Process-Supervised Reinforcement Learning for Code Generation

Anonymous ACL submission

Abstract

Existing reinforcement learning strategies
based on outcome supervision have proven ef-
fective in enhancing the performance of large
language models(LLMs) for code generation.
While reinforcement learning based on process
supervision has shown great promise in han-
dling multi-step reasoning tasks, its effective-
ness in code generation remains largely under-
explored and underjustified. The primary obsta-
cle stems from the resource-intensive nature of
constructing high-quality process-supervised
data, which demands substantial human ex-
pertise and computational resources. In re-
sponse to this challenge, we propose a "state-
ment mutation/refactoring-compile and exe-
cution verification" strategy: mutating and
refactoring code line-by-line through a teacher
model, and utilizing compiler execution results
to automatically label each line, resulting in
line-by-line process-supervised data, which is
pivotal for training a process-supervised reward
model. The trained reward model is then inte-
grated into the PRLCoder framework, followed
by experimental validation on several bench-
marks. Experimental results demonstrate that
process-supervised reinforcement learning sig-
nificantly surpasses methods relying solely on
outcome supervision. Notably, in tackling com-
plex code generation tasks, process-supervised
reinforcement learning shows a clear advan-
tage, ensuring both the integrity of the code
generation process and the correctness of the
generation results.

1 Introduction

Automatic code generation refers to the process of
writing code automatically through algorithms or
programs. Traditionally, automatic code generation
has relied primarily on rule-driven programming
tools and template-based code generators (Little
and Miller, 2007; Gvero and Kuncak, 2015). These
tools are typically only capable of handling sim-

ple, highly repetitive tasks and required develop-
ers to precisely define rules and logic. In recent
years, with the emergence of LLMs based on deep
learning and natural language processing (such as
GPT (Brown, 2020; Floridi and Chiriatti, 2020;
Achiam et al., 2023) and LLaMA (Touvron et al.,
2023a,b; Dubey et al., 2024)), the capabilities of
automatic code generation have been substantially
improved. These models can understand natural
language descriptions and automatically generate
corresponding code (Li et al., 2023), even solving
complex programming problems (Allamanis et al.,
2018; Zan et al., 2022), thereby greatly enhancing
development productivity.

To better align models with complex human de-
mands, reinforcement learning (RL) has played
a crucial role by integrating human feedback
(Ouyang et al., 2022; Lee et al., 2023). The strength
of RL lies in its ability to indirectly optimize non-
differentiable reward signals, such as CodeBLEU
scores (Ren et al., 2020) and human preferences
(Wu et al., 2023), through policy optimization
and value function approximation (Williams et al.,
2017; Dhingra et al., 2016). However, obtaining the
required human feedback often demands significant
human effort and resources (Casper et al., 2023).
In code generation tasks, reinforcement learning
demonstrates unique advantages: language models
can automatically utilize compiler feedback from
unit tests as reward signals, reducing excessive re-
liance on human feedback (Zhang et al., 2023; Le
et al., 2022; Wang et al., 2022; Shojaee et al., 2023).
This approach not only efficiently optimizes the
output but also significantly enhances the model’s
performance in code generation tasks.

Although these methods have achieved great suc-
cess, they predominantly rely on compiler feed-
back signals from entire code segments to train
the reward model, namely Outcome-Supervised
Reward Model (ORM), raising the sparse reward
space issue (Russell and Norvig, 2016; Amodei

Step2
Train reward models

Stepl:
Train a supervised policy

Step3
Optimize the policy using PPO

update policy

Finetuned

Model

with rewards

Pretrained Finetuned
Model Model
split
SFT Problem Solution Code
Program Snippets

=

Compiler

Finetuned
Model

Figure 1: Illustrating the overall framework of our PRLCoder with three-phase structure: supervised training, reward
model training (including ORM for comparison), and reinforcement learning employing the trained reward model.

et al., 2016), where the policy has no idea how well
it is performing during the training before reach-
ing the ultimate output. In this context, Process-
Supervised Reward Model (PRM) (Uesato et al.,
2022; Lightman et al., 2023) offers a new perspec-
tive. This model provides step-level feedback for
multi-step reasoning results generated by language
models, helping to identify and correct errors in in-
termediate steps, rather than focusing solely on the
final outcome. However, the current PRM has only
been validated in the field of logical reasoning and
has yet to demonstrate its effectiveness in code gen-
eration. Moreover, given the high cost of manual
labeling required to construct datasets for training
PRMs, efficiently building a process-supervision
dataset tailored for code generation remains a criti-
cal challenge.

In this paper, we introduce PRLCoder, an in-
novative framework leveraging process-supervised
reinforcement learning to enhance code genera-
tion, as depicted in Figure 1, which outlines its
three-phase structure: supervised training, reward
model training (including ORM for comparison),
and reinforcement learning employing the trained
reward model. Importantly, we design a "statement
mutation/refactoring-compile and execution verifi-
cation" strategy to automatically generate process-
supervised data. To be specific, for each line of the
code, we adopt a teacher model to perform muta-
tion and refactoring operations, where mutations
produce code with different functionality from the

original statement, while refactoring aims to pre-
serve the statement’s functionality as much as pos-
sible. The modified block of code is then verified
by a compiler, and based on the outcome of test
cases, the samples are labeled as either "Positive"
or "Negative". We observe that the test cases in the
MBPP dataset exhibit low coverage and are unable
to accurately label the sample code. To address
this, we extend the test cases to more effectively
leverage compiler feedback signals. Finally, we uti-
lize the trained PRM to assign fine-grained rewards
to each line of code, enabling reinforcement learn-
ing. This method not only significantly reduces the
time and cost required for manual annotation in
traditional process supervision but also eliminates
errors and biases in manual labeling. Additionally,
the accuracy of fine-grained rewards makes the
model more efficient in environment exploration,
enhancing the stability of the training process.

We evaluate our approach on two widely used
benchmark datasets, MBPP and HumanEval. Ex-
perimental results indicate that PRLCoder im-
proved the pass rate by 10.5% compared to the
base model and by 5.1% compared to outcome-
supervised reinforcement learning, with more sig-
nificant performance gains in tasks involving com-
plex code generation. In summary, our main con-
tributions are as follows:

1) To the best of our knowledge, we present the
first attempt to investigate process-supervised
reinforcement learning in the realm of code

generation, exploring its potential to enhance
the performance.

2) To address the challenge of the resource-
intensive manual labeling process, we in-
troduce a "mutation/refactoring-verification"
strategy to automatically generate high-
quality process-supervised data for training
reward models. Additionally, we supplement
the test cases in the MBPP dataset to improve
the accuracy of line-level labeling.

3) Empirically we demonstrate that process su-
pervision outperforms outcome supervision
in code generation, achieving 4.4% improve-
ment with more significant performance gain
in tasks involving complex code generation.

2 Related Work

2.1 Pretrained LLMs for Code

As LLMs begin to exhibit early signs of artificial in-
telligence, their applications have extended beyond
text processing. In the domain of code genera-
tion, LLLMs, trained on extensive corpora of code
and natural language, are capable of generating
code that is coherent both syntactically and se-
mantically (Jiang et al., 2024; Guo et al., 2020;
Li et al., 2022; Nijkamp et al., 2022). Among
them, encoder models like CodeBERT (Feng et al.,
2020) focus on understanding code structure and se-
mantic relationships, encoder-decoder models like
CodeT5 (Wang et al., 2021) specialize in translat-
ing high-level language descriptions into concrete
code, while decoder-only models like DeepSeek-
Coder (Guo et al., 2024) generate syntactically cor-
rect and semantically coherent code through au-
toregressive methods. Additionally, researchers in
the coding community have applied instructional
tuning to their models. Wang et al. (2023) fine-
tuned CodeT5+ using 20,000 instruction data gener-
ated by InstructGPT, resulting in InstructCodeT5+
with enhanced generalization capabilities. How-
ever, these models largely overlook the unique se-
quential features of code, exhibiting limited perfor-
mance in handling complex issues and in cross-task
generalization and scalability (Zhang et al., 2024).

2.2 RL based on Compiler

Reinforcement learning is a method of learning
through "trial and error," aiming to enable an agent
to interact with the environment and receive re-
wards to guide behavior and maximize cumulative

rewards (Mnih, 2013; Mnih et al., 2015; Van Has-
selt et al., 2016). Given the requirement for both
syntactic and functional correctness in code gener-
ation tasks, leveraging compiler feedback signals
from unit tests for reinforcement learning has be-
come a more competitive strategy. CodeRL (Le
et al., 2022) takes advantage of this by introduc-
ing a critic network to predict the functional cor-
rectness of generated programs, providing dense
feedback signals to the code generation model
(i.e., the actor network) for reinforcement learn-
ing. Similarly, CompCoder (Wang et al., 2022)
and PPOCoder (Shojaee et al., 2023) employ the
Proximal Policy Optimization (PPO) algorithm to
train CodeGPT and CodeTS5, respectively, while
RLTF (Liu et al., 2023) uses compiler-generated
error messages and locations to provide more fine-
grained feedback. It constructs an online reinforce-
ment learning framework with multi-granularity
unit test feedback, generating data in real-time
during the training process. However, despite the
progress made by these outcome-supervised rein-
forcement learning methods, they still face chal-
lenges such as sparse reward space and training
instability.

2.3 Process Supervision

Outcome supervision focuses on the final output,
whereas process supervision provides guidance
through intermediate steps (Uesato et al., 2022;
Luo et al., 2024; Wang et al., 2024). Lightman
et al. (2023) collected a large amount of process-
supervised data and constructed the PRM800OK
dataset. The results demonstrated that process su-
pervision significantly outperformed outcome su-
pervision in solving problems in the MATH dataset.
Wau et al. (2024) conducted further experiments us-
ing fine-grained human feedback as explicit train-
ing signals for tasks such as detoxification and long-
form question answering. Their study showed that
fine-grained feedback provides more effective su-
pervision signals compared to holistic feedback on
long texts. In the coding domain, Ma et al. (2023)
modified atomic operators by employing AST to
train a reward model, which was applied in multi-
step reasoning and proven effective. Therefore, ex-
ploring more optimized mutation/refactoring mech-
anisms, training more reliable PRM, and further
investigating the potential advantages of reinforce-
ment learning based on process supervision over
outcome supervision in the coding domain are of
great importance.

Test case augment

=0 split by row [===") [l [===" |jne by line $§=2% Mutation | mmmm] |m==) [===" verification El
— Mask Ek — Refactoring | Mask Mask | |me— = Q--;
Code Positive Teacher Model Transformed Compiler
Snippets Example (Deepseek-Coder) Code
Problem Input Prompt

Write a python function to replace multiple occurence of character by

single.

Solution Program Code

def replace(string, char)
pattern = char + "{2,}"
string = re.sub(pattern, char, string)
return string

pattern = char + "{2,}"

def replace(string, char):

def replace(string, char):

Please mutate (refactor) the above line of code so that
it has a different (same) effect as the original code:
{ Line of code }

(note that variable names must not be modified,
allowing for only one line of output)

Mutated code

def replace(string, char)

Test List [PEiEEErT = char + "{2,}" pattern = char + '{3,}" Negative
string = re.sub(pattern, char... string = re.sub(pattern, '', string)
assert replace(’'peep’,’e’)=="pep’ return string[::-1
assert replace('Greek’,'e")=="Grek’ def replace(string, char):
assert replace('Moon’, o')=="Mon" pattern = char + '{2,}’ Refactored code
Add to: string = re.sub(pattern, char... .
assert replace('aaabcaa',’'a') == 'abca’ return string def replace(string, char)
attern = f"{char 2,1 iti
Text dl:l'g Positive Etr'in L { H{2,1} Positive

Write a python function to replace multiple occurence of character by single.

re.compile(pattern).sub(char, string)
return string

Figure 2: The schematic diagram of the method for automatically constructing the reward dataset for process
supervision in the field of code generation. The bolded portions represent code statements that have been mutated or
refactored by DeepSeek-Coder-V2, and the subsequent statements will undergo mask processing.

3 Approach

In this section, we will elaborate on the method-
ological details of PRLCoder. By offering more
fine-grained rewards, PRLCoder enables the PPO
reinforcement learning algorithm to explore and
optimize more accurately in code generation.

3.1 Process-Supervised Dataset Construction

Similar to the field of mathematical logic reasoning,
collecting fine-grained human feedback through
manual annotation to construct step-level reward
datasets often requires significant human and ma-
terial resources. To address this, we propose an
innovative approach that leverages a teacher model
and compiler feedback to automatically construct a
process-supervised reward dataset for the domain
of code generation. Figure 2 illustrates a schematic
of the dataset generation process.

Formally, let D = {p;, s;})Y| denotes the code
generation training dataset, where p; represents the
1-th problem description and s; is the correspond-
ing solution program code snippet. Initially, we
leverage this reference code to construct positive
samples. To be specific, we segment the reference
code line by line, resulting in s; = {s;1,- - , sir,; }
with L; being the number of lines. Then for each
line of code, all subsequent lines are masked, and
we directly mark the corresponding label for the
line as ''positive'. In other words, the original ref-

erence code can be directly reformulated as positive
samples for process supervision with the format:
{(pi: sijjj<1), "positive"; 1 =1, L},

Positive samples alone are insufficient for train-
ing reward models; hence, we design a novel strat-
egy to construct negative samples. Specifically for
each line of code, we employ a teacher model to
perform mutate and refactoring operations using
specific prompt examples detailed in Figure 2. The
modified line, along with the remaining code, is
then validated through the compiler. Based on the
compiler feedback, it is labeled as "positive' if it
passes all test cases, or ''negative'' otherwise.

It is worth noting that during this process, we
discover that in the MBPP dataset, the modified
line can still pass all the test cases despite contain-
ing errors for certain problem descriptions. This
issue arises due to insufficient test case coverage.
In order to construct a more precise step-level re-
ward dataset, we expand these test cases. More
details about test case extension can be found in
Section 4.1. Subsequently, we follow the PPO rein-
forcement learning algorithm to optimize both the
policy model and the value model.

3.2 Reward Model Training

Outcome-Supervised Reward Model. ORM
adopts a holistic reward approach, mapping the
overall quality and reliability metrics correspond-

Problem Problem

Write a python function to.

Write a python function to.

Code Code | Code Code
Snippet A Snippet B : Snippet A Snippet B
o o ’ o o
Code Code i Code Code
Snippet C Snippet D ' Snippet C Snippet D

L) 3 L)

I |
-
a L
Teacher Mode.

3 Compiler
O <) |
|
|

v

< n

o® 0 ©

b i Pass Fail Runtime Compile

&

! 1.0 -0.3 Error Error
°>°=°’° : -0.6 -1.0
.

(a)Preference-based ORM (b)Compiler-based ORM

Figure 3: Training of two types of ORM.

ing to the problem description d and the generated
code w into a single scalar reward. Typically, this
reward is only assigned to the final token in the
generated sequence and is defined as follows:

(D

t = .
0, otherwise

0 {Ro(d, w), t=T

where 0 represents the parameters of ORM Rg.
We first use the dataset constructed in the previ-
ous section to train an original ORM. However,
relying solely on this dataset to train the ORM has
limitations: the active learning strategy exhibits a
strong bias towards incorrect answers in the dataset,
thereby diminishing the overall performance of the
model. Thus, we aim to explore alternative ap-
proaches to build a more robust ORM baseline.

Inspired by RLHF, we design a preference-based
ORM. Specifically, for each question, we uniformly
sample multiple code snippets from the generator
and use a teacher model to simulate human anno-
tators ranking them based on code quality, thereby
training the reward model. Moreover, to more com-
prehensively evaluate the advantages and disadvan-
tages of process supervision and outcome super-
vision in the coding domain, we refer to methods
such as CodeRL mentioned earlier. We introduce
the compiler as a source of supervision signals and
use four types of feedback signals generated by
the compiler to optimize the generator model, thus
constructing a compiler-based ORM. Figure 3 il-
lustrates the structures of these two ORM models,
respectively.

Process-Supervised Reward Model. Our PRM
rewards the quality of each code segment, allow-
ing for finer adjustments and feedback at each step.
We divide the code sequence w into k segments
(w1, wy, ..., wy), where w; represents the preced-
ing part of the code sequence. The synchronous
execution concludes at time 73, denoted as a7, =
n’. Within this framework, the reward model as-
signs a reward to each input segment (d, w;), dis-
tributing the highest reward to the final segment of
w. Finally, the reward 7 is defined as:

k
rf =Y Rp(dwi;¢)-1t=T) ()
=1

where ¢ represents the parameters of PRM Rp.
We use the process-supervised dataset constructed
with the "mutation/refactoring-verification" strat-
egy to train our PRM. Under this setting, the PRM’s
training data does not intersect with compiler-based
ORM, making it difficult to compare results di-
rectly. Nevertheless, the PRM and ORM both rep-
resent the optimal results under their respective
training methods.

3.3 Reinforcement Learning Algorithm

PPO (Proximal Policy Optimization) is a reinforce-
ment learning algorithm based on policy gradients.
Its core idea is to limit the magnitude of changes
between the old and new policies to prevent exces-
sively rapid updates (Schulman et al., 2017; Huang
et al., 2024). This is particularly crucial in the code
generation process, as the stability of the generated
results directly impacts the quality and consistency
of the code.

In code generation tasks, the PPO algorithm
first interacts with the environment using the cur-
rent policy 7y, to obtain the state s;, selects an
action a;, and receives a reward r; and other
data. Subsequently, the advantage function A; =
SV e+ AVipls041) — Vip(s0)) is caleu-
lated for each time step, where the value function
Vi (s¢) represents the expected cumulative rewards
from state s;. See Appendix for more details. In
addition, we adopt the method from (Wu et al.,
2021) to add a divergence penalty to each token,
representing the ratio of the old and new policies.
our reward function becomes:

T (at ’St)
7Teold (CLt ’ St)

See Appendix A for more details.

3)

Tt:rf—ﬁlog

4 [Experiments

4.1 Benchmarks

MBPP. To train our PRM, we first select MBPP
(Austin et al., 2021) as the seed dataset. The MBPP
dataset consists of 974 crowdsourced Python pro-
gramming problems. Each problem includes a task
description, a code solution, and three automated
test cases. We adopt the same prompt format as
Austin et al. (2021) to prepare the input sequence:
problem description + "Your code should satisfy
these tests:" + three assertion.

To maximize path coverage and improve the
quality of process-supervised data, we leverage
LLMs to supplement the test cases in the dataset.
The resulting augmented dataset is referred to as
MBPP*. See Appendix B for more details.
HumanEval. To further evaluate the framework
we proposed, we also employ an additional Python
program synthesis dataset of comparable difficulty.
The HumanEval dataset consists of 164 original
programming problems, with some problems being
comparable in difficulty to fundamental software
interview questions. To verify the model’s general-
ization ability, we conduct a comprehensive evalu-
ation of the model on the HumanEval benchmark
test set.

4.2 Settings

Evalution Metric. We follow the method proposed
by Kulal et al. (2019); Chen et al. (2021) to evalu-
ate function correctness using the pass @k metric,
which involves generating k code samples for each
problem. If any of the code samples pass the unit
tests, the problem is considered correctly solved,
and we report the overall proportion of problems
solved. For each task, we generate n > k samples
(in this paper, we used n = 200) and calculate the
number of correct samples that passed the unit tests,
denoted as ¢ < n. The formula used in the paper is:

pass @k := Epyoblems [1 — i)}

()

Implementation Details. @ We fine-tune the
CodeT5+ (Wang et al., 2023) as the policy model.
During the supervised fine-tuning (SFT) phase, due
to the small size of the MBPP training set, we em-
ploy a learning rate of 2e-5 and train the model
for 60 epochs, taking approximately 60 minutes
on a single NVIDIA A800 80G GPU. We select
Unixcoder (Guo et al., 2022) as the base model
for ORM and PRM, training it for 10 epochs with
weight_decay set to 0.01 and warmup_ratio set to

0.01. In the final PPO training phase, the value
model is based on T5_base (Raffel et al., 2020).
For each sample, we generate four code snippets
using nucleus sampling with a temperature of 1.2,
top-p set to 0.95, and a maximum output token
count of 512. During the decoding phase, the sam-
pling temperature for MBPP is set to 1.2, while for
HumanEval it was set to 0.6, 0.8, and 1.2.
Training Data. We re-partition the dataset to im-
prove the generalization capability and robustness
of the process-supervised reward model. Specif-
ically, we select IDs in the range 601-974 from
MBPP as the training set for the SFT phase and the
seed set for the process-supervised reward dataset,
IDs in the range 101-500 as the training set for
the RL phase, and IDs in the range 501-600 and
1-100 as the validation and test sets, respectively.
The process-supervised reward dataset, gener-
ated through the automated "mutation/refactoring-
verification" strategy, includes training, valida-
tion, and test subsets. The positive and negative
samples in each subset are distributed as follows:
3,469/2,674 for the training set, 632/507 for the
validation set, and 631/488 for the testing set.

4.3 Experimental Results

4.3.1 Results on MBPP

To evaluate the performance of our PRLCoder in
code generation, we conduct comprehensive exper-
iments on the MBPP?* test set and show the exper-
imental results in Table 1. We hypothesize that
process supervision may have a more significant
advantage in complex code generation tasks. There-
fore, to provide a more comprehensive evaluation
of our PRLCoder method, we divide the MBPP*
test set into three categories based on the length of
the standard_code: <50, 50-100, and >100. This
categorization roughly reflects the difficulty levels
of the programming tasks, which are denoted as
EZY, MED, HRD respectively in the table.
Comparison with LLMs. For the baseline, we
use GPT models with parameter sizes ranging from
4B to 137B as reported by Austin et al. (2021), and
the results are obtained from the original paper. Ad-
ditionally, we evaluate the CodeGen and LLaMA
models under the same experimental conditions to
ensure fairness and consistency in comparison. It
can be seen that our model achieves noticeable per-
formance improvement with significantly smaller
model size.

Comparison with ORMs. We then evaluate our

Model Size pass@1 pass@10 pass@80
EZY MED HRD all EZY MED HRD all EZY MED HRD all
GPT 8B - - - - - - - - - - - 40.6
GPT 68B - - - - - - - - - - - 53.6
GPT 137B - - - - - - - - - - - 61.4
CodeGen 6.1B 254 118 32 159 483 342 251 365 584 443 377 498
LLaMA 7B 279 126 4.1 177 506 369 267 403 684 548 489 593
CodeT5+ 770M 276 134 44 180 522 370 280 416 679 564 50.0 60.3
O-ORM 770M 29.0 155 6.6 201 492 344 312 397 657 525 512 579
P-ORM 770M 285 139 50 182 533 376 284 419 674 569 528 620
C-ORM CodeRL 770M 285 13.7 46 181 523 379 299 420 66.1 569 526 610
PPOCoder 770M 289 14.0 4.5 185 527 380 296 424 667 573 534 619
RSFT 770M 284 138 49 183 525 376 304 426 684 584 572 622
PRLCoder 770M 278 145 5.7 187 530 384 323 43.0 690 60.0 596 638

Table 1: Performance results for various models on MBPP* testing set. O-ORM represents the original ORM,
P-ORM represents the preference-based ORM, C-ORM represents the compiler-based ORM, and RSFT represents

rejection sampling fine-tuning.

0.75

0.70

0.65

Metric Value

—e— Accuracy
4 F1 Score
‘/ —8- Precision
b --@®- Recall

0.55

Epochs

(a) Accuracy, F1, Precision, Recall

0.9 1

0.8+

0.7

0.6

Metric Value

051

0.4

—&— Negative Accuracy
0.3 Positive Accuracy

2 4 6 8 10
Epochs

(b) Class Accuracy

Figure 4: Quantitative analysis of the process-supervised reward model for code trained using our method.

approach compared to methods based on outcome-
supervised reward models (ORMs). We adopt the
original ORM, the preference-based ORM and the
compiler-based ORM for comprehensive evluation.
To ensure fair comparison, we reproduce the ex-
perimental results on the MBPP™* dataset. Specifi-
cally for compiler-based method, we compare with
two competitive methods: CodeRL and PPOCoder
that utilized different reinforcement learning tech-
niques. Our process supervision approach achieves
significant improvements across tasks of varying
difficulty levels. The improvement is particularly
notable in medium and difficult problems. This in-
dicates that process supervision can provide more
detailed guidance on the model’s rewards in com-
plex tasks, leading to the generation of more accu-

rate code snippets.

Although the original ORM achieves higher re-
sults in Pass@1, it shows a decline in performance
compared to the base model in both Pass@ 10 and
Pass@100. We hypothesize that this drop may
be due to the method’s strong bias toward erro-
neous code in the dataset, causing it to misjudge
some correct code snippets during the RL process,
thereby reducing the number of correct answers.
This observation suggests that relying solely on
outcome-based strategies may be insufficient for
improving the model’s code generation capabilities
comprehensively. In contrast, process supervision,
by guiding the intermediate steps in the generation
process, can mitigate this issue.

Application of PRM to Rejection Sampling. To

Model Size Pass@1 Pass@100
GPT-J 6B 11.6 27.7
CodeGen 6.1B 10.4 29.8
LLaMA 7B 10.5 36.5
CodeT5+ 770M 12.5 38.0
O-ORM 770M 13.2 40.1
P-ORM 770M 12.9 40.6
C-ORM CodeRL 770M 12.6 39.7
PPOCoder 770M 13.0 40.0
PRLCoder 770M 13.6 41.8

Table 2: Quantitative results on Humaneval benchmark.

—8— Compiler Loss
Preference Loss
—8- PRLCoder Loss

0.03 1 :
\.\

Steps

Figure 5: The loss curves of the reinforcement learning
under three different supervision methods.

further validate the effectiveness of PRM, we de-
sign and conduct rejection sampling fine-tuning
experiments independent of any RL, thereby eval-
uating the applicability and performance of PRM
beyond the constraints of reinforcement learning.

4.3.2 Results on HumanEval

To further assess the generalization capability
of PRLCoder, we also test the performance of
the MBPP™ fine-tuned model on the HumanEval
dataset. The specific results are shown in Table 2.
The results indicate that the PRLCoder outperforms
outcome-supervised approaches. It is worthmen-
tioning that our CodeT5+ performing below the
original results reported on the HumanEval dataset
is due to our fine-tuning being conducted solely on
the MBPP* training set, which utilizes significantly
less data than the dataset used in the original study.

4.4 Analysis

We conduct an analysis of the automatically con-
structed step-level dataset, focusing on evaluating
its performance in training the PRM, as well as the
model’s efficiency and stability in RL training.

The Classification Accuracy of Reward model.
Based on the constructed dataset, we train PRM, as
shown in Figure 4(a). During the training phase, the
overall accuracy of the model reaches nearly 80%.
To further evaluate the model’s performance, we an-
alyze the classification accuracy for "Positive" and
"Negative" labels during the training process, with
the results presented in Figure 4(b). The model
achieves an overall performance of 0.76 on the test
set, with specific classification results of ([0.84,
0.65]). These findings indicate that the model
demonstrates strong performance in the reward-
based code generation task, validating the effective-
ness of the proposed training strategy and providing
robust support for further optimization of the code
generation process. Additionally, in Appendix C,
we present a case study where the model evalu-
ates the code generation results with line-by-line
rewards, further demonstrating the model’s effec-
tiveness in optimizing the code generation process.
Training process. When using the PPO reinforce-
ment learning algorithm for model training, we
compare the train_loss curves under three differ-
ent supervision methods, as shown in Figure 5.
The results indicate that our proposed PRLCoder
method demonstrates faster convergence during
training and exhibits significantly higher stability
compared to the other two outcome supervision
methods. This suggests that process supervision
not only improves training efficiency in code gen-
eration models but also significantly enhances the
stability of the training process.

5 Conclusion

In this paper, we propose a novel approach called
PRLCoder, which presents the first attempt to en-
hance the code generation by process reward mod-
els, which provide intermediate reward signals. To
tackle the challenge of costly labeling, we design
an innovative step-level dataset construction strat-
egy that automatically generates dataset for training
the code PRM using feedback from a teacher model
and a compiler. We also discover the low coverage
of current test cases in MBPP and perform augmen-
tation to enable effective PRM training. Experimen-
tal results show that on the MBPP and HumanEval
datasets, our method significantly improves the
quality of code generation. Our approach success-
fully validate the superiority of PRMs over ORMs
in code generation, most notably without the need
for resource-intensive manual labeling.

6 Limitations

Looking ahead, several aspects of PRLCoder can
be further optimized and expanded. First, the
current seed dataset has limited diversity, which
may hinder the generalization capability of the
trained PRM. Future research could consider uti-
lizing more rich and diverse seed datasets to better
cover various scenarios and requirements in code
generation. Additionally, current experiments with
PRLCoder have only been conducted on CodeT5+,
and future work could explore its applicability and
performance across more types and larger-scale
code generation models. Furthermore, our pro-
posed "mutation/refactoring-verification" strategy
is not only applicable to code generation but also
has the potential to establish process-supervised
mechanisms for other reasoning or planning tasks.
Future studies could further investigate the applica-
bility and advantages of this strategy in other fields,
especially its potential in addressing complex rea-
soning and planning challenges.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu,
and Charles Sutton. 2018. A survey of machine learn-
ing for big code and naturalness. ACM Computing
Surveys (CSUR), 51(4):1-317.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul
Christiano, John Schulman, and Dan Mané. 2016.
Concrete problems in ai safety. arXiv preprint
arXiv:1606.06565.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Stephen Casper, Xander Davies, Claudia Shi,
Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David
Lindner, Pedro Freire, et al. 2023. Open problems
and fundamental limitations of reinforcement
learning from human feedback. arXiv preprint
arXiv:2307.15217.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2016.
Towards end-to-end reinforcement learning of dia-
logue agents for information access. arXiv preprint
arXiv:1609.00777.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3:
Its nature, scope, limits, and consequences. Minds
and Machines, 30:681-694.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. arXiv
preprint arXiv:2203.03850.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Tihomir Gvero and Viktor Kuncak. 2015. Interac-
tive synthesis using free-form queries. In 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 2, pages 689—692.
IEEE.

Nai-Chieh Huang, Ping-Chun Hsieh, Kuo-Hao Ho, and
I-Chen Wu. 2024. Ppo-clip attains global optimal-
ity: Towards deeper understandings of clipping. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 12600-12607.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. Ad-
vances in Neural Information Processing Systems,

32.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained models
and deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:21314-21328.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas
Mesnard, Johan Ferret, Kellie Lu, Colton Bishop,
Ethan Hall, Victor Carbune, Abhinav Rastogi, et al.
2023. Rlaif: Scaling reinforcement learning from
human feedback with ai feedback. arXiv preprint
arXiv:2309.00267.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092—-1097.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Greg Little and Robert C Miller. 2007. Keyword
programming in java. In Proceedings of the 22nd
IEEE/ACM International Conference on Automated
Software Engineering, pages 84-93.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han,
Wei Yang, and Deheng Ye. 2023. RItf: Reinforce-
ment learning from unit test feedback. arXiv preprint
arXiv:2307.04349.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan,
Pengfei Liu, Yang You, and Hongxia Yang. 2023.
Let’s reward step by step: Step-level reward model
as the navigators for reasoning. arXiv preprint
arXiv:2310.10080.

Volodymyr Mnih. 2013. Playing atari with deep rein-
forcement learning. arXiv preprint arXiv:1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. 2015. Human-level

10

control through deep reinforcement learning. nature,
518(7540):529-533.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,

21(140):1-67.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Stuart J Russell and Peter Norvig. 2016. Artificial intel-
ligence: a modern approach. Pearson.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and
Chandan K Reddy. 2023. Execution-based code gen-
eration using deep reinforcement learning. arXiv
preprint arXiv:2301.13816.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Hado Van Hasselt, Arthur Guez, and David Silver. 2016.
Deep reinforcement learning with double g-learning.
In Proceedings of the AAAI conference on artificial
intelligence, volume 30.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024. Math-shepherd: Verify and reinforce llms step-
by-step without human annotations. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9426-94309.

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yi-
tong Li, Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang,
and Qun Liu. 2022. Compilable neural code gen-
eration with compiler feedback. arXiv preprint
arXiv:2203.05132.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023.
Codet5+: Open code large language models for
code understanding and generation. arXiv preprint
arXiv:2305.07922.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Jason D Williams, Kavosh Asadi, and Geoffrey
Zweig. 2017. Hybrid code networks: practical
and efficient end-to-end dialog control with super-
vised and reinforcement learning. arXiv preprint
arXiv:1702.03274.

Jeff Wu, Long Ouyang, Daniel M Ziegler, Nisan Sti-
ennon, Ryan Lowe, Jan Leike, and Paul Christiano.
2021. Recursively summarizing books with human
feedback. arXiv preprint arXiv:2109.10862.

Xiaoshi Wu, Keqgiang Sun, Feng Zhu, Rui Zhao, and
Hongsheng Li. 2023. Human preference score: Bet-
ter aligning text-to-image models with human prefer-
ence. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2096-2105.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane
Suhr, Prithviraj Ammanabrolu, Noah A Smith, Mari
Ostendorf, and Hannaneh Hajishirzi. 2024. Fine-
grained human feedback gives better rewards for lan-
guage model training. Advances in Neural Informa-
tion Processing Systems, 36.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie
Lu, Bingchao Wu, Bei Guan, Yongji Wang, and
Jian-Guang Lou. 2022. Large language mod-
els meet nl2code: A survey. arXiv preprint
arXiv:2212.09420.

Huangzhao Zhang, Kechi Zhang, Zhuo Li, Jia Li, Yong-
min Li, Yunfei Zhao, Yuqi Zhu, Fang Liu, Ge Li, and
Zhi Jin. 2024. Deep learning for code generation:
a survey. SCIENCE CHINA Information Sciences,
67(9):191101-.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong
Liao, Zi Gong, Hang Yu, Jianguo Li, and Rui Wang.
2023. A survey on language models for code. arXiv
preprint arXiv:2311.07989.

11

https://doi.org/10.1007/s11432-023-3956-3
https://doi.org/10.1007/s11432-023-3956-3
https://doi.org/10.1007/s11432-023-3956-3

A PPO Algorithm

The full algorithm of PRLCoder is detailed in Al-
gorithm 1.

B Dataset Augmentation

To establish a more standardized PRM dataset, we
first normalize the code by standardizing the use
of \t’, ensuring uniform code formatting. Sub-
sequently, to fully leverage feedback signals pro-
vided by the compiler, we supplement test cases
for MBPP problems. Specifically, we leverage
a teacher model to generate test cases aimed at
achieving comprehensive path coverage. These test
cases are executed using a compiler to verify their
correctness and effectiveness. The prompt provided
to the teacher model is designed as follows: "Given
the following code and its existing test cases, sup-
plement with a new test case to achieve full path
coverage." As shown in Figure 6, here are some
examples of the modifications we made to MBPP.

C Case Study

Reward model. We conduct line-by-line reward
evaluation experiments on the code generation re-
sults using the trained process-supervised reward
model (as shown in the Figure 7). The experimen-
tal results show that the model’s reward evaluations
are largely consistent with the feedback from the
compiler, accurately assigning negative rewards to
erroneous lines of code. This effectively enhances
the model’s ability to assess the quality of code
generation.

Policy model. We conduct a comparative anal-
ysis of the code generated by the baseline model
and PRLCoder. As shown in Figure 8, the code
generated by PRLCoder not only maintains process
integrity but also ensures greater accuracy of the
results. This demonstrates that PRLCoder’s model-
ing of process supervision in code generation tasks
is more effective, thereby enhancing the quality
and reliability of the generated code.

D Error Distribution

To validate the effectiveness of our proposed strat-
egy, we conduct an error distribution analysis on
the automatically constructed reward dataset and
the code generated by the baseline model. As
shown in Figure 9, the error distributions of the
two code sets exhibit significant overlap, demon-
strating that the reward dataset constructed using

12

this strategy effectively captures common error pat-
terns in the code generation process. Furthermore,
when this dataset is used to train PRM within a
reinforcement learning framework, it significantly
enhances the model’s ability to supervise code gen-
eration.

Algorithm 1 Process-Supervised Reinforcement Learning for Code Generation

Input: initial policy model Py, ; initial value model V, .. PRM Ry trained from step-level datasets;
code task prompts D; hyperparameters 7, A, €, 3
Output: P
1: policy model Py < Py, , value model V, <— Vy, .
2: forstep=1,...,M do
Sample a batch Dy, from D
Sample output sequence of program w™ ~ Py(- | ™) for each prompt z" € D,
Compute rewards {rf}ﬁj‘ for each sampled output w™ by running R
Compute advantages {At}‘;ﬁ' and value targets { V' (st)}ﬁ;' for each w™ with V,
for PPO iteration=1,..., u do

Update the policy model using PPO objective:

A A

1 IDb‘ |w | P@(at | St)
0+ Ay, cli 1—¢1 A
arg max - |Db| g w”| E min (¢, clip(vy, €,1+¢) t>

old (CLt ‘ St)

Nl

Update the value model by minimizing a square-error objective:

|Dy|

1 2
) < arg m1n Vi (st) = V™ (s1)
D] & Z |wn| Z (Vas()

10: end for
11: end for

Test case augment

Write a function to check if the given integer is a prime number. test list:

def prime_num(num): assert prime_num(13)==True
if num >=1: assert prime_num(7)==True
for i in range(2, num//2): assert prime num(-101@)==False
if (num % i) == @: uncovered code lines

return False

else:
return True
else:
return False

Add to: assert prime num(6)==False

Write a function to replace whitespaces with an underscore and vice versa in a given string by
using regex.
def replace_spaces(text):

text =text.replace (" ", "_") wrong text =text.replace ("_", "<SPACE>")
return (text) E:$> text =text.replace (" ", " ")
text =text.replace ("_", " ") text =text.replace (“<SPACE>", " ")
return (text) return (text)

assert replace spaces('Jumanji The Jungle') == 'Jumanji_The_Jungle’

assert replace_spaces('The Avengers') == 'The_Avengers'

assert replace_spaces('Fast and Furious') == 'Fast_and_Furious'

Add to: assert replace_spaces('Hello World_2024') == 'Hello_World 2024'

Figure 6: Some examples of the modifications we made to MBPP to align with our method

13

Question(NL)

Write a function to find number of even elements in the given list using lambda function. Your
code should satisfy these tests:

assert count even([1, 2, 3, 5, 7, 8, 9, 10])==3

assert count even([10,15,14,13,-18,12,-20])==

assert count_even([1, 2, 4, 8, 9])==

Answer (Python)

Reward model assignment: Compiler feedback:

def count_even(listl):
even = filter(lambda x: (x%2==0),listl)

return len(even) TypeError: object of type 'filter' has no len()

import math
def count even(arr):
cit = lambda ele:1 if ele¥%2==0 else @

return sum(filter(cit, arr)) AssertionError

def count_even(arr):
odd cnt = @
for i in range(®, len(arr))
if (arr[i]%2 == @):
odd cnt += 1
return odd cnt Pass

def count even(n):
even = filter(lambda x: x%2==0, n)

return len(even) TypeError: object of type 'filter' has no len()

Question(NL)

Write a python function to shift first element to the end of given list. Your code should satisfy
these tests:

assert move_last([1,2,3,4]) == [2,3,4,1]

assert move_ last([2,3,4,1,5,0]) == [3,4,1,5,0,2]

assert move_last([5,4,3,2,1]) == [4,3,2,1,5]

Answer(Python)

Reward model assignment: Compiler feedback:

def move last(arr):
first = arr[@]
arr.remove(first)
arr.insert(1l, first) AssertionError

return arr

def move last(listl):
listl.append(listl.pop(@))
return listl Pass

def move_ last(list):
first = list[0]
listl = [1i for 1 in num_list if i != first]
listl.append(first)
return listl Pass

def move_last(n):
n = filter(lambda i: i != n[@], n)()

n.extend(n[@]) TypeError: 'filter' object is not callable
return n AssertionError

Figure 7: case study on assigning rewards line by line in our PRM

14

Question(NL)

Write a python function to count all the substrings starting and ending with same characters.

Your code should satisfy these tests:

assert count_Substring With_Equal Ends(™abc™) ==
assert count_Substring With_ Equal Ends("abcda™) == 6
assert count_Substring_With_Equal_Ends("ab™) ==

Answer(Python)
Base Model PRLCoder
def count_Substring With Equal Ends(s): def count_Substring_With_Equal_Ends(str):
cnt = @; count = @
n = len(s) for i in range(len(str)):

for i in range(n):
for j in range(i+l, n):
if (s[i] == s[3il):
cnt += 1;
else:
cnt

9;

return cnt;

for j in range(i, len(str)):
if (str[i] == str[j]):
count += 1
return count

Question(NL)

from typing import List, Tuple

def sum_product(numbers: List[int]) -> Tuple[int, int]:

For a given list of integers, return a tuple consisting of a sum and a product of all the

integers in a list. Empty sum should be
»>>> sum_product([]) (@, 1)
»>>> sum_product([1, 2, 3, 4]) (10, 24)

equal to @ and empty product should be equal to 1.

Answer (Python)
Base Model PRLCoder
if not numbers: sum = @
return @, 1 product = 1
return sum{numbers) fer 0 dn FIrberse
sum += n

product = 1
for i in range(numbers):

product product * numbers[i]
return product

product *= n
return sum, product

Figure 8: case study on code generation results of the base model and PRLCoder

15

Error Distribution

Write a function to find sequences of lowercase letters joined with an underscore.

def text lowercase_underscore(text): mutate patterns = 'A[A-7]+ [a-z]+$"
patterns = ‘*[a-z]+_[a-z]+$' =
if re.search(patterns, text): refactor n
= r'A(?:[a- = '
return 'Found a match!’ Ea e e e
else:
return('Not matched!") model output:

def text lowercase_underscore(text):
patterns = "*[a-z]+_[A-Z]+"

if re.search(patterns, text):
return ‘Found a match!’
else:
return(*Not matched!")

Write a function to determine whether all the numbers are different from each other are not.

def test distinct(data): mutate .
if len(data) == len(set(data)): ——> if len(data) != len(set(data)):
. FEtmrn Trke refactor jf a11(data.count(x) == 1 for x in data):
else:
return False; model output:

def test distinct(nums):
s = set(nums)\n
if len(s)!= len(nums):
return True

else:
return False

Figure 9: Some examples of the same error distribution generated by the reward dataset and the base model.

16

	Introduction
	Related Work
	Pretrained LLMs for Code
	RL based on Compiler
	Process Supervision

	Approach
	Process-Supervised Dataset Construction
	Reward Model Training
	Reinforcement Learning Algorithm

	Experiments
	Benchmarks
	Settings
	Experimental Results
	Results on MBPP
	Results on HumanEval

	Analysis

	Conclusion
	Limitations
	PPO Algorithm
	Dataset Augmentation
	Case Study
	Error Distribution

