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ABSTRACT

Given an unnormalized probability density 7 oc e, estimating its normalizing

constant Z = fRd e~V(®)dx or free energy F = —log Z is a crucial problem in
Bayesian statistics, statistical mechanics, and machine learning. It is challenging es-
pecially in high dimensions or when 7 is multimodal. To mitigate the high variance
of conventional importance sampling estimators, annealing-based methods such
as Jarzynski equality and annealed importance sampling are commonly adopted,
yet their quantitative complexity guarantees remain largely unexplored. We take
a first step toward a non-asymptotic analysis of annealed importance sampling.

In particular, we derive an oracle complexity of O(d8%A%/c4) for estimating Z
within ¢ relative error with high probability, where 3 is the smoothness of V' and
A denotes the action of a curve of probability measures interpolating 7 and a
tractable reference distribution. Our analysis, leveraging Girsanov’s theorem and
optimal transport, does not explicitly require isoperimetric assumptions on the
target distribution. Finally, to tackle the large action of the widely used geometric
interpolation, we propose a new algorithm based on reverse diffusion samplers,
establish a framework for analyzing its complexity, and empirically demonstrate
its efficiency in tackling multimodality.

1 INTRODUCTION

We study the problem of estimating the normalizing constant Z = fRd 7(x)da of an unnormalized
probability density function (p.d.f.) 7 &< 7 := e~" on R, so that 7(z) = #()/z. The normalizing
constant appears in various fields: in Bayesian statistics, when 7 is the product of likelihood and
prior, Z is also referred to as the marginal likelihood or evidence (Gelman et al.,|2013); in statistical
mechanics, when V is the Hamiltonian Z is known as the partition function, and F' := —log Z is
called the free energy (Chipot & Pohorille| 2007 Lelievre et al.L[2010; |Pohorille et al.|[2010). The task
of normalizing constant estimation has numerous applications, including computing log-likelihoods
in probabilistic models (Sohl-Dickstein & Culpepper;, [2012)), estimating free energy differences
(Lelievre et al.,[2010), and training energy-based models in generative modeling (Song & Kingmal
2021; |Carbone et al.| 2023; [Sander et al., 2025).

Estimating normalizing constants is challenging in high dimensions or when 7 is multimodal (i.e.,
V' has a complex landscape). Conventional approaches based on importance sampling (Meng &
'Wong|, |1996) are widely adopted to tackle this problem, but they suffer from high variance due to
the mismatch between the proposal and the target when 7 is complicated (Chatterjee & Diaconis|
2018). To alleviate this issue, the technique of annealing tries constructing a sequence of intermediate
distributions that bridge these two distributions, which motivates several popular methods including
path sampling (Chen & Shaol [1997;|Gelman & Meng, |1998), annealed importance sampling (AIS,
Neal (2001)), and sequential Monte Carlo (SMC, Doucet et al.| (2000); |Del Moral et al.| (2006); [Syed
et al.| (2024)) in statistics literature, as well as thermodynamic integration (T, |Kirkwood| (1935))) and
Jarzynski equality (JE, Jarzynski| (1997)); |Ge & Jiang| (2008)); Hartmann et al.|(2019)) in statistical
mechanics literature. In particular, JE points out the connection between the free energy difference

'Up to a multiplicative constant 3 = !/k5T known as the thermodynamic beta, where kg is the Boltzmann
constant and 7" is the temperature. When borrowing physical terminologies, we ignore this for simplicity.
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between two states and the work done over a series of trajectories linking these two states, while
AIS constructs a sequence of intermediate distributions and estimates the normalizing constant by
importance sampling over these distributions. These two methods are our primary focus in this paper.

Despite the empirical success of annealing-based methods (Ma et al., 2013} [Krause et al.| [2020;
Mazzanti & Romero} 2020; |Yasuda & Takahashi} 2022} [Chen & Yingl 2024} Schonle et al., [2025)),
the theoretical understanding of their performance is still limited. Existing works for importance
sampling mainly focus on the asymptotic bias and variance of the estimator (Meng & Wong} |1996;
Gelman & Meng, [1998), while works on JE usually simplify the problem by assuming the work
follows simple distributions (e.g., Gaussian or gamma) (Echeverria & Amzell 2012} |Arrar et al.| [ 2019).
Moreover, only analyses asymptotic in the number of particles derived from central limit theorem
exist (Lelievre et al., 2010} Sec. 4.1). This paper aims to establish a rigorous non-asymptotic analysis
of estimators based on JE and AIS, while introducing minimal assumptions on the target distribution.
We also propose a new algorithm based on reverse diffusion samplers to tackle a shortcoming of AIS.

Contributions. 1. We discover a novel strategy for analyzing the complexity of normalizing constant
estimation, applicable to a wide range of target distributions and 2) that may not satisfy
isoperimetric conditions such as log-concavity. 2. In[Sec. 3] we study JE and prove an upper bound on
the time required for running the annealed Langevin dynamics to estimate the normalizing constant
within ¢ relative error with high probability. The final bound depends on the action (the integral of the
squared metric derivative in Wasserstein-2 distance) of the curve. 3. Building on the insights from this
analysis of the continuous dynamics, in[Sec. 4 we establish the first non-asymptotic oracle complexity
bound for AIS, representing the first analysis of normalizing constant estimation algorithms without
assuming a log-concave target distribution. 4. Finally, in we first point out a potential
limitation of the commonly used geometric interpolation, which provides a quantitative explanation
of the mass teleportation phenomenon. We then propose a series of new algorithms based on reverse
diffusion samplers and formalize a framework for analyzing its oracle complexity. Our experimental
results demonstrate the superiority of the proposed algorithm over AIS in overcoming multimodality.

Related Works. Below, we summarize the related works in four aspects.

I. Methods for normalizing constant estimation. We mainly discuss two classes of methods here.
First, the equilibrium methods, such as TI (Kirkwood, |1935) and its variants (Brosse et al., [2018};
Ge et al.,|2020; (Chehab et al., [2023; Kook & Vempala, 2025)), which involve sampling sequentially
from a series of equilibrium Markov transition kernels. Second, the non-equilibrium methods, such
as AIS (Neall [2001)), which samples from a non-equilibrium stochastic process that gradually evolves
from a prior distribution to the target distributions. In[App. H.T| we show that TI is a special case
of AIS using the “perfect” transition kernels. Recent years have also witnessed the emergence of
learning-based non-equilibrium methods, which are typically byproducts of neural samplers (Niisken
& Richter, [2021;Zhang & Chenl 2022} [Maté & Fleuret, [2023; Richter & Berner}, |2024; |Sun et al.,
2024; |Vargas et al., |2024; Maté et al., 2024; |Albergo & Vanden-Eijnden, 2025} |Blessing et al., 2025}
Chen et al} [2025} [Havens et al.| 2025 [Du et al., [2025)). Finally, there are also methods based on
particle filtering (Kostov & Whiteley} 2017; Jasra et al.,[2018; Ruzayqat et al.|[2022).

II. Variance reduction in JE and AIS. Our proof methodology focuses on the discrepancy between
the sampling path measure and the reference path measure, which is related to the variance reduction
technique in applying JE and AIS. For example, [Vaikuntanathan & Jarzynski| (2008)) introduced
the idea of escorted simulation, [Hartmann et al.|(2017) proposed a method for learning the optimal
control protocol in JE through the variational characterization of free energy, and [Doucet et al.| (2022)
leveraged score-based generative model to learn the optimal backward kernel. Quantifying the
discrepancy between path measures is the core of our analysis.

III. Complexity analysis for normalizing constant estimation. [Chehab et al.| (2023)) studied the
asymptotic statistical efficiency of the curve for TT measured by the asymptotic mean-squared error,
and highlighted the advantage of the geometric interpolation. In terms of non-asymptotic analysis,
existing works mainly rely on the isoperimetry of the target distribution. For instance,|Andrieu et al.
(2016) derived bounds of bias and variance for TT under Poincaré inequality (PI), Brosse et al.| (2018)
provided complexity guarantees for TI under both strong and weak log-concavity conditions, while
Ge et al.|(2020) improved the complexity under strong log-concavity using multilevel Monte Carlo.

IV. Complexity analysis of sampling beyond isoperimetry. Our analysis of estimating normalizing
constants of non-log-concave distributions is also closely related to the study of sampling beyond



Under review as a conference paper at ICLR 2026

log-concavity. In general, such problems are NP hard (Ge et al.,[2018;|He & Zhang| 2025). Existing
works providing convergence guarantees have leveraged more general isoperimetric inequalities
such as weak PI (Mousavi-Hosseini et al.,[2023), tried to establish convergence in weaker notions
(Balasubramanian et al.| 2022;|Cheng et al.}2023), or utilized denoising diffusion models (Huang
et al.| 2024aj He et al.,2024). We highlight|Guo et al. (2025) that this paper mainly draws inspiration
from, which introduced the action of a curve in quantifying the convergence of annealed sampling.
While they focused on sampling and presented cases where annealing works, we extend the analysis
to a conceptually different task, and further establish lower bounds on the action of the commonly
used geometric interpolation, motivating a new algorithm based on reverse diffusion samplers.

Notations and Definitions.

Preliminaries. For brevity, we integrate the required background information into the main text, with
a detailed exposition available in[App. Al

2 PRELIMINARIES AND PROBLEM SETTING

To motivate the study of normalizing constant estimation, we first present several examples.

Example 1. [Free energy difference.] In many statistical physics problems (Lelievre et al., [2010)),
given two energy functions Uy, U; (possibly linked through some thermodynamic process), one is
often interested in estimating the free energy difference AF := —1/glog( [ e #V1dz/ [e=Flodz),

which is related with the normalizing constant of the distributions 7; oc e =Y+,
Example 2. [Likelihood in latent variable models.] In latent variable models such as variational
autoencoders (Kingma & Wellingl [2013)), a common evaluation metric is the marginal likelihood of a

data point x, pg(z) = | pg(z|2)p(z)dz. This is nothing but the normalizing constant of the posterior
distribution of the latent variable z given data z, py(z|x) o, pg(z|z)p(2).

Example 3. [Volume of convex bodies.] In theoretical computer science, a classical problem is to
estimate the volume of a convex body X (Dyer et al.,|1991} |Cousins & Vempalal 2018};|Kook et al.,
2024])), which is equivalent to the normalizing constant of the uniform distribution on /C, 7 o< 1.

Building on prior theoretical results (Brosse et al., 2018} |Ge et al., |2020), we study the oracle
complexity of estimating the normalizing constant of a density under the following criterion:

Aim: Given a density 7 o< 7 := e~" on R%, bound the complexity of obtaining an estimator Z of
Z = [ga 7(2x)da such that with constant probability, the relative error is within &(< 1):
- -1

Pr(z §€>Z

Remark 1. We make two remarks regarding ()} First, similar to how taking the mean of i.i.d.
estimates reduces variance, we show in that the probability above can be boosted to 1 — (,
V¢ € (0,1/4) using the median trick: obtaining O(log1/¢) i.i.d. estimates satisfying|(1)\and taking

~

Z

> w

ey

their median. Therefore, we focus on the task of obtaining a single estimate satisfying|(1)| hereafter.
Second, [(1)| also allows us to quantify the complexity of estimating the free energy F- = —log Z,
which is often of greater interest in statistical mechanics than the partition function Z. We show in
[App. G|that estimating Z with O(€) relative error and estimating F with O(e) absolute error share
the same complexity up to constants. Further discussion of this guarantee, including a literature
review and the comparison with bias and variance, is deferred to[App. G|
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A straightforward method for estimating Z is through importance sampling, i.e., Z = E, 7/, for
some tractable proposal distribution g, yet its variance can be large due to the mismatch between g
and 7. The rationale behind annealing involves a gradual transition from 7 to 71 = 7. Throughout
this paper, we consider a curve of probability measures denoted as

1
(7‘1’9 = e_V9> ,
Zy 0€[0,1]

where V) = V is the potential of 7, and Z; = Z is what we need to estimate. We do not specify the
exact form of this curve now, but only introduce the following mild regularity assumption on the
curve, as assumed in classical textbooks such as/Ambrosio et al.| (2008}; [2021)); Santambrogio| (2015)):
Assumption 1. The potential [0,1] x R? > (0,z) + Vy(z) € R is jointly C', and the curve
(70)oc0,1) is absolute continuous with finite action A := fol |7'r|§ dé.

Here, ||y := lims_o w is the Wasserstein-2 (W,) metric derivative of the curve

(m6)oeo,1) at 0, which measures the “speed” of the curve in the space of probability distributions, and
absolute continuity means the above limit exists and is finite for all € [0, 1]. A curve having a
finite action is a weaker condition than requiring each 7y to satisfy isoperimetric inequalities (e.g.,
Poincaré or log-Sobolev). We refer readers to[App. A.2|for details of optimal transport (OT), and

[Cem. 4

For the purpose of non-asymptotic analysis, we further introduce the following mild assumption:
Assumption 2. V is 8-smooth, VV (0) = 0, and m := /E || - |2 < +o0.

Remark 2. One can always find a stationary point . of (possibly non-convex) V' using optimization
methods within negligible cost compared with the complexity for estimating Z. By considering the
translated distribution w(- — x.), we assume 0 is a stationary point without loss of generality.

Equipped with this fundamental setup, we now proceed to introduce the JE and AIS, and establish an
analysis for their complexity.

3 ANALYSIS OF THE JARZYNSKI EQUALITY

To elucidate how annealing works in the task of normalizing constant estimation, we first consider
annealed Langevin diffusion (ALD), which runs Langevin diffusion (LD) with a dynamically
changing target distribution.

To define
ALD, we introduce a reparameterized curve (7; = m;/7):[o,7) for some large time duration 7" to be
determined later, and consider the following SDE:

dX; = Vlog 7 (X,;)dt + V2dBy, t € [0,T]; Xo ~ To. 2)

The following Jarzynski equality provides a connection between the work functional and the free
energy difference, which naturally yields an estimator of normalizing constant.

Theorem 1 (Jarzynski equality (Jarzynskil [1997)). Let P~ be the path measure o Then the work
functional W and the free energy difference AF have the following relation:
Z1

(X¢)dt and AF := —log —.
Zo

t
T

1 T
EP% e_W = e_AF, where W(X) = T/ 59V9\9=
0

Below, we sketch the proof from Vargas et al.[ (2024} Prop. 3.3), which offers a crucial aspect for our
analysis: the forward and backward SDEs. [App. AT]

Sketch of Proof Let P be the path measure of the following backward SDE

dX, = —Vlog7(X;)dt + V2dB;, t € [0,T); X7 ~ 7. (3)
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Leveraging the Girsanov’s theorem and It6’s formula, one can establish the following
identity of the derivative between the forward and backward path measures,
known as the Crooks fluctuation theorem (Crooks, [1998};1999):

dp~ T
log = (X)= —/ (Oplogm)(Xy)dt = W(X) — AF, as. X ~P7, )
0
which implies JE by the identity Ep— 4P /ap~ = 1. [App-C1] O

Under the ideal setting where (i) Zj is known, (ii) the ALD in can be simulated exactly, and
(111) the work functional W (X) can be computed precisely, [Thm. 1|provides an unbiased estimator

Z = Zoe= W) for Z = Zye~2F . Despite its dominant use (Chipot & Pohorille, 2007; Leligvre
et al.;,|2010), the statistical efﬁc1ency of this estimator is not well understood. While it is known that
the variance of Z can be large, non-asymptotic analyses quantifying its efficiency is lacking. We

address this gap by establishing an upper bound on the time 7" required for the ALD to satisfy the
accuracy criterion[(1)|in the following theorem, whose proof is detailed in

Theorem 2. Under it suffices to choose T = 32A/<? to obtain Pr (’2/2 — 1] <e) >3/

We first observe that our bound aligns with the decay rate of the variance of the work in Mazonka
& Jarzynski| (1999) (see also [Lelievre et al.| (2010, Chap. 4.1.4)), which considered a special case
m9 = N (0L,1/k). They showed that W ~ N (Br,2Br) with By = L°/1 (1 — (1—e""")/kT),
and hence the normalized variance Varp— Z/z = €7 — 1 is asymptotically O(1/7) as T — oo.
Our bound, under a different criterion [(1)] is O(Y/) for all T > 0.

To illustrate the proof idea of [Thm. 2] ‘ note that while the ALD[(2)|targets the distribution 7 at time
t, there is always a lag between 7, and the actual law of X;. Similarly, the same lag exists in the

backward ALD|(3)| This lag turns out to be the source of the error in the estimator Z.

In practice, to alleviate the issue of high variance in estimating free energy differences,|Vaikuntanathan
& Jarzynski| (2008) proposed adding a compensatory drift term v, (X;) to the ALD Ideally, the
optimal choice would eliminate the lag entirely, ensuring X; ~ 7, for all ¢ € [0,T]. Inspired by
this, we compare the path measure of ALD P~ to the SDE having the perfect compensatory drift
term, whose path measure P has marginal distribution 7; at time ¢. To make possible the perfect
match, it turns out that v; must satisfy the Fokker-Planck equation with 7;. The Girsanov’s theorem
(Lem. 1) enables the computation of KL(P[|[P~) and KL(P||P*"), which are related to [[v¢[|72z,)-

Finally, among all admissible drift terms vy, suggests an optimal choice of v} to minimize

this norm, thereby leading to the metric derivative |7|; and the action .A. This way avoids the explicit
dependence of isoperimetric assumptions in our bound.

A similar connection between free energy and action integral was discovered in stochastic thermody-
namics (Sekimotol, |2010; |Seifert, 2012), one paradigm for non-equilibrium thermodynamics. By the
second law of thermodynamics, the averaged dissipated work, defined as the averaged work minus
the free energy difference, i.e., Wyiss := W — AF := Ep—~ W — AF, is non-negative. When the
underlying process is modeled by an overdamped LD, W45 can be quantified by an action integral
divided by the time duration (Aurell et al.,2011;|Chen et al.,2020). This follows from the observation
that Wyiss = KL(P7||P*) and then a similar argument to that above. This connection provides a
finer description of the second law of thermodynamics (Aurell et al.l 2012) over a finite time horizon.

Finally, we place[Thm. 2| within the broader theme of sampling v.s. normalizing constant estimation
by comparing with the complexity of non-log-concave sampling. |Guo et al.|(2025)) proved
that under the same assumptions, the ALD|(2)|can draw a sample within £?-error in KL(7||-) with the
same order of time T' < A/s2. While the classical work Jerrum et al.| (1986) proved the existence of a
polynomial-time algorithm for sampling and a polynomial-time algorithm for estimating normalizing
constant imply each other in the discrete settings, we establish a similar quantitative connection
between the complexities of these two tasks in the continuous settings without log-concavity, opening
a new avenue of research on understanding their relationship. Though reaching similar results, the
proof strategies are different: |Guo et al.|(2025) is a direct application of Girsanov’s theorem between
P~ and P, while involves more complicated backward SDE arguments.
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4 ANALYSIS OF THE ANNEALED IMPORTANCE SAMPLING

In practice, it is not feasible to simulate the ALD precisely, nor is it possible to evaluate the exact
value of the work W (X). Therefore, discretization and approximation are required. To address this,
we first outline the following annealed importance sampling (AIS) equality akin to JE.

Theorem 3 (Annealed importance sampling equality (Neal, 2001)). Suppose we have probability
distributions 7y = fe/z,, £ € [0, M] and transition kernels Fy(z,-), £ € [1, M|, and assume that
each my is an invariant distribution of Fy, ¢ € [1, M]. Define the path measure

M

P~ (zo.ar) = mo(0) [ [ Felwe—1,20). ®)
=1

Then the same relation between the work function W and free energy difference AF holds:

M felwe)
(

VA4
Eps eV =e 2 \here W (zo.pr) = log H and AF := —logﬂ.
g fera(@e)

0

Proof. Since 7, is invariant for Fy, the following backward transition kernels are well-defined:

_me(a’)

By(z,2') = (@) Fy(a',x), £ € [1,M].

By applying these backward transition kernels sequentially, we define the backward path measure

M

P (wo:ar) = mar(zar) [ [ Belwe, 1) Q)
=1

It can be easily demonstrated, as in that log 4P /ap+ (20.a7) = W (xo.ar) — AF'. Consequently,
the identity Ep— 4P /ap~ = 1 implies the desired equality. O

While the frameworks of JE and AIS hold for general curves of interpolation, for the study of
non-asymptotic complexity guarantees, we focus on a widely used curve in theoretical analysis
(Brosse et al., 2018} |Ge et al., [2020), which we refer to as the geometric interpolation

A(0)
2

where A(-) is a decreasing function with A(0) = 2/ and A(1) = 0, referred to as the annealing
schedule. With this choice of \(0), by the potential of 7 is 3-strongly-convex and
35-smooth, making sampling and normalizing constant estimation relatively easy. To estimate
Zy, we use the algorithm from |Ge et al.| (2020), which requires
O (4*%/<2) gradient oracle calls. In a nutshell, TI is an equilibrium method that constructs a series
of intermediate distributions and estimates adjacent normalizing constant ratios via expectation

under these intermediate distributions, realized through MCMC sampling from each intermediate
distribution. As TI is peripheral to our primary focus, we defer its full description

to|App. H.

Given|(7)} we introduce time points 0 = 6y < 1 < ... < 05 = 1 to be specified later, and adopt
the framework outlined in[Thm. 3|by setting 7y = f¢/, to correspond to 7y, = fo,/zy,, albeit with a
slight abuse of notation. To estimate the normalizing constant, we need to sample from the forward
path measure P~ and compute the work function along the trajectory. Since 7g, must be an invariant
distribution of the transition kernel Fy in P, we define F} via running LD targeting 7y, for a short
time 7y, i.e., Fy(x, -) is given by the law of X, in the following SDE initialized at Xy = x:

1 1 ,
ﬂe—Zofe—Zeexp(—V— ||~||),ee[o,1], )

dX; = Vlog g, (X;)dt + V2dBy, t € [0,Ty]. (8)

differs slightly from a widely used curve in applications (Gelman & Meng} 1998 |Neal, 2001): mg o<
wl_k(g)df‘(e), where ¢ is a prior distribution (typically Gaussian). We refer to both as geometric interpolation.
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In this setting, AIS can be interpreted as a discretization of JE (Lelievre et al., 2010, Rmk. 4.5).
However, in practice, exact samples from 7y are often unavailable, and the simulation of LD cannot
be performed perfectlyE] To capture these considerations, we define the following path measure:

M
P~ (zo:m) = o (o) Hﬁé(£5717$z), )
=1

where 7 is the law of an approximate sample from 7, and the transition kernel 13@ is a discretization
of the LD in Fy, defined as running one step of annealed Langevin Monte Carlo (ALMC) using the
exponential integrator discretization scheme (Zhang & Chen| [2023; Zhang et al.,[2023bga) with step

size Ty. Formally, I*A}(x, -) is the law of X7, in the following SDE initialized at X = x:
t
dX; = — <VV(X0) + A (941 + ?(95 — 041)> Xt> dt +v/2dB,, t € [0,Ty].  (10)
¢

Here, instead of simply setting F as one step of LMC targeting 7y, the dynamically changing A(+)
helps reduce the discretization error, as will be shown in our proof. Furthermore, with a sufficiently
small step size, the overall discretization error can also be minimized, motivating us to apply just one
update step in each transition kernel.

We refer readers to[Alg. T|in for a summary of the detailed implementation of our proposed
AIS algorithm, including the TI procedure and the update rules in [(10)} The following theorem

delineates the oracle complexity of the algorithm required to obtain an estimate Z meeting the
desired accuracy criterion [(T)] whose detailed proof can be located in

Theorem 4. Let 7 be the AIS estimator described as in Elg. Il ie., 7 = Zoe_W(IU:M) where 20

is estimated by TI and xy.pr ~ P, Under[éssumps. 1| and |/g] consider the annealing schedule
A(0) = 2B(1 — 0)" for some 1 < r < 1. Use A, to denote the action of (Tg)ge|o,1] to emphasize the

dependence on r. Then, the oracle complexity for obtaining an estimate Z that satisﬁes is

~<d§ mﬁAé dﬂ2A$>

O| =V V
g2 X gt

(In

We present a high-level proof sketch using[Fig. 1]
The continuous dynamics, comprising the for-
ward path P, the backward path P, and the
reference path PP, are depicted as three black
curves. To address discretization error, the /-th
red (purple) arrow proceeding from left to right
represents the transgion kernel Fy (By), whose
composition forms P~ (P).

() Analogously to the analysis of JE (Thm. 2,
define the reference path measure P with transi-

tion kernels F; such that x; ~ mg,. Given the

. =~ ——
sampling path measure P, define P~ as the  gjgyre 1: Illustration of the proof idea for[Thm. 4
version of P~ without the initialization error, i.e., by replacing 7y with 7 inm

(IT) Show that it suffices to obtain an accurate estimate 20 and initialization distribution 7y, together

with sufficiently small KL divergences KL(P||/P* ) and KL (]P’H@_}), which quantify the closeness
between the continuous dynamics and the discretization error in implementation, respectively.

(IIT) Using the chain rule, decompose KL (IP||P¢") into the sum of KL divergences between each pair
of transition kernels Fy and F" (i.e., “distances”). As in[Thm. 2] F}, a transition kernel from
mp,_, to my,, is realized by ALD with a compensatory vector field, ensuring the SDE exactly follows

3Recall that we need F, ¢ to have invariant distribution 7, in
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the trajectory (7g)oc(o,_,,6,]- Similarly, by applying the chain rule and Girsanov’s theorem, we can
express KL(P|@_>) as the sum of the blue “distances”, allowing for a similar analysis.

(IV) Finally, derive three necessary conditions on the time steps 6, to control both KL (P||P") and
KL(IP’||@_>). Choosing a proper schedule yields the desired complexity bound.

Our proposed algorithm consists of two phases: first, estimating Z, by TI, which is provably efficient
for well-conditioned distributions, and second, estimating Z by AIS, which is better suited for
handling non-log-concave distributions. The three terms in[(TT)| arise from (i) ensuring the accuracy
of Zy, (ii) controlling KL(IP||P*), and (iii) controlling KL(P||P ), respectively, as discussed in (II)
above. Due to the non-log-concavity of m, the action A is typically large, making (iii), the cost for
controlling the discretization error, the dominant complexity. The e-dependence can be interpreted
as the total duration 7' = © (1/?) required for the continuous dynamics to converge (as in[Thm. 2))

divided by the step size é(ez) to control the discretization error.

[Thin. 4

5 NORMALIZING CONSTANT ESTIMATION VIA DENOISING DIFFUSION

Disadvantage of Geometric Interpolation. From the analysis of JE and AIS and[), the
choice of the interpolation curve (7g)geo,1 is crucial for the complexity. The geometric interpolation
[(7)]is widely adopted due to the availability of closed-form scores of the intermediate distributions g,
and for certain structured non-log-concave distributions, the associated action is polynomially large,
enabling efficient AIS. For instance, |Guo et al.| (2025, Ex. 2) analyzed a Gaussian mixture target
distribution with identical covariance, means having the same norm, and arbitrary weights. However,
for general target distributions, the action of the related curve can grow prohibitively large. We now
establish an exponential lower bound on the action of a curve starting from a Gaussian mixture,
highlighting the potential inefficiency of AIS under geometric interpolation.

Proposition 1. Consider the Gaussian mixture target distribution m = /2N (0,1) + /2N (m, 1)
on R for some sufficiently large m 2 1, whose potential is m*/2-smooth. Under the setting in AIS

, define mp(x) ﬂ(x)e*”e)‘"z/{ 6 € [0,1], where \(§) = m?(1 — 0)" for some r > 1. Then,

the action of the curve (7g)gco,1), Ar, is lower bounded by A, 2, mte™ /.

The full proof is in The key technical tool is a closed-form expression of the W, distance
in R expressed by the inverse cumulative distribution functions (c.d.f.s) of the involved distributions,
and we lower bound the metric derivative near the target distribution, where the curve changes the
most drastically. This observation provides a novel perspective on the quantitative description of
the mass teleportation or mode switching phenomenom (Woodard et al., [2009; [Tawn et al., [2020;
Syed et al., 2021} (Chemseddine et al.,|2025), motivating us to explore alternative curves that can
potentially yield smaller action, thereby enhancing the efficiency of normalizing constant estimation.

Reverse Diffusion Samplers. Inspired by score-based generative models (Song et al., [2021]), recent
advancements have led to the development of multimodal samplers based on reversing the Ornstein-
Uhlenbeck (OU) process, such as reverse diffusion Monte Carlo (RDMC, Huang et al.| (2024a)),
recursive score diffusion-based Monte Carlo (RSDMC, Huang et al.| (2024b)), zeroth-order diffusion
Monte Carlo (ZODMC, [He et al. (2024)), and self-normalized diffusion Monte Carl(ﬂ (SNDMC,
Vacher et al.| (2025))). We collectively refer to these methods as the reverse diffusion samplers
(RDS). The key idea is to simulate the time reversal of the following OU process, which transforms
any target distribution 7 into ¢ := N (0, 1) as T — oo:

dY; = ~Yidt + V2dBy, t € [0,T); Yo ~ 7. (12)

*This name is introduced by us as the original paper did not provide a name for the proposed algorithm.
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Let Y; ~ ;. The time-reversal (Y, := Y7 _; ~ T1_¢)¢cjo,1) satisfies the SDE

dY;© = (Vi 4+ 2V log 7o (YV;7))dt + V2dWy, t € [0,T); Yo~ ~7r(= ¢).  (13)

Hence, to draw samples Y;~ ~ m, it suffices to approximate the scores V log 7, and discretize [(13)]
which can be implemented in various
. See[App. E.5|for a detailed review.

RDS-based Normalizing Constant Estimation. We now propose to leverage (T7—¢):e[0,7] in
AIS. To support this idea, we first present the following proposition.

[App. E2]
Proposition 2. Define T, as the law of Yy in the OU process|(12)| initialized from Yy ~ 7 o eV,
where V is 3-smooth. Let m* :=E || - |* < oc. Then, [, |7[7dt < dB +m?.

shows that under fairly weak conditions on the target distribution, the action of the curve along
the OU process, (T7—_t):e[o,7]> behaves much better than Hence, our analysis of JE (Thm. 2
suggests that this curve is likely to yield more efficient normalizing constant estimation. Furthermore,
recall that in our earlier proof, we introduced a compensatory drift term v; to eliminate the lag in
JE. The same principle applies here: ensuring X; precisely following the reference trajectory is
advantageous, which results in the time-reversal of OU process Building on this insight, we
propose an RDS-based algorithm for normalizing constant estimation, and establish a framework for
analyzing its oracle complexity. See[App. E.3|for the proof.

Theorem 5. Assume a total time duration T, an early stopping time § > 0, and discrete time points
O=to<t1 < ...<ty=T—-6<T. Fort € [0,T —9), lett_ denote ty, ift € [ty,tr+1). Let
s. & V1ogT. be a score estimator, and ¢ = N (0, I). Consider the following two SDEs on [0, T — ¢
representing the sampling trajectory and the time-reversed OU process, respectively:

Qf . dX, = (X; +2sp_¢_ (X, ))dt + V2dBy, Xo ~ ¢ (14)
Q: dX, = (X, 4 2Vlog7r_,(X,))dt + v2dBy, Xo ~ .

Let Z == e~ W(X) X ~ QF be the estimator of Z, where the functional X — W (X)) is defined as
T—96
log (b(X()) + V(XT,(S) — (T — 6)d + / <||8T7t7 (Xt7)||2dt + \/§<ST7t, (Xt7)7 dBt>) .
0

Then, to ensure 7 satisﬁes it suffices that KL(Q||Q") < &% and TV (7, 7s) S e

For detailed implementation of the update rule in and the computation of W (X), see
To determine the overall complexity, we can leverage existing results for RDS to derive the oracle
complexity to achieve KL(Q||QT) < 2. When early stopping is needed (i.e., § > 0), we prove in
that choosing ¢ =< 62/52d2 suffices to ensure e-closeness in TV distance between 75 and 7,
under weak assumptions similar to For RDMC, RSDMC, ZODMC, and SNDMC, the

total complexities are, respectively, O(poly (d, 1/¢) exp (1/e) ™), exp (82 log® poly(B, d, m?, /¢)),
exp(O(d) log Blog 1/<), and O((8(m*vd)/)O(@)) bl The full analysis can be found in|App. E.5

As discussed, RDS can be viewed as an optimally compensated ALD using the OU process as
the trajectory. We conclude this section by contrasting these two approaches. On the one hand,
analytically-tractable curves such as the geometric interpolation offer closed-form drift terms at all
time points, but may exhibit poor action properties or bad isoperimetric constants (Chehab
et al.l 2025)), making annealed sampling challenging. On the other hand, alternative curves like
the OU process may have better properties in action and isoperimetric constants, but their drift
terms, often related to the scores of the intermediate distributions, lack closed-form expressions,
and estimating these terms is also non-trivial. This highlights a fundamental trade-off between the
complexity of the drift term estimation and the property of the interpolation curve.

5
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Experiments. We now compare the performance of the methods of normalizing constant estimation
for non-log-concave distributions that have been discussed in the paper, including TI, AIS, and the
four RDS-based methods. We consider two multimodal target distributions: a modified Miiller Brown
(MMB) distribution and Gaussian mixture (GM) with 4 components, both in R?. The quantitative
results are summarized in where we report the relative error of A and, for GM, the maximum
mean discrepancy (MMD) and W, distance between the generated samples Tgamp, and ground truth
samples from 7. All RDS-based methods provide accurate estimates of the normalizing constant and
high quality samples, while TI and AIS (based on geometric annealing) produce seriously biased
estimates due to lack of mode coverage. Further details are presented in

Table 1: Quantitative results of normalizing constant estimation (mean =+ std), best in bold.

Target Metric TI AIS RDMC RSDMC ZODMC SNDMC
MMB Z/Z 0.7527 £0.0086  2.9740 + 7.6705 0.9829 £0.2116  1.2885+12.7843 0.9878 +0.1154 1.0053 £ 0.1192
Z/Z 0.2427 £0.0016  0.2042 4 0.0008  1.0001 £ 0.0850  0.9202 £ 1.0276  0.9766 & 0.2835  0.9973 & 0.0834
GM MMD(Zgamp, ®)  2.5407 £0.0281  2.4618 £+ 0.0270 0.3581 £ 0.0366 0.3124 £0.0395  0.2591 £0.0381  0.1576 4 0.0279
Wa(Tsamp, ) 10.5602 £ 0.0794  10.4842 £ 0.0851  7.0242 £ 0.9104 2.6012 £0.2482  2.4506 £0.2963 1.5494 4 0.6820

6 CONCLUSION, LIMITATIONS, AND FUTURE DIRECTIONS

This paper investigates the complexity of normalizing constant estimation using JE, AIS, and RDS,
and takes a first step in establishing non-asymptotic convergence guarantees based on insights from
continuous-time analysis. Our analysis of JE applies to general interpolations without
explicit dependence of isoperimetry, thereby substantially extending prior work limited to log-concave
distributions. Several limitations remain: the tightness of our upper bounds and [) are
unknown; the lower bound on the action in does not directly imply that JE needs exponentially
long time to converge; though the action provides a clean analysis of the statistical efficiency of
annealing—which isoperimetric inequalities cannot deal with—its practical interpretability is not
well understood. Finally, we conjecture that our proof techniques can extend to samplers beyond
overdamped LD (e.g., Hamiltonian or underdamped LD (Sohl-Dickstein & Culpepper;, [2012)), and
may also apply to estimating normalizing constants of compactly supported distributions on R?
(e.g., convex bodies volume estimation (Cousins & Vempala, |2018))) or discrete distributions (e.g.,
Ising model and restricted Boltzmann machines (Huber, 2015} |Krause et al., [2020)) via the Poisson
stochastic integral framework (Ren et al.l 2025a}b), which we leave as a direction for future research.
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A PRELIMINARIES

A.1 STOCHASTIC ANALYSIS: FORWARD-BACKWARD SDES AND GIRSANOV’S THEOREM

For a stochastic differential equation (SDE) X = (X;);c[0,7] defined on Q = C([0,T];R?), the

distribution of X over {2 is called the path measure of X, defined by PX: measurable A C Q —
Pr(X € A). The following lemma, as a corollary of the Girsanov’s theorem (Ustiinel & Zakail, 2013],
Prop. 2.3.1 & Cor. 2.3.1), provides a method for computing the Radon-Nikodym (RN) derivative and
KL divergence between two path measures, which serves as a key technical tool in our proof.

Lemma 1. Assume we have the following two SDEs with t € [0,T):

dXt = at(Xt)dt + O'd.Big7 X() ~ 3 dY; = bt(}/;:)dt + O'd_Bt7 K) ~ V.
Denote the path measures of X and 'Y as P~X and PY, respectively. Then for any trajectory & € €,
1

o2

X

d
log 5 (€) = log L (&0) +

/T (ar(E) — bu(€) dg>—1/T<|a (€)1 — [be(€)]P)dt
0 t\St t t)y t 20_2 0 t\St t t .

In particular, plugging in & < X ~ PX, we can compute the KL divergence:
1 T
KL(P¥|[PY) = KL(p[lv) + @/ Epx [las(Xe) = be(Xe)|*dt.
0

Remark 3. The Girsanov’s theorem requires a technical condition ensuring that a local martingale
is a true martingale, typically verified via the Novikov condition (Karatzas & Shreve| 1991 Chap. 3,
Cor. 5.13), which can be challenging to establish. However, when only an upper bound of the KL
divergence is needed, the approximation argument from|Chen et al.|(2023| App. B.2) circumvents
the verification of the Novikov condition. For additional context, see|Chewi| (2022, Sec. 3.2). In this
paper, we omit these technical details and always assume that the Novikov condition holds.

We now present the theory of backward stochastic integral and the Girsanov’s theorem, which
are adapted from [Vargas et al.| (2024). Here, we include relevant results and proofs to ensure a
self-contained presentation.

The backward SDE can be perceived as the time-reversal of a forward SDE:

Definition 1 (Backward SDE). Given a BM (Bi)ic(o,r), let its time-reversal be (Bf :=
Br_t)ieo,r)- We say that a process (X~ )ic(o0,1] satisfies the backward SDE

dX; = a(X)dt +0dB, t € [0,T]; X5 ~v
if its time-reversal (X; = X3, )ie0,1) satisfies the following forward SDE:

dXt = —ant(Xt)dt + O'dBt, te [0, T], XO ~ V.

Remark 4.

The forward and backward SDEs are related through the following Nelson’s relation:

Lemma 2 (Nelson’s relation (Nelson, |1967; |Anderson, |1982)). Given a BM (Bt)te[o,T] and its
time-reversal (B{~ = Br_¢)c(0,1), the following two SDEs

dX; = ay(Xy)dt + 0dBy, Xg ~po; and dY: = b (Yy)dt + odB, Yr ~¢q
have the same path measure if and only if
q=pr, and b;=a;—o*Vlogp, Vt €[0,T],
where py is the p.d.f. of X;.
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Proof. The proof is by verifying the Fokker-Planck equation. For X, we have

52
Oy = =V - (aupy) + gﬁpt-

Let x;~ := %p_;. Then p;~ satisfies
o? 9 o?
Opi” =V - (a7 pi) = 5 A = =V - ((=a” +0"Vlogp )pi) + - App,
which means (X, );c[o,7) has the same path measure as the following SDE:
dZ; = —(af — 0*Vlogpy )(Zy)dt + od By, Zy ~ pf.
On the other hand, by definition, (Y;);c[o 7 satisfies the forward SDE
dY;” = —b7 (Y7 )dt + 0dBy, Yo ~ g,
and thus the claim is evident. 0

We now introduce the concept of backward stochastic integral, which allows us to represent the RN
derivative between path measures of forward and backward SDEs.

Definition 2 (Backward stochastic integral). For two continuous stochastic processes X and'Y on
C([0, T); R?), the backward stochastic integral of Y with respect to X is defined as

n—1

T
Y;, xdX;) :=Pr- Ui Yi . Xe . — X
/0 < ty X t> r HHlHrgO s < tit1r Mt tz> ’

where Il = {0 = tg < t; < ... < t, = T} is a partition of [0, T,

IT| := max (tit1 —¢;), and

the convergence is in the probability sense. When both X and'Y are continuous semi-martingales,
one can equivalently define

T T
/ (Y, #dXy) = / (Ve dX3) + [X, V)1 (15)
0 0

where [X,Y]. is the cross quadratic variation processﬂ of the local martingale parts of X and 'Y .

Remark 5. Although rarely used in practice, the backward stochastic integral is sometimes referred
to as the Hinggi-Klimontovich integral in the literature. Recall that the Ito integral is defined as the
limit of Riemann sums when the leftmost point of each interval is used, while the Stratonovich integral
is based on the midpoint and the backward integral uses the rightmost point. The equivalence in[(15)|
can be justified in|Karatzas & Shreve (1991, Chap. 3.3).

Lemma 3 (Continuation of[Lem. I). 1. If we replace the SDEs in[Lem. 1| with
dX; = ay(Xy)dt + 0d B, Xr ~ u; dY; = b(Y3)dt + od B, Yr ~ v,
while keeping other assumptions and notations unchanged, then for any trajectory £ € (),

= 3 | e — et - 55 [ Qla€l? - e )

log o

du
= 1 _—
(§) =log D (ér) +
and consequently,
1 T
KL(PX||PY) = KL(u||v) + ﬁ/ Epx [Jar(Xy) — be(Xy) || de.
0
2. Define the following two SDEs from 0 to T':

dX; = a;(Xy)dt + odBy, Xo ~ 13 dY; = b,(Yy)dt + od B, Yr ~ 1.
Denote the path measures of X and 'Y as PX and PY, respectively. Then for any trajectory & € €,

X T T
tog S (©) = to 220 4 2 [ (Gt de) = (60, 26)) ~ oz [ (laulelP ~ o).

5The notation used in|Karatzas & Shreve (1991 is (-, -).. We use square brackets here to avoid conflict with
the notation for inner product.
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Proof. 1.
‘We know that

dX; = —a; (X{)dt + 0dBy, X§ ~ u; dY,” = b7 (Y,7)dt + 0dBy, Yy ~ .
Let PX* and PY" be the path measures of X< and Y ¢, respectively. From we know that

dpX™

d
log W(f) = log d*l:(go) - !

o2

T 1 T
| i@ =08 - 5oz [ e @1F - b))

Since PX " (d€) = Pr(X* e df) = Pr(X € dé+) = PX(d¢+), we obtain

dpPX dPX™
log dIPTY(g) = log W(fg)
d e e
—log 6) o5 [t (€~ €060 — 503 [ (lar (&) — 1o €I

—tog S )+ o [ o€~ (e wds) = 5z [ (el = e )

To justify the last equality, if £, n are two continuous stochastic processes, then by definition,

n—1

T
Codno) =Pr- lim S (g i -0,
/0 (& dn;) \IHI\AO; St oMy, — My,
n—1

=Pr- Hl%lﬂrgo ; <§T—ti,1 YT —t; — 77T—t,i,1>

n—1

=Pr - \|r1[1|\rE>O - ; <£T7ti717"7T7ti,1 - 77T7ti>

T
_ / (&0, wdny) (16)
0

/OT grdt = /OT Ep_ydt = /OT &, dt.

Therefore, the equality of RN derivative holds. Plugging in £ <— X, we have

On the other hand,

dpX
dpPY

log

T T
(X) = log 35<XT>+3,/0 <at(Xt)—bt(Xt),*dBf>+$/o [lae (Xe)—be (Xe) || *dt.

To obtain the KL divergence, it suffices to show the expectation of the second term is zero. Let
T
M, ;:/ (an (X)) — bo(X,), +dBSY £ € [0,T),
t
By[(T6)] we have
t
M == [ o ()~ b (X, dBy).

0
Since d X = —a; (X[ )dt + 0dBy, we conclude that M; is a (forward) martingale, and thus M
is a backward martingale with EM; = EM;—, = 0.
2. We present a formal proof by considering the process dZ; = odB; and Z; ~ A, the Lebesgue

measure. As a result, formally Z; ~ X for all ¢, so it can also be written as dZ; = odB;~, Zr ~ A.
The result follows by applying[Lem. I|to X and Z and 1. to Y and Z.

O
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A.2 OPTIMAL TRANSPORT: WASSERSTEIN GEOMETRY AND METRIC DERIVATIVE

We provide a concise overview of essential concepts in optimal transport (OT) that will be used in the
paper. See standard textbooks (Villani, 2003} 2008; |Ambrosio et al.,2008};[2021) for details.

For two probability measures y, v on R? with finite second-order moments (i.e., E,, || - |%,E, || -
|? < o00), the Wasserstein-2 (W) distance between p and v is defined as Wa(pu,v) =
infen(u) ([ Iz — yl[*v(d, dy))l/Q, where II(u,v) is the set of all couplings of (p,v). The
Brenier’s theorem states that when p has a Lebesgue density, then there exists a unique coupling
(id XT#—”’)ﬁ 1 that reaches the infimum. Here, f stands for the push-forward of a measure (defined

by Tyu(-) = p({w : T(w) € -})), and T},_,,, is known as the OT map from p to v, which can be
written as the gradient of a convex function.

Given a vector field v = (v¢);e[q,) and a curve of probability measures p = (p¢)¢e[q,5) With finite

second-order moment on R%, we say that v generates p if the continuity equation d;p;+V - (p;v¢) = 0,
t € [a, b] holds in the weak sense. The metric derivative of p at ¢ € [a, b] is defined as

Wa(pits, pt)
6—0 |5 | ’

which can be interpreted as the speed of this curve. We say p is absolutely continuous if || exists
and is finite for Lebesgue-a.e. ¢ € [a, b]. The metric derivative and the continuity equation are related
through the following fact (Ambrosio et al., 2008, Thm. 8.3.1 & Prop. 8.4.5):

Lemma 4. For an absolutely continuous curve of probability measures (p¢)ic[a ), any vector field
(Vt)te[a,p) that generates (pt)icia,p) satisfies |ply < ||vel|p2(p,) for Lebesgue-a.e. t € [a,b]. Moreover,
there exists an a.s. unique vector field (v; € L*(pt))ie(a,p) that generates (pt)ic(a,p) and satisfies

TPt P45 —id

1ot = [|vf ||L2(p,) for Lebesgue-a.e. t € [a,b], which is vi = lims_,g ;
Finally, we define the action of an absolutely continuous curve of probability measures (p¢)¢eq,5) as

f; |p|2dt, which plays a key role in characterizing the efficiency of a curve for normalizing constant
estimation. For basic properties of the action and its relation to isoperimetric inequalities such as
log-Sobolev and Poincaré inequalities (see definitions below), we refer the reader to|Guo et al.| (2025}
Lem. 3 & Ex. 1).

Definition 3 (Isoperimetric inequalities). A probability measure © on R? satisfies a Poincaré in-
equality (PI) with constant C, or C-PI, if for all f € C°(R?),

Var, f < CE. V£
It satisfies a log-Sobolev inequality (LSI) with constant C, or C-LSI, if for all 0 # f € C>(R?),
f? 2
< 2CE, .
F 7z < 20E: VS|
Furthermore, a-strong-log-concavity implies é—LSI, and C-LSI implies C-PI (Bakry et al.||2014).

E, f2 log

B PSEUDO-CODES OF THE ALGORITHMS

See and 2 for the detailed implementation of the AIS and RDS algorithms, respectively.

C PROOFS FOR[SEC. 3|
C.1 A COMPLETE PROOF OF[THM. I
Proof. By Girsanov’s theorem (Lem. 3)), we have
dP~ To(&) 1 (7T ~ ~
= — - Vi ,d Vi ,*xd&)).
O =10 2 o [ (ViogFu(6).déi) + (VIogFu(60). 60)
We first prove the following result (Vargas et al.,[2024, Eq. (15)): if day = as(z¢)dt + V2d By, then

/T (ap(we), xday) = /T (ay(my), day) + 2 /T tr Va, (X, )dt.

0 0 0

log
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Algorithm 1: Normalizing constant estimation via AIS.
v

Input: The target distribution 7 < ™", smoothness parameter 3, total time 7'; TI number of
intermediate distributions K, annealing schedule \y > ... > A = 0, number of particles
N; AIS steps M, annealing schedule A(-) with A(0) = 2, time points
0?6‘0<...<9]u:1.

Output: 7, an estimation of Z = fRd e V(@) g,

// Phase 1: estimate Zg via TI.

Define Vo := V + S| - ||, pi, :oc exp (—=Vo — 22| - [|2), and g, := exp (%H . ||2), for

ke [0, K —1];

d

. 2 2

Initialize Zj < exp (fVo(O) + Ll ) (3/32;30) ’
fork=0to K — 1do

Obtain NV i.i.d. approximate samples zgk), e xg\lf) from py, (e.g., using LMC or proximal
sampler);
=~ 1 N (F)\) 7 .
Update Zy < (ﬁ Do 96(Xn )) Zo;

end
// Phase 2: estimate Z via AIS.
Approximately sample x( from 7 (e.g., using LMC or proximal sampler);

Initialize W <+ —%(/\(90) — )\(91))||$()||2;

for({=1to M —1do

Sample an independent & ~ N (0, I,7);

Define A(t) := [ A (ee_l + 2 (0 — 9¢_1)) dr, where Ty := T(0; — 0_1);
Update

2y e AT g, | (fOTe e—(A(n)—A(t))dt) YV (1) + (2 s e—Q(A(Tz)—A(t))dt> 13

// see or the derivation.

Update W < W — £(A(0) — AM(Oe41))[|ze s

Nl

end
return Z = Zye= W

Proof. Due to|(15)} it suffices to calculate [a(X), X|,.. By Itd’s formula, we have
dat(a:t) = (8tat(xt) + <Vat(a:t), at(xt)> + Aat(xt))dt + \@VatdBt,
and hence

[a(X), X], = UO ﬂVat(xt)dBt,/O. \/ﬁdBtL :tr/TZVat(xt)dt.

0

Therefore, for X ~ P, we have
dp—~ 7o (Xo)

1 X) =1
0g “pe (X) % = (Xr)

+/T(<v10g%t(Xt),dXt> +A10g%t(Xt)dt)
0

On the other hand, by It&’s formula, we have

dlog 7 (Xy) = O log T (X)) + (Vg 7 (Xy), dXy) + Alog 7 (Xy)de.
Taking the integral, we immediately obtain [(4)] and the proof is complete. O
C.2 PROOF OF

Proof. The proof builds on the techniques developed in |Guo et al.| (2025, Thm. 1), yet with new
components including backward SDE and the corresponding version of the Girsanov’s theorem.
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Algorithm 2: Normalizing constant estimation via RDS.

Input: The target distribution 7 o< e =", total time duration 7', early stopping time J > 0, time
points 0 =ty < t1 < ... < tn =T - 0;

Output: 7, an estimation of Z = f]Rd e~ V(@) dg.

Sample Xy ~ N (0, 1), and initialize W := *w - glog 27;
fork=0to N —1do
Sample an independent pair of (g) ~N (O, (plk plk) ®TI ), where the correlation is

VEICARIEY , and ® stands for the Kronecker product;  // this can be

Pk = V(@O0 1) (b1 — )
done by sampling &, 52 Ve (0,1) and setting &2 = pré&1 + /1 — pi ~2
Update Xy, , < efvr17t Xy + 2(elm+1 7t — 1)sp_y, (Xy,) + Ve2teri—t) —1&;; // see
for the derivation
Update W < W + (tga1 — tr)||s7—t, (X )|1? + V/2(tha1 — tr) (s7—t, (X, ), E2); // see

for the derivation
end

Update W « W 4+ V (X, ) — (T — d)d;
—-w

return Z — e

We define P as the path measure of the following SDE:
dXt = (V 10g%t + Uf)(Xt)dt + \/idBt, te [O,T], XO ~ %07 (17)

where the vector field (v¢);[o,7) is chosen such that X; ~ 7; under P for all ¢ € [0, T]. According
to the Fokker-Planck equation[] (vt)tejo, ) must satisfy the PDE

aﬂ?t =-V- (%f(VlOg%t +’Ut)) + A%f =-V- (%t’l}t)7 te [O,T],

which means that (v;);cjo,7] generates (7;)¢c[o,r)- The Nelson’s relation (Lem. 2) implies an
equivalent definition of IP as the path measure of

dX; = (~Vleg® +v)(X,)dt +V2dBf, t € [0,T); Xr ~ Tp.

Now we bound the probability of ¢ relative error:

~

VA e~ dP+
Pf(fl 25) :Pﬁ(e—M”’ZE) :P_)(cﬂw_l‘fo)

1 dP< 2
“Ep— |—— — 1| = = TV(P~,P~

= P ’d]P)*} ' c ( s )
2

< 2(TV(P,P~) + TV(P,FX))
€

2
< 2 (/REFIF) + RLEIFS)). (18)
In the second line above, we apply Markov inequality along with an equivalent definition of the TV

distance: TV (p,v) = % Ik % - g—K dA, where A is a measure that dominates both £ and v. The

third line follows from the triangle inequality for TV distance, while the final line is a consequence of
Pinsker’s inequality KL > 2 TV?.

"We assume the existence of a unique curve of probability measures solving the Fokker-Planck equation
given the drift and diffusion terms, guaranteed under mild regularity conditions (Le Bris & Lions| [2008).

26



Under review as a conference paper at ICLR 2026

By Girsanov’s theorem (Cems. I|and 3], it is straightforward to see that

1 T 1 [T
KL(P||P*) = KL(P|[P™") = Z]EP/O [[ve(Xy) |12t = 1/0 0212z, -

Leveraging the relation between metric derivative and continuity equation (Cem. 4), among all vector
fields (v¢);e(o,7) that generate (7¢)¢c[o, 7], We can choose the one that minimizes ||v¢ || 12 (,), thereby

making [|vs | z2z,) = |7, the metric derivative. With the reparameterization 7y = /7> We have
the following relation by chain rule:

. ~ ~ W 7
|%|t = hm W2(7Tt+(5777t) _ hm 2(7T(t+5)/T ﬂ-t/T)
30 9] 50 T|6/T)|
Employing the change-of-variable formula leads to

1 .
= f\ﬂt/T-

4T AT
Therefore, it suffices to choose T' = 324 to make the r.h.s. of (18)]1ess than %. O

S

— s ]. T <12 1 ! .12 A
KL(P[PT) = KL(P|P™) = 7 ; mlidt = = ; 7gdd = 1

D PROOF OF[THM. 4l

With the forward and backward path measures P~ and P*~ defined in[(3)] and [(6)] we further define
the reference path measure

M

P(z0:01) = mo(wo) [ [ F7 (we-1,2e), (19)
=1
where F/ can be an arbitrary transition kernel transporting 7y, _, to mg,, i.e., it satisfies

7, (y) = /FZ‘(SB,y)7r9£_1(a:)dac7 Vye R — 2y~ m,, VL € [0, M].

Define the backward transition kernel of I as
o, (%)

o, (I )
which transports g, to mg, ,. Equivalently, we can write

Bj(z,2") = Fj(«',z), L € [1,M],

M
P(zo.01) = m1(xar) H Bj(xe,xe—1).
=1
Straightforward calculations yield
M
KL(P|P™) = ZEﬂghl(zz,l) KL(F} (21, )| Fe(we-1,-)),
=1
M
KL(P|P) =Y Er,, (o) KL(B; (24, )| Be(ze, )
(=1
M
=Y KL(m,, (@e—1) Ff (ze-1,20) | w0, (x-1) Fe(we—1, 0)) (20)
=1
M
= KL(P||P~) + > KL(m,_, |[70,)- 1)
=1

Also, recall that the sampling path measure P~ is defined in starts at 7o, the distribution of an
approximate sample of 7. For convenience, we define the following path measure, which differs

from P~ only from the initial distribution:

=

P (zo.n) = mo(zo) [ | Folzo_y, x0). (22)

M=

o~
Il
—
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Equlpped with these definitions, we ﬁrst prove a lemma about a necessary condition for the estimator
Z to satisfy the desired accuracy |(

Lemma S. Define the estimator Z = Zoe=W@om) \phere xo.0r ~ P, and Zy is independent of
zo.m- To make Z satisfy the criterion it suffices to meet the following four conditions:

Z € 1
Pr(Zz—l 28>§8 (23)
; (24)
; (25)
(26)

Proof. Recall that Z = Zge~ 2. Using|[Lem. 8] we have

~

e~ Wi(zo:nm)

A A € Zo €
Pr(Z—l 25>§Pr<logz 22>_Pr%:M~@H<logz+log NG 22>
Zol e -w €
gPr<logZO 4>+]}Dﬁ<logAF 24)
Zo € o~ e W €
<Pr||=——-1/>- P~
<re([Z =) o7 ([ =)

The first term is < 1 5 if holds. To bound the second term, using the definition of TV distance and
the triangle 1nequa11ty, ave

= e 5
Pﬁ(e—wl\zs)

~ e W €
<TV(P7,P7) + P~ <‘e‘AF — 1‘ > 8>

~ . _ dP<
<TVE, P )+ TVE ,P) + TV(R,P?) + P~ [ |[S —1| > 2.
dP— 8
Recall that by definition @and@ the distributions of z1.s conditional on z are the same under

]PH and P Hence, TV(P~,P ") = TV (7o, m). Applying Pinsker’s inequality and leveraging
we have

fw(

Note that from[(21)] we know that KL(P||P~) < KL(P||P*), [25)]t0[26)]hold, we can achieve
]IAD*(::AWF -1 2%) < &, and therefore Pr (‘%—1‘25) < O

Next, we study how to satisfy the conditions in[(25)]and [(26)] while minimizing oracle complexity.
Given that we already have an approximate sample from 7y and an accurate estimate of Zy, we
proceed to the next step of the AIS algorithm. Since each transition kernel requires one call to the
oracle of VV, and by plugging in fy < V + @H -||? in AIS li the work function W (zg.ar)
is independent of V/, it follows that the remaining oracle complexity is M. The result is formalized in
the following lemma.

-W
e—l‘ > 5)
e~ AF — 8

1
I
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Lemma 6. To minimize the oracle complexity, it suffices to find the minimal M such that there exists
a sequence 0 = 0y < 01 < ... < 0y; = 1 satisfying the following three constraints:

M 92 54
S [ 0w -aerars o @
=1 o 54
> (00— 00-1) WL (28)
(=1 62
Zéﬁl1§§4ﬂ (O —0i-1) S BA (29)

Proof. We break down the argument into two steps.

Step 1. We first consider

Note that when defining the reference path measure P, the only requirement for the transition kernel
F; is that it should transport g, , to mg,. Our aim is to find the “optimal” F;"’s in order to minimize
the sum of KL divergences, which can be viewed as a static Schrodinger bridge problem (Léonard,
2014;|Chen et al.| 20165 2021)). By data-processing inequality,

Cp = inf KL(mo,_, (we-1) F (2e-1, xe) | mo, (2-1) Fe (-1, 2¢)) <inf KL(P|1Q"),
£
where the infimum is taken among all path measures from O to 7, with the marginal constraints

Pf) = mp,_, and PETZ = 7p,; QF is the path measure of [(8)| (i.e., LD with target distribution 7g,)
initialized at X ~ mp,.

For each ¢ € [1, M], define the following interpolation between 7y,_, and 7y,:

4
ut = 7T9£_1+TL£(9£79£_1), t S [O,Tg]

Let P be the path measure of
dX, = (Vlog i + uf)(Xy)dt + V2dBy, t € [0, T4]; Xo ~ 7o, ,,

where the vector field (Uf)te[O,T(] is chosen such that X; ~ uf under P, and in particular, the
marginal distributions at 0 and Ty are my,_, and my,, respectively. By verifying the Fokker-Planck
equation, the following PDE needs to be satisfied:

Oty = =V - (g (Vdog py + uf)) + Apy = =V - (ufuy), t € [0,T¢],

meaning that (uf)¢c[o,r,) generates (1if);c[0,7,]. Similar to the proof of JE (Thm. 2)), using the relation
between metric derivative and continuity equation (Lem. 4), among all vector fields generating
(1¢)se(0,1,)> We choose (uf)¢e(o,1) to be the a.s.-unique vector field that satisfies [|ug|| r2(,¢) = |i2‘]s
for Lebesgue-a.e. t € [0, Ty], which implies (using the chain rule)

Ry R
0 0
T (6,—0 2 0, — 6 e
e — 01 o — 01 .12
_ Yo dt = 4L d.
/0 ( T, Ly ry—— (006 1)) 7, /9[_1 7|5

By we can equivalently write P as the path measure of the following backward SDE:
dX; = (—Vlog ut +ub)(X,)dt +V2dB;~, t € [0,T); X1 ~ 7g,.

Recall that QZ is the path measure ofinitialized at Xo ~ mp,, s0 X; ~ my, for all ¢t € [0, Ty]. By
Nelson’s relation (Lem. 2), we can equivalently write Q’ as the path measure of

dX, = —Vlogmy,(X,)dt + V2dB;~, t € [0, T;]; X1, ~ 7,
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The purpose of writing these two path measures in the way of backward SDEs is to avoid the extra
term of the KL divergence between the initialization distributions 7y, , and 7y, at time 0 when

calculating KL(P*||Q?). To see this, by Girsanov’s theorem (Lem. 3)), the triangle inequality, and
the change-of-variable formula, we have

2

1 [T ¢
Co<kPQ) =5 [ uf - viee L2
0 M0 W22 (uf)
T, Ty [Lé 2
S// Huf||%2(ue)dt+/ Vlog—t dt
0 1’ 0 o Il 12 (up)
0y — 6,_ Oe T 0¢ 2
= M/ |7’r|§d9+7é/ Vlogﬂ a0,
T, 01 0o —0o—1 0o+ 0, 11 12 ()

Remark 6. Our bound above is based on a specific interpolation between mg, | and 7y, along the
curve (7¢)ge(o,_,.0,]- This approach is inspired by, yet slightly differs from, |Conforti & Tamanini
(2021 Theorem 1.6), where the interpolation is based on the Wasserstein geodesic. As we will
demonstrate shortly, our formulation simplifies the analysis of the second term (the Fisher divergence),
making it more straightforward to bound.

Now, summing over all £ € [1, M], we can see that in order to ensure KL(P||P*+) < 307, Cp < €2,
we only need the following two conditions to hold:

M 9
O — 04— ‘
PR / |7[3d6 < €2, (30)
- h Oe—1
M 0 2
T £
275/ Vlog 22 46 < &2, 31)
=1 6‘[ - 9271 0p_1 g, L2(mg)
Since 32,7, f:il |7|2d6 = A, it suffices to choose
T, A
_ M =L wen, M 32
94 — 9571 52 [[ ]] ( )

to make the Lh.s. of O(g?). Notably, T is the summation over all T;’s, which has the same order
as the total time 7" for running JE ((Z)) in the continuous scenario, in Plugging this 7} into
the second summation, and noticing that by [(7)]and

o

i COR AO))l* < (AO) = M) m?,

we conclude that implies [31)]

HVIog
o’

Step 2. Now consider the other constraint [[26)] By chain rule and data-processing inequality,

M M
KL(P|P ) =Y KL(ro,_, (z0—1)F} (we—1,20) |70, , (re—1) Fo(we—1,20)) < Y KL(PY|Q"),
=1 /=1

where P? is the previously defined path measure of the SDE
dX, = (Vlog uf + uf)(X,)dt + v2dB,

t

= (—VV(Xt) - (9“ + 7 (0 - 9“)> X+ uf(Xt)) dt +V2dBy, t € [0, Ty]; Xo ~ 79, ,»
‘

and Qe is the path measure of ((10)|initialized at X¢ ~ mp, ,, L.€.,

t
dx, = (—VV(XO) — A (9“ + 7 (60— 9“)) Xt> dt +V2dB,, t € [0,Ty); Xo ~ m,_,.
4
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By triangle inequality, and the smoothness of V', we have

~ 1 T
KLPQ) = 7 [ Bpe [VV(X0) = VV(X0) — (X))

< / Epe [[VV(X0) — VV (X0 + luf (X0)]12] at

Ty T,
S 52/ EPZ ||Xt — X0||2dt +/ Huf”iz(#f)dt
0 0
To bound the first part, note that under P¢, we have
t
X — Xo = / (Vlog il +ul)(X,)dr + V2B,.
0

Thanks to the fact that X; ~ uf under P?,

2

t
Epe | X; — Xo|? < Epe / (Vlog il + ut)(X,)dr|| +E[V2B,|?
0

t
St [ Bee [(Viogat +ul) (X,)|*dr + di
0
t
St [ (IV 108 gy + g ) b+
0

Ty
S TZ/O (HVIOng—HZLQ(uf_) + ||U£H%2(;u;)) dr + dTy, Vt € [0, Ty,

where the second inequality follows from Jensen’s inequality (Cheng et al.,|2018| Sec. 4):

|/

Therefore,

2 t
= 2‘:2” ETNUnif(O,t) fT||2 < t2 IE'rNUnif(O,t) ||fT||2 = t/ ||f7‘H2dT
0

KL(P‘|Q")

Ty Te
<8 [ Be X = XolPat+ [ a3

T, T,
<81 [NV 108 gy dr + (PTE + 1) [ ey + AT
0 0

22 TZ o 2 22 05 — 9271 o - 12 22
:5 T[i HVIOgW@||L2(ﬂ9)d9+(ﬂ TZ +1)7 |7T|9d0+d6 TZ‘
O — 001 Jo,_, Ty .

(—1

Recall that the potential of 7y is (5 + A(#))-smooth. By and the monotonicity of A(+),

) 0,
/ IV 108 9]125 (46 < / 408 + \(0))d0 < d(60 — O0—1)(B+ A(0r_1).

og_ 1 92—1
Thus,

Op — 0p—1

e
KL(P|F”) < (W;dw“(e@_l)) +erp )22 [ o +dﬁ2Te2>

M=

~
Il
—

s

T,

~
Il
—

0,
(52@2 (Tg(5+)\(9471))+1)+(52TZ2+1)M/ |7'r|§d0>
Op_1
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Assume maxgeq, vy Te S %, ie., so maxgey, vy Te(8+ A(0e—1)) < 1. due to A(+) < 2. We
can further simplify the above expression to

™ = 2 3m2 , Oe— 0 o - 12 2 = 2 2
KL(P|P ) < BT + ——— 730 | S B> TP ) +e
=1 T Oc—1 =1
M A2 M
= B2dT* (0 — 0,-1)* + > < B i 2D (00— 00-1) + 2
=1 (=1

So implies that the r.h.s. of the above equation is O(1).

Finally, we have arrived at the last step of proving that is to decide the schedule of 6;’s.

Define ¢, := 1 — 6, ¢ € [0, M]. We consider the annealing schedule A(6) = 23(1 — )" for some
1 <r < 1, and to emphasize the dependence on 7, we use A, to represent the action of (7g)geo,1)-
The Lh.s. of [2T7)is

S [ O = X020 < 300~ 00-1)(28(1 = B = 260 - 0"
=1 -1 =1

=1
M
SB2Y (W1 =90 (V1 —90)* = B Y (91— 00),
=1 =1
where the last inequality comes from[Cem. 9] So to satisfy[(27)] it suffices to ensure
M o
3
szfl =) < m,
=1
while [(28)] and [(29)] are equivalent to
M o4 2
o1 — 0 , Vo1 — 0
;( 1 0" < dﬂQA2 e, M]]( 1 S BA,

Since we are minimizing the total number of oracle calls M, the Holder’s inequality implies that the
optimal schedule of ¥,’s is an arithmetic sequence, i.e., 9, = 1 — %. We need to ensure

4 4 2
1 € 1 € 1<6

M2~ m2B2A, M~ dprA2’ M~ BA,

. 2 4 L. . .
So it suffices to choose ﬁ = —<=F A dﬁiﬁ, which implies the oracle complexity
mpBAZ r

3 2 42
mpA} AP

M =<
g2 g

O

dg? A ) oracle

Remark 7. The work|Guo et al.|(2025) used similar methodologies to prove an 9] <

complexity for obtaining a sample that is £2-close in KL divergence to the target distribution. While
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our assumptions are mostly the same with|Guo et al.|(12025) except for some insignificant technical
ones, and both proofs involve the standard discretization analysis through Girsanov’s theorem,
the improvement of the e-dependency in is due to the fact that|Guo et al.|(2025)) requires

KL(IP’||@_>) < g2 for sampling, which results in a 6(54) step size in|Guo et al.|(2025), while our proof
only needs KL(P|P ") < 1 and KL(P||P*) < &2 for normalizing constant estimation, resulting in
an improved ©(&?) step size.

E PROOFS FOR[SEC. 3]
E.l PROOF OF[PROP_1I

Proof. The claim of smoothness follows from |Guo et al.[(2025, Lem. 7). A similar approach for
proving the lower bound of metric derivative was used independently in|Chemseddine et al.| (2025}
App. B).

Throughout this proof, let ¢ and ® denote the p.d.f. and c.d.f. of the standard normal distribution
N (0, 1), respectively. Unless otherwise specified, the integration ranges are assumed to be (—oco, 00).

Note that

a2 _z? _@=m)?\ a2
m(x)e” 2% oc(e T e 2 )e 2

— e—%ﬁ +e” 2?ﬂ21)e—%($_;11)2
Am?2
1 1 20D 1
:HN<$0a >+ ° >\2N<‘r m7)
14 e 200D A+1 14 e 200D A+1"A4+1
Define S(6) := m,and let
_1/s—1 2

mo(z) ix w(x)e™ 2 =w(s) N (x]0,5) + (1 — w(s)) N (z|sm,s),

where
_ 1 , B e—(l—s)m2/2m2/2
- 1+e—(1—5)m2/2’ w (S) - _(1+e—(1—s)m2/2)2'

w(s)

By definition, my = T5(0)- The p.d.f. of m is
~w(s) x 1—w(s), (z—sm
s =t2e () v e (P )

R = w0 (5] + 0 - uie (27)).

and the c.d.f. of 7, is

We now derive a formula for calculating the metric derivative. From |Villani (2003, Thm. 2.18),

Wi(p,v) = fol (F;l(y) — F,;Y(y))?dy, where F,, F, stand for the c.d.f.s of y,v. Assuming
regularity conditions hold, we have

2 1 F—l o F*l 2 1
i W2 Tovs) < s ) — Fs (y)> dy = / (0:FH(y))?dy.
0 0

5—0 02 5—0 0

Consider change of variable y = F,(z), then 3¢ = f,(2). Asz = F; '(y), (F;')'(y) = 3—; =
1

7-(zy- Taking the derivative of s on both sides of the equation = = F71(Fy(z)) yields

L o).

0= 33E;1(Fs($)) + (stl)/(Fs(x))asEs(x) = 6'3F;1(y) + m f
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Therefore,

/Ol(ast‘l(y)de = / (a}féf))2f5<x)dx :/de'

Consider the interval € [% -0.1,% + 0.1] , and fix the range of s to be [0.9,0.99]. We have
1- w(s) = Ite( 15‘)717.2/2 = e(1—$m2/2’ vm Z 1

(1 s)m /2 2/2 m2
(14e(—)m2/2)2  A-s)m2/2> Ym Z 1

—w'(s) =
First consider upper bounding f,(x). We have the following two bounds:

wis X 22 (m/2-0.1)2 m2
( )¢(> Se 2 <e  2x099 <e_7 Vm > 1,

Vs T \Vs
: _\/U;(S)¢ <x ?/?n) 5 e(lfsl)m2/2e_% - xp (_1 |:(Sm5_x)2 + (1 a S)m2:|) -

The term in the square brackets above is

DO

M+(1—s)m222< -)2+(1—3)m2

m

2
B LY, 001
R S
2

m
>_" g1 1> ym > 1.
_4><0.99 —0lm+0.12 ==, vm

m2

Hence, we conclude that fs(z) <e s .

Next, we consider lower bounding the term (9, F,(x))?. Note that

~0uF(2) = —u/(s) <‘I) (jg) - <x ¢§m>>

Asx € [% -0.1,% + 0.1] and s € [0.9,0.99], all these three terms are positive. We only focus on
the first term. Note the following two bounds:

o %)Z‘I’(m—OJ)E% vm 2L

Therefore, we have
2

m
_ >
0sFs(x) 2 SA—om?2"

To summarize, we derive the following lower bound on the metric derivative:

T 2 Z+0.1 T 2
|E‘§:/(88FS( )) d.’L‘>/ (6SF5( )) dx

@ T e R
F+0.1 4, —(1—s)m?

2/ﬂ701 emm?/8 a
n .

> miels=8)m* > ptes | Vs € [0.9,0.99].

Finally, recall that S(0) :=
|Tlo = || 5(6)]S"(0)]. Let

0= {0c0,1]: S(O) € [0.9,099]} — l1 - <1/0921> - <1/09921)] .

m, and my = T5(6)- Hence, by chain rule of derivative,

m m
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We have
1 1
A= [1aas = [ a0 > [ [35)s'0)as
0.99 )
> ( '(6)]d6 = r|2ds.
minlS'0) - [ 1#l30)5'(0)1d0 = minls'@)] - [ lilas
For any 6 € O,
1/0.99-1\ 1 ~/"
, m2r(1—6) 1 m r( /m ) m?2/Tr(1/99)1-1/r o/r
15°(0)] = 2 3 2 7= 2 Zm7" 2z,
(14+m2(1-0)) (1+ 2(1/0,9_1)> (1/0.9)
m pog

—1
where in the first “>” we used the inequality 7 (55) ! > L that holds for all 7 > 1. Thus, the
proof is complete. O

Remark 8. In the above theorem, we established an exponential lower bound on the metric derivative

of the W, distance, given by lims_,q w In OT, another useful distance, the Wasserstein-1

(Wy) distance, defined as W1 (1, v) = inf eri(u,y [ |l — yllv(dz, dy), is a lower bound of the W
distance. Below, we present a surprising result regarding the metric derivative of W; distance on the
same curve of probability distributions. This result reveals an exponentially large gap between the
W and W, metric derivatives on the same curve, which is of independent interest.

Theorem 6. Define the probability distributions m, as in the proof o for some large enough
m 2 1. Then, for all s € [0.9,0.99], we have

W1 (Es7ls+6)

li <1.
550 0] ~
Proof. Since W1 (p,v) = [ |F,,(z) — F,(x)|dz (Villani, 2003, Thm. 2.18), by assuming regularity
conditions, we have
W
lim Vs Tovs) _ / |8 Fy(2)]da
6—0 |5|

dz

) o)

o e (5
v (5552 (55 o

To bound the first term, notice that for any A > 0,

€Tr— Q’VYL 2
Veme S emam >
) i _ (I) x
\/g \[ s < =X
1, otherwise.
Therefore, using Gaussian tail bound 1 — ) < % 2", the first term is bounded by

2

m?2 N2 AO(m) m3
< - -7 < R
~ e(l—s)m2/2 [A+m+e 2 ] ~ e(l_s)m2/2 0(1)
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The second term is bounded by

< /¢ (%) lo|da = s/¢(u)|u|du <1

Finally, the third term is bounded by

1 T — sm
S s () el 4 mas

1 m
SN /¢(U)(|U| tm)du S s = o).

E.2 PROOF OF[PROP. 2|
Proof. We first prove a more general result with ¢ being any distribution with weak regularity
condition, and then focus on the special case where ¢ = N (0, ).
Note that the LD with target distribution ¢,

dY; = Viog ¢(Yy)dt + V2dBy, Y, ~ 7,
can be perceived as the Wasserstein gradient flow of KL(+||¢). 7, satisfies the Fokker-Planck equation
Oty =V - <ﬁfVlog %) Hence, the vector field (z‘f := —Vlog %) generates (7¢);e[0,00)»

P/ tef0,00) R

and each v; can be written as a gradient field of a potential function. Thus, by the uniqueness result

in[Cem. 4] we conclude that

2

72 = ’V]()g o
(0]

= FI(7]|¢) = -0, KL(7]|¢) = / 7|2dt = KL(x||¢),
L2(7,) Jo

where F1 is the Fisher divergence.

For the special case where ¢ = N (0, I), using the log-Sobolev equality (Def. 3}, the smoothness of
V, and[Cem. T3] we can further bound the KL divergence as follows:

1 1 ! , , ) .
KL(7||¢) < 3 Fl(r|¢) = 5 Erw) | = VV(2) +2|? <E |[VV[?+Ex | - |* < dB +m>.

E.3 PROOF OF[THM. 3

Proof. By Nelson’s relation (Cem. 2)), Q is equivalent to the path measure of the following SDE:
dX; = X,dt + V2dBF, t € [0, T — 8]; Xp_s ~ 7s.

Leveraging Girsanov’s theorem (Lem. 3), we know that for a.s. X ~ QT:

T T—6
log% MJFE/O (X + 2570 (X0 ),dX0) — (Xp, #d X))

X = Ts(Xr—s5) 2

1 T—0
1 O s O - 1P a
0

Note that for X ~ QF, [~ (X, #dX;) = [ °(X,,dX;) + [X, X]r_s and [X, X]p_5 =
[V2B,V2B]r_s = 2(T — 5)d. Some simple calculations yield

dQf #(Xo)
dQ s (Xr_s)

d
=log Z + W(X) + log d—;&(XT_(;).

T-46
log —(X) = —(T - 6&)d + /0 (||sT_t_ (X )2t + V2 (sp—e (Xi ), dBt>)

36



Under review as a conference paper at ICLR 2026

Thus, the equation Eg: % = 1 implies

_W(X)@(XT_g) ~ -WX) _ R 7.

Z:EQT(X)G dn

Egt(x)e

Since £ = @(X)#(XT 5), we have

m) ~ P | g OO rs) —1| 2 ¢)

d d
cre (00 ) e (o 22)

The inequality is due to the fact that |ab — 1| > ¢ implies |[a — 1| > S or [b — 1| > £ fore € [0, 1]. It
suffices to make both terms above O(1). To bound the first term, we use the similar approach as in

the proof of [(I8)]in

i f
Pry~or (\f& )~ 1\ze)=@*(|(§_1 ZE)STW@»@)S KL(@]eh)

€ €
Hence, it suffices to let TV(Q, QT)? < KL(Q||Qf) < 2. To bound the second term, we have

dm

d
PI‘XNQJr <‘d (Xr— 5)1’ >€> SPI"XNQ( T
s

d7T5

AT (X 5>1‘ >e> +TV(Q,Q)

d .
<7 < = - 1’ ) +TV(Q Q")
dms
5 TV(fts, 71') te
€
Therefore, it suffices to make TV (75, m) < €. O

E.4 AN UPPER BOUND OF THE TV DISTANCE ALONG THE OU PROCESS

Lemma 7. Assume that the target distribution ™ o< e~V satisﬁes Let 75 be the distribution
of Ys in the OU process|(12)|initialized at Yy ~ 7, for some § < 1. Then,

TV(m,75) S 8(fm? + d + Bd) + 67 d? Bm.

Remark 9. Consider a simplified case where 3 > 1 and m? < d. Then it suffices to choose § < 62 d2
in order to guarantee TV (m,7s) < e.

Proof. Our proof is inspired by |[Lee et al.| (2023, Lem. 6.4), which addresses the case where V' is
Lipschitz.

Without loss of generality, suppose 7 = e~ V. Let ¢ be the p.d.f. of A" (0,I), and define o2 :=
1 —e~29 < §. We will use the following inequality: |e® — e®| < (e® + e®)|a — b|, which is due to the
convexity of the exponential function. By the smoothness of V, |[VV (z)|| = ||[VV (z) — VV(0)]| <
Bll]-

5

Define 7/(z) = e®n(e’x), and thus 75(z) = [ 7'(x + ou)d(u)du. Using triangle inequality, we
bound TV (7, ') and TV (7', 7s) separately First,

TV(m, 7)) = %/|e_v(w) - e_V(eélHd‘s\dx

< / (r(2) + 7' @)V () — V(2)] + db)da
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By the smoothness,

V(ez) = V(@) < [[VV(2)[l(e" = 1)]|z]| + g(e‘s —1)*[|?
< Bllzldll]| + 86% ||« < Bll=|>.
s TV(m ) < 5/(7r(x) +7(2)) (B2 + d)da.
Note that [ 7(z)(8]|z||> + d)dz = Bm? + d. Since E.» ¢ = E. ¢(e~?-), we also have
/7r'(x)(6Hx||2 +d)dz = e ?Bm? +d < fm? + d.

‘We thus conclude that
TV(m,7') < 8(Bm? + d).

Next,
TV, 7) /‘/ (& + o) — 7'(2))b(u)du| da
< / / I (2 + o) — 7 ()| () dudz
< //(W'(m + ou) + 7 @)|V(e (& + o)) — V(e'a)|p(u)dudz.
Again, by smoothness,

V(e (@ +ou) = V(e'n) < [VV (D) ollul + 3 B o2 62|Ju?
< Bel ||zl o|ul +/3e2%2||u||2
< Bllal0F ull + B8]|ull.

Therefore,

V(' 75) £ 804 [ [0+ ow) + @)l + 6% ) (w)dud.

Note that, first,
J[ 7@ allie) + 5% lulP)otwitude B |- |4 +5%d < md¥ + o
second,
[ 7@+ cuulial + 5 ulP)étu)duda
= [[ 7wl = ol + 5% [ulP)otu)audy
S [[ %@ Uallol + 5% ful*)é(w)dudy < ma + st
Therefore, TV (7', 75) < B62dz (m + 62dz). The proof is complete.

E.5 DISCUSSION ON THE OVERALL COMPLEXITY OF RDS

In RDS, an accurate score estimate s. ~ V log 7. is critical for the algorithmic efficiency. Existing
methods estimate scores through different ways. Here, we review the existing methods and their
complexity guarantees for sampling, and leverage [Thm. 3|to derive the complexity of normalizing
constant estimation. Throughout this section, we always assume that the target distribution 7 oc e~V

satisfies m? := E, || - |2 < oo and that V' is 3-smooth.
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(I) Reverse diffusion Monte Carlo. The seminal work directly leveraged the following Tweedie’s
formula (Robbins| |1992) to estimate the score:

e tyy—x
Vg () = Eo e (zolx) 1_72}_%, (33)
where i . ”2
_ To — e'x
7To|t(950|33) Xz €XP <—V(9€0) - 2(06%_1)> (34)

is the posterior distribution of Y{ conditional on Y; = x in the OU process The paper proposed
to sample from 7|, (-|z) by LMC and estimate the score via empirical mean, which has a provably
better LSI constant than the target distribution 7 (see [Huang et al.| (2024a, Lem. 2)). They show
that if the scores V log 7, are uniformly S-Lipschitz, and assume that there exists some ¢ > 0 and
n > 0 such that for any r > 0, V + 7| - || is convex for ||z|| > -, then w.p. > 1 — (, the overall

complexity for guaranteeing KL(Q||QT) < &2 is

O(n)

1 1

0] (poly (d, ) exp () > ,
¢ €

which is also the complexity of obtaining a Z satisfying

(IT) Recursive score diffusion-based Monte Carlo. A second work Huang et al.|(2024b) proposed
to estimate the scores in a recursive scheme. Assuming the scores V log 7, are uniformly S-Lipschitz,

they established a complexity
. 1
exp (53 log® poly (5, d,m?, C))

in order to guarantee KL(Q[|Qf) <e?w.p. > 1 — (.

(IIT) Zeroth-order diffusion Monte Carlo. The following work [He et al.| (2024) proposed a
zeroth-order method that leverages rejection sampling to sample from 7 (-|z). When V' is 3-
smooth, they showed that with a small early stopping time 4, the overall complexity for guaranteeing

KL(Q|Q") $e?is
exp <6(d) log Blog i) .

(IV) Self-normalized estimator. Finally, a recent work [Vacher et al.|(2025) proposed to estimate
the scores in a different approach:

1 E[te V' @-9)]

Viegm(2) = —1— = Eje- V(@) ’

where £ ~ N (0, (1 — e ?)I).

Assume that V is 3-smooth, and the distributions along the OU process starting from = o e~V

and 7’ o< e~2V have potentials whose Hessians are uniformly = —/31, then the complexity for

guaranteeing EKL(Q||Q) < &2 is
0 ((6(m2 vd))o“‘)) |
€

F SUPPLEMENTARY LEMMAS

Lemma 8. Forxz > 0ande € (0,3), define xo := |log x| and x1 := |x — 1|. Then x; > ¢ implies
15 > 5, and x; < € implies x1_; < 2¢, for both i = 0, 1.

This follows from the standard calculus approximation logx ~ x — 1 when x = 1. The proof is
straightforward and is left as an exercise for the reader.

Lemma9. Forany0<a<b<landr>10"—a" <r(b—a).
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Proof. This is immediate from the decreasing property of the function () := 2" — rz, x € [0, 1],
since ¢’ (z) = r(z"~1 - 1) <0. O

Lemma 10 (The median trick (Jerrum et all 1986)). Let Zi,..., Zx be N(> 3) ii.d. random
Zy
on g

variables satisfying
P
( 2

and let ZF be the median 0f21, s 2]\7. Then

.

In particular, for any ¢ € (O, i) choosing N = [72 log %—‘, the probability is at least 1 — (.

Ss) 2%, Vn € [1,N],

~

A

ge) >1_e 72,

Proof. Let A,, := {
then there are at least Lﬂj A,,’s happening, i.e., Sy := Z:Ll 1a, > L%J Then,

2
N N
Pr( >€>§Pr(SN2L2J>Pr(SNESNZL2J pN>
N
<Pr (SN —-ESy > 12) <e 7,
where the first inequality on the second line follows from the fact that L%J > NoL 5 L > % for all

N > 3, and the last inequality is due to the Hoeffding’s inequality. O
Lemma 11. The update rule of AIS is:

1
T T bl
Xy, = e AT X, — (/ ‘ e—(A(n)—A(t))dt) TV (Xo) + (2/ ‘ 6—2(/1(Te)—/1(t))dt> ¢
0

% — 1‘ > e}, which are i.i.d. events happening w.p. p < i. If

Z,
7—1‘>5,

Z,
|
Z

0

where A(t) := fot A (9571 + Tle(ﬁg — 9g,1)) dr, and &€ ~ N (0, ) is independent of Xo.

Proof. By It&’s formula, we have

d(eMX,) = D (A (1) Xy dt 4 dX;) = MO (=VV (X)dt + V2dB,).

Integrating over ¢ € [0, Ty], we obtain

Tg TE
ATIXp — Xy = — ( / eA(t)dt> VV(Xo) 4+ V2 / A 0aB,,
0 0

T, Te
e Xp, — e AT X, — (/ ‘ e—(A(n)—A(t))dt) YV (Xo) + ﬁ/ Lo (AT)-A g,
0 0

and v/2 f* e~ (AI=AO1aB, ~ N (0, (2 [ 72 ATO=40ag) T) by It isometry. 0

Lemma 12. The update rule of the RDS is
th+1 = etkﬂ_thtk, + 2(etk+l_tk - 1)ST*tk (th) + E,

where
tht1
=, = V2e~ =t B, ~ N (0, (e2(trer1—tn) _ 1)1) 7
tr
and the correlation matrix between Zy, and By, | — By, is

ﬂ(etkﬂ—tk -1)
\/(GZ(tk.ylftk) — 1)(tk;+1 - tk) .

Corr(Ey, By, ,, — By,) =
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Proof. By applying It6’s formula to fort € [ty,tr11], we have
de7tX,) = e H(=X,dt + dX,;) = e (257, (X4, )dt +V2dBy)

tr41
— eft’““XtHl — eft’“th = 2(€‘7tk — eitk"'l)ST_tlC (th) —+ \@eftdBt.

tr

The covariance between two zero-mean Gaussian random variables =, and By, | — By, is

Cov(Zk, By, — Bi,) = E[Ek(By,,, — Bi,)"]

trt1 tet1
=E ( ﬂe_(t_tk“)dBt) (/ dBt>
Lk 172

t
/ T ety T = V2(eleri Tt )]

tk

T

Finally, Corr(u, v) = diag(Cov u)~2 Cov(u, v) diag(Cov v)~? yields the correlation. O
Lemma 13 (Chewi| (2022, Lemma 4.E.1)). Consider a probability measure p x e U on R4

1. IfV2U = ol for some o > 0 and x, is the global minimizer of U, then E,, || - —x,]|* < g.
2. If VU < BI for some 3 > 0, then E,, | VU||? < Bd.

Lemma 14. Define 7ty oc exp (—V — 3| - [|?), A > 0. Then under Ez, || - ||* < m? for
all X > 0.

Proof. Let V) :=V + 3| -|% and Z\ = [e~"2dz, so 7y = e~ "2 712 22 We have

d Z\ 1 1

— log Z e —Vi '"dr = — = F~ 112

sz =3 =5 [ Ve = Be |,

d . d 1 ) )
— Slogin = —V{ — —logZy = 5 (Ea, || -2 = |- ?),

d 2 o[ d = = 1 2)2 4
= —E~ |12 = . il = ~ - —E-~ |- < 0.
Bl = [0 (foems ) s = 5 (@1 12)° = Bey 1Y) <0

G REVIEW AND DISCUSSION ON THE ERROR GUARANTEE

G.1 LITERATURE REVIEW OF EXISTING BOUNDS

Estimation of Z. Traditionally, the statistical properties of an estimator are typically analyzed
through its bias and variance. However, deriving closed-form expressions of the variance of Z and F’
in JE remains challenging. Recall that the estimator Z = Zge~"V(X)| X ~ P~ for Z = Zye 2F,

and that JE implies Bias Z = 0. For general (sub-optimally) controlled SDEs, |[Hartmann & Richter
(2024)) established both upper and lower bounds of the relative error of the importance sampling
estimator, yet bounds tailored for JE are not well-studied. Inspired by this, we establish an upper

bound on the normalized variance Var % in at the end of this section using techniques in
Rényi divergence. However, we remark that connecting this upper bound to the properties of the
curve (e.g., action) is non-trivial, which we leave for future work.

Estimation of . Turning to the estimator F=— log ZforF=— log Z, we have
Bias F' = Bp W — AF = W — AF = Wi
Bounding the average dissipated work Wgiss = KL(P7||P*) = — Ep- fOT(at log ;) (X )dt re-

mains challenging as well, as the law of X; under P~ is unknown, thus complicating the bounding of
the expectation. To the best of our knowledge, Chen et al.|(2020) established a lower bound in terms
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of Wa(mo, 1) via the Wasserstein gradient flow, but an upper bound remains elusive. Furthermore,
EF? = Ep-(x) (log Zg — W(X ))? is similarly intractable to analyze.

For multiple estimators, i.e., Fx := — log (Zoﬁ SE e WED)) where X, ., X (K) B po
Zuckerman & Woolf] (2002 2004) (see also Lelievre et al| (2010, Sec. 4.1.5)) derived approximate

asymptotic bounds on Bias FK and Var FK via the delta method (or equlvalently, the central limit
theorem and Taylor expansions). Precise and non-asymptotic bounds remain elusive to date.

G.2 EQUIVALENCE IN COMPLEXITIES FOR ESTIMATING Z AND F'

We prove the claim in that estimating Z with O(¢) relative error and estimating F' with O(¢)
absolute error share the same complexity up to absolute constants. This follows directly from [Lem. §|

forany £ € (0, 3),

M = Pr<|F F|<25) %, and <:Pr<|ﬁ—F|§%>>

»Moo

G.3 [(D)]1s WEAKER THAN BIAS AND VARIANCE

‘We demonstrate that@]is a weaker criterion than controlling bias and variance, which is an immediate
result from the Chebyshev inequality:

~ 2 ~ ~

1 Z Bias® Z + Var Z

5) Sﬂ(zl) =Tz
E(ﬁ — F)?  Bias® F+ Var F
g2 - g2 '

~

Z
Pr||=—-1|>
r<Z >

Pr(|ﬁ—F|ze) <

~

On the other hand, suppose one has established a bound in the following form:
Z
=-1

Pr(z

and assume that Z is unbiased. Then this implies
z (z N o~ ((z Y\ o0
C=E|lZ-1| = Pr|[Z-1] 2e|de< de.
VarZ (Z ) /o r (Z > >e s_/o p(v/e)de

G.4 AN UPPER BOUND ON THE NORMALIZED VARIANCE OF Z IN JARZYNSKI EQUALITY

Proposition 3. Under the setting of JE , let (vt)icjo,1) be any vector field that generates
(T¢)tejo,1), and define P as the path measure of Then,

T 3
Ep exp <14/ |vt(Xt)2dt>] -1
0

Proof. The proof is inspired by |Chewi et al.|(2022). Note that

> 5) < p(e), forsomep:[0,00)— [0,1],

~

Z
Var — <
arZ_

~ ~\ 2
Z Z 2 AP\ 2
Var 7 E (Z) Ep- (e Ep = )
which is the x? divergence from P to P~. Recall the q(> 1)-Rényi divergence defined as

q “— Ip—
Ry(pllv) = ﬁlog]El, (3—’;) , and that x2(P* ||P~) = eR2(P"IF7) _ 1. By the weak triangle
inequality of Rényi divergence (Chewil 2022, Lem. 6.2.5):

3
2(PTIPT) < 5 Ra(PT(P) + Ry (PET).
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We now bound Ep ( ) for any ¢ € R. By Girsanov’s theorem (Lem. 1J),

d(i: (X) = /0 (_\}i (ve(Xy),dBy) — levt(Xt)szt) ,as. X ~P.

log

Therefore,
dP—> q
Ep | —

_ N e x2
~Beewp | ( L x0),a8) — Y (x| dt)

= Erexp [ [ (- wxamy - Spacopar) + [ (5 -4 el dt]
(

< <EIP’ exp l/OT (—\/ﬁq v (Xt),dBy) — q2||vt(Xt)H2dt)

(e |- 9) [ et )

where the last line is by the Cauchy-Schwarz inequality. Let M, := —v/2¢ fot (vp(X;),dB), X ~P
be a continuous martingale with quadratic variation [M]; = fof 2¢?||v-(X,)||*dr. By |[Karatzas

& Shreve| (1991, Chap. 3.5.D), the process t +— eMi—3[Mle jg o super martingale, and hence
EeMr—3[M]r < 1 Thus, we have
) 3

(5 (oo o

From Girsanov’s theorem (Lem. 3), we can similarly obtain the following RN derivative:

10 1< Ut }(t *(Il; v X dt a.s ~ .
g f t t 1

and use the same argument to show that Ep (95=-)? has exactly the same upper bound as Ep (4£-")".
In particular, we can use the same martlngale argument whereas now the backward continuous

martingale is defined as M, := -2 2q ft v (X)), *dB), X ~ P, with quadratic variation
M)y = ftT 2¢?||v-(X,)||>dr. Therefore, we conclude that

1 g 1 '

ZlogE[Pexp (14/ |Ut(Xt)|2dt> + ilogEP exp <5/ Ut(Xt)”zdt)
o 0

. T

5 log e exp 14/ [o:(X2)[|Pdt | -
0

Ra(PT[[P7)

IA

IN

H RELATED WORKS

H.1 THERMODYNAMIC INTEGRATION
(I) Review of TI. 'We first briefly review the thermodynamic integration (TI) algorithm. Its essence

is to write the free-energy difference as an integral of the derivative of free energy. Consider the
general curve of probability measures (7g)gco,1) defined in Then,

Z 1
— log Zy = —/ D 0pV(x)de = — By, OpVy = log 7 = —/ E., 9Vydb. (35)
0
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One may choose time points 0 = 0y < ... < 03 = 1 and approximate by a Riemann sum:

M-—1
Z
log 7% = 3 (Bes1 —00) Bx, Dolo=0, Vi, (36)
£=0

where the expectation under each 7y, can be estimated by samphng from 7y, . Nevertheless, there is
a way of writing the exact equality instead of the approximation in[(36)} since

log @ = log / Le_VSK (@) = (Vo (©)=Vo, (€)) 4 — logE,, e*(V95+1*V94)7
Z‘ge ng £

by summing over £ = 0, ..., M — 1, we have

M-—1
—(Vo,,,1—Vo,)
log Ze Z L (37)

which constitutes the estimation framework used in [Brosse et al.| (2018)); (Ge et al.|(2020); Chehab
et al.[(2023); Kook & Vempala) (2025). Hence, we also use TI to name this algorithm.

(II) TI as a special case of AIS. We follow the notations used in [Thm. 3| to demonstrate the
following claim: T7|(37) m is a special case of AIS with every transition kernel Fy(x,-) chosen as the
perfect proposal my,.

Proof. In AIS, with Fy(z,-) = 7, in the forward path P, we have P~ (zo.as) = [10", 76, (0)-
In this special case,
M-—1

W (zo.pmr) = log H
£=0

e Vo, (z0)

e Vorn (e)’
and hence the AIS equality becomes the following identity, exactly the same as|(35)

7 M—-1
7= A = eV = 1:[ Erp, € Vorer V00, (38)

O

(IIT) The distinction between equilibrium and non-equilibrium methods. In our AIS framework,
the distinction lies in the choice of the transition kernels F(x, -) within the AIS framework.

In equilibrium methods, the transition kernels are ideally set to the perfect proposal 7y,. However, in
practice, exact sampling from 7y, is generally infeasible. Instead, one can apply multiple MCMC
iterations targeting 7y, , leveraging the mixing properties of MCMC algorithms to gradually approach
the desired distribution 7y,. Nonetheless, unless using exact sampling methods such as rejection
sampling — which is exponentially expensive in high dimensions — the resulting sample distribution
inevitably remains biased with a finite number of MCMC iterations.

In contrast, non-equilibrium methods employ transition kernels specifically designed to transport 7
toward my, often following a curve of probability measures. This distinguishes them as inherently
non-equilibrium. A key advantage of this approach over the equilibrium one is its ability to provide
unbiased estimates, as demonstrated in JE and AIS.

Al 1
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H.2 PATH INTEGRAL SAMPLER AND CONTROLLED MONTE CARLO DIFFUSION

In this section, we briefly discuss two learning-based samplers used for normalizing constant estima-
tion and refer readers to the original papers for detailed derivations. The path integral sampler (PIS)
shares structural similarities with the RDS framework discussed in using the time-reversal
of a universal noising process that transforms any distribution into a prior — such as the OU process
in RDS that converges to the standard normal or the Brownian bridge in PIS that converges to the
delta distribution at zero. In contrast, the controlled Monte Carlo diffusion (CMCD) extends the
JE framework from focusing on learning the compensatory drift term along an arbitrary
interpolating curve (7g)gco,1), as long as the density of each intermediate distribution 7y is known
up to a constant.

Path integral sampler (PIS,|Zhang & Chen|(2022)). The PIS learns the drift term of a reference
SDE that interpolates the delta distribution at O and the target distribution 7, which is closely
connected with the Brownian bridge and the Follmer drift (Chewil 2022)).

Fix a time horizon 7' > 0. For any drift term (u;)¢cjo,77, let Q" be the path measure of the following
SDE:
dX; = uw(X;)dt +dBy, t €[0,T]; Xo = 0.
In particular, when u = 0, the marginal distribution of X7 under Q° is \/ (0,TI) =: ¢r. Define
another path measure Q* by
% dm
Q*(d€jo,ry) == QA& |ér)m(dér) = Qo(dﬁ[mT])(wa(fT), V¢ € C([0,T);RY)

and consider the problem
u* = argmin KL(Q"|| Q") = Qv = Q0.
u
One can calculate the KL divergence between these path measures via Girsanov’s theorem (Lem. IJ):

do*

dor
u ' L 2, _ Xzl d
W (X):/ <ut(Xt),dBt)+§/ lun(Xo)|Pdt — Zo2- + V(Xr) — 5 log 20T,
0 0

log (X)=W*X)+logZ, as. X ~ Q" where

which implies Z = Egu e="", and KL(Q%||Q*) = Egu W* + log Z. On the other hand, directly
applying gives
1

T
KL(Q'Q) = 5 [ Eo u(X) — i (X0 at.

In|Zhang & Chen| (2022} Theorem 3), the authors considered the effective sample size (ESS) defined
N2
by ESS™! = Egu ( %) as the convergence criterion, and stated that ESS > 1 — ¢ as long as

Supyeo,ry |lue — up |2~ < %. However, this condition is generally hard to verify since the closed-
form expression of u* is unknown, and the L> bound might be too strong. Using the criterion (D))
and the same methodology in proving the convergence of JE (Thm. 2), we can establish an improved
result on the convergence guarantee of this estimator, relating the relative error to the training loss of
u, which is defined as

_ 1 (T X7|? . d
min L(u) = Egu [2 / funxar IS0 v | = KL(@¥) @) o 244 tog2eT

u

Proposition 4. Consider the estimator Z = e W', X ~ Qu for Z. To achieve both
KL(Q%||7) < &2 (with Q% representing the law of Xt in the sampled trajectory X ~ Q") and

e

% - 1‘ < 5) > %, it suffices to choose u that satisfies

L(u) = —log Z + glog 21T + O(£?).
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Proof.

) s (|92 ) s TUE Q) ¢ VRHOTT)

A
P i
r(‘Z - dov ~ € ~ e

Therefore, ensuring KL(Q"||Q*) < &2 up to some sufficiently small constant guarantees that
the above probability remains bounded by i. Furthermore, by the data-processing inequality,

KL(Qj[lm) < KL(Q[|Q*) < &*. O

Controlled Monte Carlo Diffusion (CMCD, Vargas et al.|(2024)). We borrow the notations from
due to its similarity with JE.

Given (7¢)se[o,7) and the ALD[(2)] we know from the proof of that to make X, ~ 7, for all ¢,
the compensatory drift term (v );c[o,7) must generate (7;).c[o,7. Now, consider the task of learning
such a vector field (u¢);c[o,7] by matching the following forward and backward SDEs:

P~ dX, = (Vieg 7 + uy)(X,)dt + v2dB;, Xo ~ T,
P dX, = (—Vieg® + uy)(X,)dt + V2dB, Xp ~ T,

where the loss is KL(P 7 ||P*), discretized in training. Obviously, when trained to optimality, both
P~ and P* share the marginal distribution 7, at every time ¢. By Girsanov’s theorem (Lem. 3)), one
can prove the following identity for a.s. X ~ P~: log f;—:(X) =W(X)+ C*%X) — AF, where
AF and W (X) are defined as in[Thm. 1} and

CU(X) = —‘/O (<Ut(Xt)7 VIOg%t(Xt)> + V- Ut(Xt))dt

We refer readers to [Vargas et al. (2024} Prop. 3.3) for the detailed derivation. By Ep— Pt — 1,

dp=
we know that Ep— e~ W (X)=C"(X) — o=AF  Ag the paper has not established inference-time
performance guarantee given the training loss, we prove the following result characterizing the
relationship between the training loss and the accuracy of the sampled distribution as well as the

estimated normalizing constant.
Proposition 5. Let Z = Zye= "W (X)=C"(X)| X ~ P~ be an unbiased estimator of Z = Zoe~AF.
Then, to achieve both KL(P7'||7) < &2 (where Py is the law of Xt in the sampled trajectory

X ~P7)andPr ( % - 1‘ < 6) > 3. it suffices to choose w that satisfies KL(P~||P) < &%

Proof. The proof of this theorem follows the same reasoning as that of For normalizing
constant estimation,

Z dpP* [V(P~7,PT) _ VKL(PZ||P<)
Prl|l=—-1> =P7 | |—=——-1| > < : < < 1.
r<Z _E> (dP” ’_E>N € ~ € ~

For sampling, the result is an immediate corollary of the data-processing inequality. O

I DETAILS OF EXPERIMENTAL RESULTS

I.1 MODIFIED MULLER BROWN DISTRIBUTION

The Miiller Brown potential energy surface is a canonical example of a potential surface used in
molecular dynamics. Here, we consider a modified version of this distribution as defined in|He et al.
(2024, App. D.5). For z = (z1,x2) € R?, the target distribution is 7 (z) = + exp(—0.1(Vy(z) +
Vin(z))), where

V, () = 35.0136(z1 + 0.033923) + 59.8399 (2 — 0.465694)2,

Vin(z) = ZAi exp(a;(Ty — X;)? 4+ bs(T1 — X3) (T2 — Vi) 4 (T2 — V5)?).
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In the above equations, ; = 0.2(z1 —3.5), T = 0.2(z2+6.5), A = (—200, —100, —170,15), a =
(-1,-1,-6.5,0.7), b = (0,0,11,0.6), ¢ = (—10,-10,—6.5,0.7), X = (1,0,—-0.5,—-1), Y =
(0,0.5,1.5,1). The ground truth value of the normalizing constant computed by numerical integral
(scipy.integrate.dblquad)is Z = 22340.9983 with estimated absolute error 0.0001.

We run each method with approximately the same oracle complexity. Aside from the quantitative
results in(Tab. I} we also visualize the samples drawn from each method against the level curves of
the poten It is clear from the table and figure that TI and AIS fail to provide accurate
estimates of the normalizing constant or sample from the target distribution due to the deficiency of
the exploration of different modes. All four RDS-based methods provide accurate estimates of the
normalizing constant, with SNDMC and ZODMC being the two best methods.

Figure 2: Visualization of the samples from the modified Miiller Brown distribution. The generated
samples are displayed on top of the level curves of the potential energy surface (darker color
corresponds to lower potential energy, i.e., higher probability density).

1.2  GAUSSIAN MIXTURE DISTRIBUTION

We now consider a Gaussian mixture distribution 7 in R? with 4 components, having weights

0.1,0.2,0.3,0.4, means
0 0 9 11
0/°\11)°\9/)°\ 0 )
1 05 0.3 -0.2 1 03 1.2 -1
05 1 /°\-02 03 /°\03 1 /)'\—-1 12/"

As the p.d.f. is available in closed form, the ground truth value of the normalizing constant is
Z = 1. Due to the separation of the modes and the imbalance of the weights, this distribution is
more challenging to sample from. In the quantitative results shown in we report the mean

and covariances

and standard deviation of % as well as two metrics for the quality of the samples: maximum mean
discrepancy (MMD) and Wasserstein-2 distance (W,) between the generated samples 7gamp and
ground truth samples from 7. The visualization of the samples is shown in Again, TT and
AIS are confined to mode at zero where the initial samples are located, and fail to provide accurate
estimates of the normalizing constant. All RDS-based methods provide accurate estimates of the
normalizing constant and high quality samples.

15 Tl 5 _ 5 _ RDMC

10

Figure 3: Visualization of the samples from the Gaussian mixture distribution. The generated samples
are displayed on top of the level curves of the potential (darker color corresponds to lower potential,
i.e., higher probability density).

1.3 IMPLEMENTATION DETAILS

General implementation details. For both experiments, we run egch method for 1024 rounds and
output the mean and standard deviation of all 1024 estimates of % In each round, we parallelly
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run 1024 i.i.d. trajectories, which produces 1024 i.i.d. samples from 7 and 1024 i.i.d. estimates
of the normalizing constant, and we treat the average of the estimates as the final estimate of that
round. We record the oracle complexity of each algorithm and tune the hyperparameters to make
sure that the oracle complexity for producing each sample from 7 is between 50000 and 60000 for a

fair comparison. For TI, we choose A\g = 100, A\; 11 = o 1/\f/\ until \; < f’ and N = 321i.i.d.

samples. For AIS, we choose A\g = 100, M = 60000 steps, and ALMC step size T; = 0.01. For all
RDS-based methods, we choose the total time duration 7' = 5, early stopping time § = 0.005, and
N = 50 uniformly spaced time points ¢,, = (7" — 0). Specifically, for RDMC, we use 64 samples
from 74 (+|z) to estimate the score V log (), and run LMC for 16 steps with step size 0.01,
initialized by importance sampling from 7). (-[z) o< e~ VO N (vletz, (e?* —1)I) with proposal
N (etx, (et —1)I ); for RSDMC, we choose the number of recursive steps as 2, use 16 samples
from 7q|.(-|2) to estimate the score V log 7 (x), and run LMC for 10 steps with step size 0.01 using
the same initialization based on importance sampling; finally, for both ZODMC and SNDMC, we use
1024 samples from T4 (-|) to estimate the score V log 7 ().

Evaluation metrics for sampling. In the experiment of Gaussian mixture distribution, in each
round, we draw 1024 samples from both the algorithm and the target distribution, and compute the
following two metrics to evaluate the quality of the samples. For two sets of samples X = {z;}1 ;
and Y = {y; }'" 1, the MMD is defined as

2 1
MMD(X,Y) = [— > k(s ax) . kEny)+ s Y k()
1<’L i'<n nm 1<i<m,1<j<n " 1<j,j'<m

where k(z,y) = 3 Z _1 €Xp ( M) is a multiscale radial basis function (RBF) kernel. Fol-

lowing the implementation in He et al.[(2024), we set K = 10 and {0 }1%; = {—4,-2,0,...,12,14}.
Second, the W, distance is computed by ot.emd2 (a, b, M) *x 0.5 using the Python
Optimal Transport (POT) package (Flamary et al., 2021, where a = %1,,,, b = %1% and

M= (||z; — y;j||*)1<i<n.1<j<m- 1, represents the vector of all ones with length n.
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