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ABSTRACT

Real-time monitoring in modern medical research introduces functional longitu-
dinal data, characterized by continuous-time measurements of outcomes, treat-
ments, and confounders. This complexity leads to uncountably infinite treatment-
confounder feedbacks and infinite-dimensional data, which traditional causal in-
ference methodologies cannot handle. Inspired by the coarsened data framework,
we adopt stochastic process theory, measure theory, and net convergence to pro-
pose a nonparametric causal identification framework. This framework gener-
alizes classical g-computation, inverse probability weighting, and doubly robust
formulas, accommodating time-varying outcomes subject to mortality and censor-
ing for functional longitudinal data. We examine our framework through Monte
Carlo simulations. Our approach addresses significant gaps in current methodolo-
gies, providing a solution for functional longitudinal data and paving the way for
future estimation work in this domain.

1 INTRODUCTION

The advent of real-time monitoring technologies in healthcare has led to the continuous-time mea-
surement of outcomes, treatments, and confounders, which we term “functional longitudinal data.”
Here by “functional” we mean the first-generation data described in Wang et al. (2016), or termed
curve data (Gasser et al., 1984; Rice & Silverman, 1991; Gasser & Kneip, 1995), operating over
time. For example, the Medical Information Mart for Intensive Care IV (MIMIC-IV) (Johnson
et al., 2023) is a freely accessible electronic health record (EHR) database that records ICU care
data, including physiological measurements, laboratory values, medication administration, and clin-
ical events. Another example is Continuous Glucose Monitoring (CGM) (Rodbard, 2016; Klonoff
et al., 2017), an increasingly adopted technology for insulin-requiring patients that provides insights
into glycemic fluctuations. CGM offers a real-time, high-resolution stream of data, capturing the
intricate fluctuations in interstitial fluid glucose levels every few minutes.

These examples illustrate the recent prevalence of functional longitudinal data, highlighting the ne-
cessity of a causal framework, as understanding treatment effects is of paramount interest in these
settings. However, there is a great lack of investigation of causal inference at the intersection of lon-
gitudinal data and functional data. Even identifying causal parameters of interest through observed
data becomes highly nontrivial in this setting, due to the issue of uncountably infinite treatment-
confounder feedbacks (Hernán & Robins, 2020) within functional longitudinal data. Treatment-
confounder feedbacks occur when treatments taken over time influence variables (confounders) that
in turn affect future treatments. For example, in a medical study, a patient’s current medication
(treatment) could affect their future health (a confounder), and their health might determine which
medications they receive later. This back-and-forth interaction over time creates a cycle that is
difficult to disentangle when analyzing causal relationships. In functional longitudinal data, this
feedback becomes even more complex because both treatments and confounders are recorded as
continuous functions over time rather than at discrete time points.

Moreover, functional longitudinal data, modeled as infinite-dimensional, continuous-time stochastic
processes, demand a measure-theoretic foundation to ensure mathematical rigor. This requirement
introduces complexities far beyond the scope of classical causal inference, which typically assumes
finite-dimensional data and more elementary statistical tools. Apart from the mathematical rigor,

1



Published as a conference paper at ICLR 2025

from a statistical level, traditional approaches for handling functional data often rely on paramet-
ric or semi-parametric modeling assumptions, such as smoothness or sparsity, to facilitate analysis
and reduce dimensionality. However, these assumptions are typically made for mathematical con-
venience rather than being grounded in prior knowledge. As a result, inferences drawn from such
models may reflect the assumptions as much as, or more than, the data itself.

To bridge this gap, we aim to propose a novel identification framework for functional longitudinal
data with time-varying outcomes subject to mortality and censoring, who enjoys the nonparametric
property, making it more flexible and adaptable to various datasets.

We first define a causal quantity representing the mean of counterfactual outcomes under an idealized
randomized world. To connect the observed data distribution to this idealized world, inspired by the
coarsened data framework (Heitjan & Rubin, 1991) and through the application of continuous-time
stochastic process theory and measure theory, we upgrade classical causal assumptions to accommo-
date functional longitudinal data nonparametrically. These together resolve the issue of uncountably
infinite treatment-confounder feedbacks (Hernán & Robins, 2020) for functional longitudinal data.
We generalize the well-known g-computation formula, inverse probability weighting formula, and
double robust formula. We examine our identification framework through Monte Carlo simulations.

The paper is organized as follows. In Section 2 we present a literature review of related work. In
Section 3, we define the notation and parameters of interest. Then we propose identification as-
sumptions and generalize the well-known g-computation, inverse probability weighting, and double
robust formulas (Hernán & Robins, 2020). Additionally, we prove that our identification is non-
parametric. We conduct Monte Carlo simulations to examine our framework in Section 4. Section
5 discusses future directions. While this paper builds a population-level framework with numerical
results, it does not explore estimation or associated inference, which is beyond the scope of this
study and left for future research.

2 RELATED WORK

Causal Inference for Non-Functional Longitudinal Studies. Current causal frameworks for lon-
gitudinal studies fall into two main categories: “regular longitudinal studies,” where time advances
in fixed intervals (Greenland & Robins, 1986; Robins, 1986), and “irregular longitudinal studies,”
where events occur at random but discrete time points (Lok, 2008; Røysland, 2011; Rytgaard et al.,
2022). “Regular longitudinal studies” are straightforward but limited to structured designs, while
“irregular longitudinal studies,” such as those by Rytgaard et al. (2022), accommodate random visit
times by modeling treatment and confounder processes as counting processes. These approaches as-
sume finite treatment-confounder feedbacks and finite-dimensional data, relying on stepwise paths
and joint densities for causal identification.

However, modern medical studies often generate functional longitudinal data through continuous
monitoring of treatments and confounders, as seen in intensive care settings (Johnson et al., 2016;
2018) and wearable devices for chronic disease management (Mastrototaro, 2000; Klonoff, 2005;
Rodbard, 2016). Existing frameworks, designed for discrete-time or stepwise processes, are insuf-
ficient for such infinite-dimensional data, highlighting the need for new causal inference tools that
accommodate the complexities of functional longitudinal data.

Causal Inference for Functional Data. Existing research on causal inference has examined
functional data within observational studies, as highlighted in works by (Miao et al., 2020; Zhang
et al., 2021; Tan et al., 2022). These studies share a similar data format with our analysis. However,
our approach distinguishes itself by focusing on the time-dependent nature of longitudinal studies,
where data evolve continuously over time. In contrast, the cited works primarily address “point
exposure,” which looks at the impact of a single treatment or covariates measured at beginning of
a study, without accounting for how treatments or covariates may change and interact over a longer
period.

Existing Work for Functional Longitudinal Data. The only exceptions that investigated causal
inference for functional longitudinal data are Ying (2024a) and Sun & Crawford (2022). However,
Ying (2024a) only investigated a single outcome, measured at the end of some medical studies,
neither proving the nonparametric property nor conducting any numerical investigation. On the other
hand, Sun & Crawford (2022) imposed stochastic differential equations with stringent parametric
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assumptions. This situation highlights a significant gap in methodological advancements within
the field. A related study (Ying, 2024b) explores a more general framework, building upon the
methods and insights presented here. However, it does not include numerical examples or practical
verifications, one of our contributions.

3 PROPOSED METHOD

3.1 PREPARATION

Consider a longitudinal study spanning from time 0 to ∞:

• A(t) and L(t) are two stochastic processes denoting the treatment administered and the
measured confounders, respectively, at any given time t. At any time, A(t) and L(t) could
be binary, categorical, continuous, or even functional. We denote Ā(t) = {A(s) : 0 ≤ s ≤
t} and L̄(t) = {L(s) : 0 ≤ s ≤ t}, with Ā and L̄ representing the collections of treatments
and confounders over the entire study.

• We are interested in an outcome of interest Y (t), as a subset of L(t), that is, Y (t) ⊂ L(t).
This notation was chosen purely for simplicity. We are not assuming Y (t) must affect
treatment assignment but instead allow this dependency to exist or not. This flexibility
is critical as in many cases (e.g., disease progression), outcomes can influence treatment
adjustments, and therefore acting as a confounder as well.

• Let T be a time-to-event endpoint, for instance, death, and C be the right censoring time.
Define X = min(T,C) as the censored event time and ∆ = 1(T ≤ C) the event indicator.
Therefore when ∆ = 1, X = T and when ∆ = 0, X = C. We also define N(t) = 1(X ≤
t) as the counting processes of X .

• Write the counterfactual time-to-event endpoint Tā and counterfactual covariates Lā(t),
for any ā ∈ A, where A encompasses all possible values of ā. Therefore we have Xā =
min(Tā, C) and ∆ā = 1(Tā < C). We assume that the future cannot affect the past, that
is, 1(Tā ≥ t) = 1(Tā′ ≥ t) and Lā(t) = Lā′(t) whenever ā(t) = ā′(t). We also write
TA = {Tā : ā ∈ A} and L̄A = {L̄ā : ā ∈ A}.

• The full data are {Ā, C, TA, L̄A} and the observed data are {Ā,X,∆, L̄}. Note that on the
observed data level, A(t) and L(t) are not observed for t ≤ X or defined for t ≤ T . For
easier notation in this paper, we offset A(t) = A(X) and L(t) = L(X) for observed data
whenever t > X . In this way, the stochastic processes A(t) and L(t) are well defined at
any t > 0.

• Define Ft = σ({A(s), L(s),1(X ≤ s),1(X ≤ s)∆ : ∀s ≤ t}) as a filtration of informa-
tion observed up to time t. Also we write Ft− = σ(∪0≤s<tFt) and Gt = σ({Ft−, A(t)}).
We define G∞+ = F∞. We write F0− and G0− as the trivial sigma algebra for con-
venience. Note that X is a stopping time with respect to Ft, with F∞ = FX =
σ({Ā,X,∆, L̄}).

• We use P(dxdδdādl̄) (Bhattacharya & Waymire, 2007; Durrett, 2019; Gill & Robins,
2001) to represent the measure on the path space induced by the stochastic processes. Note
that this is not a density function. 1We use E as the corresponding expectation.

In the context of MIMIC-III, A(t) could represent antibiotics usage at time t, and L(t) may include
a range of clinical measurements, such as severity of illness scores, vital signs, laboratory values,
blood gas values, urine output, weight, height, age, gender, service type, total fluid intake, and total
fluid output at time t. The outcome Y (t) might measure illness progression influenced by antibiotics,

1Measure theory is essential in continuous-time stochastic processes because it addresses challenges that
density-based approaches cannot handle. Many processes, such as those with jumps or irregular paths, lack
well-defined densities, yet measure theory allows us to work directly with their distributions. Additionally,
stochastic processes often evolve in infinite-dimensional spaces (e.g., path spaces), where defining densities is
impractical, but measure-theoretic methods naturally extend. It also enables rigorous definitions of key con-
cepts like conditional probabilities and expectations, which are foundational in this field. Beyond practicality,
measure theory aligns with the tradition and standard methodology in stochastic process theory, making it both
a necessary and convenient choice.
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such as changes in severity scores over time. T could represent the time to discharge or mortality,
with C as the time the patient is censored, such as at the end of data collection. Counterfactual
outcomes like Tā might represent the time to recovery under a specific antibiotic regimen ā, and
Lā(t) could represent the trajectory of severity scores under that treatment.

Similarly, in the context of CGM, A(t) represents insulin dosage at time t, and L(t) includes glucose
levels and immediate behavioral changes such as diet, medications, and physical activity at time
t. The outcome Y (t) represents the glucose levels monitored in real time in response to insulin
adjustments. T could represent the time to a severe glucose event, with C as the time the patient
stops CGM usage. Counterfactual outcomes like Tā represent the time to stable glucose control
under a specific insulin dosing regime ā, and Lā(t) captures the counterfactual glucose trajectory.

We are interested in learning a marginal mean of transformed potential outcomes including a time-
to-event outcome and an outcome process under a user-specified treatment regime in the absence of
censoring, ∫

A
E(ν(Tā, Ȳā))G(dā), (1)

where ν is some user-specified function and G is a priori defined (signed) measure on A, represent-
ing a stochastic treatment regime. Here stochastic treatment regimes do not prescribe a specific treat-
ment value but instead define the probability of receiving each possible treatment. In other words, it
assigns treatments randomly according to a specified probability distribution. Stochastic treatment
regimes offer a flexible approach for modeling treatments that are either continuous or challenging
to precisely quantify. Unlike deterministic regimes, where treatment decisions are fixed, stochastic
regimes introduce variability, enabling a broader range of real-world applications. This approach
is particularly beneficial in scenarios where treatments are not strictly prescribed but instead follow
probabilistic guidelines or are influenced by patient behavior or external factors. Examples of ν(·):

• ν(Tā, Ȳā) = 1(Tā > t), for some time t > 0, identifies the effect of ā on the survival
probability. For instance, in MIMIC-III, this could represent the probability of a patient
surviving beyond time t under a specific antibiotic regimen ā. Alternatively, ν(Tā, Ȳā) =
min(Tā, τ) represents the restricted mean survival time.

• ν(Tā, Ȳā) = Yā(τ) is the outcome measured at time τ , for some τ > 0. In CGM, it
could correspond to the glucose level at time τ under a specific insulin dosing strategy
ā. Alternatively, ν(Tā, Ȳā) = Yā(Tā) represents the outcome measured at the time-to-
event Tā. In MIMIC-III, this might capture the severity of illness or lactate level at the
time of recovery or death. Finally, ν(Tā, Ȳā) =

∫ τ

0
w(t)Yā(t)dt/τ represents the weighted

averaged outcome over [0, τ ], where w(t) is a user-specified weight function.

We assume E(ν(Tā, Ȳā)) is integrable against G. This exploration encompasses marginal means
under static treatment regimes, as discussed in various literature (Rytgaard et al., 2022; Cain et al.,
2010; Young et al., 2011; Hernán & Robins, 2020). This quantity can be seen as the mean of
counterfactual outcomes under an idealized randomized world, where ā is randomized to follow a
stochastic treatment regime G. Examples of G:

• G = 1(Ā = ā) representing the averaged treatment outcome under a specific regime is of
interest. G = 1(Ā = ā)−1(Ā = ā′) representing the averaged treatment effect of specific
regime ā versus another ā′.

• For treatments like physical activity, which is inherently variable and challenging to quan-
tify precisely, can be modeled using stochastic regimes. For example, rather than prescrib-
ing a strict regimen of 30 minutes of exercise daily, a stochastic regime might increase the
likelihood of patients engaging in activity based on encouragements or incentives. In both
case, G can be specified as a distribution instead of delta masses.

3.2 IDENTIFICATION ASSUMPTIONS

We have defined the parameter of interest (1). Intuitively if treating treatment process Ā as a selec-
tion process (Heitjan & Rubin, 1991), (1) is the mean of ν(Tā, Ȳā) when Ā were to follow G and
there is no censoring. To create such a pseudo-population, note that for any sequences of partitions
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{∆K [0,∞]}∞K=1, where we have a partition ∆K [0,∞] over [0,∞] is a finite sequence of K + 1
numbers of the form 0 = t0 < · · · < tK = ∞, we loosely have the following decomposition

P(dxdδdādl̄) (2)

=

K−1∏
j=0

FT (tj+1|Ftj )
∆(N(tj+1)−N(tj))(1− FT (tj+1|Ftj ))

(1−∆)N(tj+1) (3)

FC(tj+1|Ftj )
(1−∆)(N(tj+1)−N(tj))(1− FC(tj+1|Ftj ))

∆N(tj+1) (4)

P(dl̄(tj+1))|Ftj )P(dā(tj+1)|Ftj )., (5)

where we temporarily write FT and FC as the distribution functions of T and C. We intervene
treatment distribution at each time tj to approximate the pseudo-population where Ā were to follow
G as:

P∆K [0,∞],G(dxdδdādl̄) (6)

=

K−1∏
j=0

FT (tj+1|Ftj )
∆(N(tj+1)−N(tj))[1− (1−∆)N(tj+1)] (7)

P(dl̄(tj+1))|Ftj )G(dā(tj+1)|ā(tj)). (8)

Here informally, one might understand this intervention as we replace the censoring distribution (4)
and treatment distribution (5) between (tj , tj+1] by no censoring as in (7) and targeted treatment
distribution G as in (8). For readers unfamiliar with intervention-based causal inference language,
we refer to Rytgaard et al. (2022, Definitions 1 & 2). A more formal and mathematically rigorous
decompositions are given in Section A the appendix.

To eliminate confounder bias, we need to make sure there is no unmeasured confounders. We adapt
the commonly known “coarsening at random” (Heitjan & Rubin, 1991) assumption into:
Assumption 1 (Full conditional randomization). The treatment assignment is independent of the all
potential outcomes and covariates given history, in the sense that there exists a bounded function
ε(t, η) > 0 with

∫∞
0

ε(t, η)dt → 0 as η → 0, such that for any t ∈ [0,∞], η > 0,

sup
ā∈A

E(∥P(dtādl̄ā|Ā(t+ η),Ft)− P(dtādl̄ā|Ft)∥TV) < ε(t, η), (9)

where ∥ · ∥TV is the total variation norm over the path space’s signed measure space.

This assumption claims that, the treatment distribution, or equally, the probability of coarsening, in
a small period of time around t, only depends on the observed data up to time t and independent
of further part of counterfactuals. This assumption says in a approximating sense that there is no
common cause between treatment decision between time [t, t + η] and all future counterfactual
confounders. Intuitively and unofficially, one might see this as saying P(dtādl̄ā|Ā(t + η),Ft) ≈
P(dtādl̄ā|Ft), or approximately, (Tā, L̄ā) ⊥ Ā(t+ η)|Ft.

We also need an assumption over the censoring mechanism to eliminate the censoring bias. We
consider the well-known conditionally independent censoring assumption (Tsiatis, 2006; Andersen
et al., 2012). Define the full data censoring time hazard function as

λC(t|T, Ā, L̄) = lim
dt→0

P(C ≤ t+ dt|C > t, T, Ā, L̄)/dt. (10)

The following assumption requires that the full data censoring time hazard at time t only depends
on the observed data up to time t.
Assumption 2 (Conditional independent censoring). The censoring mechanism is said to be condi-
tionally independent if

λC(t|T, Ā, L̄) = lim
dt→0

P(C ≤ t+ dt|C > t, T > t, Ā(t), L̄(t))1(T > t)/dt. (11)

Note that in order to overcome the continuous-time issue, here we impose Assumption 1 over an
infinitesimal period of time. This type of idea is also adopted in Assumption 2. Note that how
Assumption 2 is given on the intensity process whereas Assumption 1 is on the conditioning event.
This is because one does not have intensity process for a general stochastic process.
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With Assumptions 1 and 2, we are able to show that whenever |∆K [0,∞]| → 0, P∆K [0,∞],G
approximates a pseudo-measure where treatment distribution are intervened by uncountable
times into following G, where the mesh |∆K [0,∞]| of a partition ∆K [0,∞] is defined as
max[maxi=0,··· ,K−1(tj+1 − tj), 1/tK−1], representing the maximum gap length of the partition:
Proposition 1 (Intervenable). Under Assumptions 1 and 2, the measures P∆K [0,∞],G converges to
the same (signed) measure PG := P(dxādlā)G(dā)δā in the total variation norm on the path space
as the meshes shrink to zero, regardless of the choices of partitions, that is,

∥P∆K [0,∞],G(dxdδdādl̄)− P(dxādl̄ā)G(dā)δā∥TV → 0, (12)

whenever |∆K [0,∞]| → 0.

We refer PG as the target distribution. This proposition has helped us to use the intervened ob-
served data distribution P∆K [0,∞],G(dxdδdādl̄) to identify the target counterfactuals distribution
P(dxādl̄ā)G(dā)δā in an asymptotic sense. The following assumption links the observed variable
with the counterfactuals.
Assumption 3 (Full consistency). For any t,

T = TĀ, L(t) = LĀ(t). (13)

The full consistency assumption links the observed outcome and the potential outcome via the treat-
ment actually received. It says that if an individual receives the treatment Ā = ā, then his/her
observed outcome Y matches Yā.

The following assumption ensures that the observed data can identify the target distribution.
Assumption 4 (Positivity).

PG ≪ P . (14)

With the above assumptions, we are able to generalize the well-known identification formulas: g-
computation, inverse probability weighting, and double robust formulas, into functional longitudinal
data. Note that our assumptions can be weaker but chosen for ease to interpret.

3.3 IDENTIFICATION FORMULAS

Below we show how we generalize the well-known g-computation, inverse probability weighting,
and double robust formulas for “functional longitudinal data.” For readers unfamiliar with the con-
cepts, we refer to Hernán & Robins (2020). We also prepare a review for these formulas in discrete-
time longitudinal data in Section B in the appendix.
Definition 1 (G-computation process). Under Assumptions 1 and 2, define

HG(t) = EG[ν(X, Ȳ )|Gt], (15)
as a projection process, which is apparently a PG-martingale. We call HG(t) the g-computation
process. Note that

HG(∞) = ν(X, Ȳ ), HG(0−) = EG[ν(X, Ȳ )]. (16)

The g-computation process intuitively serves as a consecutive adjustment of the target ν(X, Ȳ ) from
∞ to 0. It represents a mix of original conditional distributions of covariate process together with
the intervened treatment process G, from end of study to the beginning. Following this adjustment
to the beginning of study, we have:
Theorem 1 (G-computation formula). Under Assumptions 1, 2, 3, and 4, (1) is identified via a
g-computation formula as ∫

A
E(ν(Tā, Ȳā))G(dā) = HG(0−). (17)

Definition 2 (Inverse probability weighting process). Under Assumptions 1 and 2, define

QG(t) = E
(

dPG

dP

∣∣∣∣Gt

)
, (18)

as the Radon-Nikodym derivative at any time t, which is apparently a P-martingale. We call QG(t)
the inverse probability weighting process. Note that

QG(∞) = E
(

dPG

dP

∣∣∣∣G∞

)
=

dPG

dP
, QG(0−) = 1. (19)
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The IPW process intuitively serves as a continuous adjustment of the treatment process Ā from 0
to ∞, using which as weights one may create a pseudo population as if the whole process were to
follow PG. It reweights the observed data distribution P into PG from the beginning of the study to
the end. Following this reweighting throughout the longitudinal study, we have:
Theorem 2 (Inverse probability weighting formula). Under Assumptions 1, 2, 3, and 4, (1) is iden-
tified via an inverse probability weighting formula as∫

A
E(ν(Tā, Ȳā))G(dā) = E

[
QG(∞)ν(X, Ȳ )

]
. (20)

For any two Gt-adapted processes H(t) and Q(t), and a partition ∆K [0,∞], we write

Ξ∆K [0,∞](H,Q) =

K∑
j=0

Q(tj)

{∫
H(tj+1)G(dā(tj+1)|Ā(tj))−H(tj)

}
+

∫
H(0)G(dā(0)).

(21)

We also define Ξ(H,Q) as the limit of Ξ∆K [0,∞](H,Q) in probability whenever it exists. We have:
Theorem 3 (Doubly robust formula). Under Assumptions 1, 2, 3, and 4, for any Gt-adapted pro-
cesses H(t) and Q(t) at the law where Ξ(H,Q), as the limit of Ξ∆K [0,∞](H,Q) in probability,
exists and

lim
|∆K [0,∞]|→0

E(Ξ∆K [0,∞)(H,Q)] = E(Ξ(H,Q)), (22)

we have ∫
A
E(ν(Tā, Ȳā))G(dā) = E(Ξ(H,Q)), (23)

provided that either H = HG or Q = QG.

As one can see, the doubly robust formula provides extra protection against possible misspecification
on either the g-computation process or the IPW process.

3.4 NO RESTRICTIONS ON THE OBSERVED DATA DISTRIBUTION: A NONPARAMETRIC
FRAMEWORK

For functional data, where the complexity of continuous, infinite-dimensional outcomes makes it
even harder to justify any specific model, relying on parametric assumptions becomes especially
unrealistic. In this subsection, we demonstrate that our identification framework imposes no re-
strictions on the observed data. Our framework deliberately separates modeling assumptions from
identification, focusing purely on structural assumptions necessary for causal inference. This en-
sures that the framework extracts information only from the data, avoiding the risk of introducing
unwarranted or misleading conclusions based on arbitrary assumptions. This property is advanta-
geous for researchers and practitioners because nonparametric frameworks are flexible and require
minimal assumptions, making them robust and adaptable to diverse datasets. This aligns with the
recent assumption-lean efforts in the causal inference community (Vansteelandt & Dukes, 2022;
Vansteelandt et al., 2024).

We demonstrate this by proving that, for any given observed data distribution, we can identify a
sequence of full data distributions—each satisfying Assumptions 1, 2, 3, and 4—such that their
corresponding distributions on the observed data closely approximate the initial observed data dis-
tribution. That is, we write the set of all observed data distribution as P and its subset satisfying
Assumptions 1, 2, 3, and 4 as M, then we show that M is a dense subset of P in the total variation
norm.

Up to now, we have used P to represent both the distribution on the sample space and the path space.
In this subsection, we use P to denote the distribution on the observed data (Ā,X,∆, L̄) and PF to
denote the distribution on the full data (Ā, C, TA, L̄A). We have
Theorem 4. When the path space consists of all piece-wise continuous processes, for any measure
P over the observed data (Ā,X,∆, L̄), there exists a sequence of measures PF

n over the full data
(Ā, C, TA, L̄A) satisfying Assumptions 1, 2, 3, 4, whose inductions on the observed data converges
to P in the total variation norm.
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Technically, we have not achieved full nonparametric paradigm. However, we deem that the regu-
larity condition “the path space is piece-wise continuous processes” is general enough for practical
considerations. For example, both multivariate counting processes and continuous processes like
Brownian process satisfy this regularity condition. It is noteworthy that achieving this “almost non-
parametric” nature is the best one can hope for. This realization was confirmed in (Gill et al., 1997,
Section 9) for “coarsening at random” assumption, even though our framework exhibits certain dis-
tinctions.

4 EXPERIMENT RESULT

In this section, we employ Monte Carlo simulations to empirically assess how the identification
works. We decide to evaluate the performance of the g-computation formula only, for two reasons:

1. The g-computation formula is the only one that can be easily approximated through raw
simulated data, whereas inverse probability weighting (and hence the doubly robust for-
mula) cannot be directly approximated without estimation or computation. In fact, in causal
inference with longitudinal data, the true causal effects are often not analytically com-
putable. Instead, they are approximated numerically using methods like the g-computation
formula through sampling like we outline below, with very large sample sizes, a standard
practice for benchmarking estimator performance;

2. On the population level, the values of the three formulas are all the same, equaling (1).
Therefore, approximating g-computation formula is sufficient for our purposes.

To that end, we need to go through 4 steps:

1. Come up with a reasonable data generating process;
2. Compute the parameter of interest (1) (or equivalently, the left-hand side of g-computation

formula in Theorem 1) according to this data generating process;
3. Simulate according to this data generating process;
4. Approximate the right-hand side of g-computation formula in Theorem 1 using the simu-

lated data.

Step 1: To sharp the focus and ease the computation, we consider a simple setting where there is
no mortality or censoring (T = C ≡ ∞), or other measured confounding process, except for the
outcome process itself. A more complicated scenario including mortality and censoring, and other
confounding process, is considered in Section D in the appendix. We take glucose levels as the out-
come and insulin levels as the treatment. Both glucose and insulin levels exhibit smooth, continuous
changes over time. Gaussian processes are particularly well-suited for modeling such smooth and
continuous temporal processes. For t ∈ [0, 1], consider a potential outcome process Yā(t) capturing
potential logarithm of glucose levels, following a Gaussian process with mean process as

E(Yā(t)) = −a(t), (24)

and covariance process as

Cov[Yā(t), Yā(s)] = e−3|t−s|, ∀t, s ∈ [0, 1]. (25)

This ensures the joint dependence among Yā(t) and negative treatment effect of logarithm of insulin
level ā. For instance, Yā(t) can be log of blood glucose level. Define ν(Tā, Ȳā) as the integral of Ȳā

over time t ∈ [0, 1], that is,

ν(Tā, Ȳā) =

∫ 1

0

Yā(t)dt. (26)

Suppose the targeted treatment regime G is a Gaussian measure with mean process t − 0.5 and
jointly independent normal variables at any time points. That is, the intervened A follows a Gaussian
process with a mean process

E(A(t)) = t− 0.5, (27)
and covariance process

Cov[A(t), A(s)] = e−3|t−s|, ∀t, s ∈ [0, 1], (28)
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representing an increase of insulin level, possibly due to some insulin intake.

Step : Then we can show that (1) (or equivalently, the left-hand side of g-computation formula in
Theorem 1) equals zero, that is,∫

E(ν(Tā, Ȳā))G(dā) =
∫

E
[∫ 1

0

Yā(t)dt

]
G(dā) =

∫ ∫ 1

0

E(Yā(t))dtG(ā) (29)

=

∫ [∫ 1

0

a(t)dt

]
G(dā) =

∫ 1

0

∫
a(t)G(ā(t))dt =

∫ 1

0

(t− 0.5)dt = 0. (30)

Step 3: In practice, we observe a stochastic process at finite points. We consider evenly splitting t ∈
[0, 1] into a grid of size K +1: ∆K [0, 1] = {t0 = 0, t1 = 1/K, · · · , tK−1 = (K − 1)/K, tK = 1},
and for 1 ≤ i ≤ n, according to G specified in Step 1, we simulate i.i.d. samples Ai(t) according to
G specified in Step 1 at ∆K [0, 1] as


Ai(t0)
Ai(t1)
· · ·

Ai(tK−1)
Ai(tK)

 ∼ N




t0 − 0.5
t1 − 0.5

· · ·
tK−1 − 0.5
tK − 0.5

,


1 e−3|t1−t0| · · · e−3|tK−1−t0| e−3|tK−t0|

e−3|t1−t0| 1 · · · e−3|tK−1−t1| e−3|tK−t1|

· · · · · · · · · · · · · · ·
e−3|tK−1−t0| e−3|tK−1−t1| · · · 1 e−3|tK−tK−1|

e−3|tK−t0| e−3|tK−t1| · · · e−3|tK−tK−1| 1


 .

By according to the distribution of Yā(t) specified in Step 1 and consistency, we generate Yi(t) at
∆K [0, 1] as


Yi(t0)
Yi(t1)
· · ·

Yi(tK−1)
Yi(tK)

 ∼ N




Ai(t0)
Ai(t1)
· · ·

Ai(tK−1)
Ai(tK)

,


1 e−|t1−t0| · · · e−|tK−1−t0| e−|tK−t0|

e−|t1−t0| 1 · · · e−|tK−1−t1| e−|tK−t1|

· · · · · · · · · · · · · · ·
e−|tK−1−t0| e−|tK−1−t1| · · · 1 e−|tK−tK−1|

e−|tK−t0| e−|tK−t1| · · · e−|tK−tK−1| 1


 .

Step 4: The integral of Yi(tk) over [0, 1] is
∑K

k=0 Yi(tk)/(K + 1). The approximate of the right-
hand side of g-computation formula is

∑n
i=1

∑K
k=0 Yi(tk)/(K + 1)/n.

We vary the grid sizes (K = 10, 50, 250) to examine how a denser grid improves the approximation.
This approach simulates the scenario where the mesh |∆K [0, 1]| is shrunk to zero. Additionally,
we vary the sample sizes (n = 100, 500, 2500) to explore how larger samples enhance the ap-
proximation, leveraging the law of large numbers to better approximate the right-hand side of the
g-computation formula. We repeat the process R = 10,000 times. The resulting 10,000 approxi-
mations of

∑n
i=1

∑K
k=0 Yi(tk)/(K + 1)/n are presented in boxplots in Figure 1, where we append

biases.

The simulation results demonstrate that the g-computation formula can adequately approximate (1)
even with moderate sample and grid sizes. Increasing the sample size while keeping the grid size
fixed enhances the accuracy and reduces the variance of the approximation. In contrast, increasing
the grid size while keeping the sample size fixed does not consistently improve accuracy or reduce
variance. However, simultaneously increasing both the sample and grid sizes significantly improves
accuracy and reduces variance in the approximation.

5 CONCLUSION

In this work, we proposed on a novel theoretical framework for causal inference under functional
longitudinal studies. We introduced three methodological paradigms for causal identification: the
g-computation formula, inverse probability weighting formula, and doubly robust formula. This
framework, noted for nonparametric foundation, substantiates and expands upon the estimand-based
causal framework introduced by Ying (2024a). It incorporates considerations for time-varying out-
comes and addresses complexities such as death and right censoring, marking a significant advance-
ment in the analysis of functional longitudinal data and enhancing the toolkit for causal inference in
this area.

Our focus is on the underlying curve data (Wang et al., 2016). At the population level, our framework
abstracts away the sparsity or regularity of sample-level observations. In future work, we plan to
extend our framework to sample-level data, where factors such as sparsity or irregularity could
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n = 2500, K = 10
Bias = 0.31e−3

n = 2500, K = 50
Bias = 0.17e−3

n = 2500, K = 250
Bias = −0.1e−3
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Simulation Results of the G−Computation Formula

Figure 1: Simulation Results of using g-computation formula by varying grid sizes in K =
10, 50, 250 and sample sizes in n = 100, 500, 2500, for R = 10000 repeats. We plot boxplots
and give biases.

influence the consistency of estimators. For example, investigating how the number of observed time
points pn scales with the sample size n in densely observed data could provide valuable insights.

There are significant theoretical and methodological opportunities, given the limited investigation
on functional longitudinal data, for the machine learning, functional data analysis and causal in-
ference communities. To list a few, first, adapting our framework to accommodate scenarios where
Assumption 1 may not hold, including contexts involving time-dependent instrumental variables and
time-dependent proxies (Ying et al., 2023), warrants rigorous exploration. Following the same spirit,
dependent censoring can be considered, for instance, generalizing proxy method like Ying (2024c).
Second, the positivity Assumption 4 in longitudinal studies faces practical challenges due to the po-
tential scarcity of subjects adhering to specific treatment regimes within observed populations. One
might consider using semiparametric models such as marginal structural models (Robins, 1998;
Røysland, 2011) and structural nested models (Robins, 1999; Lok, 2008). Other solutions include
dynamic treatment regimes (Fitzmaurice et al., 2008; Young et al., 2011; Rytgaard et al., 2022)
and incremental interventions (Kennedy, 2017). Third, establishing the efficiency bound for our
quantity of interest by leveraging semiparametric theory, represents an engaging challenge. Fourth,
partial identification using discrete-time observations is a promising direction. Finally, developing a
comprehensive estimation framework remains of ultimate interest.
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A FORMAL FORMULAS

For any partition ∆K [0,∞], we have the following decomposition

P(dxdδdādl̄) (31)

=

K−1∏
j=0

P[T ≤ tj+1|l̄(tj+1), ā(tj+1),1(tj < x ≤ tj+1, δ = 0),Ftj ]
1(tj<x≤tj+1,δ=1) (32)

P[T > tj+1|l̄(tj+1), ā(tj+1),1(tj < x ≤ tj+1, δ = 0),Ftj ]
1(x≤tj+1,δ=0) (33)

P[C ≤ tj+1|l̄(tj+1), ā(tj+1),Ftj ]
1(tj<x≤tj+1,δ=0) (34)

P[C > tj+1|l̄(tj+1), ā(tj+1),Ftj ]
1(x≤tj+1,δ=1) (35)

P[dl̄(tj+1)|ā(tj+1),Ftj ] (36)

P[dā(tj+1)|Ftj ]. (37)

We intervene treatment distribution at each time tj to approximate the pseudo-population where Ā
were to follow G as:

P∆K [0,∞],G(dxdδdādl̄) (38)

=

K−1∏
j=0

P[T ≤ tj+1|l̄(tj+1), ā(tj+1),Ftj ]
1(tj<x≤tj+1,δ=1) (39)

[1− 1(x ≤ tj+1, δ = 0)] (40)

P[dl̄(tj+1)|ā(tj+1),Ftj ] (41)

G[dā(tj+1)|ā(tj)]. (42)

B A REVIEW OF IDENTIFICATION FORMULAS FOR REGULAR
LONGITUDINAL STUDIES

The following is a review of existing methods and rewritten by our language. Consider a longitudinal
study with data collected at fixed times t = 0, . . . ,K. To align with the notation used in this
paper, let τ = K. Here, A(t) and L(t) can only change at discrete time points t = k. The
associated filtrations are defined as Fk = σ(Ā(k), L̄(k)), Fk− = σ(Ā(k − 1), L̄(k − 1)), and
Gk = σ(Ā(k), L̄(k−1)). For a finite set of random variables, the measure on the path space induced
by P corresponds to a multivariate distribution. Denote the observed data density or probability mass
function as p(ā, l̄), and use p(·|·) for conditional densities or probabilities.

The observed data likelihood can be uniquely factorized based on the temporal sequence of events:

p(ā, l̄) =

K∏
j=0

[
p[l(j)|ā(j), l̄(j − 1)]p[a(j)|ā(j − 1), l̄(j − 1)]

]
, (43)

where l̄(−1) = ā(−1) = ∅ for notational convenience.

To identify (1), the following positivity assumption is imposed:

g(ā) ≪
K∏
j=0

p{a(j)|ā(j − 1), L̄(j − 1)}, (44)

almost surely over L̄. Alternatively, a stricter version requires:

p{a(j)|ā(j − 1), L̄(j − 1)} > 0, (45)

almost surely over L̄(j − 1) for any ā. For example, in the case of a binary treatment, if g(Ā) =
1(Ā = 0̄) (i.e., “always under control”), the positivity assumption ensures that for any patient
history L̄, the probability of remaining under control is nonzero.
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Given the positivity assumption, one can substitute p[a(j)|ā(j − 1), l̄(j − 1)] in (43) with
g{a(j)|ā(j − 1)}, leading to the target distribution:

pG(ā, l̄) =

K∏
j=0

{
p[l(j)|ā(j), l̄(j − 1)]pG[a(j)|ā(j − 1)]

}
. (46)

This distribution enables the identification of EG(ν(L(K))), where EG represents the expectation
under pG. Additional assumptions are required to interpret EG(ν(L(K))) causally:∫

A
E(ν(Lā(K)))g(ā)dā = EG(ν(L(K))). (47)

The first assumption is consistency:

L(K) = LĀ(K), (48)

almost surely. This states that the observed outcome matches the potential outcome under the re-
ceived treatment regime Ā = ā.

The second is the sequential randomization assumption (SRA), also referred to as “no unmeasured
confounders.” It posits that the treatment A(k) at time k is conditionally independent of the potential
outcome Lā(K) given past treatment and covariate history:

A(k) ⊥ Lā(K) | Ā(k − 1), L̄(k − 1), (49)

for any ā ∈ A and k = 0, . . . ,K. This ensures exchangeability across treatment groups within
strata defined by observed covariates. Note that alternative frameworks relax this assumption (Tch-
etgen Tchetgen et al., 2018; 2020; Ying et al., 2023), but they are beyond the scope of this discussion.

The g-computation formula (Greenland & Robins, 1986; Robins, 2000) and inverse probability
weighting (IPW) (Hernán et al., 2000; 2002) are two commonly used approaches for identification.
The g-computation formula identifies (47) through iterative conditional expectations:

∫
A
E(ν(Lā(K)))g(ā)dā =

∫
ν(l(K))

K∏
j=0

{
p[l(j)|ā(j), l̄(j − 1)]g{a(j)|ā(j − 1)}dl(j)da(j)

}
.

(50)

Alternatively, the IPW formula uses pseudoweights derived from the Radon-Nikodym derivative:

∫
A
E(ν(Lā(K)))g(ā)dā = E

{
g(Ā)ν(L(K))∏K

j=0 p[A(j)|Ā(j − 1), L̄(j − 1)]

}
. (51)

Lastly, the doubly robust (DR) formula combines both approaches (Bang & Robins, 2005; Van der
Laan & Robins, 2003):∫

A
E(ν(Lā(K)))g(ā)dā (52)

=E

(
QG(K)ν(L(K))−

K∑
k=0

{
QG(k)HG(k)−QG(k − 1)

∫
HG(k)g[a(k)|Ā(k − 1)]da(k)

})
.

(53)

For additional details, see Robins (1986; 1997); Hernán & Robins (2020).
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C PROOFS

C.1 PROOF OF PROPOSITION 1

We temporarily define F/C,t = σ({L(s), A(s),1(T ≤ s) : ∀s ≤ t}) as the censoring free filtration
and Fā,t = σ({Lā(s),1(Tā ≤ s) : ∀s ≤ t}) as the counterfactual filtration:

∥∥P∆K [0,∞],G(dxdδdādl̄)− P(dxādlā)G(dā)δā
∥∥

TV

=

∥∥∥∥∥
K−1∏
j=0

G(dā(tj+1)|ā(tj))[1− 1(x ≤ tj+1, δ = 0)]P(T ≤ tj+1|ā(tj+1),Ftj )
1(tj<x≤tj+1)

P(T > tj+1|ā(tj+1),Ftj )
1−1(tj<x≤tj+1) P(dl̄(tj+1)|ā(tj),Ftj )

− P(dxādlā)G(dā)δā

∥∥∥∥∥
TV

≤

∥∥∥∥∥
K−1∏
j=0

G(dā(tj+1)|ā(tj))[1− 1(x ≤ tj+1, δ = 0)]

P(T ≤ tj+1|F/C,tj )
1(tj<x≤tj+1) P(T > tj+1|F/C,tj )

1−1(tj<x≤tj+1) P(dl̄(tj+1)|F/C,tj )

− P(dxādlā)G(dā)δā

∥∥∥∥∥
TV

+ o(1)

=

∥∥∥∥∥
K−1∏
j=0

G(dā(tj+1)|ā(tj)){1− 1(xā ≤ tj+1, δā = 0)}P(Tā ≤ tj+1|ā(tj+1),Fā,tj )
1(tj<xā≤tj+1,δā=1)

P(Tā > tj+1|ā(tj+1),Fā,tj )
1−1(tj<xā≤tj+1,δā=1) P(dl̄ā(tj+1)|ā(tj+1),Fā,tj )

− P(dxādlā)G(dā)δā

∥∥∥∥∥
TV

=

∥∥∥∥∥
K−1∏
j=0

G(dā(tj+1)|ā(tj))[1− 1(xā ≤ tj+1, δā = 0)]

{P(Tā ≤ tj+1|C > tj+1, ā(tj+1),Fā,tj )
1(tj<xā≤tj+1,δā=1)

P(Tā > tj+1|C > tj+1, ā(tj+1),Fā,tj )
1−1(tj<xā≤tj+1,δā=1) P(dl̄ā(tj+1)|C > tj , ā(tj+1),Fā,tj )

− P(Tā ≤ tj+1|Fā,tj )
1(tj<xā≤tj+1) P(Tā > tj+1|Fā,tj )

1−1(tj<xā≤tj+1) P(dl̄ā(tj+1)|Fā,tj )}

∥∥∥∥∥
TV

→ 0.

C.2 PROOF OF THEOREM 1

Since PG(dxdδdādl̄) is a limit of measures in total variation norm of

P∆K [0,∞],G(dxdδdādl̄), (54)

whenever |∆K [t,∞]| → 0, we have

∫
f(x, δ, ā, l̄)P∆K [0,∞],G(dxdδdādl̄) → EG[f(X,∆, Ā, L̄)], (55)
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for any bounded functions f(x, δ, ā, l̄). Therefore, we have

∣∣∣∣HG(0−)−
∫

E(ν(Tā, Yā))G(dā)
∣∣∣∣

≤
∣∣∣∣∫ ν(x, ȳ)P(dxdδdādl̄)−

∫
ν(x, ȳ)P∆K [0,∞],G(dxdδdādl̄)

∣∣∣∣
+

∣∣∣∣∫ ν(x, ȳ)P∆K [0,∞],G(dxdδdādl̄)−
∫

E(ν(Tā, Yā))G(dā)
∣∣∣∣

=

∣∣∣∣∫ ν(x, ȳ)P∆K [0,∞],G(dxdδdādl̄)−
∫

E(ν(Tā, Yā))G(dā)
∣∣∣∣+ o(1)

=

∣∣∣∣∣
∫

ν(x, ȳ)

K−1∏
j=0

P(T ≤ tj+1|C > tj+1, ā(tj+1),Ftj )
1(tj<x≤tj+1,δ=1)

P(T > tj+1|C > tj+1, ā(tj+1),Ftj )
1−1(tj<x≤tj+1,δ=1) P(dl̄(tj+1)|C > tj+1, ā(tj+1),Ftj )

[1− 1(x ≤ tj+1, δ = 0)]G(dā(tj+1)|ā(tj))−
∫

E(ν(Tā, Yā))G(dā)

∣∣∣∣∣+ o(1),

where o(1) converges to zero when ∆K [0,∞] → 0. By Assumptions 1, 2, 3, and 4, the above term
is less than or equal to

∣∣∣∣∣
∫

ν(x, ȳ)P(T ≤ tK |ā(tK),FtK−1
)1(tK−1<x≤tK ,δ=1)

P(T > tK |ā(tK),FtK−1
)1−1(tK−1<x≤tK ,δ=1) P(dl̄(tK)|ā(tK),FtK−1

)

[1− 1(x ≤ tK , δ = 0)]G(dā(tK)|ā(tK−1))

K−1∏
j=0

P(T ≤ tj+1|ā(tj+1),F/C,tj )
1(tj<x≤tj+1,δ=1)

P(T > tj+1|ā(tj+1),F/C,tj )
1−1(tj<x≤tj+1,δ=1) P(dl̄(tj+1)|ā(tj+1),F/C,tj )

[1− 1(x ≤ tj+1, δ = 0)]G(dā(tj+1)|ā(tj))−
∫

E(ν(Tā, Yā))G(dā)

∣∣∣∣∣+ o(1),

which by Assumptions 1, 2, 3, and 4, equals

∣∣∣∣∣
∫

ν(x, ȳ)P(Tā ≤ tK |ā(tK),FtK−1
)1(tK−1<xā≤tK ,δā=1)

P(Tā > tK |ā(tK),FtK−1
)1−1(tK−1<xā≤tK ,δā=1) P(dl̄ā(tK)|ā(tK),FtK−1

)

[1− 1(xā ≤ tK , δā = 0)]G(dā(tK)|ā(tK−1))

K−1∏
j=0

P(T ≤ tj+1|ā(tj+1),F/C,tj )
1(tj<x≤tj+1,δ=1)

P(T > tj+1|ā(tj+1),F/C,tj )
1−1(tj<x≤tj+1,δ=1) P(dl̄(tj+1)|ā(tj+1),F/C,tj )

[1− 1(x ≤ tj+1, δ = 0)]G(dā(tj+1)|ā(tj))−
∫

E(ν(Tā, Yā))G(dā)

∣∣∣∣∣+ o(1),
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which by Assumptions 1, 2, 3, and 4, is less than or equal to∣∣∣∣∣
∫

ν(x, ȳ)P(Tā ≤ tK |FtK−1
)1(tK−1<xā≤tK ,δā=1)

P(Tā > tK |FtK−1
)1−1(tK−1<xā≤tK ,δā=1) P(dl̄ā(tK)|FtK−1

)

[1− 1(xā ≤ tK , δā = 0)]G(dā(tK)|ā(tK−1))

K−1∏
j=0

P(T ≤ tj+1|ā(tj+1),F/C,tj )
1(tj<x≤tj+1,δ=1)

P(T > tj+1|ā(tj+1),F/C,tj )
1−1(tj<x≤tj+1,δ=1) P(dl̄(tj+1)|ā(tj+1),F/C,tj )

[1− 1(x ≤ tj+1, δ = 0)]G(dā(tj+1)|ā(tj))−
∫

E(ν(Tā, Yā))G(dā)

∣∣∣∣∣+ o(1).

By iterating the above process for 0 ≤ j ≤ K − 2, we arrive the conclusion.

C.3 PROOF OF THEOREM 2

The proof is immediate by noting that

E
[
QG(∞)ν(X, Ȳ )

]
= EG[ν(X, Ȳ )] =

∫
A
E(ν(Tā, Ȳā))G(dā), (56)

by Theorem 1.

C.4 PROOF OF THEOREM 3

We first prove the theorem when H = HG. Indeed, as the limit and expectation can interchange, we
can show that∣∣E [Ξout,∆K [0,∞](HG, Q)

]∣∣
=

∣∣∣∣E{Q(tK)[ν(X, Ȳ )−HG(tK)]
}

+

K−1∑
j=1

E
(
Q(tj)

}∫
HG(tj+1)G(dā(tj+1)|Ā(tj))−HG(tj)

}) ∣∣∣∣
=

∣∣∣∣∣0 +
K−1∑
j=1

E
(
Q(tj)

{∫
HG(tj+1)G(dā(tj+1)|Ā(tj))−HG(tj)

}) ∣∣∣∣∣
≤

K−1∑
j=1

∣∣∣∣∣E
(
Q(tj)

{∫
HG(tj+1)G(dā(tj+1)|Ā(tj))−HG(tj)

}) ∣∣∣∣∣
≤

K−1∑
j=1

∣∣∣∣∣E
(
Q(tj)

{∫
HG(tj+1)G(dā(tj+1)|Ā(tj))− EG

[
HG(tj+1)|Gtj

]}) ∣∣∣∣∣
≤

K∑
j=0

κ∥HG(tj)Q(tj)∥1(tj+1 − tj)
α

≤ κ sup
t

∥HG(t)Q(t)∥1
K−1∑
j=1

(tj+1 − tj)
α → 0,

when |∆K [0,∞]| → 0, where we have used the fact that HG(t) is a PG-martingale and Assumptions
1, 2.
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We now proceed to the case when Q = QG. Indeed, as the limit and expectation can interchange,
we can show that∣∣E [Ξtrt,∆K [0,∞](H,QG)

]∣∣
=

∣∣∣∣∣E
 K∑

j=0

{
QG(tj)H(tj)−QG(tj−1)

∫
H(tj)G(dā(tj)|Ā(tj−1))

}
− E

{
QG(0)H(0)−

∫
H(0)G(dā(0))

} ∣∣∣∣∣
=

∣∣∣∣∣E
 K∑

j=0

{
QG(tj)H(tj)−QG(tj−1)

∫
H(tj)G(dā(tj)|Ā(tj−1))

}+ 0

∣∣∣∣∣
≤

K∑
j=0

∣∣∣∣E{QG(tj)H(tj)−QG(tj−1)

∫
H(tj)G(dā(tj)|Ā(tj−1))

}∣∣∣∣
=

K∑
j=0

∣∣∣∣E{QG(tj−1)EG[H(tj)|Gtj−1
]

−QG(tj−1)

∫
H(tj)G{dā(tj)|Ā(tj−1)}P(dl̄(tj)|Gtj−1

)

}∣∣∣∣
≤ κ

K∑
j=0

∥H(tj−1)QG(tj−1)∥1(tj − tj−1)
α

≤ κ sup
t

∥H(t)QG(t)∥1
K∑
j=0

(tj − tj−1)
α → 0,

when |∆K [0,∞]| → 0, where we have used the fact that QG(t) is a P-martingale and Assumptions
1, 2.

C.5 PROOF OF THEOREM 4

We first simplify our setting by ignoring censoring and absorbing event time T into L̄ as well.
This is because the conditional independent censoring assumption (Assumption 2) is known to be
nonparametric. Our observed data become (Ā, L̄) and full data become (Ā, L̄A).

We first proves that Assumption 1 does not have restrictions on the observed data. We proceed with
a constructive proof. For any partition ∆K [0,∞], we define a measure on the full data path space.
In fact, one has the knowledge on the decomposition

P(dādl̄) =
K−1∏
j=0

{
P(dā(tj+1)|Ftj )P(dl̄(tj+1)|ā(tj+1),Ftj )

}
(57)

=

K−1∏
j=0

{
P(dā(tj+1)|ā(tj), l̄ā(tj))P(dl̄ā(tj+1)|ā(tj+1), l̄ā(tj))

}
. (58)

Intuitively P(dl̄ā(tj+1)|ā(tj+1), l̄ā(tj)) are close to P(dl̄ā(tj+1)|l̄ā(tj)), whereas the other term
P(dā(tj+1)|ā(tj), l̄(tj)) is close to P(dā(tj+1)|ā(tj), l̄A). Therefore, one may define a measure
on the full data path space by

PF
∆K [0,∞](dl̄ā) :=

K−1∏
j=0

P(dl̄ā(tj+1)|ā(tj+1), l̄ā(tj)) =

K−1∏
j=0

P(dl̄ā(tj+1)|ā(tj+1),Ftj ). (59)
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Then without loss of generality one may construct PF
∆K [0,∞](l̄A) by assuming joint independence

among l̄A. One can also define

PF
∆K [0,∞](dā|l̄A) :=

K−1∏
j=0

P(dā(tj+1)|Ftj ). (60)

Then for any sequences of partitions with the mesh going to zero, one may construct a sequence of
measures and show that this sequence of measures is Cauchy by a triangular inequality and Assump-
tion 1, following a similar logic as previous proofs. Therefore the sequence converge to a measure
PF , which is independent of the choice of partitions.

Next we need to show that PF induces P on the observed data and PF satisfies Assumption 1. The
first is trivial because any PF

∆K [0,∞] induces P on the observed data, then so is their limit. To prove
the second, for any time t and ε > 0, one might smartly choose a partition ∆K [0,∞] with PF

∆K [0,∞]

close enough to PF and t, t + η ∈ ∆K [0,∞]. This can be done because the convergence point is
independent of the choice of partitions. We have

EF (∥PF (dl̄A|Ft)− PF [dl̄A|Ā(t+ η),Ft]∥TV)

≤ EF (∥PF (dl̄A|Ft)− PF
∆K [0,∞](dl̄A|Ft)∥TV)

+ EF {∥PF
∆K [0,∞](dl̄A|Ft)− PF

∆K [0,∞][dl̄A|Ā(t+ η),Ft]∥TV}

+ EF {∥PF
∆K [0,∞][dl̄A|Ā(t+ η),Ft]− PF [dl̄A|Ā(t+ η),Ft]∥TV}

≤ 2∥PF −PF
∆K [0,∞] ∥TV

+ EF {∥PF
∆K [0,∞](dl̄A|Ft)− PF

∆K [0,∞][dl̄A|Ā(t+ η),Ft]∥TV}

≤ 4∥PF −PF
∆K [0,∞] ∥TV

+ EF
∆K [0,∞]{∥P

F
∆K [0,∞](dl̄A|Ft)− PF

∆K [0,∞][dl̄A|Ā(t+ η),Ft]∥TV}.

The first term can be chosen to be sufficiently small. We rewrite the second term

EF
∆K [0,∞]{∥P

F
∆K [0,∞](dl̄A|Ft)− PF

∆K [0,∞][dl̄A|Ā(t+ η),Ft]∥TV}

= sup
f :∥f∥1=1

∫
f(l̄A){PF

∆K [0,∞](dl̄A|Ft)

− PF
∆K [0,∞][dl̄A|ā(t+ η),Ft]}P(dā(t+ η)dFt)

≤ sup
f :∥f∥1=1

sup
g:∥g∥1=1

∫
f(l̄A)g(ā(t+ η))[PF

∆K [0,∞][dl̄Adā(t+ η)|Ft]

− PF
∆K [0,∞](dl̄A|Ft)PF

∆K [0,∞]{dā(t+ η)|Ft}]P(dFt)

= sup
f :∥f∥1=1

sup
g:∥g∥1=1

∫
f(l̄A)g(ā(t+ η))PF

∆K [0,∞](dl̄A|Ft)

{PF
∆K [0,∞][dā(t+ η)|ā(t), l̄A]− PF

∆K [0,∞][dā(t+ η)|Ft]}P(dFt)

= sup
f :∥f∥1=1

sup
g:∥g∥1=1

∫
f(l̄A)g(ā(t+ η))PF

∆K [0,∞](dl̄A|Ft)K−1∏
j=0

P(dā(t+ η)|Ft)− P(1)

P(dFt)

≤ E

∥∥∥∥∥∥
K−1∏
j=0

P(dā(t+ η)|Ft)− P(dā(t+ η)|Ft)

∥∥∥∥∥∥
TV

≤ ε(t, η).

Assumption 3 is irrelevant here because it is imposed on the stochastic process but not the distribu-
tions.

20



Published as a conference paper at ICLR 2025

For Assumption 4, a necessary condition for it to hold is that P is well supported on the path space
conditioning on any filtration. For this to happen, note that for any P, one can find a well-supported
P′ satisfying Assumptions 1, 2, 3, so that (1 − ε)P+εP′ is well-supported and hence satisfies
Assumption 4. Since addition will not break Assumptions 1, 2, 3, we have found (1 − ε)P+εP′

satisfying Assumptions 1, 2, 3, and 4, and approximates P.

D ADDITIONAL EXPERIMENT RESULT

In this section, we employ Monte Carlo simulations to empirically assess how the identification
works. To that end, we need to go through 4 steps:

1. Come up with a reasonable data generating process;

2. Compute the parameter of interest (1) (or equivalently, the left-hand side of g-computation
formula in Theorem 1) according to this data generating process;

3. Simulate according to this data generating process;

4. Approximate the right-hand side of g-computation formula in Theorem 1 using the simu-
lated data.

Step 1: For t ∈ [0, 1], consider a potential outcome process Yā(t) and potential covariate Lā(t)
following a Gaussian process with mean process as(

E{Yā(t)}
E{Lā(t)}

)
=

(
−a(t)
0.5a(t)

)
, (61)

and covariance process(
Cov{Yā(t), Yā(s)} Cov{Yā(t), Lā(s)}
Cov{Lā(t), Yā(s)} Cov{Lā(t), Lā(s)}

)
=

(
e−3|t−s|/2 e−1−6|t−s|/2

e−1−6|t−s|/2 e−3|t−s|/2

)
. (62)

This ensures the joint dependence among Yā(t) and Lā(t) and non-zero treatment effect of ā. Gen-
erate the event time following a Cox model

P(Tā > t|Ȳā, L̄ā) = exp {−t exp [0.2a(t)− 0.8Yā(t)− 2Lā(t)]} . (63)

and an independent censoring process

P(C > t) =

{
exp(−t), when t ≤ 1

0, when t > 1,
(64)

where time 1 represents an administrative censoring. Define ν(Tā, Ȳā) as the integral of Ȳā over
time t ∈ [0, 1], that is,

ν(Tā, Ȳā) =

∫ Tā∧1

0

Yā(t)dt. (65)

where Tā is capped at 1 because beyond that all subjects are censored. Suppose the targeted treat-
ment regime G is a Gaussian measure with mean zero process and jointly independent normal vari-
ables at any time points. That is, the intervened A follows a Gaussian process with a mean process

E(A(t)) = 0, (66)

and covariance process

Cov{A(t), A(s)} = e−3|t−s|/2, ∀t, s ∈ [0, 1]. (67)
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Step : Then we can show that (1) (or equivalently, the left-hand side of g-computation formula in
Theorem 1) equals zero, that is,∫

E(ν(Tā, Ȳā))G(dā) =
∫

E

[∫ Tā∧1

0

Yā(t)dt

]
G(ā) (68)

=

∫
E

[∫ E(T0̄)∧1

0

Yā(t)dt

]
G(ā) (69)

=

∫ ∫ E(T0̄)∧1

0

E(Ȳā(t))dtG(ā) =

∫ ∫ E(T0̄)

0

a(t)dtG(ā) (70)

=

∫ E(T0̄)∧1

0

∫
a(t)G(ā(t))dt =

∫ 1

0

0dt = 0. (71)

We used the fact that, through our data generating process, the treatment does not have effect on
survival time.
Step 3: In practice, we observe a stochastic process at finite points. We consider evenly splitting t ∈
[0, 1] into a grid of size K +1: ∆K [0, 1] = {t0 = 0, t1 = 1/K, · · · , tK−1 = (K − 1)/K, tK = 1},
and for 1 ≤ i ≤ n, according to G specified in Step 1, we simulate i.i.d. samples Ai(t) according to
G specified in Step 1 at ∆K [0, 1] as


Ai(t0)
Ai(t1)
· · ·

Ai(tK−1)
Ai(tK)

 ∼ N




t0 − 0.5
t1 − 0.5

· · ·
tK−1 − 0.5
tK − 0.5

,


1 e−3|t1−t0| · · · e−3|tK−1−t0| e−3|tK−t0|

e−|t1−t0| 1 · · · e−3|tK−1−t1| e−3|tK−t1|

· · · · · · · · · · · · · · ·
e−3|tK−1−t0| e−3|tK−1−t1| · · · 1 e−3|tK−tK−1|

e−3|tK−t0| e−|tK−t1| · · · e−3|tK−tK−1| 1


 .

By according to the distribution of Yā(t) specified in Step 1 and consistency, we generate Yi(t) and
Li(t) following a similar manner. Generate the event time following a Cox model

P(Ti > t|Āi, Ȳi, L̄i) = exp {−t exp [0.2A(t)− 0.8Yi(t)− 2Li(t)]} . (72)

and an independent censoring process

P(Ci > t) =

{
exp(−t), when t ≤ 1

0, when t > 1,
(73)

Step 4: The integral of Yi(tk) over [0, 1] is
∑

0≤k≤Ti
Yi(tk)/(K + 1). The approximate of the

right-hand side of g-computation formula is
∑n

i=1

∑
0≤k≤Ti

Yi(tk)/(K + 1)/n.

We vary the grid sizes (K = 10, 50, 250) to examine how a denser grid improves the approximation.
This approach simulates the scenario where the mesh |∆K [0, 1]| is shrunk to zero. Additionally,
we vary the sample sizes (n = 100, 500, 2500) to explore how larger samples enhance the ap-
proximation, leveraging the law of large numbers to better approximate the right-hand side of the
g-computation formula. We repeat the process R = 10,000 times. The resulting 10,000 approxi-
mations of

∑n
i=1

∑K
k=0 Yi(tk)/(K +1)/n are presented in boxplots in Figure D, where we append

biases.

The simulation results demonstrate that the g-computation formula can adequately approximate (1)
even with moderate sample and grid sizes. The biases are larger than that in Section 4 possibly be-
cause we are focusing on a more difficult task. This time, however, increasing the sample size while
keeping the grid size fixed does not enhance the accuracy. Increasing the grid size while keeping
the sample size fixed does improve accuracy or reduce variance in this case. Again, simultaneously
increasing both the sample and grid sizes significantly improves accuracy and reduces variance in
the approximation.
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n = 2500, K = 10
Bias = 24.08e−3

n = 2500, K = 50
Bias = 9.38e−3

n = 2500, K = 250
Bias = 2.23e−3

n = 500, K = 10
Bias = 24.25e−3

n = 500, K = 50
Bias = 9.45e−3

n = 500, K = 250
Bias = 2.4e−3

n = 100, K = 10
Bias = 24.54e−3

n = 100, K = 50
Bias = 8.74e−3

n = 100, K = 250
Bias = 1.84e−3
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Simulation Results of the G−Computation Formula

Figure 2: Simulation Results of using g-computation formula by varying grid sizes in K =
10, 50, 250 and sample sizes in n = 100, 500, 2500, for R = 10000 repeats. We plot boxplots
and give biases.
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