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Abstract

Structured scene representations are a core component001
of embodied agents, helping to consolidate raw sensory002
streams into interpretable, modular, and searchable for-003
mats. Due to their high computational overhead, many ap-004
proaches build such representations in advance of the task.005
However, when the task specifications change, such static006
approaches become inadequate as they may miss key ob-007
jects, spatial relations, and details. We introduce Graph-008
Pad, a modifiable structured memory that an agent can tai-009
lor to the needs of the task through API calls. It comprises a010
mutable scene graph representing the environment, a navi-011
gation log indexing frame-by-frame content, and a scratch-012
pad for task-specific notes. Together, GraphPad serves as013
a dynamic workspace that remains complete, current, and014
aligned with the agent’s immediate understanding of the015
scene and its task. On the OpenEQA benchmark, Graph-016
Pad attains 55.3 % accuracy—+3.0 pp over an image-only017
baseline using the same vision–language model—while op-018
erating with five times fewer input frames. These results019
show that allowing online, language-driven refinement of020
3-D memory yields more informative representations with-021
out extra training or data collection.022

1. Introduction023

A household robot has just scanned the kitchen when a user024
asks, “Is the red mug back inside the upper cupboard?”025
Because the scene graph was built from only a handful of026
earlier keyframes, it lacks both a node for the mug and the027
relation linking it to the cupboard interior. With this criti-028
cal information missing, the agent must either guess, rescan029
the entire scene, or refuse the query altogether. This sce-030
nario highlights a fundamental limitation in current embod-031
ied AI: structured 3D memories are typically finalized032
before the downstream task is known, frequently omit-033
ting objects and spatial relations that later prove essen-034
tial for action or reasoning.035

Inherent limitations of static memories. Modern em- 036
bodied systems commonly pair a vision–language model 037
(VLM) with a pre-computed 3D scene graph or semantic 038
map for symbolic reasoning [11, 12]. These graphs com- 039
press dense RGB-D streams into discrete entities and re- 040
lations that a VLM can leverage for navigation, manipu- 041
lation, or question answering. However, key compression 042
decisions—which keyframes to store, which detections to 043
accept, which relations to represent as edges—are made 044
without knowledge of the eventual user request. Conse- 045
quently, graphs often lack precisely the objects or spatial 046
relations required by a subsequent task, a failure mode well- 047
documented in embodied question answering research [5, 048
15]. 049

Current solutions follow two primary approaches. Over- 050
provisioning retains nearly every candidate detection, incur- 051
ring substantial memory and computational overhead [2]. 052
Offline enhancement pipelines append heuristically chosen 053
affordances or relations for anticipated tasks [12], but each 054
new domain demands additional engineering effort and can- 055
not recover information never initially detected. Neither 056
strategy scales effectively when user requests vary widely. 057

Our approach: language-guided memory updates. We 058
propose that an embodied agent should be able to dynam- 059
ically revise its structured scene memory when reasoning 060
reveals a gap in its knowledge. Rather than discarding an 061
inadequate structured representation—and thereby losing 062
its benefits—or recreating it from scratch at high compu- 063
tational cost, the agent should be able to modify and en- 064
hance the existing representation. This allows the agent to 065
incorporate task-relevant information without starting over. 066
Moreover, the agent should be able to do this through tar- 067
geted perceptual queries on specific keyframes, and seam- 068
lessly integrate the newly discovered information into its 069
scene graph. 070

GraphPad. We introduce GraphPad, a modifiable 3D 071
scene graph memory whose content can be updated at in- 072
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ference time through language-level commands issued by073
the same VLM that performs high-level reasoning. When-074
ever uncertainty arises or missing information is identi-075
fied, the VLM can: (i) retrieve additional keyframes from076
its navigation log, (ii) insert previously undetected objects077
or spatial relationships, and (iii) annotate existing nodes078
with task-specific attributes. These operations are exposed079
as language-callable functions that the reasoning agent it-080
self can invoke, eliminating the need for task-specific rea-081
soning code.1 Through successive targeted updates, the082
graph evolves from a coarse initial representation into a083
task-conditioned model containing precisely the informa-084
tion needed for the current query or action planning.085

Contributions.086
• We formulate language-driven online editing of struc-087

tured 3D memories as a solution to the task–memory mis-088
match inherent in fixed scene graphs.089

• We present GraphPad, a system in which a single VLM090
both identifies knowledge gaps and updates its 3D repre-091
sentation via language function calls during inference.092

• On the OpenEQA benchmark [15], we demonstrate093
that GraphPad improves spatial question answering from094
52.3% to 55.3% while reducing the number of processed095
frames from 25 to 5, outperforming both image-only and096
static-graph baselines without additional training.097
By recasting perception as an interactive, language-098

mediated process rather than a static preprocessing step,099
GraphPad enables more efficient and effective reasoning100
about complex 3D environments—a critical capability for101
agents that must bridge language understanding with phys-102
ical action.103

2. Background and Related Work104

Current embodied AI systems struggle with a fundamental105
limitation: their memory representations often lack critical106
information needed during task execution. This section ex-107
amines key research areas relevant to this challenge.108

2.1. Embodied Memory Representations109

Frame-level memories store raw RGB-D streams with110
learned descriptors. Systems like ReMEmbR [2] and111
Embodied-RAG [28] index thousands of images, allowing112
retrieval of relevant observations during inference. While113
flexible, these approaches face computational overhead114
from processing large image collections and delegate all115
spatial reasoning to language models.116

Semantic metric maps address these limitations by em-117
bedding visual features within geometric reconstructions.118

1Generic vision modules—object detector, mask extractor, depth back-
projection—remain necessary but are not specialized for any particular
downstream task.

VL-Maps [10], PLA [6], and OpenScene [16] support spa- 119
tial grounding but lack explicit object boundaries and rela- 120
tionships essential for symbolic reasoning. 121

3D scene graphs compress perception into discrete 122
entities and relations. Hydra [11] pioneered real-time 123
scene graph construction, with extensions for monocular 124
inputs [1], multi-robot fusion [7], and open-vocabulary la- 125
beling [8]. These structures align with structured VLM 126
prompting but remain largely static after construction. 127

2.2. Memory Update Mechanisms 128

Several existing methodologies employ updatable memo- 129
ries; however, they typically fall short by not dynamically 130
refining scene graphs with new semantic information cru- 131
cial for the task at hand but absent in the initial recording: 132

Dynamic object tracking systems like DynaMem [13], 133
OpenIN [24], and Kimera [1] update spatial relations when 134
objects move but rely on predefined update policies rather 135
than reasoning-triggered modifications. 136

Incremental discovery methods like Moma-LLM [9] 137
and Search3D [23] can integrate new objects but employ 138
fixed detection heuristics rather than responding to specific 139
reasoning gaps. 140

Memory selection approaches like 3D-Mem [29] and 141
KARMA [25] retain informative views but cannot add 142
structure absent from initial observations. Similarly, 143
expanded-context approaches [3] can reference more im- 144
ages but cannot insert missing relations. 145

2.3. Task-Memory Alignment 146

Ensuring memory representations contain task-relevant in- 147
formation remains a central challenge: 148

Graph adaptation techniques attempt to tailor exist- 149
ing memories to specific tasks. Information-theoretic 150
approaches [14] compress graphs while preserving task- 151
relevant nodes. SayPlan [20] and SayNav [18] dynamically 152
contract graphs during planning. Neither approach handles 153
adding new information. LLM-enhanced scene graphs [12] 154
augments an existing scene graph with task-specific affor- 155
dances for the household rearrangement task. However, 156
they rely on a complex scene graph enhancement pipeline 157
that is domain-specific and not adaptable to diverse, unfore- 158
seen downstream tasks. 159

Image-level reasoning systems like Bumble [22] and 160
TagMap [30] provide direct visual access but sacrifice ex- 161
plicit relational structure. Graph-based reasoning meth- 162
ods [28] provide structured context but treat graphs as read- 163
only, requiring new exploration rather than memory editing. 164

Empirical analyses [26] confirm that missing nodes and 165
relations—not reasoning failures—frequently cause perfor- 166
mance errors in embodied tasks. 167
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Figure 1. Overview of GraphPad for embodied question answering. The top row illustrates the Structured Scene Memory (SSM) com-
ponents: Scene Graph with associated Graphical Scratch Pad, Frame Memory containing sparse keyframes, and Navigation Log indexing
frame metadata. The bottom row demonstrates the inference process: given the question about a white object above the TV, the VLM
first examines the initial memory state (left), identifies missing information and calls the analyze frame API on a promising frame
(middle), then integrates the newly detected air conditioner into the scene graph and scratch pad before providing the answer (right). This
process enables dynamic, task-specific memory updates without exhaustive preprocessing.

2.4. Embodied Question Answering168

Embodied Question Answering (EQA) benchmarks offer a169
standardized evaluation of memory adequacy. The episodic170
memory variant (EM-EQA) [15] provides agents with fixed171
observations, isolating memory representation quality from172
exploration.173

Recent approaches to EM-EQA highlight representation174
completeness as a critical factor. GraphEQA [21] uses se-175
mantic graphs for viewpoint selection, while 3D-Mem [29]176
curates informative snapshots. Both systems nevertheless177
fail when queried entities are absent from their representa-178
tions.179

GraphPad addresses the task-memory alignment prob-180
lem through targeted scene graph updates during inference.181
Unlike previous work, our approach enables the reasoning182
VLM to detect knowledge gaps and modify its own mem-183
ory representation through three specific operations: frame184
retrieval, entity/relation insertion, and semantic annotation.185
This maintains the efficiency advantages of structured rep-186
resentations while addressing their typically static nature.187

3. Methodology 188

GraphPad builds a Structured Scene Memory (SSM) from 189
a sparse set of RGB-D keyframes and gives the vision- 190
language model (VLM) that answers questions three 191
callable functions to edit that memory during inference. We 192
first describe the agentic reasoning loop (Sec. 3.1), then 193
the four data structures that constitute the SSM (Sec. 3.2), 194
and finally the Modifiability APIs (Sec. 3.3). 195

Throughout we follow the episodic-memory EQA pro- 196
tocol [15]: the agent is given every k-th RGB-D frame of a 197
pre-recorded scan together with camera poses; no new sens- 198
ing is possible after deployment. 199

3.1. Agentic Reasoning Loop 200

At test time, the VLM receives both the initial SSM and a 201
natural language query q. The reasoning process unfolds 202
iteratively: the VLM analyzes what information it needs to 203
answer the question and repeatedly invokes Modifiability 204
APIs to augment its understanding of the scene. 205

In each iteration, the VLM examines the current scene 206
memory, identifies knowledge gaps relevant to the question, 207
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and selects: (1) which API to call, (2) which frame to ana-208
lyze, and (3) what specific information to seek (expressed as209
a natural language query). The selected API returns new ob-210
jects, relations, or semantic annotations that are integrated211
into the scene memory. This process continues until the212
VLM determines it has sufficient information or reaches a213
maximum of m allowed API calls.214

A critical constraint ensures grounded responses: the215
VLM must support every factual claim in its final answer216
with dual evidence—at least one frame from Frame Mem-217
ory and corresponding notes from the Scratch-Pad. This218
constraint ensures that the VLM adequately utilizes its219
scene memory and searches the scene thoroughly prior to220
responding.221

This approach fundamentally differs from static memory222
systems: instead of relying on pre-built representations to223
contain all necessary information, GraphPad actively iden-224
tifies and fills knowledge gaps during reasoning. In our ex-225
periments, most questions are answered with just 2-3 tar-226
geted API calls, demonstrating efficient reasoning without227
exhaustive scene analysis.228

3.2. Structured Scene Memory229

The SSM contains four mutually linked structures:230

Scene Graph231
A directed multigraph G = (N , E) whose nodes rep-232
resent object tracks. Each node ni stores a point cloud233
Pi, pooled visual embedding Vi, pooled language em-234
bedding Li, caption Ci, room/floor ID, and a list of235
keyframes in which the object is visible. Edges encode236
four view-invariant spatial relations critical for planning237
and manipulation: on top of, subpart of, contained in,238
and attached to.239

Graphical Scratch-Pad240
Mirrors N but adds a free-form notes field initialized241
empty; the APIs write task-specific information here242
during reasoning.243

Frame Memory244
An initial set of nimg evenly spaced keyframes. Addi-245
tional frames requested by the APIs are appended (no246
eviction is used in our experiments).247

Navigation Log248
For each keyframe: room, textual field-of-view tag, ego-249
centric motion label (from pose deltas), and the set of250
visible node IDs. The log serves as a structured index,251
guiding the VLM in selecting candidate frames likely252
to contain information about specific objects or spatial253
relationships.254

Initial construction. For every k-th RGB image It, we 255
run a VLM detector that outputs bounding boxes and cap- 256
tions. Each box is passed to SAM to obtain a mask; the 257
mask is back-projected with depth into a point cloud and 258
voxel-downsampled to 0.02 m. Noise is removed by keep- 259
ing only the largest DBSCAN cluster (default sklearn 260
parameters). Visual embeddings are extracted using CLIP 261
ViT-L/14; language embeddings come from BGE [27]. 262

Track association. A new detection Di is matched to an 263
existing track Tj when the vote 264

Sij = 1[Vi·Vj > 0.7]+1[Li·Lj > 0.8]+1[Gij > 0.4] (1) 265

exceeds 2, where Gij is the fraction of points in Di within 266
δg of Tj (we use δg = 5 cm). This voting scheme requires 267
at least two of the following conditions to hold with suffi- 268
cient confidence: visual feature similarity, caption semantic 269
similarity, or spatial overlap. Visual and language embed- 270
dings of the matched track are updated by an exponential 271
moving average with α = 0.5; unmatched detections start 272
new tracks. 273

Edge discovery. Every three frames we prompt the 274
VLM with the current frame plus the JSON list of visible 275
⟨bbox, caption⟩ pairs; the model predicts all pairwise rela- 276
tions among the four relation types. Each predicted edge is 277
stored with a subject-ID, object-ID, relation label, and the 278
VLM’s free-form justification string. 279

Caption consolidation. Accumulated captions on a 280
track are periodically compressed by prompting the VLM 281
with the list and asking for a single sentence that faithfully 282
paraphrases all entries. 283

Room/floor labels. We adopt the HOV-SG pipeline [26]: 284
floors from height-histogram modes and rooms via water- 285
shed segmentation on wall skeletons; room labels derive 286
from CLIP similarity to a fixed set of class names. 287

When the SSM is passed to the VLM for reasoning, the 288
Scene Graph, Scratch-Pad, and Navigation Log are serial- 289
ized to JSON, while Frame Memory is supplied as inter- 290
leaved images with their Frame IDs. 291

3.3. Modifiability APIs 292

All three APIs receive a Frame ID and a natural-language 293
query. Each returns a JSON patch containing new nodes, 294
edges, or scratch-pad notes plus evidence pointers that are 295
incorporated into the SSM. 296

find objects 297
Detects previously unseen instances relevant to query in 298
the specified frame and fuses them into G. The func- 299
tion leverages the VLM’s bounding box detection ca- 300
pabilities to identify query-relevant objects and gener- 301
ate corresponding query-relevant notes. These detec- 302
tions are incorporated into the scene graph by associat- 303
ing them with existing tracks or creating new ones. The 304
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query-relevant notes are used to update the correspond-305
ing scratch-pad entries.306

analyze objects307
For each node in the user-supplied list that is visible in308
the frame, the VLM analyzes its appearance and an-309
swers query, storing the result in the node’s notes.310
The function employs the VLM to examine each visi-311
ble node’s bounding box and generate descriptive notes312
pertaining to the query. These notes are stored in the313
corresponding nodes’ scratch-pad entries. If specified314
nodes are not visible in the frame, the function defaults315
to find objects.316

analyze frame317
A frame-level variant that jointly discovers undetected318
objects and annotates existing ones with respect to319
query. This consolidated approach can both identify320
new perceptual elements and enrich the semantic under-321
standing of known objects in a single operation.322

These APIs enable a critical capability: the reasoning323
agent itself can identify and remedy gaps in its scene rep-324
resentation during inference. Rather than preprocessing325
exhaustively for anticipated questions, GraphPad builds a326
minimal initial representation and lets task requirements327
guide targeted perceptual refinement. This approach aligns328
with real-world robotic scenarios where complete scene un-329
derstanding is computationally intractable, but targeted per-330
ception can efficiently support specific goals.331

By invoking these functions, the agent patches omis-332
sions in its memory in real time, yielding a task-conditioned333
graph that improves both answer accuracy and confidence334
without requiring rescanning of the physical scene.335

4. Results336

We evaluate GraphPad on the OpenEQA benchmark [15] to337
assess how language-guided scene graph updates affect spa-338
tial reasoning performance. Our experiments use Gemini339
2.0 Flash [17] as both the reasoning agent and detector. All340
evaluations use the episodic-memory variant of OpenEQA,341
where systems receive fixed keyframes from 3D scene scans342
(HM3D [19] and ScanNet [4]).343

4.1. Baseline Comparison on OpenEQA344

Table 1 presents GraphPad’s performance against estab-345
lished baselines. Using an initial frame memory size of346
nimg = 5, search depth of m = 20, and Frame-Level API,347
GraphPad achieves 55.3% accuracy. This represents a 3.0348
percentage point increase over using the same VLM (Gem-349
ini 2.0 Flash) with image-only input (52.3%). GraphPad350
processes 5 initial frames compared to the 25 frames (every351
k-th frame with k = 5 for HM3D and k = 20 for ScanNet)352
used in the image-only baseline.353

Table 1. OpenEQA performance comparison across methods

# Method Accuracy (%)

Blind LLMs
1 GPT-4 33.5

Socratic LLMs w/ Frame Captions
2 GPT-4 w/ LLaVA-1.5 43.6

Socratic LLMs w/ Scene-Graph Captions
3 GPT-4 w/ CG 36.5
4 GPT-4 w/ SVM 38.9

Multi-Frame VLMs
5 GPT-4V 55.3
6 Gemini-2.0 Flash 52.3
7 3D-Mem (w/ GPT4V) 57.2

Human Agent
8 Human 86.8

Our Results
9 GraphPad (w/ Gemini 2.0 Flash) 55.3

Table 2. Ablation study of system components

Method Accuracy (%)

Frame Memory 32.9
Frame Memory + Scene Graph 34.6
Frame Memory + Navigation Log 42.5
Frame Memory + SG + Navigation Log 46.9
Frame Memory + Navigation Log + Image API 45.1
Frame Memory + SG + Navigation Log + Node-level API 47.1
Frame Memory + SG + Navigation Log + Frame-level API 50.5

GraphPad scores higher than static scene graph methods 354
(CG: 36.5%, SVM: 38.9%), suggesting potential benefits 355
of dynamic scene graph updates during inference. The sys- 356
tem performs identically to GPT-4V (55.3%) despite using 357
a different base VLM. 3D-Mem [29] achieves 57.2% accu- 358
racy, outperforming our approach by 1.9 percentage points, 359
though it uses GPT-4V rather than Gemini. 360

The comparison suggests that structured memory with 361
targeted updates can help bridge the performance gap be- 362
tween different vision-language models while potentially 363
reducing the number of frames that need to be processed. 364

4.2. Component Analysis 365

To understand the contribution of different GraphPad com- 366
ponents, we conducted an ablation study (Table 2) using a 367
subset of 184 OpenEQA questions. Starting with just four 368
raw frames (32.9% accuracy), we progressively added com- 369
ponents to measure their individual impact. 370

The Navigation Log provides the largest individual im- 371
provement (+9.6 percentage points over frame-only), sug- 372
gesting that structured information about frame contents 373
helps guide the VLM’s attention. Adding a static scene 374
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Table 3. Performance as a function of search depth

Search Depth Accuracy (%)

0 46.9
1 45.8
2 46.3
3 48.1
4 45.9
5 49.7

20 51.2

Table 4. Performance as a function of initial frame count

Initial Frames Accuracy (%)

2 48.2
3 47.4
4 49.9
5 50.3
6 50.5

graph yields a modest improvement (+1.7 percentage points375
over frame-only), while the Modifiability APIs add another376
3.6 percentage points over the static scene representation.377

Frame-level APIs (50.5%) outperformed node-level vari-378
ants (47.1%). We observed that when using node-level379
APIs, the VLM tended to rely more on find objects380
than analyze objects, often using the former in ways381
similar to analyze frame.382

4.3. Effect of Search Depth and Frame Count383

We examined how search depth (m) affects accuracy using384
the OpenEQA184 subset with nimg = 4 initial frames and385
the Frame-Level API. Table 3 shows that accuracy generally386
increases with search depth, reaching 51.2% at m = 20. In-387
terestingly, limited search (m = 1 or m = 2) sometimes388
performs worse than no search (m = 0), possibly because389
preliminary updates without follow-up refinement can in-390
troduce misleading information.391

The initial number of frames in Frame Memory also392
influences performance (Table 4). Accuracy improves as393
more frames are included, though gains diminish beyond394
5 frames. We observed that with fewer initial frames, the395
model made more API calls on average, potentially com-396
pensating for the limited initial context.397

4.4. Performance by Question Category398

Breaking down performance by question category (Table 5)399
reveals variation in how GraphPad (with k = 5) compares400
to using Gemini-2.0 with only images (every 5th frame in401
the scene).402

GraphPad shows larger improvements in attribute recog-403
nition (+20.3 percentage points), functional reasoning (+5.7404

Table 5. Performance by question category: GraphPad vs. Gemini
2.0 with images only

Category GraphPad (%) Gemini (%)

Attribute Recognition 66.8 46.5
Object State Recognition 69.6 66.5
Functional Reasoning 59.2 53.5
World Knowledge 55.9 52.0
Object Recognition 58.4 62.2
Spatial Understanding 47.7 52.4
Object Localization 31.3 34.3

Figure 2. Distribution of API calls per query on OpenEQA

percentage points), and object state recognition (+3.1 per- 405
centage points). These categories often require detailed 406
analysis of specific object properties. The image-only base- 407
line performs better in object recognition (-3.8 percentage 408
points), spatial understanding (-4.7 percentage points), and 409
object localization (-3.0 percentage points), which may rely 410
more on raw visual processing capabilities. 411

4.5. API Call Distribution 412

Analysis of GraphPad’s API usage (Fig. 2) shows that 95% 413
of questions are answered with 5 or fewer API calls, with an 414
average of 1.9 calls per question. The distribution indicates 415
that in most cases, the system requires relatively few up- 416
dates to answer questions, though we observe a long tail of 417
more complex queries requiring additional refinement steps. 418

The peak at zero calls represents questions that could be 419
answered using only the initial scene representation without 420
any additional API calls, suggesting that for some question 421
types, the initial structured memory provides sufficient con- 422
text. 423

5. Limitations 424

While GraphPad demonstrates the value of editable 3D 425
scene representations, several important limitations affect 426
its current implementation: 427

• Error propagation in detection. Our current implemen- 428
tation lacks a verification mechanism for object detection 429
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quality. When the VLM misidentifies an object or rela-430
tion, this error becomes part of the scene graph and can431
negatively affect downstream reasoning.432

• API design constraints. The three operations (find, ana-433
lyze objects, analyze frame) represent our initial attempt434
at a minimal API set, but we have not rigorously eval-435
uated whether this is optimal. Different reasoning tasks436
might benefit from specialized APIs not explored in this437
work.438

• Computational overhead. Each API call requires a full439
VLM inference pass, adding significant latency (typically440
2-3 seconds per call in our implementation). This latency441
currently limits GraphPad’s applicability to real-time sys-442
tems.443

• Domain generalization. Our APIs were designed specif-444
ically for question answering about static scenes. We445
have not tested their effectiveness for other domains like446
manipulation planning or navigation in dynamic environ-447
ments.448

• Scalability limits. As scene graphs grow larger, both the449
prompt size and reasoning complexity increase. Our ex-450
periments were limited to medium-sized home environ-451
ments; performance in larger spaces remains untested.452

6. Conclusion453

We presented GraphPad, a system that enables VLMs to454
update 3D scene graphs during inference through language-455
callable functions. On OpenEQA, GraphPad improved ac-456
curacy by 3.0 percentage points over an image-only base-457
line using the same VLM while requiring fewer input458
frames.459

Our experiments suggest several insights for 3D460
language-vision systems. First, static structured represen-461
tations appear to benefit from targeted, task-specific re-462
finement. Second, language-guided perception may of-463
fer a middle ground between exhaustive preprocessing and464
purely reactive vision. Third, the efficiency of GraphPad465
(averaging under 2 API calls per question) indicates that466
targeted scene exploration can be a practical strategy.467

For future 3D vision-language-action systems, these re-468
sults suggest investigating how reasoning agents might di-469
rect their own perception in service of task goals. Extend-470
ing GraphPad’s approach to manipulation planning, naviga-471
tion, and dynamic scenes could help bridge the gap between472
language understanding and effective action in 3D environ-473
ments.474
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