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ABSTRACT

Given an unnormalized probability density π ∝ e−V , estimating its normalizing
constant Z =

∫
Rd e
−V (x)dx or free energy F = − logZ is a crucial problem in

Bayesian statistics, statistical mechanics, and machine learning. It is challenging es-
pecially in high dimensions or when π is multimodal. To mitigate the high variance
of conventional importance sampling estimators, annealing-based methods such
as Jarzynski equality and annealed importance sampling are commonly adopted,
yet their quantitative complexity guarantees remain largely unexplored. We take
a first step toward a non-asymptotic analysis of annealed importance sampling.
In particular, we derive an oracle complexity of Õ(dβ

2A2
/ε4) for estimating Z

within ε relative error with high probability, where β is the smoothness of V and
A denotes the action of a curve of probability measures interpolating π and a
tractable reference distribution. Our analysis, leveraging Girsanov’s theorem and
optimal transport, does not explicitly require isoperimetric assumptions on the
target distribution. Finally, to tackle the large action of the widely used geometric
interpolation, we propose a new algorithm based on reverse diffusion samplers,
establish a framework for analyzing its complexity, and empirically demonstrate
its efficiency in tackling multimodality.

1 INTRODUCTION

We study the problem of estimating the normalizing constant Z =
∫
Rd π̂(x)dx of an unnormalized

probability density function (p.d.f.) π ∝ π̂ := e−V on Rd, so that π(x) = π̂(x)/Z. The normalizing
constant appears in various fields: in Bayesian statistics, when π̂ is the product of likelihood and
prior, Z is also referred to as the marginal likelihood or evidence (Gelman et al., 2013); in statistical
mechanics, when V is the Hamiltonian,1 Z is known as the partition function, and F := − logZ is
called the free energy (Chipot & Pohorille, 2007; Lelièvre et al., 2010; Pohorille et al., 2010). The task
of normalizing constant estimation has numerous applications, including computing log-likelihoods
in probabilistic models (Sohl-Dickstein & Culpepper, 2012), estimating free energy differences
(Lelièvre et al., 2010), and training energy-based models in generative modeling (Song & Kingma,
2021; Carbone et al., 2023; Sander et al., 2025).

Estimating normalizing constants is challenging in high dimensions or when π is multimodal (i.e.,
V has a complex landscape). Conventional approaches based on importance sampling (Meng &
Wong, 1996) are widely adopted to tackle this problem, but they suffer from high variance due to
the mismatch between the proposal and the target when π is complicated (Chatterjee & Diaconis,
2018). To alleviate this issue, the technique of annealing tries constructing a sequence of intermediate
distributions that bridge these two distributions, which motivates several popular methods including
path sampling (Chen & Shao, 1997; Gelman & Meng, 1998), annealed importance sampling (AIS,
Neal (2001)), and sequential Monte Carlo (SMC, Doucet et al. (2000); Del Moral et al. (2006); Syed
et al. (2024)) in statistics literature, as well as thermodynamic integration (TI, Kirkwood (1935)) and
Jarzynski equality (JE, Jarzynski (1997); Ge & Jiang (2008); Hartmann et al. (2019)) in statistical
mechanics literature. In particular, JE points out the connection between the free energy difference

1Up to a multiplicative constant β = 1/kBT known as the thermodynamic beta, where kB is the Boltzmann
constant and T is the temperature. When borrowing physical terminologies, we ignore this for simplicity.
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between two states and the work done over a series of trajectories linking these two states, while
AIS constructs a sequence of intermediate distributions and estimates the normalizing constant by
importance sampling over these distributions. These two methods are our primary focus in this paper.

Despite the empirical success of annealing-based methods (Ma et al., 2013; Krause et al., 2020;
Mazzanti & Romero, 2020; Yasuda & Takahashi, 2022; Chen & Ying, 2024; Schönle et al., 2025),
the theoretical understanding of their performance is still limited. Existing works for importance
sampling mainly focus on the asymptotic bias and variance of the estimator (Meng & Wong, 1996;
Gelman & Meng, 1998), while works on JE usually simplify the problem by assuming the work
follows simple distributions (e.g., Gaussian or gamma) (Echeverria & Amzel, 2012; Arrar et al., 2019).
Moreover, only analyses asymptotic in the number of particles derived from central limit theorem
exist (Lelièvre et al., 2010, Sec. 4.1). This paper aims to establish a rigorous non-asymptotic analysis
of estimators based on JE and AIS, while introducing minimal assumptions on the target distribution.
We also propose a new algorithm based on reverse diffusion samplers to tackle a shortcoming of AIS.

Contributions. 1. We discover a novel strategy for analyzing the complexity of normalizing constant
estimation, applicable to a wide range of target distributions (Assumps. 1 and 2) that may not satisfy
isoperimetric conditions such as log-concavity. 2. In Sec. 3, we study JE and prove an upper bound on
the time required for running the annealed Langevin dynamics to estimate the normalizing constant
within ε relative error with high probability. The final bound depends on the action (the integral of the
squared metric derivative in Wasserstein-2 distance) of the curve. 3. Building on the insights from this
analysis of the continuous dynamics, in Sec. 4 we establish the first non-asymptotic oracle complexity
bound for AIS, representing the first analysis of normalizing constant estimation algorithms without
assuming a log-concave target distribution. 4. Finally, in Sec. 5, we first point out a potential
limitation of the commonly used geometric interpolation, which provides a quantitative explanation
of the mass teleportation phenomenon. We then propose a series of new algorithms based on reverse
diffusion samplers and formalize a framework for analyzing its oracle complexity. Our experimental
results demonstrate the superiority of the proposed algorithm over AIS in overcoming multimodality.

Related Works. Below, we summarize the related works in four aspects.

I. Methods for normalizing constant estimation. We mainly discuss two classes of methods here.
First, the equilibrium methods, such as TI (Kirkwood, 1935) and its variants (Brosse et al., 2018;
Ge et al., 2020; Chehab et al., 2023; Kook & Vempala, 2025), which involve sampling sequentially
from a series of equilibrium Markov transition kernels. Second, the non-equilibrium methods, such
as AIS (Neal, 2001), which samples from a non-equilibrium stochastic process that gradually evolves
from a prior distribution to the target distributions. In App. H.1, we show that TI is a special case
of AIS using the “perfect” transition kernels. Recent years have also witnessed the emergence of
learning-based non-equilibrium methods, which are typically byproducts of neural samplers (Nüsken
& Richter, 2021; Zhang & Chen, 2022; Máté & Fleuret, 2023; Richter & Berner, 2024; Sun et al.,
2024; Vargas et al., 2024; Máté et al., 2024; Albergo & Vanden-Eijnden, 2025; Blessing et al., 2025;
Chen et al., 2025; Havens et al., 2025; Du et al., 2025). Finally, there are also methods based on
particle filtering (Kostov & Whiteley, 2017; Jasra et al., 2018; Ruzayqat et al., 2022).

II. Variance reduction in JE and AIS. Our proof methodology focuses on the discrepancy between
the sampling path measure and the reference path measure, which is related to the variance reduction
technique in applying JE and AIS. For example, Vaikuntanathan & Jarzynski (2008) introduced
the idea of escorted simulation, Hartmann et al. (2017) proposed a method for learning the optimal
control protocol in JE through the variational characterization of free energy, and Doucet et al. (2022)
leveraged score-based generative model to learn the optimal backward kernel. Quantifying the
discrepancy between path measures is the core of our analysis.

III. Complexity analysis for normalizing constant estimation. Chehab et al. (2023) studied the
asymptotic statistical efficiency of the curve for TI measured by the asymptotic mean-squared error,
and highlighted the advantage of the geometric interpolation. In terms of non-asymptotic analysis,
existing works mainly rely on the isoperimetry of the target distribution. For instance, Andrieu et al.
(2016) derived bounds of bias and variance for TI under Poincaré inequality (PI), Brosse et al. (2018)
provided complexity guarantees for TI under both strong and weak log-concavity conditions, while
Ge et al. (2020) improved the complexity under strong log-concavity using multilevel Monte Carlo.

IV. Complexity analysis of sampling beyond isoperimetry. Our analysis of estimating normalizing
constants of non-log-concave distributions is also closely related to the study of sampling beyond
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log-concavity. In general, such problems are NP hard (Ge et al., 2018; He & Zhang, 2025). Existing
works providing convergence guarantees have leveraged more general isoperimetric inequalities
such as weak PI (Mousavi-Hosseini et al., 2023), tried to establish convergence in weaker notions
(Balasubramanian et al., 2022; Cheng et al., 2023), or utilized denoising diffusion models (Huang
et al., 2024a; He et al., 2024). We highlight Guo et al. (2025) that this paper mainly draws inspiration
from, which introduced the action of a curve in quantifying the convergence of annealed sampling.
While they focused on sampling and presented cases where annealing works, we extend the analysis
to a conceptually different task, and further establish lower bounds on the action of the commonly
used geometric interpolation, motivating a new algorithm based on reverse diffusion samplers.

Notations and Definitions. For a, b ∈ R, let [[a, b]] := [a, b] ∩ Z, a ∧ b := min(a, b), and a ∨ b :=
max(a, b). For a, b > 0, the notations a ≲ b, b ≳ a, a = O(b), b = Ω(a) indicate that a ≤ Cb for
some universal absolute constant C > 0, and the notations a ≍ b, a = Θ(b) stand for a ≲ b ≲ a.
Õ (·) , Θ̃ (·) hide logarithmic dependence in O(·),Θ(·). A function U ∈ C2(Rd) is α(> 0)-strongly-
convex if ∇2U ⪰ αI , and is β(> 0)-smooth if −βI ⪯ ∇2U ⪯ βI . We do not distinguish
probability measures on Rd from their Lebesgue densities. For two probability measures µ, ν, the
total-variation (TV) distance is TV(µ, ν) = supmeasurable A |µ(A)− ν(A)|, and the Kullback-Leibler
(KL) divergence is KL(µ∥ν) =

∫
log dµ

dν dµ. Finally, a function T : Rd × Rd → [0,+∞) is a
transition kernel if for any x, T (x, ·) is a p.d.f. Throughout this paper, (Bt) and (Wt) represent
standard Brownian motions (BM) on Rd.

Preliminaries. For brevity, we integrate the required background information into the main text, with
a detailed exposition available in App. A.

2 PRELIMINARIES AND PROBLEM SETTING

To motivate the study of normalizing constant estimation, we first present several examples.

Example 1. [Free energy difference.] In many statistical physics problems (Lelièvre et al., 2010),
given two energy functions U0, U1 (possibly linked through some thermodynamic process), one is
often interested in estimating the free energy difference ∆F := −1/β log(

∫
e−βU1dx/

∫
e−βU0dx),

which is related with the normalizing constant of the distributions πi ∝ e−βUi .

Example 2. [Likelihood in latent variable models.] In latent variable models such as variational
autoencoders (Kingma & Welling, 2013), a common evaluation metric is the marginal likelihood of a
data point x, pθ(x) =

∫
pθ(x|z)p(z)dz. This is nothing but the normalizing constant of the posterior

distribution of the latent variable z given data x, pθ(z|x) ∝z pθ(x|z)p(z).
Example 3. [Volume of convex bodies.] In theoretical computer science, a classical problem is to
estimate the volume of a convex body K (Dyer et al., 1991; Cousins & Vempala, 2018; Kook et al.,
2024), which is equivalent to the normalizing constant of the uniform distribution on K, π ∝ 1K.

Building on prior theoretical results (Brosse et al., 2018; Ge et al., 2020), we study the oracle
complexity of estimating the normalizing constant of a density under the following criterion:

Aim: Given a density π ∝ π̂ := e−V on Rd, bound the complexity of obtaining an estimator Ẑ of
Z =

∫
Rd π̂(x)dx such that with constant probability, the relative error is within ε(≪ 1):

Pr

(∣∣∣∣∣ ẐZ − 1

∣∣∣∣∣ ≤ ε

)
≥ 3

4
. (1)

Remark 1. We make two remarks regarding (1). First, similar to how taking the mean of i.i.d.
estimates reduces variance, we show in Lem. 10 that the probability above can be boosted to 1− ζ,
∀ζ ∈ (0, 1/4) using the median trick: obtaining O(log 1/ζ) i.i.d. estimates satisfying (1) and taking
their median. Therefore, we focus on the task of obtaining a single estimate satisfying (1) hereafter.
Second, (1) also allows us to quantify the complexity of estimating the free energy F = − logZ,
which is often of greater interest in statistical mechanics than the partition function Z. We show in
App. G that estimating Z with O(ε) relative error and estimating F with O(ε) absolute error share
the same complexity up to constants. Further discussion of this guarantee, including a literature
review and the comparison with bias and variance, is deferred to App. G.
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A straightforward method for estimating Z is through importance sampling, i.e., Z = Eπ0
π̂/π0 for

some tractable proposal distribution π0, yet its variance can be large due to the mismatch between π0

and π. The rationale behind annealing involves a gradual transition from π0 to π1 = π. Throughout
this paper, we consider a curve of probability measures denoted as(

πθ =
1

Zθ
e−Vθ

)
θ∈[0,1]

,

where V1 = V is the potential of π, and Z1 = Z is what we need to estimate. We do not specify the
exact form of this curve now, but only introduce the following mild regularity assumption on the
curve, as assumed in classical textbooks such as Ambrosio et al. (2008; 2021); Santambrogio (2015):

Assumption 1. The potential [0, 1] × Rd ∋ (θ, x) 7→ Vθ(x) ∈ R is jointly C1, and the curve
(πθ)θ∈[0,1] is absolute continuous with finite action A :=

∫ 1

0
|π̇|2θ dθ.

Here, |π̇|θ := limδ→0
W2(πθ+δ,πθ)

|δ| is the Wasserstein-2 (W2) metric derivative of the curve
(πθ)θ∈[0,1] at θ, which measures the “speed” of the curve in the space of probability distributions, and
absolute continuity means the above limit exists and is finite for all θ ∈ [0, 1]. A curve having a
finite action is a weaker condition than requiring each πθ to satisfy isoperimetric inequalities (e.g.,
Poincaré or log-Sobolev). We refer readers to App. A.2 for details of optimal transport (OT), and
in particular, we highlight the connection between the metric derivative and the continuity equation
(Lem. 4), which will serve as a key tool in our analysis.

For the purpose of non-asymptotic analysis, we further introduce the following mild assumption:

Assumption 2. V is β-smooth, ∇V (0) = 0, and m :=
√
Eπ ∥ · ∥2 < +∞.

Remark 2. One can always find a stationary point x∗ of (possibly non-convex) V using optimization
methods within negligible cost compared with the complexity for estimating Z. By considering the
translated distribution π(· − x∗), we assume 0 is a stationary point without loss of generality.

Equipped with this fundamental setup, we now proceed to introduce the JE and AIS, and establish an
analysis for their complexity.

3 ANALYSIS OF THE JARZYNSKI EQUALITY

To elucidate how annealing works in the task of normalizing constant estimation, we first consider
annealed Langevin diffusion (ALD), which runs Langevin diffusion (LD) with a dynamically
changing target distribution. Recall that the LD with target distribution is the stochastic differential
equation (SDE) dXt = ∇ log π(Xt)dt +

√
2dBt, which converges to π as t → ∞. To define

ALD, we introduce a reparameterized curve (π̃t = πt/T )t∈[0,T ] for some large time duration T to be
determined later, and consider the following SDE:

dXt = ∇ log π̃t(Xt)dt+
√
2dBt, t ∈ [0, T ]; X0 ∼ π̃0. (2)

The following Jarzynski equality provides a connection between the work functional and the free
energy difference, which naturally yields an estimator of normalizing constant.

Theorem 1 (Jarzynski equality (Jarzynski, 1997)). Let P→ be the path measure of (2). Then the work
functional W and the free energy difference ∆F have the following relation:

EP→ e−W = e−∆F , where W (X) :=
1

T

∫ T

0

∂θVθ|θ= t
T
(Xt)dt and ∆F := − log

Z1

Z0
.

Below, we sketch the proof from Vargas et al. (2024, Prop. 3.3), which offers a crucial aspect for our
analysis: the forward and backward SDEs. See App. A.1 for a detailed introduction.

Sketch of Proof Let P← be the path measure of the following backward SDE with time-reversed
Brownian motion (BM) (B←t )t∈[0,T ] (i.e., (t 7→ B←T−t)t∈[0,T ] is a standard BM, see Def. 1):

dXt = −∇ log π̃t(Xt)dt+
√
2dB←t , t ∈ [0, T ]; XT ∼ π̃T . (3)

4
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Intuitively, this is running the ALD backward in time from T to 0, targeting distribution π̃t at time
t. Leveraging the Girsanov’s theorem (Lem. 1) and Itô’s formula, one can establish the following
identity of the Radon-Nikodým (RN) derivative between the forward and backward path measures,
known as the Crooks fluctuation theorem (Crooks, 1998; 1999):

log
dP→

dP←
(X) = −

∫ T

0

(∂t log π̃t)(Xt)dt = W (X)−∆F, a.s. X ∼ P→, (4)

which implies JE by the identity EP→ dP←/dP→ = 1. Complete proof can be found in App. C.1. □

Under the ideal setting where (i) Z0 is known, (ii) the ALD in (2) can be simulated exactly, and
(iii) the work functional W (X) can be computed precisely, Thm. 1 provides an unbiased estimator
Ẑ := Z0e

−W (X) for Z = Z0e
−∆F . Despite its dominant use (Chipot & Pohorille, 2007; Lelièvre

et al., 2010), the statistical efficiency of this estimator is not well understood. While it is known that
the variance of Ẑ can be large, non-asymptotic analyses quantifying its efficiency is lacking. We
address this gap by establishing an upper bound on the time T required for the ALD to satisfy the
accuracy criterion (1) in the following theorem, whose proof is detailed in App. C.2.

Theorem 2. Under Assump. 1, it suffices to choose T = 32A/ε2 to obtain Pr
(∣∣Ẑ/Z − 1

∣∣ ≤ ε
)
≥ 3/4.

We first observe that our bound aligns with the decay rate of the variance of the work in Mazonka
& Jarzynski (1999) (see also Lelièvre et al. (2010, Chap. 4.1.4)), which considered a special case
πθ = N (θL, 1/K). They showed that W ∼ N (BT , 2BT ) with BT = L2

/T
(
1− (1−e−KT )/KT

)
,

and hence the normalized variance VarP→ Ẑ/Z = e2BT − 1 is asymptotically O(1/T) as T → ∞.
Our bound, under a different criterion (1), is O(1/T) for all T > 0.

To illustrate the proof idea of Thm. 2, note that while the ALD (2) targets the distribution π̃t at time
t, there is always a lag between π̃t and the actual law of Xt. Similarly, the same lag exists in the
backward ALD (3). This lag turns out to be the source of the error in the estimator Ẑ.

In practice, to alleviate the issue of high variance in estimating free energy differences, Vaikuntanathan
& Jarzynski (2008) proposed adding a compensatory drift term vt(Xt) to the ALD (2). Ideally, the
optimal choice would eliminate the lag entirely, ensuring Xt ∼ π̃t for all t ∈ [0, T ]. Inspired by
this, we compare the path measure of ALD P→ to the SDE having the perfect compensatory drift
term, whose path measure P has marginal distribution π̃t at time t. To make possible the perfect
match, it turns out that vt must satisfy the Fokker-Planck equation with π̃t. The Girsanov’s theorem
(Lem. 1) enables the computation of KL(P∥P→) and KL(P∥P←), which are related to ∥vt∥2L2(π̃t)

.
Finally, among all admissible drift terms vt, Lem. 4 suggests an optimal choice of v∗t to minimize
this norm, thereby leading to the metric derivative | ˙̃π|t and the action A. This way avoids the explicit
dependence of isoperimetric assumptions in our bound.

A similar connection between free energy and action integral was discovered in stochastic thermody-
namics (Sekimoto, 2010; Seifert, 2012), one paradigm for non-equilibrium thermodynamics. By the
second law of thermodynamics, the averaged dissipated work, defined as the averaged work minus
the free energy difference, i.e.,Wdiss := W −∆F := EP→W −∆F , is non-negative. When the
underlying process is modeled by an overdamped LD,Wdiss can be quantified by an action integral
divided by the time duration (Aurell et al., 2011; Chen et al., 2020). This follows from the observation
thatWdiss = KL(P→∥P←) and then a similar argument to that above. This connection provides a
finer description of the second law of thermodynamics (Aurell et al., 2012) over a finite time horizon.

Finally, we place Thm. 2 within the broader theme of sampling v.s. normalizing constant estimation
by comparing Thm. 2 with the complexity of non-log-concave sampling. Guo et al. (2025) proved
that under the same assumptions, the ALD (2) can draw a sample within ε2-error in KL(π∥·) with the
same order of time T ≍ A/ε2. While the classical work Jerrum et al. (1986) proved the existence of a
polynomial-time algorithm for sampling and a polynomial-time algorithm for estimating normalizing
constant imply each other in the discrete settings, we establish a similar quantitative connection
between the complexities of these two tasks in the continuous settings without log-concavity, opening
a new avenue of research on understanding their relationship. Though reaching similar results, the
proof strategies are different: Guo et al. (2025) is a direct application of Girsanov’s theorem between
P→ and P, while Thm. 2 involves more complicated backward SDE arguments.
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4 ANALYSIS OF THE ANNEALED IMPORTANCE SAMPLING

In practice, it is not feasible to simulate the ALD precisely, nor is it possible to evaluate the exact
value of the work W (X). Therefore, discretization and approximation are required. To address this,
we first outline the following annealed importance sampling (AIS) equality akin to JE.

Theorem 3 (Annealed importance sampling equality (Neal, 2001)). Suppose we have probability
distributions πℓ = fℓ/Zℓ, ℓ ∈ [[0,M ]] and transition kernels Fℓ(x, ·), ℓ ∈ [[1,M ]], and assume that
each πℓ is an invariant distribution of Fℓ, ℓ ∈ [[1,M ]]. Define the path measure

P→(x0:M ) = π0(x0)

M∏
ℓ=1

Fℓ(xℓ−1, xℓ). (5)

Then the same relation between the work function W and free energy difference ∆F holds:

EP→ e−W = e−∆F , where W (x0:M ) := log

M−1∏
ℓ=0

fℓ(xℓ)

fℓ+1(xℓ)
and ∆F := − log

ZM

Z0
.

Proof. Since πℓ is invariant for Fℓ, the following backward transition kernels are well-defined:

Bℓ(x, x
′) =

πℓ(x
′)

πℓ(x)
Fℓ(x

′, x), ℓ ∈ [[1,M ]] .

By applying these backward transition kernels sequentially, we define the backward path measure

P←(x0:M ) = πM (xM )

M∏
ℓ=1

Bℓ(xℓ, xℓ−1). (6)

It can be easily demonstrated, as in (4), that log dP→/dP←(x0:M ) = W (x0:M )−∆F . Consequently,
the identity EP→ dP←/dP→ = 1 implies the desired equality.

While the frameworks of JE and AIS hold for general curves of interpolation, for the study of
non-asymptotic complexity guarantees, we focus on a widely used curve in theoretical analysis
(Brosse et al., 2018; Ge et al., 2020), which we refer to as the geometric interpolation:2

πθ =
1

Zθ
fθ =

1

Zθ
exp

(
−V − λ(θ)

2
∥ · ∥2

)
, θ ∈ [0, 1], (7)

where λ(·) is a decreasing function with λ(0) = 2β and λ(1) = 0, referred to as the annealing
schedule. With this choice of λ(0), by Assump. 2, the potential of π0 is β-strongly-convex and
3β-smooth, making sampling and normalizing constant estimation relatively easy. To estimate
Z0, we use the thermodynamic integration (TI) algorithm from Ge et al. (2020), which requires
Õ
(
d4/3

/ε2
)

gradient oracle calls. In a nutshell, TI is an equilibrium method that constructs a series
of intermediate distributions and estimates adjacent normalizing constant ratios via expectation
under these intermediate distributions, realized through MCMC sampling from each intermediate
distribution. As TI is peripheral to our primary focus, we defer its full description, including the
choice of hyperparameters and complexity bound, to App. H.1.

Given (7), we introduce time points 0 = θ0 < θ1 < ... < θM = 1 to be specified later, and adopt
the framework outlined in Thm. 3 by setting πℓ = fℓ/Zℓ to correspond to πθℓ = fθℓ/Zθℓ

, albeit with a
slight abuse of notation. To estimate the normalizing constant, we need to sample from the forward
path measure P→ and compute the work function along the trajectory. Since πθℓ must be an invariant
distribution of the transition kernel Fℓ in P→, we define Fℓ via running LD targeting πθℓ for a short
time Tℓ, i.e., Fℓ(x, ·) is given by the law of XTℓ

in the following SDE initialized at X0 = x:

dXt = ∇ log πθℓ(Xt)dt+
√
2dBt, t ∈ [0, Tℓ]. (8)

2(7) differs slightly from a widely used curve in applications (Gelman & Meng, 1998; Neal, 2001): πθ ∝
π1−λ(θ)ϕλ(θ), where ϕ is a prior distribution (typically Gaussian). We refer to both as geometric interpolation.
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In this setting, AIS can be interpreted as a discretization of JE (Lelièvre et al., 2010, Rmk. 4.5).
However, in practice, exact samples from π0 are often unavailable, and the simulation of LD cannot
be performed perfectly.3 To capture these considerations, we define the following path measure:

P̂→(x0:M ) = π̂0(x0)

M∏
ℓ=1

F̂ℓ(xℓ−1, xℓ), (9)

where π̂0 is the law of an approximate sample from π0, and the transition kernel F̂ℓ is a discretization
of the LD in Fℓ, defined as running one step of annealed Langevin Monte Carlo (ALMC) using the
exponential integrator discretization scheme (Zhang & Chen, 2023; Zhang et al., 2023b;a) with step
size Tℓ. Formally, F̂ℓ(x, ·) is the law of XTℓ

in the following SDE initialized at X0 = x:

dXt = −
(
∇V (X0) + λ

(
θℓ−1 +

t

Tℓ
(θℓ − θℓ−1)

)
Xt

)
dt+

√
2dBt, t ∈ [0, Tℓ]. (10)

Here, instead of simply setting F̂ℓ as one step of LMC targeting πθℓ , the dynamically changing λ(·)
helps reduce the discretization error, as will be shown in our proof. Furthermore, with a sufficiently
small step size, the overall discretization error can also be minimized, motivating us to apply just one
update step in each transition kernel.

We refer readers to Alg. 1 in App. B for a summary of the detailed implementation of our proposed
AIS algorithm, including the TI procedure and the update rules in (10). The following theorem
delineates the oracle complexity of the algorithm required to obtain an estimate Ẑ meeting the
desired accuracy criterion (1), whose detailed proof can be located in App. D. The required values of
hyperparameters M , and Tℓ can be found at the end of the proof.

Theorem 4. Let Ẑ be the AIS estimator described as in Alg. 1, i.e., Ẑ := Ẑ0e
−W (x0:M ) where Ẑ0

is estimated by TI and x0:M ∼ P̂→. Under Assumps. 1 and 2, consider the annealing schedule
λ(θ) = 2β(1− θ)r for some 1 ≤ r ≲ 1. Use Ar to denote the action of (πθ)θ∈[0,1] to emphasize the
dependence on r. Then, the oracle complexity for obtaining an estimate Ẑ that satisfies (1) is

Õ

(
d

4
3

ε2
∨ mβA

1
2
r

ε2
∨ dβ2A2

r

ε4

)
. (11)

π0 = πθ0
πθ1

πθM−1

πθM = π1

P←

P→

P→

P

P̂→

π̂0 ≈ π0

πθℓ−1

πθℓ

Figure 1: Illustration of the proof idea for Thm. 4.

We present a high-level proof sketch using Fig. 1.
The continuous dynamics, comprising the for-
ward path P→, the backward path P←, and the
reference path P, are depicted as three black
curves. To address discretization error, the ℓ-th
red (purple) arrow proceeding from left to right
represents the transition kernel F̂ℓ (Bℓ), whose
composition forms P̂→ (P←).

(I) Analogously to the analysis of JE (Thm. 2),
define the reference path measure P with transi-
tion kernels F ∗ℓ such that xℓ ∼ πθℓ . Given the
sampling path measure P̂→, define P→ as the
version of P̂→ without the initialization error, i.e., by replacing π̂0 with π0 in (9).

(II) Show that it suffices to obtain an accurate estimate Ẑ0 and initialization distribution π̂0, together
with sufficiently small KL divergences KL(P∥P←) and KL(P∥P→), which quantify the closeness
between the continuous dynamics and the discretization error in implementation, respectively.

(III) Using the chain rule, decompose KL(P∥P←) into the sum of KL divergences between each pair
of transition kernels Fℓ and F ∗ℓ (i.e., green “distances”). As in Thm. 2, F ∗ℓ , a transition kernel from
πθℓ−1

to πθℓ , is realized by ALD with a compensatory vector field, ensuring the SDE exactly follows

3Recall that we need Fℓ to have invariant distribution πℓ in Thm. 3.
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the trajectory (πθ)θ∈[θℓ−1,θℓ]. Similarly, by applying the chain rule and Girsanov’s theorem, we can
express KL(P∥P→) as the sum of the blue “distances”, allowing for a similar analysis.

(IV) Finally, derive three necessary conditions on the time steps θℓ to control both KL(P∥P←) and
KL(P∥P→). Choosing a proper schedule yields the desired complexity bound.

Our proposed algorithm consists of two phases: first, estimating Z0 by TI, which is provably efficient
for well-conditioned distributions, and second, estimating Z by AIS, which is better suited for
handling non-log-concave distributions. The three terms in (11) arise from (i) ensuring the accuracy
of Ẑ0, (ii) controlling KL(P∥P←), and (iii) controlling KL(P∥P→), respectively, as discussed in (II)
above. Due to the non-log-concavity of π, the action A is typically large, making (iii), the cost for
controlling the discretization error, the dominant complexity. The ε-dependence can be interpreted
as the total duration T = Θ(1/ε2) required for the continuous dynamics to converge (as in Thm. 2)
divided by the step size Θ̃(ε2) to control the discretization error. Finally, we remark that although
Thm. 4 is only proved for geometric interpolation, the proof strategy can be generalized to any curve
of distributions (πθ)θ∈[0,1] satisfying weak regularity conditions, and possibly with an additional
compensatory drift term, as long as we know the expression of the score ∇ log πθ, and also the
Lipschitz constants of the score and the drift term for controlling the discretization error.

5 NORMALIZING CONSTANT ESTIMATION VIA DENOISING DIFFUSION

Disadvantage of Geometric Interpolation. From the analysis of JE and AIS (Thms. 2 and 4), the
choice of the interpolation curve (πθ)θ∈[0,1] is crucial for the complexity. The geometric interpolation
(7) is widely adopted due to the availability of closed-form scores of the intermediate distributions πθ,
and for certain structured non-log-concave distributions, the associated action is polynomially large,
enabling efficient AIS. For instance, Guo et al. (2025, Ex. 2) analyzed a Gaussian mixture target
distribution with identical covariance, means having the same norm, and arbitrary weights. However,
for general target distributions, the action of the related curve can grow prohibitively large. We now
establish an exponential lower bound on the action of a curve starting from a Gaussian mixture,
highlighting the potential inefficiency of AIS under geometric interpolation.

Proposition 1. Consider the Gaussian mixture target distribution π = 1/2N (0, 1) + 1/2N (m, 1)
on R for some sufficiently large m ≳ 1, whose potential is m2

/2-smooth. Under the setting in AIS
(Thm. 4), define πθ(x) ∝ π(x)e−λ(θ)x2/2, θ ∈ [0, 1], where λ(θ) = m2(1− θ)r for some r ≥ 1. Then,
the action of the curve (πθ)θ∈[0,1], Ar, is lower bounded by Ar ≳ m4em2/40.

The full proof is in App. E.1. The key technical tool is a closed-form expression of the W2 distance
in R expressed by the inverse cumulative distribution functions (c.d.f.s) of the involved distributions,
and we lower bound the metric derivative near the target distribution, where the curve changes the
most drastically. This observation provides a novel perspective on the quantitative description of
the mass teleportation or mode switching phenomenom (Woodard et al., 2009; Tawn et al., 2020;
Syed et al., 2021; Chemseddine et al., 2025), motivating us to explore alternative curves that can
potentially yield smaller action, thereby enhancing the efficiency of normalizing constant estimation.
Intuitively, during the annealing process, the probability mass needs to be transported from one mode
of the distribution to another well-separated mode in a short period of time (e.g., through the change
of weights in both modes), which leads to torpid mixing for many samplers.

Reverse Diffusion Samplers. Inspired by score-based generative models (Song et al., 2021), recent
advancements have led to the development of multimodal samplers based on reversing the Ornstein-
Uhlenbeck (OU) process, such as reverse diffusion Monte Carlo (RDMC, Huang et al. (2024a)),
recursive score diffusion-based Monte Carlo (RSDMC, Huang et al. (2024b)), zeroth-order diffusion
Monte Carlo (ZODMC, He et al. (2024)), and self-normalized diffusion Monte Carlo4 (SNDMC,
Vacher et al. (2025)). We collectively refer to these methods as the reverse diffusion samplers
(RDS). The key idea is to simulate the time reversal of the following OU process, which transforms
any target distribution π into ϕ := N (0, I) as T →∞:

dYt = −Ytdt+
√
2dBt, t ∈ [0, T ]; Y0 ∼ π. (12)

4This name is introduced by us as the original paper did not provide a name for the proposed algorithm.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Let Yt ∼ πt. The time-reversal (Y←t := YT−t ∼ πT−t)t∈[0,T ] satisfies the SDE

dY←t = (Y←t + 2∇ log πT−t(Y
←
t ))dt+

√
2dWt, t ∈ [0, T ]; Y←0 ∼ πT (≈ ϕ). (13)

Hence, to draw samples Y←0 ∼ π, it suffices to approximate the scores∇ log πt and discretize (13),
which can be implemented in various learning-free (non-parametric) ways in the literature of RDS
mentioned above. See App. E.5 for a detailed review.

RDS-based Normalizing Constant Estimation. We now propose to leverage (πT−t)t∈[0,T ] in
AIS. To support this idea, we first present the following proposition. We remark that the result can
be generalized to a bound on the Wasserstein gradient flow for the KL divergence to any target
distribution with weak regularity condition, not necessary the standard normal distribution. See the
proof in App. E.2 for details.

Proposition 2. Define πt as the law of Yt in the OU process (12) initialized from Y0 ∼ π ∝ e−V ,
where V is β-smooth. Let m2 := Eπ ∥ · ∥2 <∞. Then,

∫∞
0
|π̇|2tdt ≤ dβ +m2.

Prop. 2 shows that under fairly weak conditions on the target distribution, the action of the curve along
the OU process, (πT−t)t∈[0,T ], behaves much better than (7). Hence, our analysis of JE (Thm. 2)
suggests that this curve is likely to yield more efficient normalizing constant estimation. Furthermore,
recall that in our earlier proof, we introduced a compensatory drift term vt to eliminate the lag in
JE. The same principle applies here: ensuring Xt precisely following the reference trajectory is
advantageous, which results in the time-reversal of OU process (13). Building on this insight, we
propose an RDS-based algorithm for normalizing constant estimation, and establish a framework for
analyzing its oracle complexity. See App. E.3 for the proof.

Theorem 5. Assume a total time duration T , an early stopping time δ ≥ 0, and discrete time points
0 = t0 < t1 < ... < tN = T − δ ≤ T . For t ∈ [0, T − δ), let t− denote tk if t ∈ [tk, tk+1). Let
s· ≈ ∇ log π· be a score estimator, and ϕ = N (0, I). Consider the following two SDEs on [0, T − δ]
representing the sampling trajectory and the time-reversed OU process, respectively:

Q† : dXt = (Xt + 2sT−t−(Xt−))dt+
√
2dBt, X0 ∼ ϕ; (14)

Q : dXt = (Xt + 2∇ log πT−t(Xt))dt+
√
2dBt, X0 ∼ πT .

Let Ẑ := e−W (X), X ∼ Q† be the estimator of Z, where the functional X 7→W (X) is defined as

log ϕ(X0) + V (XT−δ)− (T − δ)d+

∫ T−δ

0

(
∥sT−t−(Xt−)∥2dt+

√
2
〈
sT−t−(Xt−),dBt

〉)
.

Then, to ensure Ẑ satisfies (1), it suffices that KL(Q∥Q†) ≲ ε2 and TV(π, πδ) ≲ ε.

For detailed implementation of the update rule in (14) and the computation of W (X), see Alg. 2.
To determine the overall complexity, we can leverage existing results for RDS to derive the oracle
complexity to achieve KL(Q∥Q†) ≲ ε2. When early stopping is needed (i.e., δ > 0), we prove in
Lem. 7 that choosing δ ≍ ε2/β2d2 suffices to ensure ε-closeness in TV distance between πδ and π,
under weak assumptions similar to Assump. 2. For RDMC, RSDMC, ZODMC, and SNDMC, the
total complexities are, respectively, O(poly (d, 1/ζ) exp (1/ε)

O(n)
), exp(β3 log3 poly(β, d,m2, 1/ζ)),

exp(Õ(d) log β log 1/ε), and O((β(m
2∨d)/ε)O(d)). 5 The full analysis can be found in App. E.5.

As discussed, RDS can be viewed as an optimally compensated ALD using the OU process as
the trajectory. We conclude this section by contrasting these two approaches. On the one hand,
analytically-tractable curves such as the geometric interpolation offer closed-form drift terms at all
time points, but may exhibit poor action properties (Prop. 1) or bad isoperimetric constants (Chehab
et al., 2025), making annealed sampling challenging. On the other hand, alternative curves like
the OU process may have better properties in action and isoperimetric constants, but their drift
terms, often related to the scores of the intermediate distributions, lack closed-form expressions,
and estimating these terms is also non-trivial. This highlights a fundamental trade-off between the
complexity of the drift term estimation and the property of the interpolation curve.

5In RDMC, one assumes there exists n, c > 0 such that ∀r > 0, V + r∥ · ∥2 is convex for all ∥x∥ ≥ c
rn

. In
RDMC and RSDMC, ζ is the probability threshold that the estimator may fail to achieve the desired accuracy ε.
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Experiments. We now compare the performance of the methods of normalizing constant estimation
for non-log-concave distributions that have been discussed in the paper, including TI, AIS, and the
four RDS-based methods. We consider two multimodal target distributions: a modified Müller Brown
(MMB) distribution and Gaussian mixture (GM) with 4 components, both in R2. The quantitative
results are summarized in Tab. 1, where we report the relative error of Ẑ and, for GM, the maximum
mean discrepancy (MMD) and W2 distance between the generated samples π̂samp and ground truth
samples from π. All RDS-based methods provide accurate estimates of the normalizing constant and
high quality samples, while TI and AIS (based on geometric annealing) produce seriously biased
estimates due to lack of mode coverage. Further details are presented in App. I.

Table 1: Quantitative results of normalizing constant estimation (mean ± std), best in bold.
Target Metric TI AIS RDMC RSDMC ZODMC SNDMC

MMB Ẑ/Z 0.7527± 0.0086 2.9740± 7.6705 0.9829± 0.2116 1.2885± 12.7843 0.9878± 0.1154 1.0053± 0.1192

GM
Ẑ/Z 0.2427± 0.0016 0.2042± 0.0008 1.0001± 0.0850 0.9202± 1.0276 0.9766± 0.2835 0.9973± 0.0834

MMD(π̂samp, π) 2.5407± 0.0281 2.4618± 0.0270 0.3581± 0.0366 0.3124± 0.0395 0.2591± 0.0381 0.1576± 0.0279

W2(π̂samp, π) 10.5602± 0.0794 10.4842± 0.0851 7.0242± 0.9104 2.6012± 0.2482 2.4506± 0.2963 1.5494± 0.6820

6 CONCLUSION, LIMITATIONS, AND FUTURE DIRECTIONS

This paper investigates the complexity of normalizing constant estimation using JE, AIS, and RDS,
and takes a first step in establishing non-asymptotic convergence guarantees based on insights from
continuous-time analysis. Our analysis of JE (Thm. 2) applies to general interpolations without
explicit dependence of isoperimetry, thereby substantially extending prior work limited to log-concave
distributions. Several limitations remain: the tightness of our upper bounds (Thms. 2 and 4) are
unknown; the lower bound on the action in Prop. 1 does not directly imply that JE needs exponentially
long time to converge; though the action provides a clean analysis of the statistical efficiency of
annealing–which isoperimetric inequalities cannot deal with–its practical interpretability is not
well understood. Finally, we conjecture that our proof techniques can extend to samplers beyond
overdamped LD (e.g., Hamiltonian or underdamped LD (Sohl-Dickstein & Culpepper, 2012)), and
may also apply to estimating normalizing constants of compactly supported distributions on Rd

(e.g., convex bodies volume estimation (Cousins & Vempala, 2018)) or discrete distributions (e.g.,
Ising model and restricted Boltzmann machines (Huber, 2015; Krause et al., 2020)) via the Poisson
stochastic integral framework (Ren et al., 2025a;b), which we leave as a direction for future research.
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A PRELIMINARIES

A.1 STOCHASTIC ANALYSIS: FORWARD-BACKWARD SDES AND GIRSANOV’S THEOREM

For a stochastic differential equation (SDE) X = (Xt)t∈[0,T ] defined on Ω = C([0, T ];Rd), the
distribution of X over Ω is called the path measure of X , defined by PX : measurable A ⊂ Ω 7→
Pr(X ∈ A). The following lemma, as a corollary of the Girsanov’s theorem (Üstünel & Zakai, 2013,
Prop. 2.3.1 & Cor. 2.3.1), provides a method for computing the Radon-Nikodým (RN) derivative and
KL divergence between two path measures, which serves as a key technical tool in our proof.
Lemma 1. Assume we have the following two SDEs with t ∈ [0, T ]:

dXt = at(Xt)dt+ σdBt, X0 ∼ µ; dYt = bt(Yt)dt+ σdBt, Y0 ∼ ν.

Denote the path measures of X and Y as PX and PY , respectively. Then for any trajectory ξ ∈ Ω,

log
dPX

dPY
(ξ) = log

dµ

dν
(ξ0) +

1

σ2

∫ T

0

⟨at(ξt)− bt(ξt),dξt⟩ −
1

2σ2

∫ T

0

(∥at(ξt)∥2 − ∥bt(ξt)∥2)dt.

In particular, plugging in ξ ← X ∼ PX , we can compute the KL divergence:

KL(PX∥PY ) = KL(µ∥ν) + 1

2σ2

∫ T

0

EPX ∥at(Xt)− bt(Xt)∥2dt.

Remark 3. The Girsanov’s theorem requires a technical condition ensuring that a local martingale
is a true martingale, typically verified via the Novikov condition (Karatzas & Shreve, 1991, Chap. 3,
Cor. 5.13), which can be challenging to establish. However, when only an upper bound of the KL
divergence is needed, the approximation argument from Chen et al. (2023, App. B.2) circumvents
the verification of the Novikov condition. For additional context, see Chewi (2022, Sec. 3.2). In this
paper, we omit these technical details and always assume that the Novikov condition holds.

We now present the theory of backward stochastic integral and the Girsanov’s theorem, which
are adapted from Vargas et al. (2024). Here, we include relevant results and proofs to ensure a
self-contained presentation.

The backward SDE can be perceived as the time-reversal of a forward SDE:
Definition 1 (Backward SDE). Given a BM (Bt)t∈[0,T ], let its time-reversal be (B←t :=
BT−t)t∈[0,T ]. We say that a process (X←t )t∈[0,T ] satisfies the backward SDE

dX←t = at(X
←
t )dt+ σdB←t , t ∈ [0, T ]; X←T ∼ ν

if its time-reversal (Xt = X←T−t)t∈[0,T ] satisfies the following forward SDE:

dXt = −aT−t(Xt)dt+ σdBt, t ∈ [0, T ]; X0 ∼ ν.

Remark 4. Intuitively, one can understand the backward SDE through the following Euler-Maruyama
discretization: with ∆t > 0:

X←t−∆t ≈ X←t + at(X
←
t )(−∆t) + σ(B←t−∆t −B←t )

⇐⇒ XT−t+∆t ≈ XT−t − at(XT−t)∆t+ σ(BT−t+∆t −BT−t).

where B←t−∆t −B←t ∼ N (0,∆tI) and is independent of (X←s )s∈[t,T ].

The forward and backward SDEs are related through the following Nelson’s relation:
Lemma 2 (Nelson’s relation (Nelson, 1967; Anderson, 1982)). Given a BM (Bt)t∈[0,T ] and its
time-reversal (B←t = BT−t)t∈[0,T ], the following two SDEs

dXt = at(Xt)dt+ σdBt, X0 ∼ p0; and dYt = bt(Yt)dt+ σdB←t , YT ∼ q

have the same path measure if and only if

q = pT , and bt = at − σ2∇ log pt, ∀t ∈ [0, T ],

where pt is the p.d.f. of Xt.
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Proof. The proof is by verifying the Fokker-Planck equation. For X , we have

∂tpt = −∇ · (atpt) +
σ2

2
∆pt.

Let ⋆←t := ⋆T−t. Then p←t satisfies

∂tp
←
t = ∇ · (a←t p←t )− σ2

2
∆p←t = −∇ · ((−a←t + σ2∇ log p←t )p←t ) +

σ2

2
∆p←t ,

which means (X←t )t∈[0,T ] has the same path measure as the following SDE:

dZt = −(a←t − σ2∇ log p←t )(Zt)dt+ σdBt, Zt ∼ p←t .

On the other hand, by definition, (Y←t )t∈[0,T ] satisfies the forward SDE

dY←t = −b←t (Y←t )dt+ σdBt, Y0 ∼ q,

and thus the claim is evident.

We now introduce the concept of backward stochastic integral, which allows us to represent the RN
derivative between path measures of forward and backward SDEs.
Definition 2 (Backward stochastic integral). For two continuous stochastic processes X and Y on
C([0, T ];Rd), the backward stochastic integral of Y with respect to X is defined as∫ T

0

⟨Yt, ∗dXt⟩ := Pr - lim
∥Π∥→0

n−1∑
i=0

〈
Yti+1 , Xti+1 −Xti

〉
,

where Π = {0 = t0 < t1 < ... < tn = T} is a partition of [0, T ], ∥Π∥ := max
i∈[[1,n]]

(ti+1 − ti), and

the convergence is in the probability sense. When both X and Y are continuous semi-martingales,
one can equivalently define∫ T

0

⟨Yt, ∗dXt⟩ :=
∫ T

0

⟨Yt,dXt⟩+ [X,Y ]T , (15)

where [X,Y ]· is the cross quadratic variation process6 of the local martingale parts of X and Y .
Remark 5. Although rarely used in practice, the backward stochastic integral is sometimes referred
to as the Hänggi-Klimontovich integral in the literature. Recall that the Itô integral is defined as the
limit of Riemann sums when the leftmost point of each interval is used, while the Stratonovich integral
is based on the midpoint and the backward integral uses the rightmost point. The equivalence in (15)
can be justified in Karatzas & Shreve (1991, Chap. 3.3).
Lemma 3 (Continuation of Lem. 1). 1. If we replace the SDEs in Lem. 1 with

dXt = at(Xt)dt+ σdB←t , XT ∼ µ; dYt = bt(Yt)dt+ σdB←t , YT ∼ ν,

while keeping other assumptions and notations unchanged, then for any trajectory ξ ∈ Ω,

log
dPX

dPY
(ξ) = log

dµ

dν
(ξT ) +

1

σ2

∫ T

0

⟨at(ξt)− bt(ξt), ∗dξt⟩ −
1

2σ2

∫ T

0

(∥at(ξt)∥2 − ∥bt(ξt)∥2)dt,

and consequently,

KL(PX∥PY ) = KL(µ∥ν) + 1

2σ2

∫ T

0

EPX ∥at(Xt)− bt(Xt)∥2dt.

2. Define the following two SDEs from 0 to T :

dXt = at(Xt)dt+ σdBt, X0 ∼ µ; dYt = bt(Yt)dt+ σdB←t , YT ∼ ν.

Denote the path measures of X and Y as PX and PY , respectively. Then for any trajectory ξ ∈ Ω,

log
dPX

dPY
(ξ) = log

µ(ξ0)

ν(ξT )
+

1

σ2

∫ T

0

(⟨at(ξt),dξt⟩ − ⟨bt(ξt), ∗dξt⟩)−
1

2σ2

∫ T

0

(∥at(ξt)∥2 − ∥bt(ξt)∥2)dt.

6The notation used in Karatzas & Shreve (1991) is ⟨·, ·⟩·. We use square brackets here to avoid conflict with
the notation for inner product.
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Proof. 1. Only in the proof of this theorem, we use the notation ⋆←t := ⋆T−t to represent the time
reversal. We know that

dX←t = −a←t (X←t )dt+ σdBt, X
←
0 ∼ µ; dY←t = −b←t (Y←t )dt+ σdBt, Y

←
0 ∼ ν.

Let PX← and PY← be the path measures of X← and Y←, respectively. From Lem. 1, we know that

log
dPX←

dPY←
(ξ) = log

dµ

dν
(ξ0)−

1

σ2

∫ T

0

⟨a←t (ξt)− b←t (ξt),dξt⟩ −
1

2σ2

∫ T

0

(∥a←t (ξt)∥2 − ∥b←t (ξt)∥2)dt.

Since PX←(dξ) = Pr(X← ∈ dξ) = Pr(X ∈ dξ←) = PX(dξ←), we obtain

log
dPX

dPY
(ξ) = log

dPX←

dPY←
(ξ←)

= log
dµ

dν
(ξ←0 )− 1

σ2

∫ T

0

⟨a←t (ξ←t )− b←t (ξ←t ),dξ←t ⟩ −
1

2σ2

∫ T

0

(∥a←t (ξ←t )∥2 − ∥b←t (ξ←t )∥2)dt

= log
dµ

dν
(ξT ) +

1

σ2

∫ T

0

⟨at(ξt)− bt(ξt), ∗dξt⟩ −
1

2σ2

∫ T

0

(∥at(ξt)∥2 − ∥bt(ξt)∥2)dt.

To justify the last equality, if ξ, η are two continuous stochastic processes, then by definition,∫ T

0

⟨ξ←t ,dη←t ⟩ = Pr - lim
∥Π∥→0

n−1∑
i=0

〈
ξ←ti−1

, η←ti − η←ti−1

〉
= Pr - lim

∥Π∥→0

n−1∑
i=0

〈
ξT−ti−1 , ηT−ti − ηT−ti−1

〉
= Pr - lim

∥Π∥→0
−

n−1∑
i=0

〈
ξT−ti−1 , ηT−ti−1 − ηT−ti

〉
= −

∫ T

0

⟨ξt, ∗dηt⟩ . (16)

On the other hand, ∫ T

0

ξ←t dt =

∫ T

0

ξT−tdt =

∫ T

0

ξtdt.

Therefore, the equality of RN derivative holds. Plugging in ξ ← X , we have

log
dPX

dPY
(X) = log

dµ

dν
(XT )+

1

σ

∫ T

0

⟨at(Xt)− bt(Xt), ∗dB←t ⟩+
1

2σ2

∫ T

0

∥at(Xt)−bt(Xt)∥2dt.

To obtain the KL divergence, it suffices to show the expectation of the second term is zero. Let

Mt :=

∫ T

t

⟨ar(Xr)− br(Xr), ∗dB←r ⟩ , t ∈ [0, T ].

By (16), we have

M←t = −
∫ t

0

⟨a←r (X←r )− b←r (X←r ),dBr⟩ .

Since dX←t = −a←t (X←t )dt+ σdBt, we conclude that M←t is a (forward) martingale, and thus M
is a backward martingale with EMt = EM←T−t = 0.
2. We present a formal proof by considering the process dZt = σdBt and Z0 ∼ λ, the Lebesgue
measure. As a result, formally Zt ∼ λ for all t, so it can also be written as dZt = σdB←t , ZT ∼ λ.
The result follows by applying Lem. 1 to X and Z and 1. to Y and Z.
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A.2 OPTIMAL TRANSPORT: WASSERSTEIN GEOMETRY AND METRIC DERIVATIVE

We provide a concise overview of essential concepts in optimal transport (OT) that will be used in the
paper. See standard textbooks (Villani, 2003; 2008; Ambrosio et al., 2008; 2021) for details.

For two probability measures µ, ν on Rd with finite second-order moments (i.e., Eµ ∥ · ∥2,Eν ∥ ·
∥2 < ∞), the Wasserstein-2 (W2) distance between µ and ν is defined as W2(µ, ν) =

infγ∈Π(µ,ν)

(∫
∥x− y∥2γ(dx, dy)

)1/2
, where Π(µ, ν) is the set of all couplings of (µ, ν). The

Brenier’s theorem states that when µ has a Lebesgue density, then there exists a unique coupling
(id×Tµ→ν)♯ µ that reaches the infimum. Here, ♯ stands for the push-forward of a measure (defined
by T♯µ(·) = µ({ω : T (ω) ∈ ·})), and Tµ→ν is known as the OT map from µ to ν, which can be
written as the gradient of a convex function.

Given a vector field v = (vt)t∈[a,b] and a curve of probability measures ρ = (ρt)t∈[a,b] with finite
second-order moment on Rd, we say that v generates ρ if the continuity equation ∂tρt+∇·(ρtvt) = 0,
t ∈ [a, b] holds in the weak sense. The metric derivative of ρ at t ∈ [a, b] is defined as

|ρ̇|t := lim
δ→0

W2(ρt+δ, ρt)

|δ| ,

which can be interpreted as the speed of this curve. We say ρ is absolutely continuous if |ρ̇|t exists
and is finite for Lebesgue-a.e. t ∈ [a, b]. The metric derivative and the continuity equation are related
through the following fact (Ambrosio et al., 2008, Thm. 8.3.1 & Prop. 8.4.5):
Lemma 4. For an absolutely continuous curve of probability measures (ρt)t∈[a,b], any vector field
(vt)t∈[a,b] that generates (ρt)t∈[a,b] satisfies |ρ̇|t ≤ ∥vt∥L2(ρt) for Lebesgue-a.e. t ∈ [a, b]. Moreover,
there exists an a.s. unique vector field (v∗t ∈ L2(ρt))t∈[a,b] that generates (ρt)t∈[a,b] and satisfies

|ρ̇|t = ∥v∗t ∥L2(ρt) for Lebesgue-a.e. t ∈ [a, b], which is v∗t = limδ→0
Tρt→ρt+δ

−id
δ .

Finally, we define the action of an absolutely continuous curve of probability measures (ρt)t∈[a,b] as∫ b

a
|ρ̇|2tdt, which plays a key role in characterizing the efficiency of a curve for normalizing constant

estimation. For basic properties of the action and its relation to isoperimetric inequalities such as
log-Sobolev and Poincaré inequalities (see definitions below), we refer the reader to Guo et al. (2025,
Lem. 3 & Ex. 1).
Definition 3 (Isoperimetric inequalities). A probability measure π on Rd satisfies a Poincaré in-
equality (PI) with constant C, or C-PI, if for all f ∈ C∞c (Rd),

Varπ f ≤ C Eπ ∥∇f∥2.
It satisfies a log-Sobolev inequality (LSI) with constant C, or C-LSI, if for all 0 ̸≡ f ∈ C∞c (Rd),

Eπ f
2 log

f2

Eπ f2
≤ 2C Eπ ∥∇f∥2.

Furthermore, α-strong-log-concavity implies 1
α -LSI, and C-LSI implies C-PI (Bakry et al., 2014).

B PSEUDO-CODES OF THE ALGORITHMS

See Algs. 1 and 2 for the detailed implementation of the AIS and RDS algorithms, respectively.

C PROOFS FOR SEC. 3

C.1 A COMPLETE PROOF OF THM. 1

Proof. By Girsanov’s theorem (Lem. 3), we have

log
dP→

dP←
(ξ) = log

π̃0(ξ0)

π̃T (ξT )
+

1

2

∫ T

0

(⟨∇ log π̃t(ξt),dξt⟩+ ⟨∇ log π̃t(ξt), ∗dξt⟩).

We first prove the following result (Vargas et al., 2024, Eq. (15)): if dxt = at(xt)dt+
√
2dBt, then∫ T

0

⟨at(xt), ∗dxt⟩ =
∫ T

0

⟨at(xt),dxt⟩+ 2

∫ T

0

tr∇at(Xt)dt.
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Algorithm 1: Normalizing constant estimation via AIS.

Input: The target distribution π ∝ e−V , smoothness parameter β, total time T ; TI number of
intermediate distributions K, annealing schedule λ0 > ... > λK = 0, number of particles
N ; AIS steps M , annealing schedule λ(·) with λ(0) = 2β, time points
0 = θ0 < ... < θM = 1.

Output: Ẑ, an estimation of Z =
∫
Rd e
−V (x)dx.

1 // Phase 1: estimate Z0 via TI.

2 Define V0 := V + β∥ · ∥2, ρk :∝ exp
(
−V0 − λk

2 ∥ · ∥2
)
, and gk := exp

(
λk−λk+1

2 ∥ · ∥2
)

, for

k ∈ [[0,K − 1]];

3 Initialize Ẑ0 ← exp
(
−V0(0) +

∥∇V0(0)∥2
2(3β+λ0)

)(
2π

3β+λ0

) d
2

;

4 for k = 0 to K − 1 do
5 Obtain N i.i.d. approximate samples x(k)

1 , ..., x
(k)
N from ρk (e.g., using LMC or proximal

sampler);

6 Update Ẑ0 ←
(

1
N

∑N
n=1 gk(X

(k)
n )

)
Ẑ0;

7 end
8 // Phase 2: estimate Z via AIS.
9 Approximately sample x0 from π0 (e.g., using LMC or proximal sampler);

10 Initialize W ← − 1
2 (λ(θ0)− λ(θ1))∥x0∥2;

11 for ℓ = 1 to M − 1 do
12 Sample an independent ξ ∼ N (0, Id);

13 Define Λ(t) :=
∫ t

0
λ
(
θℓ−1 +

τ
Tℓ
(θℓ − θℓ−1)

)
dτ , where Tℓ := T (θℓ − θℓ−1);

14 Update

xℓ ← e−Λ(Tℓ)xℓ−1−
(∫ Tℓ

0
e−(Λ(Tℓ)−Λ(t))dt

)
∇V (xℓ−1)+

(
2
∫ Tℓ

0
e−2(Λ(Tℓ)−Λ(t))dt

) 1
2

ξ;

// see Lem. 11 for the derivation.
15 Update W ←W − 1

2 (λ(θℓ)− λ(θℓ+1))∥xℓ∥2;
16 end
17 return Ẑ = Ẑ0e

−W

Proof. Due to (15), it suffices to calculate [a(X), X]T . By Itô’s formula, we have

dat(xt) = (∂tat(xt) + ⟨∇at(xt), at(xt)⟩+∆at(xt))dt+
√
2∇atdBt,

and hence

[a(X), X]T =

[∫ ·
0

√
2∇at(xt)dBt,

∫ ·
0

√
2dBt

]
T

= tr

∫ T

0

2∇at(xt)dt.

Therefore, for X ∼ P→, we have

log
dP→

dP←
(X) = log

π̃0(X0)

π̃T (XT )
+

∫ T

0

(⟨∇ log π̃t(Xt),dXt⟩+∆ log π̃t(Xt)dt).

On the other hand, by Itô’s formula, we have

d log π̃t(Xt) = ∂t log π̃t(Xt) + ⟨∇ log π̃t(Xt),dXt⟩+∆ log π̃t(Xt)dt.

Taking the integral, we immediately obtain (4), and the proof is complete.

C.2 PROOF OF THM. 2

Proof. The proof builds on the techniques developed in Guo et al. (2025, Thm. 1), yet with new
components including backward SDE and the corresponding version of the Girsanov’s theorem.
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Algorithm 2: Normalizing constant estimation via RDS.

Input: The target distribution π ∝ e−V , total time duration T , early stopping time δ ≥ 0, time
points 0 = t0 < t1 < ... < tN = T − δ; non-parametric score estimator
st(·) ≈ ∇ log πt(·) based on {RDMC, RSDMC, ZODMC, or SNDMC} algorithms.

Output: Ẑ, an estimation of Z =
∫
Rd e
−V (x)dx.

1 Sample X0 ∼ N (0, I), and initialize W := −∥X0∥2
2 − d

2 log 2π;
2 for k = 0 to N − 1 do

3 Sample an independent pair of
(
ξ1
ξ2

)
∼ N

(
0,

(
1 ρk
ρk 1

)
⊗ I

)
, where the correlation is

ρk =
√
2(etk+1−tk−1)√

(e2(tk+1−tk)−1)(tk+1−tk)
, and ⊗ stands for the Kronecker product; // this can be

done by sampling ξ1, ξ̃2
i.i.d.∼ N (0, I) and setting ξ2 = ρkξ1 +

√
1− ρ2k ξ̃2

4 Update Xtk+1
← etk+1−tkXtk + 2(etk+1−tk − 1)sT−tk(Xtk) +

√
e2(tk+1−tk) − 1ξ1; // see

Lem. 12 for the derivation
5 Update W ←W + (tk+1 − tk)∥sT−tk(Xtk)∥2 +

√
2(tk+1 − tk) ⟨sT−tk(Xtk), ξ2⟩; // see

Lem. 12 for the derivation
6 end
7 Update W ←W + V (XtN )− (T − δ)d;
8 return Ẑ = e−W .

We define P as the path measure of the following SDE:

dXt = (∇ log π̃t + vt)(Xt)dt+
√
2dBt, t ∈ [0, T ]; X0 ∼ π̃0, (17)

where the vector field (vt)t∈[0,T ] is chosen such that Xt ∼ π̃t under P for all t ∈ [0, T ]. According
to the Fokker-Planck equation,7 (vt)t∈[0,T ] must satisfy the PDE

∂tπ̃t = −∇ · (π̃t(∇ log π̃t + vt)) + ∆π̃t = −∇ · (π̃tvt), t ∈ [0, T ],

which means that (vt)t∈[0,T ] generates (π̃t)t∈[0,T ]. The Nelson’s relation (Lem. 2) implies an
equivalent definition of P as the path measure of the following backward SDE with an independent
time-reversed BM (B←t )t∈[0,T ]:

dXt = (−∇ log π̃t + vt)(Xt)dt+
√
2dB←t , t ∈ [0, T ]; XT ∼ π̃T .

Now we bound the probability of ε relative error:

Pr

(∣∣∣∣∣ ẐZ − 1

∣∣∣∣∣ ≥ ε

)
= P→

(∣∣∣∣ e−We−∆F
− 1

∣∣∣∣ ≥ ε

)
= P→

(∣∣∣∣dP←dP→
− 1

∣∣∣∣ ≥ ε

)
≤ 1

ε
EP→

∣∣∣∣dP←dP→
− 1

∣∣∣∣ = 2

ε
TV(P←,P→)

≤ 2

ε
(TV(P,P→) + TV(P,P←))

≤
√
2

ε

(√
KL(P∥P→) +

√
KL(P∥P←)

)
. (18)

In the second line above, we apply Markov inequality along with an equivalent definition of the TV
distance: TV(µ, ν) = 1

2

∫ ∣∣∣dµdλ − dν
dλ

∣∣∣dλ, where λ is a measure that dominates both µ and ν. The
third line follows from the triangle inequality for TV distance, while the final line is a consequence of
Pinsker’s inequality KL ≥ 2TV2.

7We assume the existence of a unique curve of probability measures solving the Fokker-Planck equation
given the drift and diffusion terms, guaranteed under mild regularity conditions (Le Bris & Lions, 2008).
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By Girsanov’s theorem (Lems. 1 and 3), it is straightforward to see that

KL(P∥P←) = KL(P∥P→) =
1

4
EP

∫ T

0

∥vt(Xt)∥2dt =
1

4

∫ T

0

∥vt∥2L2(π̃t)
dt.

Leveraging the relation between metric derivative and continuity equation (Lem. 4), among all vector
fields (vt)t∈[0,T ] that generate (π̃t)t∈[0,T ], we can choose the one that minimizes ∥vt∥L2(π̃t), thereby
making ∥vt∥L2(π̃t) = | ˙̃π|t, the metric derivative. With the reparameterization π̃t = πt/T , we have
the following relation by chain rule:

| ˙̃π|t = lim
δ→0

W2(π̃t+δ, π̃t)

|δ| = lim
δ→0

W2(π(t+δ)/T , πt/T )

T |δ/T | =
1

T
|π̇|t/T .

Employing the change-of-variable formula leads to

KL(P∥P←) = KL(P∥P→) =
1

4

∫ T

0

| ˙̃π|2tdt =
1

4T

∫ 1

0

|π̇|2θdθ =
A
4T

.

Therefore, it suffices to choose T = 32A
ε2 to make the r.h.s. of (18) less than 1

4 .

D PROOF OF THM. 4

With the forward and backward path measures P→ and P← defined in (5) and (6), we further define
the reference path measure

P(x0:M ) = π0(x0)

M∏
ℓ=1

F ∗ℓ (xℓ−1, xℓ), (19)

where F ∗ℓ can be an arbitrary transition kernel transporting πθℓ−1
to πθℓ , i.e., it satisfies

πθℓ(y) =

∫
F ∗ℓ (x, y)πθℓ−1

(x)dx, ∀y ∈ Rd =⇒ xℓ ∼ πθℓ , ∀ℓ ∈ [[0,M ]] .

Define the backward transition kernel of F ∗ℓ as

B∗ℓ (x, x
′) =

πθℓ−1
(x′)

πθℓ(x)
F ∗ℓ (x

′, x), ℓ ∈ [[1,M ]] ,

which transports πθℓ to πθℓ−1
. Equivalently, we can write

P(x0:M ) = π1(xM )

M∏
ℓ=1

B∗ℓ (xℓ, xℓ−1).

Straightforward calculations yield

KL(P∥P→) =

M∑
ℓ=1

Eπθℓ−1
(xℓ−1) KL(F ∗ℓ (xℓ−1, ·)∥Fℓ(xℓ−1, ·)),

KL(P∥P←) =

M∑
ℓ=1

Eπθℓ
(xℓ) KL(B∗ℓ (xℓ, ·)∥Bℓ(xℓ, ·))

=

M∑
ℓ=1

KL(πθℓ−1
(xℓ−1)F

∗
ℓ (xℓ−1, xℓ)∥πθℓ(xℓ−1)Fℓ(xℓ−1, xℓ)) (20)

= KL(P∥P→) +

M∑
ℓ=1

KL(πθℓ−1
∥πθℓ). (21)

Also, recall that the sampling path measure P̂→ is defined in (9) starts at π̂0, the distribution of an
approximate sample of π0. For convenience, we define the following path measure, which differs
from P̂→ only from the initial distribution:

P→(x0:M ) = π0(x0)

M∏
ℓ=1

F̂ℓ(xℓ−1, xℓ). (22)
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Equipped with these definitions, we first prove a lemma about a necessary condition for the estimator
Ẑ to satisfy the desired accuracy (1).

Lemma 5. Define the estimator Ẑ := Ẑ0e
−W (x0:M ), where x0:M ∼ P̂→, and Ẑ0 is independent of

x0:M . To make Ẑ satisfy the criterion (1), it suffices to meet the following four conditions:

Pr

(∣∣∣∣∣ Ẑ0

Z0
− 1

∣∣∣∣∣ ≥ ε

8

)
≤ 1

8
, (23)

TV(π̂0, π0) ≤ 2−5, (24)

KL(P∥P←) ≤ 2−13ε2, (25)

KL(P∥P→) ≤ 2−8. (26)

Proof. Recall that Z = Z0e
−∆F . Using Lem. 8, we have

Pr

(∣∣∣∣∣ ẐZ − 1

∣∣∣∣∣ ≥ ε

)
≤ Pr

(∣∣∣∣∣log Ẑ

Z

∣∣∣∣∣ ≥ ε

2

)
= Prx0:M∼P̂→

(∣∣∣∣∣log Ẑ0

Z0
+ log

e−W (x0:M )

e−∆F

∣∣∣∣∣ ≥ ε

2

)

≤ Pr

(∣∣∣∣∣log Ẑ0

Z0

∣∣∣∣∣ ≥ ε

4

)
+ P̂→

(∣∣∣∣log e−W

e−∆F

∣∣∣∣ ≥ ε

4

)

≤ Pr

(∣∣∣∣∣ Ẑ0

Z0
− 1

∣∣∣∣∣ ≥ ε

8

)
+ P̂→

(∣∣∣∣ e−We−∆F
− 1

∣∣∣∣ ≥ ε

8

)
.

The first term is ≤ 1
8 if (23) holds. To bound the second term, using the definition of TV distance and

the triangle inequality, we have

P̂→
(∣∣∣∣ e−We−∆F

− 1

∣∣∣∣ ≥ ε

8

)
≤ TV(P̂→,P→) + P→

(∣∣∣∣ e−We−∆F
− 1

∣∣∣∣ ≥ ε

8

)
≤ TV(P̂→,P→) + TV(P→,P) + TV(P,P→) + P→

(∣∣∣∣dP←dP→
− 1

∣∣∣∣ ≥ ε

8

)
.

Recall that by definition (9) and (22), the distributions of x1:M conditional on x0 are the same under
P̂→ and P→. Hence, TV(P̂→,P→) = TV(π̂0, π0). Applying Pinsker’s inequality and leveraging
(18), we have

P̂→
(∣∣∣∣ e−We−∆F

− 1

∣∣∣∣ ≥ ε

8

)
≤ TV(π̂0, π0) +

√
1

2
KL(P∥P→) +

√
1

2
KL(P∥P→) +

8
√
2

ε

(√
KL(P∥P→) +

√
KL(P∥P←)

)
.

Note that from (21) we know that KL(P∥P→) ≤ KL(P∥P←), so if (24) to (26) hold, we can achieve
P̂→

(∣∣∣ e−W

e−∆F − 1
∣∣∣ ≥ ε

8

)
≤ 1

8 , and therefore Pr
(∣∣∣ ẐZ − 1

∣∣∣ ≥ ε
)
≤ 1

4 .

Next, we study how to satisfy the conditions in (25) and (26) while minimizing oracle complexity.
Given that we already have an approximate sample from π0 and an accurate estimate of Z0, we
proceed to the next step of the AIS algorithm. Since each transition kernel requires one call to the
oracle of∇V , and by plugging in fθ ← V + λ(θ)

2 ∥ · ∥2 in AIS (Thm. 3), the work function W (x0:M )
is independent of V , it follows that the remaining oracle complexity is M . The result is formalized in
the following lemma.
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Lemma 6. To minimize the oracle complexity, it suffices to find the minimal M such that there exists
a sequence 0 = θ0 < θ1 < ... < θM = 1 satisfying the following three constraints:

M∑
ℓ=1

∫ θℓ

θℓ−1

(λ(θ)− λ(θℓ))
2dθ ≲

ε4

m2A , (27)

M∑
ℓ=1

(θℓ − θℓ−1)
2 ≲

ε4

dβ2A2
, (28)

max
ℓ∈[[1,M ]]

(θℓ − θℓ−1) ≲
ε2

βA . (29)

Proof. We break down the argument into two steps.

Step 1. We first consider (25).

Note that when defining the reference path measure P, the only requirement for the transition kernel
F ∗ℓ is that it should transport πθℓ−1

to πθℓ . Our aim is to find the “optimal” F ∗ℓ ’s in order to minimize
the sum of KL divergences, which can be viewed as a static Schrödinger bridge problem (Léonard,
2014; Chen et al., 2016; 2021). By data-processing inequality,

Cℓ := inf
F∗ℓ

KL(πθℓ−1
(xℓ−1)F

∗
ℓ (xℓ−1, xℓ)∥πθℓ(xℓ−1)Fℓ(xℓ−1, xℓ)) ≤ inf

Pℓ
KL(Pℓ∥Qℓ),

where the infimum is taken among all path measures from 0 to Tℓ with the marginal constraints
Pℓ

0 = πθℓ−1
and Pℓ

Tℓ
= πθℓ ; Qℓ is the path measure of (8) (i.e., LD with target distribution πθℓ)

initialized at X0 ∼ πθℓ .

For each ℓ ∈ [[1,M ]], define the following interpolation between πθℓ−1
and πθℓ :

µℓ
t := πθℓ−1+

t
Tℓ

(θℓ−θℓ−1), t ∈ [0, Tℓ].

Let Pℓ be the path measure of

dXt = (∇ logµℓ
t + uℓ

t)(Xt)dt+
√
2dBt, t ∈ [0, Tℓ]; X0 ∼ πθℓ−1

,

where the vector field (uℓ
t)t∈[0,Tℓ] is chosen such that Xt ∼ µℓ

t under Pℓ, and in particular, the
marginal distributions at 0 and Tℓ are πθℓ−1

and πθℓ , respectively. By verifying the Fokker-Planck
equation, the following PDE needs to be satisfied:

∂tµ
ℓ
t = −∇ · (µℓ

t(∇ logµℓ
t + uℓ

t)) + ∆µℓ
t = −∇ · (µℓ

tu
ℓ
t), t ∈ [0, Tℓ],

meaning that (uℓ
t)t∈[0,Tℓ] generates (µℓ

t)t∈[0,Tℓ]. Similar to the proof of JE (Thm. 2), using the relation
between metric derivative and continuity equation (Lem. 4), among all vector fields generating
(µℓ

t)t∈[0,Tℓ], we choose (uℓ
t)t∈[0,Tℓ] to be the a.s.-unique vector field that satisfies ∥uℓ

t∥L2(µℓ
t)
= |µ̇ℓ|t

for Lebesgue-a.e. t ∈ [0, Tℓ], which implies (using the chain rule)∫ Tℓ

0

∥uℓ
t∥2L2(µℓ

t)
dt =

∫ Tℓ

0

|µ̇ℓ|2tdt

=

∫ Tℓ

0

(
θℓ − θℓ−1

Tℓ
|π̇|θℓ−1+

t
Tℓ

(θℓ−θℓ−1)

)2

dt =
θℓ − θℓ−1

Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ.

By Lem. 2, we can equivalently write Pℓ as the path measure of the following backward SDE:

dXt = (−∇ logµℓ
t + uℓ

t)(Xt)dt+
√
2dB←t , t ∈ [0, Tℓ]; XT ∼ πθℓ .

Recall that Qℓ is the path measure of (8) initialized at X0 ∼ πθℓ , so Xt ∼ πθℓ for all t ∈ [0, Tℓ]. By
Nelson’s relation (Lem. 2), we can equivalently write Qℓ as the path measure of

dXt = −∇ log πθℓ(Xt)dt+
√
2dB←t , t ∈ [0, Tℓ]; XTℓ

∼ πθℓ .
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The purpose of writing these two path measures in the way of backward SDEs is to avoid the extra
term of the KL divergence between the initialization distributions πθℓ−1

and πθℓ at time 0 when
calculating KL(Pℓ∥Qℓ). To see this, by Girsanov’s theorem (Lem. 3), the triangle inequality, and
the change-of-variable formula, we have

Cℓ ≤ KL(Pℓ∥Qℓ) =
1

4

∫ Tℓ

0

∥∥∥∥uℓ
t −∇ log

µℓ
t

πθℓ

∥∥∥∥2
L2(µℓ

t)

dt

≲
∫ Tℓ

0

∥uℓ
t∥2L2(µℓ

t)
dt+

∫ Tℓ

0

∥∥∥∥∇ log
µℓ
t

πθℓ

∥∥∥∥2
L2(µℓ

t)

dt

=
θℓ − θℓ−1

Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ +
Tℓ

θℓ − θℓ−1

∫ θℓ

θℓ−1

∥∥∥∥∇ log
πθ

πθℓ

∥∥∥∥2
L2(πθ)

dθ.

Remark 6. Our bound above is based on a specific interpolation between πθℓ−1
and πθℓ along the

curve (πθ)θ∈[θℓ−1,θℓ]. This approach is inspired by, yet slightly differs from, Conforti & Tamanini
(2021, Theorem 1.6), where the interpolation is based on the Wasserstein geodesic. As we will
demonstrate shortly, our formulation simplifies the analysis of the second term (the Fisher divergence),
making it more straightforward to bound.

Now, summing over all ℓ ∈ [[1,M ]], we can see that in order to ensure KL(P∥P←) ≤∑M
ℓ=1 Cℓ ≤ ε2,

we only need the following two conditions to hold:

M∑
ℓ=1

θℓ − θℓ−1
Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ ≲ ε2, (30)

M∑
ℓ=1

Tℓ

θℓ − θℓ−1

∫ θℓ

θℓ−1

∥∥∥∥∇ log
πθ

πθℓ

∥∥∥∥2
L2(πθ)

dθ ≲ ε2. (31)

Since
∑M

ℓ=1

∫ θℓ
θℓ−1
|π̇|2θdθ = A, it suffices to choose

Tℓ

θℓ − θℓ−1
=: T ≍ A

ε2
, ∀ℓ ∈ [[1,M ]] (32)

to make the l.h.s. of (30) O(ε2). Notably, T is the summation over all Tℓ’s, which has the same order
as the total time T for running JE ((2)) in the continuous scenario, in Thm. 1. Plugging this Tℓ into
the second summation, and noticing that by (7) and Lem. 14,∥∥∥∥∇ log

πθ

πθ′

∥∥∥∥2
L2(πθ)

= Ex∼πθ
∥(λ(θ)− λ(θ′))x∥2 ≤ (λ(θ)− λ(θ′))2m2,

we conclude that (27) implies (31).

Step 2. Now consider the other constraint (26). By chain rule and data-processing inequality,

KL(P∥P→) =

M∑
ℓ=1

KL(πθℓ−1
(xℓ−1)F

∗
ℓ (xℓ−1, xℓ)∥πθℓ−1

(xℓ−1)F̂ℓ(xℓ−1, xℓ)) ≤
M∑
ℓ=1

KL(Pℓ∥Q̂ℓ),

where Pℓ is the previously defined path measure of the SDE

dXt = (∇ logµℓ
t + uℓ

t)(Xt)dt+
√
2dBt

=

(
−∇V (Xt)− λ

(
θℓ−1 +

t

Tℓ
(θℓ − θℓ−1)

)
Xt + uℓ

t(Xt)

)
dt+

√
2dBt, t ∈ [0, Tℓ]; X0 ∼ πθℓ−1

,

and Q̂ℓ is the path measure of (10) initialized at X0 ∼ πθℓ−1
, i.e.,

dXt =

(
−∇V (X0)− λ

(
θℓ−1 +

t

Tℓ
(θℓ − θℓ−1)

)
Xt

)
dt+

√
2dBt, t ∈ [0, Tℓ]; X0 ∼ πθℓ−1

.
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By Lem. 1, triangle inequality, and the smoothness of V , we have

KL(Pℓ∥Q̂ℓ) =
1

4

∫ Tℓ

0

EPℓ ∥∇V (Xt)−∇V (X0)− uℓ
t(Xt)∥2dt

≲
∫ Tℓ

0

EPℓ

[
∥∇V (Xt)−∇V (X0)∥2 + ∥uℓ

t(Xt)∥2
]
dt

≤ β2

∫ Tℓ

0

EPℓ ∥Xt −X0∥2dt+
∫ Tℓ

0

∥uℓ
t∥2L2(µℓ

t)
dt

To bound the first part, note that under Pℓ, we have

Xt −X0 =

∫ t

0

(∇ logµℓ
τ + uℓ

τ )(Xτ )dτ +
√
2Bt.

Thanks to the fact that Xt ∼ µℓ
t under Pℓ,

EPℓ ∥Xt −X0∥2 ≲ EPℓ

∥∥∥∥∫ t

0

(∇ logµℓ
τ + uℓ

τ )(Xτ )dτ

∥∥∥∥2 + E ∥
√
2Bt∥2

≲ t

∫ t

0

EPℓ ∥(∇ logµℓ
τ + uℓ

τ )(Xτ )∥2dτ + dt

≲ t

∫ t

0

(
∥∇ logµℓ

τ∥2L2(µℓ
τ )

+ ∥uℓ
τ∥2L2(µℓ

τ )

)
dτ + dt

≲ Tℓ

∫ Tℓ

0

(
∥∇ logµℓ

τ∥2L2(µℓ
τ )

+ ∥uℓ
τ∥2L2(µℓ

τ )

)
dτ + dTℓ, ∀t ∈ [0, Tℓ],

where the second inequality follows from Jensen’s inequality (Cheng et al., 2018, Sec. 4):∥∥∥∥∫ t

0

fτdτ

∥∥∥∥2 = t2∥Eτ∼Unif(0,t) fτ∥2 ≤ t2 Eτ∼Unif(0,t) ∥fτ∥2 = t

∫ t

0

∥fτ∥2dτ.

Therefore,

KL(Pℓ∥Q̂ℓ)

≤ β2

∫ Tℓ

0

EPℓ ∥Xt −X0∥2dt+
∫ Tℓ

0

∥uℓ
t∥2L2(µℓ

t)
dt

≤ β2T 2
ℓ

∫ Tℓ

0

∥∇ logµℓ
τ∥2L2(µℓ

τ )
dτ + (β2T 2

ℓ + 1)

∫ Tℓ

0

∥uℓ
τ∥2L2(µℓ

τ )
dτ + dβ2T 2

ℓ

= β2T 2
ℓ

Tℓ

θℓ − θℓ−1

∫ θℓ

θℓ−1

∥∇ log πθ∥2L2(πθ)
dθ + (β2T 2

ℓ + 1)
θℓ − θℓ−1

Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ + dβ2T 2
ℓ .

Recall that the potential of πθ is (β + λ(θ))-smooth. By Lem. 13 and the monotonicity of λ(·),∫ θℓ

θℓ−1

∥∇ log πθ∥2L2(πθ)
dθ ≤

∫ θℓ

θℓ−1

d(β + λ(θ))dθ ≤ d(θℓ − θℓ−1)(β + λ(θℓ−1)).

Thus,

KL(P∥P→) ≤
M∑
ℓ=1

(
β2T 3

ℓ d(β + λ(θℓ−1)) + (β2T 2
ℓ + 1)

θℓ − θℓ−1
Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ + dβ2T 2
ℓ

)

=

M∑
ℓ=1

(
β2dT 2

ℓ (Tℓ(β + λ(θℓ−1)) + 1) + (β2T 2
ℓ + 1)

θℓ − θℓ−1
Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ
)
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Assume maxℓ∈[[1,M ]] Tℓ ≲ 1
β , i.e., (29). so maxℓ∈[[1,M ]] Tℓ(β + λ(θℓ−1)) ≲ 1, due to λ(·) ≤ 2β. We

can further simplify the above expression to

KL(P∥P→) ≤
M∑
ℓ=1

(
β2dT 2

ℓ +
θℓ − θℓ−1

Tℓ

∫ θℓ

θℓ−1

|π̇|2θdθ
)

≲ β2d

(
M∑
ℓ=1

T 2
ℓ

)
+ ε2

= β2dT 2
M∑
ℓ=1

(θℓ − θℓ−1)
2 + ε2 ≲ β2d

A2

ε4

M∑
ℓ=1

(θℓ − θℓ−1)
2 + ε2.

So (29) implies that the r.h.s. of the above equation is O(1).

Finally, we have arrived at the last step of proving Thm. 4, that is to decide the schedule of θℓ’s.

Define ϑℓ := 1− θℓ, ℓ ∈ [[0,M ]]. We consider the annealing schedule λ(θ) = 2β(1− θ)r for some
1 ≤ r ≲ 1, and to emphasize the dependence on r, we use Ar to represent the action of (πθ)θ∈[0,1].
The l.h.s. of (27) is

M∑
ℓ=1

∫ θℓ

θℓ−1

(λ(θ)− λ(θℓ))
2dθ ≤

M∑
ℓ=1

(θℓ − θℓ−1)(2β(1− θℓ−1)
r − 2β(1− θℓ)

r)2

=

M∑
ℓ=1

(ϑℓ−1 − ϑℓ)(2βϑ
r
ℓ−1 − 2βϑr

ℓ)
2

≲ β2
M∑
ℓ=1

(ϑℓ−1 − ϑℓ)(ϑ
r
ℓ−1 − ϑr

ℓ)
2

≲ β2
M∑
ℓ=1

(ϑℓ−1 − ϑℓ)(ϑℓ−1 − ϑℓ)
2 = β2

M∑
ℓ=1

(ϑℓ−1 − ϑℓ)
3,

where the last inequality comes from Lem. 9. So to satisfy (27), it suffices to ensure

M∑
ℓ=1

(ϑℓ−1 − ϑℓ)
3 ≲

ε4

m2β2Ar
,

while (28) and (29) are equivalent to

M∑
ℓ=1

(ϑℓ−1 − ϑℓ)
2 ≲

ε4

dβ2A2
r

, max
ℓ∈[[1,M ]]

(ϑℓ−1 − ϑℓ) ≲
ε2

βAr
.

Since we are minimizing the total number of oracle calls M , the Hölder’s inequality implies that the
optimal schedule of ϑℓ’s is an arithmetic sequence, i.e., ϑℓ = 1− ℓ

M . We need to ensure

1

M2
≲

ε4

m2β2Ar
,

1

M
≲

ε4

dβ2A2
r

,
1

M
≲

ε2

βAr
.

So it suffices to choose 1
M ≍ ε2

mβA
1
2
r

∧ ε4

dβ2A2
r

, which implies the oracle complexity

M ≍ mβA
1
2
r

ε2
∨ dβ2A2

r

ε4
,

and the hyperparameter Tℓ is thus Tℓ ≍ A
1
2
r

mβ ∧ ε2

dβ2Ar
according to (32).

□

Remark 7. The work Guo et al. (2025) used similar methodologies to prove an Õ
(

dβ2A2

ε6

)
oracle

complexity for obtaining a sample that is ε2-close in KL divergence to the target distribution. While
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our assumptions are mostly the same with Guo et al. (2025) except for some insignificant technical
ones, and both proofs involve the standard discretization analysis through Girsanov’s theorem,
the improvement of the ε-dependency in Thm. 4 is due to the fact that Guo et al. (2025) requires
KL(P∥P→) ≲ ε2 for sampling, which results in a Θ̃(ε4) step size in Guo et al. (2025), while our proof
only needs KL(P∥P→) ≲ 1 and KL(P∥P←) ≲ ε2 for normalizing constant estimation, resulting in
an improved Θ̃(ε2) step size.

E PROOFS FOR SEC. 5

E.1 PROOF OF PROP. 1

Proof. The claim of smoothness follows from Guo et al. (2025, Lem. 7). A similar approach for
proving the lower bound of metric derivative was used independently in Chemseddine et al. (2025,
App. B).

Throughout this proof, let ϕ and Φ denote the p.d.f. and c.d.f. of the standard normal distribution
N (0, 1), respectively. Unless otherwise specified, the integration ranges are assumed to be (−∞,∞).

Note that

π(x)e−
λ
2 x2 ∝

(
e−

x2

2 + e−
(x−m)2

2

)
e−

λ
2 x2

= e−
λ+1
2 x2

+ e−
λm2

2(λ+1) e−
λ+1
2 (x− m

λ+1 )
2

=
1

1 + e−
λm2

2(λ+1)

N
(
x

∣∣∣∣0, 1

λ+ 1

)
+

e−
λm2

2(λ+1)

1 + e−
λm2

2(λ+1)

N
(
x

∣∣∣∣ m

λ+ 1
,

1

λ+ 1

)
.

Define S(θ) := 1
1+m2(1−θ)r , and let

πs(x) :∝ π(x)e−
1/s−1

2 x2

= w(s)N (x|0, s) + (1− w(s))N (x|sm, s) ,

where

w(s) =
1

1 + e−(1−s)m2/2
, w′(s) = − e−(1−s)m

2/2m2/2

(1 + e−(1−s)m2/2)2
.

By definition, πθ = πS(θ). The p.d.f. of πs is

fs(x) =
w(s)√

s
ϕ

(
x√
s

)
+

1− w(s)√
s

ϕ

(
x− sm√

s

)
,

and the c.d.f. of πs is

Fs(x) = w(s)Φ

(
x√
s

)
+ (1− w(s))Φ

(
x− sm√

s

)
.

We now derive a formula for calculating the metric derivative. From Villani (2003, Thm. 2.18),
W2

2(µ, ν) =
∫ 1

0
(F−1µ (y) − F−1ν (y))2dy, where Fµ, Fν stand for the c.d.f.s of µ, ν. Assuming

regularity conditions hold, we have

lim
δ→0

W2
2(πs, πs+δ)

δ2
= lim

δ→0

∫ 1

0

(
F−1s+δ(y)− F−1s (y)

δ

)2

dy =

∫ 1

0

(∂sF
−1
s (y))2dy.

Consider change of variable y = Fs(x), then dy
dx = fs(x). As x = F−1s (y), (F−1s )′(y) = dx

dy =
1

fs(x)
. Taking the derivative of s on both sides of the equation x = F−1s (Fs(x)) yields

0 = ∂sF
−1
s (Fs(x)) + (F−1s )′(Fs(x))∂sFs(x) = ∂sF

−1
s (y) +

1

fs(x)
∂sFs(x).
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Therefore, ∫ 1

0

(∂sF
−1
s (y))2dy =

∫ (
∂sFs(x)

fs(x)

)2

fs(x)dx =

∫
(∂sFs(x))

2

fs(x)
dx.

Consider the interval x ∈
[
m
2 − 0.1, m

2 + 0.1
]
, and fix the range of s to be [0.9, 0.99]. We have 1− w(s) = 1

1+e(1−s)m2/2
≍ 1

e(1−s)m2/2
, ∀m ≳ 1

−w′(s) = e(1−s)m2/2m2/2

(1+e(1−s)m2/2)2
≍ m2

e(1−s)m2/2
, ∀m ≳ 1

First consider upper bounding fs(x). We have the following two bounds:

w(s)√
s
ϕ

(
x√
s

)
≲ e−

x2

2s ≤ e−
(m/2−0.1)2

2×0.99 ≤ e−
m2

8 , ∀m ≳ 1,

1− w(s)√
s

ϕ

(
x− sm√

s

)
≲

1

e(1−s)m2/2
e−

(sm−x)2

2s = exp

(
−1

2

[
(sm− x)2

s
+ (1− s)m2

])
.

The term in the square brackets above is

(sm− x)2

s
+ (1− s)m2 ≥ 1

s

(
sm− m

2
− 0.1

)2
+ (1− s)m2

=
m2

4s
− 0.2

(
1− 1

2s

)
m+

0.01

s

≥ m2

4× 0.99
− 0.1m+ 0.1 ≥ m2

4
, ∀m ≳ 1.

Hence, we conclude that fs(x) ≲ e−
m2

8 .

Next, we consider lower bounding the term (∂sFs(x))
2. Note that

−∂sFs(x) = −w′(s)
(
Φ

(
x√
s

)
− Φ

(
x− sm√

s

))
+ w(s)ϕ

(
x√
s

)
x

2s
3
2

+ (1− w(s))ϕ

(
x− sm√

s

)(
x

2s
3
2

+
m

2s
1
2

)
.

As x ∈
[
m
2 − 0.1, m

2 + 0.1
]

and s ∈ [0.9, 0.99], all these three terms are positive. We only focus on
the first term. Note the following two bounds: Φ

(
x√
s

)
≥ Φ

(
m
2 − 0.1

)
≥ 3

4 , ∀m ≳ 1,

Φ
(

x−sm√
s

)
≤ Φ

(
m/2+0.1−sm√

s

)
≤ Φ(−0.4m+ 0.1) ≤ 1

4 , ∀m ≳ 1.

Therefore, we have

−∂sFs(x) ≳
m2

e(1−s)m2/2
.

To summarize, we derive the following lower bound on the metric derivative:

|π̇|2s =

∫
(∂sFs(x))

2

fs(x)
dx ≥

∫ m
2 +0.1

m
2 −0.1

(∂sFs(x))
2

fs(x)
dx

≳
∫ m

2 +0.1

m
2 −0.1

m4e−(1−s)m
2

e−m2/8
dx

≳ m4e(s−
7
8 )m

2 ≥ m4e
m2

40 , ∀s ∈ [0.9, 0.99].

Finally, recall that S(θ) := 1
1+m2(1−θ)r , and πθ = πS(θ). Hence, by chain rule of derivative,

|π̇|θ = |π̇|S(θ)|S′(θ)|. Let

Θ := {θ ∈ [0, 1] : S(θ) ∈ [0.9, 0.99]} =
[
1−

(
1/0.9− 1

m2

) 1
r

, 1−
(
1/0.99− 1

m2

) 1
r

]
.
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We have

Ar =

∫ 1

0

|π̇|2θdθ =

∫ 1

0

|π̇|2S(θ)|S′(θ)|2dθ ≥
∫
Θ

|π̇|2S(θ)|S′(θ)|2dθ

≥ min
θ∈Θ
|S′(θ)| ·

∫
Θ

|π̇|2S(θ)|S′(θ)|dθ = min
θ∈Θ
|S′(θ)| ·

∫ 0.99

0.9

|π̇|2sds.

For any θ ∈ Θ,

|S′(θ)| = m2r(1− θ)r−1

(1 +m2(1− θ)r)2
≥

m2r
(

1/0.99−1
m2

)1−1/r
(
1 +m2

(
1/0.9−1

m2

))2 =
m2/rr(1/99)1−1/r

(1/0.9)2
≳ m2/r ≳ 1,

where in the first “≳” we used the inequality r
(

1
99

)1− 1
r ≥ 1

e4 that holds for all r ≥ 1. Thus, the
proof is complete.

Remark 8. In the above theorem, we established an exponential lower bound on the metric derivative
of the W2 distance, given by limδ→0

W2(πs,πs+δ)

|δ| . In OT, another useful distance, the Wasserstein-1
(W1) distance, defined as W1(µ, ν) = infγ∈Π(µ,ν)

∫
∥x− y∥γ(dx, dy), is a lower bound of the W2

distance. Below, we present a surprising result regarding the metric derivative of W1 distance on the
same curve of probability distributions. This result reveals an exponentially large gap between the
W1 and W2 metric derivatives on the same curve, which is of independent interest.

Theorem 6. Define the probability distributions πs as in the proof of Prop. 1, for some large enough
m ≳ 1. Then, for all s ∈ [0.9, 0.99], we have

lim
δ→0

W1(πs, πs+δ)

|δ| ≲ 1.

Proof. Since W1(µ, ν) =
∫
|Fµ(x)− Fν(x)|dx (Villani, 2003, Thm. 2.18), by assuming regularity

conditions, we have

lim
δ→0

W1(πs, πs+δ)

|δ| =

∫
|∂sFs(x)|dx

≤
∫ ∣∣∣∣w′(s)(Φ( x√

s

)
− Φ

(
x− sm√

s

))∣∣∣∣dx
+

∫ ∣∣∣∣w(s)ϕ( x√
s

)
x

2s
3
2

∣∣∣∣dx
+

∫ ∣∣∣∣(1− w(s))ϕ

(
x− sm√

s

)(
x

2s
3
2

+
m

2s
1
2

)∣∣∣∣ dx.
To bound the first term, notice that for any λ > 0,

Φ

(
x√
s

)
− Φ

(
x− sm√

s

)
≲


√
sme−

(x−sm)2

2s , x−sm√
s
≥ λ;

√
sme−

x2

2s , x√
s
≤ −λ;

1, otherwise.

Therefore, using Gaussian tail bound 1− Φ(λ) ≤ 1
2e
−λ2

2 , the first term is bounded by

≲
m2

e(1−s)m2/2

[
2
√
sλ+ sm+ sm(1− Φ(λ)) + smΦ(−λ)

]
≲

m2

e(1−s)m2/2
[λ+m+ e−

λ2

2 ]
λ←Θ(m)

≲
m3

e(1−s)m2/2
= o(1).

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

The second term is bounded by

≲
∫

ϕ

(
x√
s

)
|x|dx = s

∫
ϕ(u)|u|du ≲ 1.

Finally, the third term is bounded by

≲
1

e(1−s)m2/2

∫
ϕ

(
x− sm√

s

)
(|x|+m)dx

≲
1

e(1−s)m2/2

∫
ϕ(u)(|u|+m)du ≲

m

e(1−s)m2/2
= o(1).

E.2 PROOF OF PROP. 2

Proof. We first prove a more general result with ϕ being any distribution with weak regularity
condition, and then focus on the special case where ϕ = N (0, I).

Note that the LD with target distribution ϕ,

dYt = ∇ log ϕ(Yt)dt+
√
2dBt, Yt ∼ πt,

can be perceived as the Wasserstein gradient flow of KL(·∥ϕ). πt satisfies the Fokker-Planck equation
∂tπt = ∇ ·

(
πt∇ log πt

ϕ

)
. Hence, the vector field

(
vt := −∇ log πt

ϕ

)
t∈[0,∞)

generates (πt)t∈[0,∞),

and each vt can be written as a gradient field of a potential function. Thus, by the uniqueness result
in Lem. 4, we conclude that

|π̇|2t =

∥∥∥∥∇ log
πt

ϕ

∥∥∥∥2
L2(πt)

= FI(πt∥ϕ) = −∂t KL(πt∥ϕ) =⇒
∫ ∞
0

|π̇|2tdt = KL(π∥ϕ),

where FI is the Fisher divergence.

For the special case where ϕ = N (0, I), using the log-Sobolev equality (Def. 3), the smoothness of
V , and Lem. 13, we can further bound the KL divergence as follows:

KL(π∥ϕ) ≤ 1

2
FI(π∥ϕ) = 1

2
Eπ(x) ∥ − ∇V (x) + x∥2 ≤ Eπ ∥∇V ∥2 + Eπ ∥ · ∥2 ≤ dβ +m2.

E.3 PROOF OF THM. 5

Proof. By Nelson’s relation (Lem. 2), Q is equivalent to the path measure of the following SDE:

dXt = Xtdt+
√
2dB←t , t ∈ [0, T − δ]; XT−δ ∼ πδ.

Leveraging Girsanov’s theorem (Lem. 3), we know that for a.s. X ∼ Q†:

log
dQ†

dQ
(X) = log

ϕ(X0)

πδ(XT−δ)
+

1

2

∫ T−δ

0

(〈
Xt + 2sT−t−(Xt−),dXt

〉
− ⟨Xt, ∗dXt⟩

)
− 1

4

∫ T−δ

0

(
∥Xt + 2sT−t−(Xt−)∥2 − ∥Xt∥2

)
dt.

Note that for X ∼ Q†,
∫ T−δ
0

⟨Xt, ∗dXt⟩ =
∫ T−δ
0

⟨Xt,dXt⟩ + [X,X]T−δ and [X,X]T−δ =

[
√
2B,
√
2B]T−δ = 2(T − δ)d. Some simple calculations yield

log
dQ†

dQ
(X) = log

ϕ(X0)

πδ(XT−δ)
− (T − δ)d+

∫ T−δ

0

(
∥sT−t−(Xt−)∥2dt+

√
2
〈
sT−t−(Xt−),dBt

〉)
= logZ +W (X) + log

dπ

dπδ
(XT−δ).
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Thus, the equation EQ†
dQ
dQ† = 1 implies

Z = EQ†(X) e
−W (X) dπδ

dπ
(XT−δ) ≈ EQ†(X) e

−W (X) = E Ẑ.

Since Ẑ
Z = dQ

dQ† (X) dπ
dπδ

(XT−δ), we have

Pr

(∣∣∣∣∣ ẐZ − 1

∣∣∣∣∣ ≥ ε

)
= PrX∼Q†

(∣∣∣∣ dQdQ†
(X)

dπ

dπδ
(XT−δ)− 1

∣∣∣∣ ≥ ε

)
≤ PrX∼Q†

(∣∣∣∣ dQdQ†
(X)− 1

∣∣∣∣ ≳ ε

)
+ PrX∼Q†

(∣∣∣∣ dπdπδ
(XT−δ)− 1

∣∣∣∣ ≳ ε

)
.

The inequality is due to the fact that |ab− 1| ≥ ε implies |a− 1| ≥ ε
3 or |b− 1| ≥ ε

3 for ε ∈ [0, 1]. It
suffices to make both terms above O(1). To bound the first term, we use the similar approach as in
the proof of (18) in Thm. 2:

PrX∼Q†

(∣∣∣∣ dQdQ†
(X)− 1

∣∣∣∣ ≳ ε

)
= Q†

(∣∣∣∣ dQdQ†
− 1

∣∣∣∣ ≳ ε

)
≲

TV(Q,Q†)
ε

≲

√
KL(Q∥Q†)

ε
.

Hence, it suffices to let TV(Q,Q†)2 ≲ KL(Q∥Q†) ≲ ε2. To bound the second term, we have

PrX∼Q†

(∣∣∣∣ dπdπδ
(XT−δ)− 1

∣∣∣∣ ≳ ε

)
≤ PrX∼Q

(∣∣∣∣ dπdπδ
(XT−δ)− 1

∣∣∣∣ ≳ ε

)
+TV(Q,Q†)

≤ πδ

(∣∣∣∣ dπdπδ
− 1

∣∣∣∣ ≳ ε

)
+TV(Q,Q†)

≲
TV(πδ, π)

ε
+ ε.

Therefore, it suffices to make TV(πδ, π) ≲ ε.

E.4 AN UPPER BOUND OF THE TV DISTANCE ALONG THE OU PROCESS

Lemma 7. Assume that the target distribution π ∝ e−V satisfies Assump. 2. Let πδ be the distribution
of Yδ in the OU process (12) initialized at Y0 ∼ π, for some δ ≲ 1. Then,

TV(π, πδ) ≲ δ(βm2 + d+ βd) + δ
1
2 d

1
2 βm.

Remark 9. Consider a simplified case where β ≳ 1 and m2 ≍ d. Then it suffices to choose δ ≲ ε2

β2d2

in order to guarantee TV(π, πδ) ≲ ε.

Proof. Our proof is inspired by Lee et al. (2023, Lem. 6.4), which addresses the case where V is
Lipschitz.

Without loss of generality, suppose π = e−V . Let ϕ be the p.d.f. of N (0, I), and define σ2 :=
1− e−2δ ≍ δ. We will use the following inequality: |ea − eb| ≤ (ea + eb)|a− b|, which is due to the
convexity of the exponential function. By the smoothness of V , ∥∇V (x)∥ = ∥∇V (x)−∇V (0)∥ ≤
β∥x∥.
Define π′(x) = edδπ(eδx), and thus πδ(x) =

∫
π′(x + σu)ϕ(u)du. Using triangle inequality, we

bound TV(π, π′) and TV(π′, πδ) separately. First,

TV(π, π′) =
1

2

∫
|e−V (x) − e−V (eδx)+dδ|dx

≲
∫
(π(x) + π′(x))(|V (eδx)− V (x)|+ dδ)dx.
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By the smoothness,

|V (eδx)− V (x)| ≤ ∥∇V (x)∥(eδ − 1)∥x∥+ β

2
(eδ − 1)2∥x∥2

≲ β∥x∥δ∥x∥+ βδ2∥x∥2 ≲ βδ∥x∥2.

=⇒ TV(π, π′) ≲ δ

∫
(π(x) + π′(x))(β∥x∥2 + d)dx.

Note that
∫
π(x)(β∥x∥2 + d)dx = βm2 + d. Since Eπ′ φ = Eπ φ(e

−δ·), we also have∫
π′(x)(β∥x∥2 + d)dx = e−2δβm2 + d ≤ βm2 + d.

We thus conclude that
TV(π, π′) ≲ δ(βm2 + d).

Next,

TV(π′, πδ) =
1

2

∫ ∣∣∣∣∫ (π′(x+ σu)− π′(x))ϕ(u)du

∣∣∣∣ dx
≲
∫∫
|π′(x+ σu)− π′(x)|ϕ(u)dudx

≲
∫∫

(π′(x+ σu) + π′(x))|V (eδ(x+ σu))− V (eδx)|ϕ(u)dudx.

Again, by smoothness,

V (eδ(x+ σu))− V (eδx) ≤ ∥∇V (eδx)∥eδσ∥u∥+ β

2
e2δσ2∥u∥2

≲ βeδ∥x∥eδσ∥u∥+ βe2δσ2∥u∥2

≲ β∥x∥δ 1
2 ∥u∥+ βδ∥u∥2.

Therefore,

TV(π′, πδ) ≲ βδ
1
2

∫∫
(π′(x+ σu) + π′(x))(∥u∥∥x∥+ δ

1
2 ∥u∥2)ϕ(u)dudx.

Note that, first,∫∫
π′(x)(∥u∥∥x∥+ δ

1
2 ∥u∥2)ϕ(u)dudx ≲ Eπ′ ∥ · ∥d

1
2 + δ

1
2 d ≤ md

1
2 + δ

1
2 d;

second, ∫∫
π′(x+ σu)(∥u∥∥x∥+ δ

1
2 ∥u∥2)ϕ(u)dudx

=

∫∫
π′(y)(∥u∥∥y − σu∥+ δ

1
2 ∥u∥2)ϕ(u)dudy

≲
∫∫

π′(y)(∥u∥∥y∥+ δ
1
2 ∥u∥2)ϕ(u)dudy ≲ md

1
2 + δ

1
2 d.

Therefore, TV(π′, πδ) ≲ βδ
1
2 d

1
2 (m+ δ

1
2 d

1
2 ). The proof is complete.

E.5 DISCUSSION ON THE OVERALL COMPLEXITY OF RDS

In RDS, an accurate score estimate s· ≈ ∇ log π· is critical for the algorithmic efficiency. Existing
methods estimate scores through different ways. Here, we review the existing methods and their
complexity guarantees for sampling, and leverage Thm. 5 to derive the complexity of normalizing
constant estimation. Throughout this section, we always assume that the target distribution π ∝ e−V

satisfies m2 := Eπ ∥ · ∥2 <∞ and that V is β-smooth.
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(I) Reverse diffusion Monte Carlo. The seminal work directly leveraged the following Tweedie’s
formula (Robbins, 1992) to estimate the score:

∇ log πt(x) = Eπ0|t(x0|x)
e−tx0 − x

1− e−2t
, (33)

where

π0|t(x0|x) ∝x0 exp

(
−V (x0)−

∥x0 − etx∥2
2(e2t − 1)

)
(34)

is the posterior distribution of Y0 conditional on Yt = x in the OU process (12). The paper proposed
to sample from π0|t(·|x) by LMC and estimate the score via empirical mean, which has a provably
better LSI constant than the target distribution π (see Huang et al. (2024a, Lem. 2)). They show
that if the scores ∇ log πt are uniformly β-Lipschitz, and assume that there exists some c > 0 and
n > 0 such that for any r > 0, V + r∥ · ∥2 is convex for ∥x∥ ≥ c

rn , then w.p. ≥ 1− ζ, the overall
complexity for guaranteeing KL(Q∥Q†) ≲ ε2 is

O

(
poly

(
d,

1

ζ

)
exp

(
1

ε

)O(n)
)
,

which is also the complexity of obtaining a Ẑ satisfying (1).

(II) Recursive score diffusion-based Monte Carlo. A second work Huang et al. (2024b) proposed
to estimate the scores in a recursive scheme. Assuming the scores∇ log πt are uniformly β-Lipschitz,
they established a complexity

exp

(
β3 log3 poly

(
β, d,m2,

1

ζ

))
in order to guarantee KL(Q∥Q†) ≲ ε2 w.p. ≥ 1− ζ.

(III) Zeroth-order diffusion Monte Carlo. The following work He et al. (2024) proposed a
zeroth-order method that leverages rejection sampling to sample from π0|t(·|x). When V is β-
smooth, they showed that with a small early stopping time δ, the overall complexity for guaranteeing
KL(Q∥Q†) ≲ ε2 is

exp

(
Õ(d) log β log

1

ε

)
.

(IV) Self-normalized estimator. Finally, a recent work Vacher et al. (2025) proposed to estimate
the scores in a different approach:

∇ log πt(x) = −
1

1− e−2t
E[ξe−V (et(x−ξ))]

E[e−V (et(x−ξ))]
, where ξ ∼ N

(
0, (1− e−2t)I

)
.

Assume that V is β-smooth, and the distributions along the OU process starting from π ∝ e−V

and π′ ∝ e−2V have potentials whose Hessians are uniformly ⪰ −βI , then the complexity for
guaranteeing EKL(Q∥Q†) ≲ ε2 is

O

((
β(m2 ∨ d)

ε

)O(d)
)
.

F SUPPLEMENTARY LEMMAS

Lemma 8. For x > 0 and ε ∈
(
0, 1

2

)
, define x0 := | log x| and x1 := |x− 1|. Then xi ≥ ε implies

x1−i ≥ ε
2 , and xi ≤ ε implies x1−i ≤ 2ε, for both i = 0, 1.

This follows from the standard calculus approximation log x ≈ x − 1 when x ≈ 1. The proof is
straightforward and is left as an exercise for the reader.
Lemma 9. For any 0 ≤ a ≤ b ≤ 1 and r ≥ 1, br − ar ≤ r(b− a).
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Proof. This is immediate from the decreasing property of the function φ(x) := xr − rx, x ∈ [0, 1],
since φ′(x) = r(xr−1 − 1) ≤ 0.

Lemma 10 (The median trick (Jerrum et al., 1986)). Let Ẑ1, ..., ẐN be N(≥ 3) i.i.d. random
variables satisfying

Pr

(∣∣∣∣∣ Ẑn

Z
− 1

∣∣∣∣∣ ≤ ε

)
≥ 3

4
, ∀n ∈ [[1, N ]] ,

and let Ẑ∗ be the median of Ẑ1, ..., ẐN . Then

Pr

(∣∣∣∣∣ Ẑ∗Z − 1

∣∣∣∣∣ ≤ ε

)
≥ 1− e−

N
72 .

In particular, for any ζ ∈
(
0, 1

4

)
, choosing N =

⌈
72 log 1

ζ

⌉
, the probability is at least 1− ζ.

Proof. Let An :=
{∣∣∣ Ẑn

Z − 1
∣∣∣ > ε

}
, which are i.i.d. events happening w.p. p ≤ 1

4 . If
∣∣∣ Ẑ∗Z − 1

∣∣∣ > ε,

then there are at least
⌊
N
2

⌋
An’s happening, i.e., SN :=

∑N
n=1 1An ≥

⌊
N
2

⌋
. Then,

Pr

(∣∣∣∣∣ Ẑ∗Z − 1

∣∣∣∣∣ > ε

)
≤ Pr

(
SN ≥

⌊
N

2

⌋)
= Pr

(
SN − ESN ≥

⌊
N

2

⌋
− pN

)
≤ Pr

(
SN − ESN ≥

N

12

)
≤ e−

N
72 ,

where the first inequality on the second line follows from the fact that
⌊
N
2

⌋
≥ N−1

2 ≥ N
3 for all

N ≥ 3, and the last inequality is due to the Hoeffding’s inequality.

Lemma 11. The update rule of AIS (10) is:

XTℓ
= e−Λ(Tℓ)X0 −

(∫ Tℓ

0

e−(Λ(Tℓ)−Λ(t))dt

)
∇V (X0) +

(
2

∫ Tℓ

0

e−2(Λ(Tℓ)−Λ(t))dt

) 1
2

ξ,

where Λ(t) :=
∫ t

0
λ
(
θℓ−1 +

τ
Tℓ
(θℓ − θℓ−1)

)
dτ , and ξ ∼ N (0, I) is independent of X0.

Proof. By Itô’s formula, we have

d(eΛ(t)Xt) = eΛ(t) (Λ′(t)Xtdt+ dXt) = eΛ(t)(−∇V (X0)dt+
√
2dBt).

Integrating over t ∈ [0, Tℓ], we obtain

eΛ(Tℓ)XTℓ
−X0 = −

(∫ Tℓ

0

eΛ(t)dt

)
∇V (X0) +

√
2

∫ Tℓ

0

eΛ(t)dBt,

=⇒ XTℓ
= e−Λ(Tℓ)X0 −

(∫ Tℓ

0

e−(Λ(Tℓ)−Λ(t))dt

)
∇V (X0) +

√
2

∫ Tℓ

0

e−(Λ(Tℓ)−Λ(t))dBt,

and
√
2
∫ Tℓ

0
e−(Λ(Tℓ)−Λ(t))dBt ∼ N

(
0,
(
2
∫ Tℓ

0
e−2(Λ(Tℓ)−Λ(t))dt

)
I
)

by Itô isometry.

Lemma 12. The update rule of the RDS (14) is

Xtk+1
= etk+1−tkXtk + 2(etk+1−tk − 1)sT−tk(Xtk) + Ξk,

where

Ξk :=

∫ tk+1

tk

√
2e−(t−tk+1)dBt ∼ N

(
0, (e2(tk+1−tk) − 1)I

)
,

and the correlation matrix between Ξk and Btk+1
−Btk is

Corr(Ξk, Btk+1
−Btk) =

√
2(etk+1−tk − 1)√

(e2(tk+1−tk) − 1)(tk+1 − tk)
I.
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Proof. By applying Itô’s formula to (14) for t ∈ [tk, tk+1], we have

d(e−tXt) = e−t(−Xtdt+ dXt) = e−t(2sT−tk(Xtk)dt+
√
2dBt)

=⇒ e−tk+1Xtk+1
− e−tkXtk = 2(e−tk − e−tk+1)sT−tk(Xtk) +

∫ tk+1

tk

√
2e−tdBt.

The covariance between two zero-mean Gaussian random variables Ξk and Btk+1
−Btk is

Cov(Ξk, Btk+1
−Btk) = E

[
Ξk(Btk+1

−Btk)
T
]

= E

[(∫ tk+1

tk

√
2e−(t−tk+1)dBt

)(∫ tk+1

tk

dBt

)T
]

=

∫ tk+1

tk

√
2e−(t−tk+1)dt · I =

√
2(etk+1−tk − 1)I.

Finally, Corr(u, v) = diag(Cov u)−
1
2 Cov(u, v) diag(Cov v)−

1
2 yields the correlation.

Lemma 13 (Chewi (2022, Lemma 4.E.1)). Consider a probability measure µ ∝ e−U on Rd.

1. If ∇2U ⪰ αI for some α > 0 and x⋆ is the global minimizer of U , then Eµ ∥ · −x⋆∥2 ≤ d
α .

2. If ∇2U ⪯ βI for some β > 0, then Eµ ∥∇U∥2 ≤ βd.

Lemma 14. Define π̂λ ∝ exp
(
−V − λ

2 ∥ · ∥2
)
, λ ≥ 0. Then under Assump. 2, Eπ̂λ

∥ · ∥2 ≤ m2 for
all λ ≥ 0.

Proof. Let Vλ := V + λ
2 ∥ · ∥2, and Zλ =

∫
e−Vλdx, so π̂λ = e−Vλ−logZλ . We have

d

dλ
logZλ =

Z ′λ
Zλ

= − 1

Zλ

∫
e−VλV ′λdx = −1

2
Eπ̂λ
∥ · ∥2,

=⇒ d

dλ
log π̂λ = −V ′λ −

d

dλ
logZλ =

1

2

(
Eπ̂λ
∥ · ∥2 − ∥ · ∥2

)
,

=⇒ d

dλ
Eπ̂λ
∥ · ∥2 =

∫
∥ · ∥2

(
d

dλ
log π̂λ

)
dπ̂λ =

1

2

((
Eπ̂λ
∥ · ∥2

)2 − Eπ̂λ
∥ · ∥4

)
≤ 0.

G REVIEW AND DISCUSSION ON THE ERROR GUARANTEE (1)

G.1 LITERATURE REVIEW OF EXISTING BOUNDS

Estimation of Z. Traditionally, the statistical properties of an estimator are typically analyzed
through its bias and variance. However, deriving closed-form expressions of the variance of Ẑ and F̂

in JE remains challenging. Recall that the estimator Ẑ = Z0e
−W (X), X ∼ P→ for Z = Z0e

−∆F ,
and that JE implies Bias Ẑ = 0. For general (sub-optimally) controlled SDEs, Hartmann & Richter
(2024) established both upper and lower bounds of the relative error of the importance sampling
estimator, yet bounds tailored for JE are not well-studied. Inspired by this, we establish an upper
bound on the normalized variance Var Ẑ

Z in Prop. 3 at the end of this section using techniques in
Rényi divergence. However, we remark that connecting this upper bound to the properties of the
curve (e.g., action) is non-trivial, which we leave for future work.

Estimation of F . Turning to the estimator F̂ = − log Ẑ for F = − logZ, we have

Bias F̂ = EP→W −∆F =W −∆F =Wdiss.

Bounding the average dissipated work Wdiss = KL(P→∥P←) = −EP→
∫ T

0
(∂t log π̃t)(Xt)dt re-

mains challenging as well, as the law of Xt under P→ is unknown, thus complicating the bounding of
the expectation. To the best of our knowledge, Chen et al. (2020) established a lower bound in terms
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of W2(π0, π1) via the Wasserstein gradient flow, but an upper bound remains elusive. Furthermore,
E F̂ 2 = EP→(X) (logZ0 −W (X))

2 is similarly intractable to analyze.

For multiple estimators, i.e., F̂K := − log
(
Z0

1
M

∑K
k=1 e

−W (X(k))
)

where X(1), ..., X(K) i.i.d.∼ P→,
Zuckerman & Woolf (2002; 2004) (see also Lelièvre et al. (2010, Sec. 4.1.5)) derived approximate
asymptotic bounds on Bias F̂K and Var F̂K via the delta method (or equivalently, the central limit
theorem and Taylor expansions). Precise and non-asymptotic bounds remain elusive to date.

G.2 EQUIVALENCE IN COMPLEXITIES FOR ESTIMATING Z AND F

We prove the claim in Rmk. 1 that estimating Z with O(ε) relative error and estimating F with O(ε)
absolute error share the same complexity up to absolute constants. This follows directly from Lem. 8:
for any ε ∈

(
0, 1

2

)
,

(1) =⇒ Pr
(
|F̂ − F | ≤ 2ε

)
≥ 3

4
, and (1) ⇐= Pr

(
|F̂ − F | ≤ ε

2

)
≥ 3

4
.

G.3 (1) IS WEAKER THAN BIAS AND VARIANCE

We demonstrate that (1) is a weaker criterion than controlling bias and variance, which is an immediate
result from the Chebyshev inequality:

Pr

(∣∣∣∣∣ ẐZ − 1

∣∣∣∣∣ ≥ ε

)
≤ 1

ε2
E

(
Ẑ

Z
− 1

)2

=
Bias2 Ẑ +Var Ẑ

ε2Z2
,

Pr
(
|F̂ − F | ≥ ε

)
≤ E(F̂ − F )2

ε2
=

Bias2 F̂ +Var F̂

ε2
.

On the other hand, suppose one has established a bound in the following form:

Pr

(∣∣∣∣∣ ẐZ − 1

∣∣∣∣∣ ≥ ε

)
≤ p(ε), for some p : [0,∞)→ [0, 1],

and assume that Ẑ is unbiased. Then this implies

Var
Ẑ

Z
= E

(
Ẑ

Z
− 1

)2

=

∫ ∞
0

Pr

( Ẑ

Z
− 1

)2

≥ ε

dε ≤
∫ ∞
0

p(
√
ε)dε.

G.4 AN UPPER BOUND ON THE NORMALIZED VARIANCE OF Ẑ IN JARZYNSKI EQUALITY

Proposition 3. Under the setting of JE (Thm. 1), let (vt)t∈[0,T ] be any vector field that generates
(π̃t)t∈[0,T ], and define P as the path measure of (17). Then,

Var
Ẑ

Z
≤
[
EP exp

(
14

∫ T

0

∥vt(Xt)∥2dt
)] 1

2

− 1.

Proof. The proof is inspired by Chewi et al. (2022). Note that

Var
Ẑ

Z
= E

(
Ẑ

Z

)2

− 1 = EP→
(
e−W (X)+∆F

)2
− 1 = EP→

(
dP←

dP→

)2

− 1,

which is the χ2 divergence from P← to P→. Recall the q(> 1)-Rényi divergence defined as

Rq(µ∥ν) = 1
q−1 logEν

(
dµ
dν

)q
, and that χ2(P←∥P→) = eR2(P←∥P→) − 1. By the weak triangle

inequality of Rényi divergence (Chewi, 2022, Lem. 6.2.5):

R2(P←∥P→) ≤ 3

2
R4(P←∥P) + R3(P∥P→).
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We now bound EP
(
dP→
dP
)q

for any q ∈ R. By Girsanov’s theorem (Lem. 1),

log
dP→

dP
(X) =

∫ T

0

(
− 1√

2
⟨vt(Xt),dBt⟩ −

1

4
∥vt(Xt)∥2dt

)
, a.s. X ∼ P.

Therefore,

EP

(
dP→

dP

)q

= EP exp

∫ T

0

(
− q√

2
⟨vt(Xt),dBt⟩ −

q

4
∥vt(Xt)∥2dt

)
= EP exp

[∫ T

0

(
− q√

2
⟨vt(Xt),dBt⟩ −

q2

2
∥vt(Xt)∥2dt

)
+

∫ T

0

(
q2

2
− q

4

)
∥vt(Xt)∥2dt

]

≤
(
EP exp

[∫ T

0

(
−
√
2q ⟨vt(Xt),dBt⟩ − q2∥vt(Xt)∥2dt

)]) 1
2

·
(
EP exp

[(
q2 − q

2

)∫ T

0

∥vt(Xt)∥2dt
]) 1

2

,

where the last line is by the Cauchy-Schwarz inequality. Let Mt := −
√
2q
∫ t

0
⟨vr(Xr),dBr⟩, X ∼ P

be a continuous martingale with quadratic variation [M ]t =
∫ t

0
2q2∥vr(Xr)∥2dr. By Karatzas

& Shreve (1991, Chap. 3.5.D), the process t 7→ eMt− 1
2 [M ]t is a super martingale, and hence

E eMT− 1
2 [M ]T ≤ 1. Thus, we have

EP

(
dP→

dP

)q

≤
(
EP exp

[(
q2 − q

2

)∫ T

0

∥vt(Xt)∥2dt
]) 1

2

From Girsanov’s theorem (Lem. 3), we can similarly obtain the following RN derivative:

log
dP←

dP
(X) =

∫ T

0

(
− 1√

2
⟨vt(Xt), ∗dB←t ⟩ −

1

4
∥vt(Xt)∥2dt

)
, a.s. X ∼ P.

and use the same argument to show that EP
(
dP←
dP
)q

has exactly the same upper bound as EP
(
dP→
dP
)q

.
In particular, we can use the same martingale argument, whereas now the backward continuous
martingale is defined as M ′t := −

√
2q
∫ T

t
⟨vr(Xr), ∗dB←r ⟩, X ∼ P, with quadratic variation

[M ′]t =
∫ T

t
2q2∥vr(Xr)∥2dr. Therefore, we conclude that

R2(P←∥P→) ≤ 1

4
logEP exp

(
14

∫ T

0

∥vt(Xt)∥2dt
)

+
1

4
logEP exp

(
5

∫ T

0

∥vt(Xt)∥2dt
)

≤ 1

2
logEP exp

(
14

∫ T

0

∥vt(Xt)∥2dt
)
.

H RELATED WORKS

H.1 THERMODYNAMIC INTEGRATION

(I) Review of TI. We first briefly review the thermodynamic integration (TI) algorithm. Its essence
is to write the free-energy difference as an integral of the derivative of free energy. Consider the
general curve of probability measures (πθ)θ∈[0,1] defined in (7). Then,

d

dθ
logZθ = − 1

Zθ

∫
e−Vθ(x)∂θVθ(x)dx = −Eπθ

∂θVθ =⇒ log
Z

Z0
= −

∫ 1

0

Eπθ
∂θVθdθ. (35)
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One may choose time points 0 = θ0 < ... < θM = 1 and approximate (35) by a Riemann sum:

log
Z

Z0
≈ −

M−1∑
ℓ=0

(θℓ+1 − θℓ)Eπθℓ
∂θ|θ=θℓVθ, (36)

where the expectation under each πθℓ can be estimated by sampling from πθℓ . Nevertheless, there is
a way of writing the exact equality instead of the approximation in (36): since

log
Zθℓ+1

Zθℓ

= log

∫
1

Zθℓ

e−Vθℓ
(x)e−(Vθℓ+1

(x)−Vθℓ
(x))dx = logEπθℓ

e−(Vθℓ+1
−Vθℓ

),

by summing over ℓ = 0, ...,M − 1, we have

log
Z

Z0
=

M−1∑
ℓ=0

logEπθℓ
e−(Vθℓ+1

−Vθℓ
), (37)

which constitutes the estimation framework used in Brosse et al. (2018); Ge et al. (2020); Chehab
et al. (2023); Kook & Vempala (2025). Hence, we also use TI to name this algorithm.

(II) TI as a special case of AIS. We follow the notations used in Thm. 3 to demonstrate the
following claim: TI (37) is a special case of AIS with every transition kernel Fℓ(x, ·) chosen as the
perfect proposal πθℓ .

Proof. In AIS, with Fℓ(x, ·) = πθℓ in the forward path P→, we have P→(x0:M ) =
∏M

ℓ=0 πθℓ(xℓ).
In this special case,

W (x0:M ) = log

M−1∏
ℓ=0

e−Vθℓ
(xℓ)

e−Vθℓ+1
(xℓ)

,

and hence the AIS equality becomes the following identity, exactly the same as (35):

Z

Z0
= e−∆F = EP→ e−W =

M−1∏
ℓ=0

Eπθℓ
e−(Vθℓ+1

−Vθℓ
). (38)

(III) The distinction between equilibrium and non-equilibrium methods. In our AIS framework,
the distinction lies in the choice of the transition kernels Fℓ(x, ·) within the AIS framework.

In equilibrium methods, the transition kernels are ideally set to the perfect proposal πθℓ . However, in
practice, exact sampling from πθℓ is generally infeasible. Instead, one can apply multiple MCMC
iterations targeting πθℓ , leveraging the mixing properties of MCMC algorithms to gradually approach
the desired distribution πθℓ . Nonetheless, unless using exact sampling methods such as rejection
sampling – which is exponentially expensive in high dimensions – the resulting sample distribution
inevitably remains biased with a finite number of MCMC iterations.

In contrast, non-equilibrium methods employ transition kernels specifically designed to transport πℓ−1
toward πℓ, often following a curve of probability measures. This distinguishes them as inherently
non-equilibrium. A key advantage of this approach over the equilibrium one is its ability to provide
unbiased estimates, as demonstrated in JE and AIS.

(IV) Complexity bounds for TI. For the TI algorithm in Alg. 1 used to estimate Z0 =∫
e−V−β∥·∥

2

dx, the analysis Ge et al. (2020) indicates that it suffices to choose K = Θ̃(
√
d)

intermediate distributions and N = Θ̃
(√

d
ε2

)
particles with multilevel estimation, which leads to a

total complexity of Õ
(

d
4
3

ε2

)
to achieve the requirement in (23) (note that the condition number of

the potential V + β∥ · ∥2 is O(1)).
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H.2 PATH INTEGRAL SAMPLER AND CONTROLLED MONTE CARLO DIFFUSION

In this section, we briefly discuss two learning-based samplers used for normalizing constant estima-
tion and refer readers to the original papers for detailed derivations. The path integral sampler (PIS)
shares structural similarities with the RDS framework discussed in Thm. 5, using the time-reversal
of a universal noising process that transforms any distribution into a prior – such as the OU process
in RDS that converges to the standard normal or the Brownian bridge in PIS that converges to the
delta distribution at zero. In contrast, the controlled Monte Carlo diffusion (CMCD) extends the
JE framework from Sec. 3, focusing on learning the compensatory drift term along an arbitrary
interpolating curve (πθ)θ∈[0,1], as long as the density of each intermediate distribution πθ is known
up to a constant.

Path integral sampler (PIS, Zhang & Chen (2022)). The PIS learns the drift term of a reference
SDE that interpolates the delta distribution at 0 and the target distribution π, which is closely
connected with the Brownian bridge and the Föllmer drift (Chewi, 2022).

Fix a time horizon T > 0. For any drift term (ut)t∈[0,T ], let Qu be the path measure of the following
SDE:

dXt = ut(Xt)dt+ dBt, t ∈ [0, T ]; X0
a.s.
= 0.

In particular, when u ≡ 0, the marginal distribution of XT under Q0 is N (0, T I) =: ϕT . Define
another path measure Q∗ by

Q∗(dξ[0,T ]) := Q0(dξ[0,T )|ξT )π(dξT ) = Q0(dξ[0,T ])
dπ

dϕT
(ξT ), ∀ξ ∈ C([0, T ];Rd)

and consider the problem

u∗ = argmin
u

KL(Qu∥Q∗) =⇒ Qu∗ = Q∗.

One can calculate the KL divergence between these path measures via Girsanov’s theorem (Lem. 1):

log
dQu

dQ∗ (X) = Wu(X) + logZ, a.s. X ∼ Qu, where

Wu(X) =

∫ T

0

⟨ut(Xt),dBt⟩+
1

2

∫ T

0

∥ut(Xt)∥2dt−
∥XT ∥2
2T

+ V (XT )−
d

2
log 2πT,

which implies Z = EQu e−W
u

, and KL(Qu∥Q∗) = EQu Wu + logZ. On the other hand, directly
applying Lem. 1 gives

KL(Qu∥Q∗) = 1

2

∫ T

0

EQu ∥ut(Xt)− u∗t (Xt)∥2dt.

In Zhang & Chen (2022, Theorem 3), the authors considered the effective sample size (ESS) defined

by ESS−1 = EQu

(
dQ∗
dQu

)2
as the convergence criterion, and stated that ESS ≥ 1 − ε as long as

supt∈[0,T ] ∥ut − u∗t ∥2L∞ ≤ ε
T . However, this condition is generally hard to verify since the closed-

form expression of u∗ is unknown, and the L∞ bound might be too strong. Using the criterion ((1))
and the same methodology in proving the convergence of JE (Thm. 2), we can establish an improved
result on the convergence guarantee of this estimator, relating the relative error to the training loss of
u, which is defined as

min
u

L(u) := EQu

[
1

2

∫ T

0

∥ut(Xt)∥2dt−
∥XT ∥2
2T

+ V (XT )

]
= KL(Qu∥Q∗)−logZ+

d

2
log 2πT

Proposition 4. Consider the estimator Ẑ := e−W
u(X), X ∼ Qu for Z. To achieve both

KL(Qu
T ∥π) ≲ ε2 (with Qu

T representing the law of XT in the sampled trajectory X ∼ Qu) and

Pr
(∣∣∣ ẐZ − 1

∣∣∣ ≤ ε
)
≥ 3

4 , it suffices to choose u that satisfies

L(u) = − logZ +
d

2
log 2πT +O(ε2).
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Proof.

Pr

(∣∣∣∣∣ ẐZ − 1

∣∣∣∣∣ ≥ ε

)
= Qu

(∣∣∣∣dQ∗dQu
− 1

∣∣∣∣ ≥ ε

)
≲

TV(Qu,Q∗)
ε

≲

√
KL(Qu∥Q∗)

ε
.

Therefore, ensuring KL(Qu∥Q∗) ≲ ε2 up to some sufficiently small constant guarantees that
the above probability remains bounded by 1

4 . Furthermore, by the data-processing inequality,
KL(Qu

T ∥π) ≤ KL(Qu∥Q∗) ≲ ε2.

Controlled Monte Carlo Diffusion (CMCD, Vargas et al. (2024)). We borrow the notations from
Sec. 3 due to its similarity with JE.

Given (π̃t)t∈[0,T ] and the ALD (2), we know from the proof of Thm. 1 that to make Xt ∼ π̃t for all t,
the compensatory drift term (vt)t∈[0,T ] must generate (π̃t)t∈[0,T . Now, consider the task of learning
such a vector field (ut)t∈[0,T ] by matching the following forward and backward SDEs:

P→ : dXt = (∇ log π̃t + ut)(Xt)dt+
√
2dBt, X0 ∼ π̃0,

P← : dXt = (−∇ log π̃t + ut)(Xt)dt+
√
2dB←t , XT ∼ π̃T ,

where the loss is KL(P→∥P←), discretized in training. Obviously, when trained to optimality, both
P→ and P← share the marginal distribution π̃t at every time t. By Girsanov’s theorem (Lem. 3), one
can prove the following identity for a.s. X ∼ P→: log dP→

dP← (X) = W (X) + Cu(X)−∆F , where
∆F and W (X) are defined as in Thm. 1, and

Cu(X) := −
∫ T

0

(⟨ut(Xt),∇ log π̃t(Xt)⟩+∇ · ut(Xt))dt.

We refer readers to Vargas et al. (2024, Prop. 3.3) for the detailed derivation. By EP→ dP←
dP→ = 1,

we know that EP→ e−W (X)−Cu(X) = e−∆F . As the paper has not established inference-time
performance guarantee given the training loss, we prove the following result characterizing the
relationship between the training loss and the accuracy of the sampled distribution as well as the
estimated normalizing constant.

Proposition 5. Let Ẑ = Z0e
−W (X)−Cu(X), X ∼ P→ be an unbiased estimator of Z = Z0e

−∆F .
Then, to achieve both KL(P→T ∥π) ≲ ε2 (where P→T is the law of XT in the sampled trajectory

X ∼ P→) and Pr
(∣∣∣ ẐZ − 1

∣∣∣ ≤ ε
)
≥ 3

4 , it suffices to choose u that satisfies KL(P→∥P←) ≲ ε2.

Proof. The proof of this theorem follows the same reasoning as that of Prop. 4. For normalizing
constant estimation,

Pr

(∣∣∣∣∣ ẐZ − 1

∣∣∣∣∣ ≥ ε

)
= P→

(∣∣∣∣dP←dP→ − 1

∣∣∣∣ ≥ ε

)
≲

TV(P→,P←)

ε
≲

√
KL(P→∥P←)

ε
≲ 1.

For sampling, the result is an immediate corollary of the data-processing inequality.

I DETAILS OF EXPERIMENTAL RESULTS

I.1 MODIFIED MÜLLER BROWN DISTRIBUTION

The Müller Brown potential energy surface is a canonical example of a potential surface used in
molecular dynamics. Here, we consider a modified version of this distribution as defined in He et al.
(2024, App. D.5). For x = (x1, x2) ∈ R2, the target distribution is π(x) = 1

Z exp(−0.1(Vq(x) +
Vm(x))), where

Vq(x) = 35.0136(x1 + 0.033923)2 + 59.8399(x2 − 0.465694)2,

Vm(x) =

4∑
i=1

Ai exp(ai(x1 −Xi)
2 + bi(x1 −Xi)(x2 − Yi) + ci(x2 − Yi)

2).
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In the above equations, x1 = 0.2(x1−3.5), x2 = 0.2(x2+6.5), A = (−200,−100,−170, 15), a =
(−1,−1,−6.5, 0.7), b = (0, 0, 11, 0.6), c = (−10,−10,−6.5, 0.7), X = (1, 0,−0.5,−1), Y =
(0, 0.5, 1.5, 1). The ground truth value of the normalizing constant computed by numerical integral
(scipy.integrate.dblquad) is Z = 22340.9983 with estimated absolute error 0.0001.

We run each method with approximately the same oracle complexity. Aside from the quantitative
results in Tab. 1, we also visualize the samples drawn from each method against the level curves of
the potential in Fig. 2. It is clear from the table and figure that TI and AIS fail to provide accurate
estimates of the normalizing constant or sample from the target distribution due to the deficiency of
the exploration of different modes. All four RDS-based methods provide accurate estimates of the
normalizing constant, with SNDMC and ZODMC being the two best methods.

−5 0 5
−7.5

−5.0

−2.5

0.0

2.5
TI

−5 0 5
−7.5

−5.0

−2.5

0.0

2.5
AIS

−5 0 5
−7.5

−5.0

−2.5

0.0

2.5
RDMC

−5 0 5
−7.5

−5.0

−2.5

0.0

2.5
RSDMC

−5 0 5
−7.5

−5.0

−2.5

0.0

2.5
ZODMC

−5 0 5
−7.5

−5.0

−2.5

0.0

2.5
SNDMC

Figure 2: Visualization of the samples from the modified Müller Brown distribution. The generated
samples are displayed on top of the level curves of the potential energy surface (darker color
corresponds to lower potential energy, i.e., higher probability density).

I.2 GAUSSIAN MIXTURE DISTRIBUTION

We now consider a Gaussian mixture distribution π in R2 with 4 components, having weights
0.1, 0.2, 0.3, 0.4, means (

0
0

)
,

(
0
11

)
,

(
9
9

)
,

(
11
0

)
,

and covariances (
1 0.5
0.5 1

)
,

(
0.3 −0.2
−0.2 0.3

)
,

(
1 0.3
0.3 1

)
,

(
1.2 −1
−1 1.2

)
.

As the p.d.f. is available in closed form, the ground truth value of the normalizing constant is
Z = 1. Due to the separation of the modes and the imbalance of the weights, this distribution is
more challenging to sample from. In the quantitative results shown in Tab. 1, we report the mean
and standard deviation of Ẑ

Z as well as two metrics for the quality of the samples: maximum mean
discrepancy (MMD) and Wasserstein-2 distance (W2) between the generated samples π̂samp and
ground truth samples from π. The visualization of the samples is shown in Fig. 3. Again, TI and
AIS are confined to mode at zero where the initial samples are located, and fail to provide accurate
estimates of the normalizing constant. All RDS-based methods provide accurate estimates of the
normalizing constant and high quality samples.
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Figure 3: Visualization of the samples from the Gaussian mixture distribution. The generated samples
are displayed on top of the level curves of the potential (darker color corresponds to lower potential,
i.e., higher probability density).

I.3 IMPLEMENTATION DETAILS

General implementation details. For both experiments, we run each method for 1024 rounds and
output the mean and standard deviation of all 1024 estimates of Ẑ

Z . In each round, we parallelly
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run 1024 i.i.d. trajectories, which produces 1024 i.i.d. samples from π and 1024 i.i.d. estimates
of the normalizing constant, and we treat the average of the estimates as the final estimate of that
round. We record the oracle complexity of each algorithm and tune the hyperparameters to make
sure that the oracle complexity for producing each sample from π is between 50000 and 60000 for a
fair comparison. For TI, we choose λ0 = 100, λi+1 = 1.45

1+1/
√
d
λi until λi ≤ 1

2
√
d

, and N = 32 i.i.d.
samples. For AIS, we choose λ0 = 100, M = 60000 steps, and ALMC step size Tℓ = 0.01. For all
RDS-based methods, we choose the total time duration T = 5, early stopping time δ = 0.005, and
N = 50 uniformly spaced time points tn = n

N (T − δ). Specifically, for RDMC, we use 64 samples
from π0|t(·|x) to estimate the score ∇ log πt(x), and run LMC for 16 steps with step size 0.01,
initialized by importance sampling from π0|t(·|x) ∝ e−V (·)N

(
·|etx, (e2t − 1)I

)
with proposal

N
(
etx, (e2t − 1)I

)
; for RSDMC, we choose the number of recursive steps as 2, use 16 samples

from π0|t(·|x) to estimate the score ∇ log πt(x), and run LMC for 10 steps with step size 0.01 using
the same initialization based on importance sampling; finally, for both ZODMC and SNDMC, we use
1024 samples from π0|t(·|x) to estimate the score∇ log πt(x).

Evaluation metrics for sampling. In the experiment of Gaussian mixture distribution, in each
round, we draw 1024 samples from both the algorithm and the target distribution, and compute the
following two metrics to evaluate the quality of the samples. For two sets of samples X = {xi}ni=1
and Y = {yj}mj=1, the MMD is defined as

MMD(X ,Y) :=
√

1

n2

∑
1≤i,i′≤n

k(xi, xi′)−
2

nm

∑
1≤i≤m,1≤j≤n

k(xi, yj) +
1

m2

∑
1≤j,j′≤m

k(yj , yj′),

where k(x, y) = 1
K

∑K
i=1 exp

(
−∥x−y∥

2

2σ2
i

)
is a multiscale radial basis function (RBF) kernel. Fol-

lowing the implementation in He et al. (2024), we set K = 10 and {σi}10i=1 = {−4,−2, 0, ..., 12, 14}.
Second, the W2 distance is computed by ot.emd2(a, b, M) ** 0.5 using the Python
Optimal Transport (POT) package (Flamary et al., 2021), where a = 1

n1n, b = 1
m1m, and

M = (∥xi − yj∥2)1≤i≤n,1≤j≤m. 1n represents the vector of all ones with length n.
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