47±0.02 0.46±0.00 0.47±0.01

Personal care 2B 0.49±0.00 0.49±0.00 0.49±0.02 0.49±0.00 0.49±0.00
9B 0.47±0.01 0.48±0.01 0.48±0.02 0.47±0.00 0.47±0.00

Music 2B 0.50±0.00 0.50±0.00 0.50±0.01 0.50±0.00 0.50±0.01
9B 0.46±0.01 0.47±0.00 0.48±0.02 0.47±0.00 0.48±0.00

Table 5: Comparison of RMSE (mean ± std dev) across variants of RAFT with varying sizes of the
grid Ygrid. The choice of ’1’-’5’ outperforms the alternatives.

variants improves over the RAFT approaches, again supporting the hypothesis of the importance of
not deviating from the pre-training loss in fine-tuning.

5.4 RAFT ABLATIONS

Sensitivity to the grid size Following Lemma 3, ŷMALI(x) can express any numerical target in
the population limit, even with a coarse grid. Empirically, however, one might expect different grids
to affect the results. We now assess this point on the Amazon reviews Wireless dataset, comparing
the following choices for Ygrid: (1) { ’1’, ’2’, ’3’, ’4’, ’5’ } (the default choice for RAFT), (2) {
’5’ } (viz. max(Y)), (3) { ’1’,’9’ } (the smallest and largest digit in V), (4) { ’4’, ’5’ } (the two
largest digits in Y for all datasets), (5) { ’7’,’8’,’9’ } (the two largest digits in V).

In Table 5, we report the results for different choices for Ygrid. We find that, aligned with Lemma 3,
limiting the grid does not significantly impact the results. However, when comparing the number of
steps to convergence (see Table 12 in Appendix), we find that the default choice (1) in most cases
tends to converge faster to the best solution than other choices. One explanation for this finding is
the following. As shown by Lukasik et al. (2024), the choice of { ’1’, ’2’, ’3’, ’4’, ’5’ } yields
a reasonable result for the zero-shot MALI approach, and thus it provides a good starting point for
fine-tuning. Recall that the zero-shot MALI corresponds to the RAFT approach at step 0 of training,
since the predictors for each are equivalent.

Sensitivity to the grid token indices The next question we pose is about the importance of strictly
sticking to numeric tokens: what would happen if the RAFT predictor ŷRAFT(x) used non-numeric
tokens? To analyze this question, let us consider a more general form of the predictor:

ŷRAFT−NN(x) =
∑

y∈Ygrid

p(token(y) | x) · y, (11)

where token(y) ∈ V denotes a token of choice corresponding to the numerical target y.

We keep Ygrid as composed of the digits { ’1’, ’2’, ’3’, ’4’, ’5’ }, and use the predictor in
Equation 11 with the following choices for tokens: (1) token for each digit becomes an alphabet token
starting with ’a’ and ending with ’a’, (2) each token is a digit (i.e., ’1’ becomes ’5’, ’2’ becomes
’4’), (3) we only consider digit ’5’. As shown in Table 11 (Appendix), in most settings, the choice
of digits { ’1’, ’2’, ’3’, ’4’, ’5’ } is as performant as any other choice. In certain settings, we even
find a large drop in performance (e.g., the choice of characters or months). However, by enlarge, we
find the results do not worsen signifanctly when different tokens are used.

6 DISCUSSION AND FUTURE WORK

We introduced regression-aware fine-tuning (RAFT), a new method for fine-tuning decoder-based
LLMs to predict numeric targets. We demonstrated empirically that RAFT can consistently out-
perform existing methods that perform standard log-perplexity fine-tuning, as well as methods that
construct separate predictive heads. An interesting direction for study would be applications of such
techniques to problems like time-series forecasting, as well as problems of ordinal regression.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark,
Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark
Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang,
Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury,
Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry, Christopher A.
Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa Dehghani, Sunipa
Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad
Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari,
Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz,
Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,
Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei Li, YaGuang
Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni,
Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John
Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov,
Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy,
Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov, David R. So,
Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang,
Pidong Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny
Zhou, Slav Petrov, and Yonghui Wu. Palm 2 technical report, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task
1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic Evaluation (SemEval-2017). Association for
Computational Linguistics, 2017. doi: 10.18653/v1/s17-2001. URL http://dx.doi.org/10.
18653/v1/S17-2001.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

David Dukić and Jan Snajder. Looking right is sometimes right: Investigating the capabilities of
decoder-only LLMs for sequence labeling. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Findings of the Association for Computational Linguistics ACL 2024, pp. 14168–14181,
Bangkok, Thailand and virtual meeting, August 2024. Association for Computational Linguistics.
URL https://aclanthology.org/2024.findings-acl.843.

Patrick Fernandes, Daniel Deutsch, Mara Finkelstein, Parker Riley, André Martins, Graham Neubig,
Ankush Garg, Jonathan Clark, Markus Freitag, and Orhan Firat. The devil is in the errors: Leverag-
ing large language models for fine-grained machine translation evaluation. In Philipp Koehn, Barry
Haddow, Tom Kocmi, and Christof Monz (eds.), Proceedings of the Eighth Conference on Machine
Translation, pp. 1066–1083, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.wmt-1.100. URL https://aclanthology.org/2023.wmt-1.100.

Gemini Team et al. Gemini: A family of highly capable multimodal models, 2024.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-constrained decoding
for structured NLP tasks without finetuning. In The 2023 Conference on Empirical Methods in
Natural Language Processing, 2023. URL https://openreview.net/forum?id=KkHY1WGDII.

11

http://dx.doi.org/10.18653/v1/S17-2001
http://dx.doi.org/10.18653/v1/S17-2001
https://aclanthology.org/2024.findings-acl.843
https://aclanthology.org/2023.wmt-1.100
https://openreview.net/forum?id=KkHY1WGDII

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and es-
timation. Journal of the American Statistical Association, 102(477):359–378, 2007. doi:
10.1198/016214506000001437. URL https://doi.org/10.1198/016214506000001437.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
zero-shot time series forecasters, 2023.

Sameer Jain, Vaishakh Keshava, Swarnashree Mysore Sathyendra, Patrick Fernandes, Pengfei Liu,
Graham Neubig, and Chunting Zhou. Multi-dimensional evaluation of text summarization with
in-context learning. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of
the Association for Computational Linguistics: ACL 2023, pp. 8487–8495, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.537. URL
https://aclanthology.org/2023.findings-acl.537.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. Smart:
Robust and efficient fine-tuning for pre-trained natural language models through principled regu-
larized optimization. arXiv preprint arXiv:1911.03437, 2019.

Janez Kaiser, Bogomir Horvat, and Zdravko Kacic. A novel loss function for the overall risk
criterion based discriminative training of hmm models. In 6th International Conference on Spoken
Language Processing (ICSLP 2000), pp. vol. 2, 887–890, 2000. doi: 10.21437/ICSLP.2000-412.

Tom Kocmi and Christian Federmann. Large language models are state-of-the-art evaluators of
translation quality. In Mary Nurminen, Judith Brenner, Maarit Koponen, Sirkku Latomaa, Mikhail
Mikhailov, Frederike Schierl, Tharindu Ranasinghe, Eva Vanmassenhove, Sergi Alvarez Vidal,
Nora Aranberri, Mara Nunziatini, Carla Parra Escartín, Mikel Forcada, Maja Popovic, Carolina
Scarton, and Helena Moniz (eds.), Proceedings of the 24th Annual Conference of the European
Association for Machine Translation, pp. 193–203, Tampere, Finland, June 2023. European Asso-
ciation for Machine Translation. URL https://aclanthology.org/2023.eamt-1.19.

Zongxi Li, Xianming Li, Yuzhang Liu, Haoran Xie, Jing Li, Fu lee Wang, Qing Li, and Xiaoqin
Zhong. Label supervised llama finetuning, 2023. URL https://arxiv.org/abs/2310.01208.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 1950–1965. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf.

Tiedong Liu and Bryan Kian Hsiang Low. Goat: Fine-tuned LLaMA outperforms GPT-4 on arithmetic
tasks, 2023.

Michal Lukasik, Harikrishna Narasimhan, Aditya Krishna Menon, Felix Yu, and Sanjiv Kumar.
Metric-aware llm inference for regression and scoring, 2024. URL https://arxiv.org/abs/
2403.04182.

Sichun Luo, Yuxuan Yao, Bowei He, Yinya Huang, Aojun Zhou, Xinyi Zhang, Yuanzhang Xiao,
Mingjie Zhan, and Linqi Song. Integrating large language models into recommendation via mutual
augmentation and adaptive aggregation, 2024. URL https://arxiv.org/abs/2401.13870.

Ali Naseh, Kalpesh Krishna, Mohit Iyyer, and Amir Houmansadr. Stealing the decoding algorithms
of language models. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’23, pp. 1835–1849, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400700507. doi: 10.1145/3576915.3616652. URL
https://doi.org/10.1145/3576915.3616652.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.),
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
188–197, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1018. URL https://aclanthology.org/D19-1018.

12

https://doi.org/10.1198/016214506000001437
https://aclanthology.org/2023.findings-acl.537
https://aclanthology.org/2023.eamt-1.19
https://arxiv.org/abs/2310.01208
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
https://arxiv.org/abs/2403.04182
https://arxiv.org/abs/2403.04182
https://arxiv.org/abs/2401.13870
https://doi.org/10.1145/3576915.3616652
https://aclanthology.org/D19-1018

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Made Nindyatama Nityasya, Haryo Wibowo, Alham Fikri Aji, Genta Winata, Radityo Eko Prasojo,
Phil Blunsom, and Adhiguna Kuncoro. On “scientific debt” in NLP: A case for more rigour
in language model pre-training research. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 8554–8572, Toronto, Canada, July 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.acl-long.477. URL https://aclanthology.
org/2023.acl-long.477.

OpenAI et al. GPT-4 technical report, 2023.

Rohit Prabhavalkar, Tara N. Sainath, Yonghui Wu, Patrick Nguyen, Zhifeng Chen, Chung-Cheng Chiu,
and Anjuli Kannan. Minimum word error rate training for attention-based sequence-to-sequence
models. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4839–4843, 2018. doi: 10.1109/ICASSP.2018.8461809.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu,
Donald Metzler, Xuanhui Wang, and Michael Bendersky. Large language models are effective text
rankers with pairwise ranking prompting, 2023.

Muhammad Qorib, Geonsik Moon, and Hwee Tou Ng. Are decoder-only language models better
than encoder-only language models in understanding word meaning? In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics
ACL 2024, pp. 16339–16347, Bangkok, Thailand and virtual meeting, August 2024. Association
for Computational Linguistics. URL https://aclanthology.org/2024.findings-acl.967.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Matt Shannon. Optimizing expected word error rate via sampling for speech recognition, 2017. URL
https://arxiv.org/abs/1706.02776.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia
Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris
Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,
Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary
Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra,
Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed,
Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,
Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep
Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh
Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Perrin, Sébastien M. R. Arnold,
Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy
Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas
Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun
Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe
Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral, Zoubin

13

https://aclanthology.org/2023.acl-long.477
https://aclanthology.org/2023.acl-long.477
https://aclanthology.org/2024.findings-acl.967
https://arxiv.org/abs/1706.02776

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol Vinyals,
Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Sebastian
Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi, and Alek Andreev.
Gemma 2: Improving open language models at a practical size, 2024. URL https://arxiv.org/
abs/2408.00118.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Robert Vacareanu, Vlad Andrei Negru, Vasile Suciu, and Mihai Surdeanu. From words to numbers:
Your large language model is secretly a capable regressor when given in-context examples. In
First Conference on Language Modeling, 2024a. URL https://openreview.net/forum?id=
LzpaUxcNFK.

Robert Vacareanu, Vlad-Andrei Negru, Vasile Suciu, and Mihai Surdeanu. From words to numbers:
Your large language model is secretly a capable regressor when given in-context examples. arXiv
preprint arXiv:2404.07544, 2024b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of NeurIPS 2017, 2017.

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, Zehai He, Yuyi Guo, Jinfeng Bai, and Jie Tang.
Gpt can solve mathematical problems without a calculator, 2023.

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Pan, and Lidong Bing. Sentiment analysis in the era
of large language models: A reality check. In Kevin Duh, Helena Gomez, and Steven Bethard
(eds.), Findings of the Association for Computational Linguistics: NAACL 2024, pp. 3881–3906,
Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.findings-naacl.246. URL https://aclanthology.org/2024.findings-naacl.246.

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui, Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and
Michael Bendersky. Rankt5: Fine-tuning t5 for text ranking with ranking losses. In Proceedings
of the 46th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’23, pp. 2308–2313, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9781450394086. doi: 10.1145/3539618.3592047. URL https://doi.org/10.
1145/3539618.3592047.

A RELATED WORKS

Generative models have been successfuly applied to number prediction, where a number is generated
token by token in an autoregressive manner. For example, Gruver et al. (2023) considered it in a
zero-shot learning setup for time series prediction, Vacareanu et al. (2024a) experimented with zero-
shot regression problems, and Liu & Low (2023); Yang et al. (2023) considered the autoregressive
finetuning over numerical targets applied to arithmetic tasks. The importance of tokenizing the
numerical targets into individual digits has been raised by previous works (Liu & Low, 2023; Yang
et al., 2023).

Encoder-based models (e.g., BERT) relying on the masked language modeling pretraining tasks have
been primarily employed to discriminative tasks (including classification and regression) (Devlin
et al., 2019). Decoder-based large language models (LLMs) (e.g., GPT, LLaMa) on the other hand,
mostly relying on the next-token prediction pretraining task, showed state of the art results across a
range of generative tasks. (OpenAI et al., 2023; Anil et al., 2023; Touvron et al., 2023; Gemini Team
et al., 2024)

While there is an on-going research regarding whether the encoder or decoder architecture is better
tailored to predictive tasks (Nityasya et al., 2023; Li et al., 2023; Dukić & Snajder, 2024; Qorib et al.,
2024), in this work we focus on the question of how do we best apply decoder models to predictive
tasks?

14

https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://openreview.net/forum?id=LzpaUxcNFK
https://openreview.net/forum?id=LzpaUxcNFK
https://aclanthology.org/2024.findings-naacl.246
https://doi.org/10.1145/3539618.3592047
https://doi.org/10.1145/3539618.3592047

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B ADDITONAL THEORETICAL RESULTS

B.1 PROOF FOR LEMMA 1

Proof. Pick any ε > 0. Recall that N .
= max(Y). Consider a distribution P such that, for a

given example x ∈ X, P(0|x) = 1+0.5ε
2 , P(N |x) = 1−0.5ε

2 , and all other targets attain probability
0. Next, consider the model distribution: p(0|x) = 1−0.5ε

2 , p(N |x) = 1+0.5ε
2 , and all other tar-

gets attain probability 0. Then, we get: ‖P(·|x)− p(·|x)‖1 = ε, and (ŷmode(x)− Ey∗∼P[y∗])
2

=(
N
2

)2 (
1 + ε

2

)2
.

B.2 PROOF FOR LEMMA 2

Proof. Pick any ε > 0. Recall that N .
= max(Y). Consider a distribution P such that, for a given

example x ∈ X, P(0|x) = 1+0.5ε
2 , P(N |x) = 1−0.5ε

2 , and all other targets attain probability 0. Next,
consider the model distribution: p(0|x) = 1−0.5ε

2 , p(N |x) = 1+0.5ε
2 , and all other targets attain

probability 0. Then, we get: ‖P(·|x)− p(·|x)‖1 = ε, and (Ey∼p[y]− Ey∗∼P[y∗])
2

=
(
εN
2

)2
.

B.3 PROOF FOR LEMMA 3

Proof. For simplicity, we avoid explicitly stating conversions from float to string, and vice versa. For
any x, we wish to minimize:

Ey∗∼P(·|x)


 ∑
y∈Ygrid

p(y|x) · y − y∗
2
 .

Equating the derivative w.r.t. p(y|x) to 0, we derive the first-order condition for optimality:

2 · Ey∗∼P(·|x)

 ∑
y′∈Ygrid

p(y′|x) · y′ − y∗
 · y = 0,∀y ∈ Ygrid.

So the optimal solution is achieved when:∑
y′∈Ygrid

p(y′|x) · y′ = Ey∗∼P(·|x)[y∗].

Under the conditions in the lemma (the smallest and largest numbers in Y are present in Ygrid),
there exists a probability distribution p∗(y|x) such that ŷMALI(x;Ygrid) =

∑
y∈Ygrid

p∗(y | x) · y =

Ey∗∼P(·|x)[y∗], thus satisfying the condition for optimality.

B.4 GENERAL VERSION OF LEMMA 5

Lemma 4. The minimizer of the following objective:

Ey∗∼p∗(·|x)Ey∼p(·|x) [`(y∗, y)] ,

for a loss function ` : Y × Y → R+, is a one-hot distribution over targets such that all probability
mass is on a target ŷ ∈ Y which minimizes Ey∗∼p∗(·|x) [`(y∗, ŷ)].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Dataset Input prompt Target
range

STSB What is the sentence similarity between the following two sentences measured on a scale of 0 to 5:
{Sentence #1}, {Sentence #2}. The similarity measured on a scale of 0 to 5 with 0 being unrelated
and 5 being related is equal to

[0, 5]

Amazon reviews What is the rating corresponding to the following review in the scale of 1 to 5, where 1 means negative,
and 5 means positive? Only give a number from 1 to 5 with no text. Review: {Review}. Rating:

1, 2, 3,
4, 5

MovieLens-1M Instruction: Predict the rating of a target movie based on the user’s historical movie ratings. Rating
History: {Rating history} Candidate Item: {Candidate Item}. Output:

1, 2, 3,
4, 5

Synthetic (Original
#1 from (Vacareanu
et al., 2024a))

The task is to provide your best estimate for ’output score’ based on ’input score’. Please provide that
and only that, without any additional text. Input score: {Input score}. Output score:

[0, 9]

Table 6: Prompts used for different datasets and the corresponding target ranges. Curly braces denote
inputs specific to an input example. For Synthetic (Original #1 from (Vacareanu et al., 2024a)) we
normalize the targets to correspond to [0, 9].

Dataset Train size Validation size test size

Wireless 10’000 1’500 1’500
Personal care 10’000 1’500 1’500
Music 10’000 1’500 1’500
STSB 4’887 863 1’500
STSB 1k 1’000 863 1’500
MovieLens-1M 797’758 10’145 10’145
Synthetic (Original #1 from (Vacareanu et al., 2024a)) 10’000 1’000 1’000

Table 7: Summary of dataset statistics.

Proof. The proof is elementary. Expanding the above objective:

Ey∗∼p∗(·|x)Ey∼p(·|x) [`(y∗, y)] = Ey∼p(·|x)Ey∗∼p∗(·|x) [`(y∗, y)]

=

∫
y∈Y

Ey∗∼p∗(·|x) [`(y∗, y)] · p(y|x) · dy

≥
∫
y∈Y

Ey∗∼p∗(·|x) [`(y∗, ŷ)] · p(y|x) · dy

= Ey∗∼p∗(·|x) [`(y∗, ŷ)]

=

∫
y∈Y

Ey∗∼p∗(·|x) [`(y∗, y)] · p(y|x) · dy,

where the third step follows from the fact that ŷ minimizes Ey∗∼p∗(·|x) [`(y∗, ·)]; on the final step,
p(·|x) is a probability distribution that has a point mass on ŷ.

C ADDITIONAL DETAILS

In Table 6 we report the prompts we used in our experiments, and in Table 7 we report the dataset
statistics.

We update all parameters during the fine-tuning. We summarize specific settings below. For Gemma-2,
we use the following settings.

• We use dropout rate 0.1 and batch size 16.
• We train for 200k steps and select the best step using the held out validation set (see Table 7

for details on the train/test/validation splits).
• We use a constant learning rate schedule. We select the learning rate value over the validation

set from the values: 1e-4, 1e-5, 1e-6.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Method/ablation RMSE

sampled regression aware (Definition (2)) 0.98
regression aware (Definition (1)) 0.40

Table 8: Root mean squared error (RMSE) on STSB across regression aware approaches and their
variants on Gemma-2 9B.

• We use the Adafactor optimizer to save memory during the fine-tuning (we find Adam to not
perform better). The parameters for Adafactor are: ε1 =1e-30, ε2 =1e-3, decay rate = 0.8.

For PaLM-2, we use the above settings, except we use batch size 64 and dropout rate 0.0, and train
for 5k steps and report the results from the last checkpoint.

D COMPARISON TO MBR-BASED FINE-TUNING

The RAFT loss may be contrast against ideas in the literature on Minimum Bayes Risk (MBR)
prediction literature (Kaiser et al., 2000; Shannon, 2017; Prabhavalkar et al., 2018), which optimize
non-regression metrics via approximation using sampled model predictions. For the squared loss,
this may be formulated as follows:

Definition 2. Define the sampled regression-aware loss as follows:

`MBR(y∗, p(· | x)) = Ey∼p(·|x)
[
(y∗ − float(y))

2
]
. (12)

Compared to the loss in Equation 9, the key difference is that the expectation over the model outputs
appears outside the square loss. A naïve empirical implementation of this objective requires explicitly
sample responses from the model p(· | x); this can be expensive and incur high variance. As with
ŷMALI(x;Ygrid), one may instead consider a practical variant that approximates the expectation using
a restricted grid of targets Ygrid ⊂ Y:

L̂MBR(p;Ygrid) =
1

N

∑
(x,y∗)∈S

∑
y∈Ygrid

p(str(y) | x) · (y∗ − y)
2 (13)

Even this variant has a notable disadvantage: the minimizer of Equation 13 is a one-hot distribution
that places all its probability mass on one of the targets in Ygrid ⊂ Y:

Lemma 5. Let y∗(x) = Ey∗∼P(·|x) [y∗] denote the Bayes-optimal prediction for input x. We
assume P(· | x) is supported on numerical targets only. The minimizer of the approximate sampled
regression-aware loss in Equation 13 over all model distributions p(· | x) is of the form:

p(y | x) =

{
1 if y = arg miny′∈Ygrid

‖y′ − y∗(x)‖2
0 else

.

Therefore, the quality of the minimizer p(· | x) entirely depends on how well Ygrid approximates the
original target space Y. For example, if Ygrid is a set of integers, the minimizer of Equation 13 will
also be limited to predicting integers, even when the original target space Y contains floating-point
numbers of arbitrary precision. As shown in Lemma 3, RAFT does not suffer from the loss of
precision resulting from the use an approximate target space, and also avoids the high variance
associated with sampling. In Table 8 (Appendix), we experimentally verify better performance of
RAFT over the MBR-based fine-tuning, and unless otherwise stated, we focus our attention to RAFT.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

dataset zero-shot MALI autoregressive autoregressive+MALI predictive head RAFT

Wireless 0.87 1.40 0.83 0.61 0.50 0.44
Personal care 0.94 1.72 0.89 0.61 0.50 0.47
Music 1.26 2.45 1.23 0.64 0.47 0.49
STSB 1k 1.29 1.03 0.60 0.64 0.56 0.55
STSB 1.29 1.03 0.62 0.58 0.51 0.48

Table 9: Comparison of RMSE across datasets for Gemma-2 27B. In most cases, RAFT outperforms
all other methods.

D.1 PROOF FOR LEMMA 5

Proof. Notice that:

Ey∗∼P(·|x)
[
Ey∼p(·|x)

[
(y − y∗)2

]]
= Ey∗∼P(·|x)

[∑
y

p(y|x) · (y − y∗)2
]

=
∑
y

p(y|x) · Ey∗∼P(·|x)
[
(y − y∗)2

]
.

Since this is a convex combination, the optimal value is achieved for p to be a one-hot vector with a 1
on the index arg miny Ey∗∼P(·|x)

[
(y − y∗)2

]
. We thus want a y that minimizes:

Ey∗∼P(·|x)
[
(y − y∗)2

]
= Ey∗∼P(·|x)

[
y2 + (y∗)2 − 2 · y · y∗

]
.

Equivalently, we want a y that minimizes:

y2 − 2 · y · Ey∗∼P(·|x) [y∗] .

or equivalently:

y2 − 2 · y · Ey∗∼P(·|x) [y∗] + (Ey∗∼P(·|x) [y∗])2 = (y − Ey∗∼P(·|x) [y∗])2.

E ADDITIONAL EXPERIMENTAL RESULTS

In this section we provide additional experimental results corroborating the findings in the main
paper.

E.1 ADDITIONAL MODELS: GEMMA-2 27B AND THE PALM-2 MODEL FAMILY

We report results on Gemma-2 27B across all dataset in Table 9 and on PALM-2 models on STSB in
Table 10, corroborating the findings of RAFT improving in most settings.

E.2 CHOICES FOR TOKENS IN RAFT

In Table 11 we report results for different choices of tokens in RAFT, and find the default choice to
work best.

E.3 CONVERGENCE SPEED OF RAFT

In Table 12 we report the number of training steps to convergence to the best result on the held out
validation set of different methods. We can see that RAFT with digits ’1’-’5’ it majority of cases
converges faster than other choices for the grid.

In Figure 1, we compare the number of steps to convergence of RAFT and predictive head on STSB.
The figure shows that RAFT converges with fewer number of steps across different percentages of
training data used for training.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

model family model size autoregressive predictive head RAFT

PALM-2 1B 0.79 ± 0.02 0.61 ± 0.01 0.62 ± 0.01
PALM-2 24B 0.63 ± 0.03 0.56 ± 0.00 0.53 ± 0.00

Table 10: Comparison of root mean squared error (RMSE) on STSB across different ULM model
sizes, and across different fine-tuning methods: autoregressive, predictive head and autoregressive
regression aware. Each model is ran for 3 times to obtain standard deviations. For ULM 1B, we find
no difference in the performance of predictive head and RAFT, and both outperform the autoregressive
approach. For ULM 24B, we see a significant improvement from RAFT over both the autoregressive
and the predictive head approaches.

dataset model size digits ’1’–’5’ characters ’a’-’e’ reversed digits ’’January’-’May’’

Wireless 2B 0.47± 0.01 0.48± 0.01 0.48± 0.00 0.83± 0.01

9B 0.45± 0.00 0.46± 0.00 0.46± 0.01 0.47± 0.01

Personal care 2B 0.49± 0.00 0.48± 0.00 0.48± 0.01 0.85± 0.00

9B 0.47± 0.01 0.47± 0.00 0.48± 0.01 0.48± 0.01

Music 2B 0.50± 0.00 0.50± 0.01 0.50± 0.01 0.50± 0.00

9B 0.46± 0.00 0.48± 0.01 0.47± 0.01 0.61± 0.25

Table 11: Comparison of RMSE (mean ± std dev) across variants of RAFT where different tokens
are used for the prediction formula of RAFT. Each experiment repeated for 3 times. In most settings,
the choice of digits ’1’–’5’ is at least as performant as any other choice. In certain settings, we find
a large drop in performance compared to the choice of digits (i.e., months ’January’-’May’.

dataset model size ’1’-’5’ ’5’ ’1’,’9’ ’4’, ’5’ ’7’,’8’,’9’

Wireless 2B 1000 3000 2000 1600 2200
9B 1600 2800 3400 3200 4200

Personal care 2B 2200 2200 2400 1600 2200
9B 4200 2000 6200 400 2400

Music 2B 800 1200 1800 1800 1800
9B 1000 2200 3000 1600 3000

Table 12: Comparison of the number of steps to convergence of RAFT where different number of
numerical targets are used for the grid in RAFT. Results on the Amazon Wireless dataset.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Percentage of Training Data

1000

2000

3000

4000

St

ep
s t

o
Co

nv
er

ge
nc

e

Comparison of Predictive Head and RAFT
Predictive Head
RAFT

Figure 1: Comparison of the number of steps to convergence of RAFT and predictive head, with
different percentage of the training set.

initialiation model size autoregressive predictive head RAFT

Pre-trained
checkpoint

2B 0.018 0.013 0.005
9B 0.017 0.017 0.006

Random
2B 2.536 0.327 1.704
9B 2.536 0.147 1.092

Table 13: The role of initialization to the pre-trained checkpoint on a synthetic regression dataset from
Vacareanu et al. (2024a) (the Original #1 dataset). We compare RMSE across different Gemma model
sizes, and across different fine-tuning methods: autoregressive, predictive head and autoregressive
regression aware. We corroborate our observation from language regression tasks that RAFT improves
over the predictive head approach when initialized from a pre-trained checkpoint, and not when
model weights are initialized randomly.

E.4 ADDITIONAL RESULTS ON SYNTHETIC DATA

For a simple setting, we consider a synthetic regression dataset from Vacareanu et al. (2024a) referred
to as the Original #1 dataset by the authors. We report results in Table 13 and corroborate our
observation from the language regression task experiment that RAFT improves over the predictive
head approach when initialized from a pre-trained checkpoint, and not when the model weights
are initialized randomly (see Table 4). This provides additional support for our hypothesis that the
alignment of RAFT to the next-token prediction pre-training task is the underlying reason for its
better performance over the predictive head.

E.5 ADDITIONAL RESULTS ON MOVIELENS-1M

We ran additional experiments on the movie recommendation problem on the MovieLens-1M dataset
with Gemma-2 2B model. We use AdamW optimizer and sweep learning rates from the range {1e-4,
1e-5, 1e-6}. We use a cosine decay schedule for the learning rate, 10k steps of warmup from 1e-8
learning rate. We report results in Table 14 and again find RAFT to improve over both the predictive
head and autoregressive methods.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Method RMSE

Autoregressive 0.95
Predictive head 0.91
RAFT 0.89

Table 14: Root mean squared error (RMSE) on MovieLens-1M across approaches on Gemma-2 2B.

Method/ablation Parameter count RMSE Pearson corr. Spearman corr.

RoBERTa Base CLS 110M 0.64 90.84 90.59
RoBERTa Large CLS 356M 0.59 91.99 92.02
RoBERTa Large mean-pooling 356M 0.63 91.65 91.56
RoBERTa Large mean-pooling freeze 356M 1.08 72.72 74.16
RoBERTa Large CLS freeze 356M 1.30 56.48 54.76

SMART BERT (Jiang et al., 2019) 356M - 90.00 89.40
SMART RoBERTa (Jiang et al., 2019) 356M - 92.80 92.60

Gemma-2 2B RAFT 2B 0.54 93.55 93.22
Gemma-2 9B RAFT 9B 0.51 94.30 94.18

Table 15: Root mean squared error (RMSE) on STSB across baselines. Results from SMART (Jiang
et al., 2019) taken as reported in the paper (RMSE was not reported).

E.6 COMPARISON TO ENCODER-BASED BASELINES

In Table 15, we report results with additional baselines that use a prediction head over RoBERTa
representation for the input sequence. We include: mean-pooling and CLS token variants, and both
frozen RoBERTa weights and unfrozen weights in the fine-tuning. We also include the SMART
method (Jiang et al., 2019). In keeping with previous work, in addition to RMSE, we also report
performance on the Pearson and Spearman metrics for STSB (Jiang et al., 2019) (where available).
We find RAFT to surpass all the included baselines.

E.7 FURTHER ABLATING THE RAFT LOSS: DIFFERENT CHOICES FOR LOSS, NORMALIZATION
AND TOKEN INITIALIZATION

In Table 16 we compare the MSE loss to distillation style log loss on STSB. The target is scaled to be
between 0 and 1 for this set of experiments. The log loss is defined as−y∗ log p1−(1−y∗) log(1−p1)
where p1 is the probability of digit ’1’. We find that both the MSE loss and the log loss yield similar
results, and that scaling the range of the targets does not negatively affect the performance.

We next analyze whether enforcing the probabilities over the grid to sum to 1 (by normalizing them by
the sum of the probabilities of all numbers in Ygrid) can improve the performance of RAFT. Table 17
shows that applying normalization to the probabilities for numbers in Ygrid does not significantly
affect the results.

In Table 18, we compare three initialization methods for the embedding of numbers in autoregressive
and RAFT methods. The tokens used are of granularity of 0.1 for both autoregressive and RAFT
methods, except for RAFT ’1’-’5’, which use digits from 1 to 5 to construct the grid (granularity
1.0). Overall, we find that RAFT is less sensitive to the initialization method than the autoregressive
approach.

In Table 19, we experiment with random initialization for the tokens in the RAFT grid. We find
random initialization to lead to worse results compared to using pre-trained token embeddings.

We next analyze the impact of the choice of Ygrid in computing the MALI predictor in Equation 5. To
this end, we vary the granularity of Ygrid by constructing a list of equally spaced numbers covering

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

unscaled targets targets scaled to [0, 1]

model family model size predictive head RAFT RAFT ’0’ and ’1’ log loss

PALM-2 1B 0.61 ± 0.01 0.62 ± 0.01 0.63 ± 0.01 0.63 ± 0.01
PALM-2 24B 0.56 ± 0.00 0.53 ± 0.00 0.54 ± 0.01 0.53 ± 0.00

Table 16: Comparision of RMSE (mean ± std dev) on the STSB dataset for MSE loss and log loss
when the target is scaled to be between 0 and 1. The MSE loss uses digit ’0’ and ’1’ to compute
the predicted value. The log loss is in the form −y∗ log p1 − (1− y∗) log(1− p1) where p1 is the
probability of digit ’1’.

model family model size not normalized normalized

PALM-2 1B 0.63 ± 0.00 0.63 ± 0.02
PALM-2 24B 0.53 ± 0.00 0.53 ± 0.01

Table 17: The effect of normalization of grid token probabilities in RAFT on the STSB dataset.

the range of Y. For example, choosing granularity to be 0.1 when Y = [0, 5] yields Ygrid = {’0.0’,
’0.1’, ’0.2’, . . . , ’4.9’, ’5.0’ }. In our implementation, all numbers in Ygrid are represented by
single tokens that we add to the vocabulary. We initialize the token embedding with either the First or
the Average method. In the First method, we initialize the embedding with the embedding of the first
digit of the number (e.g. use token ’0’ embedding for the number ’0.1’). In the Average method, we
initialize the embedding with the average of the embedding from the constituent tokens (e.g. use the
average embeding of token ’0’, ’.’ and ’1’ for the number ’0.1’.) We report the results on the STSB
datasets with PALM-2 1B model in Table 20 and find no significant difference in the results across
different choices for the granularity of Ygrid.

Additionally, in Table 20 we also include the autoregressive method utilizing additional tokens from
Ygrid as constructed with the methodology outlined above (i.e., with varying granularity). Here,
contrary to RAFT, we find the initialization method to affect the results, with First performing better
than Average. Note that the autoregressive method is equivalent to the generative classification
from (Fernandes et al., 2023), where the classes correspond to the numbers from the grid.

Lastly, we would like to note that in the case of generative classification, there is a trade-off between
how fine-grained the grid is and how many examples per token are observed during training. In
particular, if the classes are too coarse, we observe a loss in performance. On the other hand, if
the classes are too fine-grained, there may be insufficient training examples per label to learn the
embeddings for new tokens. For example, with granularity 0.05, 17 out of the 101 numbers in the
grid do not appear in the training data. This can also lead to a loss in performance.

E.8 DISTRIBUTION OVER TOKENS IN THE MALI PREDICTOR

We next investigate the distribution over tokens in the MALI predictor. We find that, while the error
decreases with training, the entropy increases after RAFT training, as we show in Figure 2. This
corresponds to the model on average spreading the probabilities over tokens more than prior to fine-
tuning, as shown for specific examples in Figure 3. We posit this to be beneficial, and indeed, RAFT
fine-tuning does not restrict uncertainty of the model, contrary to the MBR fine-tuning (compare
Lemma 3 and Lemma 5).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

initialization autoregressive RAFT RAFT ’1’-’5’

Zero 1.20 ± 0.01 0.62 ± 0.00 0.63 ± 0.00
First 0.80 ± 0.02 0.63 ± 0.00 0.62 ± 0.02
Average 0.98 ± 0.01 0.64 ± 0.01 0.61 ± 0.01

Table 18: Comparison of different initialization methods for embeddings for tokens corresponding
to numbers in autoregressive and RAFT methods on STSB dataset with PALM-2 1B model. We
consider granularity 0.1 for constructing the tokens for autoregressive and RAFT reported in the first 2
columns, whereas the final column reports RAFT with tokens 1 to 5. Zero denotes initialization with
0 values, First denotes the initialization with the embedding corresponding to the first token of the
number (e.g. use token ’0’ embedding for the number ’0.1’), and Average denotes the initialization
with the embedding corresponding to the different tokens in the number (e.g. average embeddings
for tokens ’0’, ’.’ and ’1’ when initializing the embedding for the number ’0.1’). RAFT is less
sensitive to the initialization method. We find the performance does not significantly worsen with
different initialization methods compared to using the pre-trained token embeddings at initialization
(see Table 16).

RAFT with ’1’-’5’ RAFT with ’5’
baseline random baseline random

PaLM-2 1B 0.63 ± 0.00 0.66 ± 0.02 0.62 ± 0.01 0.64 ± 0.01

Table 19: RMSE across different initialization (baseline and random) of the tokens in RAFT. We find
random initialization of tokens in the RAFT grid to hurt the performance.

autoregressive RAFT ’1’-’5’
granularity First Average First Average

0.05 0.85 ± 0.01 1.11 ± 0.01 0.61 ± 0.01 0.63 ± 0.00
0.1 0.80 ± 0.02 0.98 ± 0.01 0.63 ± 0.00 0.64 ± 0.01
0.2 0.83 ± 0.02 0.89 ± 0.01 0.64 ± 0.01 0.66 ± 0.02
0.5 0.84 ± 0.01 0.87 ± 0.01 0.63 ± 0.01 0.63 ± 0.02
1.0 0.81 ± 0.01 0.85 ± 0.01 0.62 ± 0.02 0.61 ± 0.01

Table 20: Comparison of RMSE on autoregressive and RAFT methods with different granularity
of tokens. We append tokens that represent numbers with various granularity. For example, with
granularity 0.05, the tokens are ’0.00, ’0.05, ’0.10’, . . . , ’5.00’. For autoregressive, this is equivalent
to generative classification method from (Fernandes et al., 2023). First and Average denotes different
ways to initialize the embeddings of the tokens, with details described in the caption of Table 18.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 2: The histogram of per-example change (after vs. before fine-tuning) in entropy over the
probabilities for the digits in the RAFT predictor. The entropy on average increases after the RAFT
fine-tuning, meaning that the probabilities are overall more spread over the digits than prior to RAFT
fine-tuning.

(a) Example #1

(b) Example #2

Figure 3: Comparison of the distribution over digit tokens in RAFT predictor (Gemma-2 2B on
STSB) before and after fine-tuning. We find the entropy over the digit token probabilities overall
increases after fine-tuning with the RAFT objective.

24

