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ABSTRACT

In the realm of multi-agent systems, the challenge of partial observability is a
critical barrier to effective coordination and decision-making. Existing approaches,
such as belief state estimation and inter-agent communication, often fall short.
Belief-based methods are limited by their focus on past experiences without fully
leveraging global information, while communication methods often lack a robust
model to effectively utilize the auxiliary information they provide. To solve this
issue, we propose Global State Diffusion Algorithm (GlobeDiff) to infer the global
state based on the local observations. By formulating the state inference process
as a multi-modal diffusion process, GlobeDiff overcomes ambiguities in state
estimation while simultaneously inferring the global state with high fidelity. We
prove that the estimation error of GlobeDiff under both unimodal and multi-modal
distributions can be bounded. Extensive experimental results demonstrate that
GlobeDiff achieves superior performance and is capable of accurately inferring the
global state.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) has driven significant progress in complex domains
like robotics (Wang et al., 2022; Lee et al., 2022) and autonomous systems (Zhang et al., 2024; Zhou
et al., 2022), enabling agents to learn sophisticated collaborative policies (Feng et al., 2024; Wang
et al., 2024b). However, a fundamental and persistent barrier to effective multi-agent coordination is
the problem of partial observability (PO), where each agent’s view is limited (Amato et al., 2013;
Omidshafiei et al., 2017; Srinivasan et al., 2018), and the true global state of the system is unknown.
This challenge, formally captured in the Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) framework (Oliehoek et al., 2016), forces agents to act under uncertainty, often
leading to suboptimal or conflicting decisions (Spaan, 2012).

The core difficulty of partial observability lies in the profound ambiguity it creates: a single agent’s
local observation can be consistent with numerous, often dramatically different, global states. This
creates a challenging one-to-many mapping problem for state inference. Existing approaches have
attempted to resolve this ambiguity using discriminative models, such as recurrent networks or
Transformers (Hausknecht & Stone, 2015; Kapturowski et al., 2018), which learn to predict a single,
most likely global state from a history of local observations. However, this approach is fundamentally
flawed. By collapsing a rich distribution of possibilities into a single point estimate, these methods
suffer from mode collapse. They either average distinct plausible states into a single, nonsensical
representation or arbitrarily commit to one possibility while ignoring others, failing to capture the
true uncertainty of the environment.

The central thesis of this paper is that the one-to-many ambiguity inherent in global state inference
is best addressed not by discriminative prediction, but by generative modeling (Goodfellow et al.,
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Figure 1: The overall framework of GlobeDiff. During the execution phase, we first construct
auxiliary local observations x and then infer the global state ŝ using GlobeDiff. Agents make
decisions based on the inferred global state ŝ.

2014; Ho et al., 2020; Song et al., 2020). Instead of forcing a collapse to a single mode, a generative
approach can learn the entire conditional distribution of plausible global states. This allows an agent
to reason over the full spectrum of possibilities, a capability that is critical for robust decision-making
under uncertainty. By sampling from this learned distribution, our method can generate high-fidelity
hypotheses about the global state, directly confronting the multi-modality of the problem.

To realize this vision, we introduce the Global State Diffusion Algorithm (GlobeDiff), a novel
framework that operationalizes this generative insight using a conditional diffusion model. GlobeDiff
formulates global state inference as a denoising process, learning to reverse a diffusion process that
gradually corrupts the global state into noise. Conditioned on an agent’s local information (such as
its own observations or communicated messages (Kim et al., 2019; Jiang & Lu, 2018)), GlobeDiff
can generate a diverse and realistic set of potential global states. This approach not only provides a
more principled solution to the one-to-many mapping problem but also integrates seamlessly into
existing MARL frameworks like Centralized Training with Decentralized Execution (CTDE). Our
contributions are:

• We identify and frame the core challenge of partial observability as a one-to-many mapping
problem, highlighting the limitations of existing discriminative approaches.

• We propose GlobeDiff, the framework to leverage conditional diffusion models for generative
global state inference in MARL, offering a robust solution to mode collapse.

• We empirically demonstrate that GlobeDiff significantly outperforms state-of-the-art base-
lines on challenging multi-agent benchmarks, validating the power of the generative ap-
proach.

2 RELATED WORK

Partial Observability To solve the PO problem, particularly in Dec-POMDPs, existing research
can be divided into two categories: belief state estimation and explicit communication. First, to model
uncertainty in multi-agent systems, the concept of belief state has been introduced to estimate the state
of the environment or other agents (MacDermed & Isbell, 2013; Muglich et al., 2022; Varakantham
et al., 2006). For example, given the effectiveness in handling temporal sequences, RNNs are used to
integrate local observation histories over time, providing agents with long-term memory (Hausknecht
& Stone, 2015; Kapturowski et al., 2018; Wen et al., 2022). However, estimation errors accumulate
over time, leading to insufficient information in complex systems and hindering a comprehensive
understanding of the global state. In contrast to inferring or estimating the global belief state, inter-
agent communication has been introduced to directly acquire information from other agents and
expand the receptive field of individual agents (Das et al., 2019; Singh et al., 2018; Zhang et al., 2019;
Kim et al., 2019; Jiang & Lu, 2018). However, these approaches suffer from high communication
costs and complex protocol design.

Diffusion Model for RL Diffusion models leverage a denoising framework and effectively reverse
multi-step noise processes to generate new data (Ho et al., 2020; Song et al., 2020). These models

2



Published as a conference paper at ICLR 2026

𝑠True State

ℒ!"## = 𝔼[∥ 𝜖$ − 𝜖%(𝑠$, 𝑥, 𝑧, 𝑘) ∥&]

Sample 𝑧 ∼ 𝑝'(𝑧|𝑥)

Condition on (𝑥, 𝑧)

Forward 
Process

𝑠( 𝑠$

① Reconstruct Global State 𝒔 via Conditional Diffusion

𝑠)~𝑁(0; 𝐼)

𝑠̂Generate State

ℒ*+ = 𝐾𝐿(𝑞,(𝑧|𝑥, 𝑠) ∥ 𝑝'(𝑧|𝑥))

Posterior Net 𝑞, 𝑧

𝑞,(𝑧|𝑥, 𝑠) 𝑝'(𝑧|𝑥)

Prior Net 𝑝'

True State 𝒔

Noise 𝜖!

Reverse
Process

Forward 
Process

Noise 𝜖"#!

Reverse
Process

Auxiliary Local
Observation 𝑥

② Minimize Prior-Posterior KL Divergence

Auxiliary Local
Observation 𝑥

Figure 2: The training process of Globediff is divided into two parts: minimizing the difference
between the prior network pϕ and the posterior network qψ, and then training the diffusion model
based on the forward and backward process.

have increasingly been integrated into sequential decision-making tasks to improve performance
and sample efficiency, particularly in single-agent and offline reinforcement learning. For example,
diffusion models have been employed as planners, encoding dynamic environmental information and
generating multi-step optimal trajectories (Janner et al., 2022; Liang et al., 2023; He et al., 2023;
Ajay et al.; Chi et al., 2023). This integration helps mitigate compound errors in auto-regressive
sequence planning and facilitates better long-term decision-making. Additionally, diffusion models
have recently been applied to address the PO problem in multi-agent systems (Wang et al., 2024a).
However, they focuses on approximating belief distributions via shared attractors, but do not explicitly
model the intrinsic one-to-many mapping from local observations to the global state.

3 PRELIMINARIES

Dec-POMDPs We consider Dec-POMDP as a standard model consisting of a tuple G =<
S,A,P,R,U ,O, γ > for cooperative multi-agent tasks. Within G, s ∈ S denotes the global
state of the environment. Each agent i ∈ N := 1, ..., n chooses an action ai ∈ A at each time,
forming a joint action a ∈ An. The state transition function P(s′|s,a) : S ×An × S → [0, 1] gives
a transition to the environment. The reward function R(s,a) : S × An → R is shared among all
agents and γ ∈ [0, 1) is the discount factor.

In a partially observable scenario, each agent has individual observations o ∈ O according to the
observation function U(s, a) : S × A → O. Each agent makes decision based on a stochastic
policy πϑi(ai | oi) parameterized by ϑi: O ×A → [0, 1]. The joint value function can be defined
as Qπ

tot(st,at) = Est+1:∞,at+1:∞[
∑∞
i=0 γ

irt+i|st = s,at = a,π], where π is a joint policy with
parameters ϑ =< ϑ1, ..., ϑn >.

Generative Model for Global State Inference We aim to learn a mapping from the auxiliary local
observations x to the global state s based on the generative model pθ(s | x), where auxiliary local
observations x are composed of local observations o. Therefore, agents can make decisions based on
the global state s rather than the local observations o during execution by leveraging the generative
model pθ, thereby overcoming the limitations of partial observability. In this work, we consider two
scenarios for generating auxiliary states. First, if local observations o are information-rich, we can
infer the global state based on the individual agent’s historical trajectory, in which case the auxiliary
local observations xt is formulated as the integration of observations oit over the past m steps:

xt = {oit−m, oit−m+1, · · · , oit}, (1)

where oit denotes the local observation of agent i at time step t. On the other hand, if local observations
provide limited information, it becomes challenging to infer the global state based on the individual
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agent’s historical trajectory. In such scenarios, we enable communication between agents, and
consequently, the auxiliary local observation xt is constructed from their joint observations:

xt = {o1t , o2t , · · · , ont }. (2)

4 METHOD

Our methodological approach is designed to tackle the fundamental ambiguity of partial observability:
a single local observation x can correspond to many different, yet plausible, global states s. A
naive conditional generative model p(s|x) would struggle with this one-to-many mapping, likely
averaging over the possibilities and producing a blurry global state. To address this, we introduce
a key architectural choice: a latent variable z. The intuition is to use z as a mode selector. Instead
of asking the model to solve the ambiguous problem of generating s from x, we ask it to solve the
well-posed problem of generating s from both x and z. The latent variable z provides the specific
context needed to select one particular plausible global state from the distribution of possibilities.
This transforms the problem into learning a conditional diffusion model p(s|x, z).
This design, however, introduces a new challenge: how do we obtain a meaningful z during inference
when we only have the local observation x? We solve this by bridging the gap between training and
inference. During training, we have access to the ground-truth global state s, which allows us to train
an posterior network, q(z|x, s), that learns the ideal z required to reconstruct s from x. For inference,
we train a separate prior network, p(z|x), which predicts a useful z using only x. The following
sections will detail the mathematical formulation of this diffusion process.

4.1 GLOBAL STATE DIFFUSION PROCESS

4.1.1 TRAINING

Inspired by nonequilibrium thermodynamics (Sohl-Dickstein et al., 2015), we attempt to formulate
pθ(s | x) as a diffusion process. However, since the observation function U does not assume the
unique mapping between elements of the input set (S ×A) and output set O, different global states
may be mapped to the same local observation. Therefore, when inferring global states from local
observations, the ambiguity issue caused by the non-unique mapping significantly decreases the
accuracy of global state inference. To address this issue, we introduce a latent variable z that allows
the diffusion process to map single input x to multiple outputs s, that is modeling a one-to-many
conditional generative distribution pθ,ϕ(s | x):

pθ,ϕ(s | x) =
∫
pθ(s | x, z)pϕ(z | x)dz, (3)

where pϕ(z | x) is a conditional prior. Then, we introduce an approximate posterior qψ(z | x, s) and
derive the following equation based on Jensen’s inequality (Kingma & Welling, 2014):

log pθ,ϕ(s | x) = log

∫
pθ(s | x, z)pϕ(z | x)dz

= log

∫
qψ(z | x, s)

pθ(s | x, z)pϕ(z | x)
qψ(z | x, s)

dz

≥ Eqψ
[
log

pθ(s | x, z)pϕ(z | x)
qψ(z | x, s)

]
= Eqψ [log pθ(s | x, z)]− KL(qψ(z | x, s)∥pϕ(z | x)).

(4)

For pθ(s | x, z), in the forward process, we first sequentially introduce Gaussian noise ϵ to the global
state s according to the predefined variance:

q(sk | sk−1) = N (sk;
√
1− βksk−1, βkI), (5)

where k ∈ {0, ...,K} is the diffusion timestep, βk is the variance parameter, s0 is the original state
and sk is the state corrupted with k-step noise. For any sk, we compute it from the original state s0
without intermediate steps:

sk =
√
αks0 +

√
1− αkϵ(sk, k), (6)
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where ϵ(sk, k) ∼ N (0, I) is the k-th step noise of the forward process and αk = Πki=1α
i with

αk = 1− βk. Then, we represent the global state reference via the reverse process of the diffusion
model as

pθ(s | x, z) = pθ(s
0:K | x, z) = N (sK ;0, I)ΠKk=1pθ(s

k−1 | sk, x, z), (7)

where the end sample of the reverse chain s0 is the restored global state. Generally, pθ(sk−1 | sk, x, z)
could be modeled as a Gaussian distribution N (sk−1;µθ(s

k, x, z, k), σθ(s
k, x, z, k)). We follow Ho

et al. (2020) to parameterize pθ(sk−1 | sk, x, z) as a noise prediction model with the covariance
matrix fixed as σθ(sk, x, z, k) = βkI and mean constructed as

µθ(s
k, x, z, k) =

1√
αk

(
sk − βk√

1− αk
ϵθ(s

k, x, z, k)

)
. (8)

We first sample sK ∼ N (0, I) and then form the reverse diffusion chain parameterized by θ as

sk−1 | sk =
1√
αk

(
sk − βk√

1− αk
ϵθ(s

k, x, z, k)

)
+
√
βkϵ, ϵ ∼ N (0, I). (9)

Therefore, the global state diffusion process is trained by minimizing the following loss function:

L(θ, ϕ, ψ) = Ek∼U,ϵ∼N (0,I),(s,x)∼D,z∼qψ

[
∥ϵ− ϵθ

(√
αks+

√
1− αkϵ, x, z, k

)
∥2
]
+

βKLKL(qψ(z | x, s)∥pϕ(z | x)),
(10)

where U is a uniform distribution over the discrete set as {1, ...,K}, D denotes the datasets and βKL

is a hyperparameter. The overall training process of GlobeDiff is shown in Figure 2.

4.1.2 INFERENCE

In the inference phase, each agent first obtains the latent variable z via the encoder pϕ(z | x). Then,
each agent initializes sK ∼ N (0, I) and performs K iterative denoising sampling steps. Note that
sK is initialized as Gaussian noise, and s0 obtained after K denoising steps is the inferred global
state. Crucially, no global information is utilized throughout the inference process. Consistent with
the reverse process in Equation 9, the inference at the k-step is performed as follows:

sk−1 =
1√
αk

(
sk − βk√

1− αk
ϵθ(s

k, x, z, k)

)
+
√
βkϵ, (11)

where ϵ ∼ N (0, I) represents standard Gaussian noise. After K inference steps, s0 becomes the
inferred global state, where each agent makes decisions by ai = πϑi(· | s0).
The aforementioned global state diffusion process exhibits the following characteristics. First, the
diffusion process does not explicitly model the distribution of generated samples but implicitly learns
it through the denoising network ϵθ. Therefore, the marginal of the reverse diffusion chain provides an
expressive distribution that can capture complex distribution properties. Second, the proposed global
state diffusion process can model the non-unique mapping relationship between local observations
and the global state. Finally, the global state inference is conditioned on the auxiliary state, enabling
sampling those global states relevant to local observations.

4.2 THEORETICAL ANALYSIS

Let ŝ denote the global state generated from GlobeDiff. When the observation function U is injective,
the mapping between s and x is one-to-one. Assuming that the denoising network ϵθ and prior
network pϕ are well trained, we prove that the estimation error of GlobeDiff can be bounded:
Theorem 1 (Single-Sample Expectation Error Bound with Latent Variable). Assume the
trained model satisfies the following two assumptions. (1) Diffusion noise prediction MSE:
Esk,x,z,k[∥ϵθ(sk, x, z, k) − ϵ∥2] ≤ δ2, (2) Prior alignment: DKL(pϕ(z | x)∥p(z | x)) ≤ εKL.
Then, for any generated sample ŝ ∼ pθ,ϕ(s | x) =

∫
pθ(s | x, z)pϕ(z | x)dz and true sample

s ∼ p(s | x), the expected squared error is bounded by:

E
[
∥ŝ− s∥2

]
≤ 2W 2

2 (pθ,ϕ(s | x), p(s | x)) + 4Var(s | x), (12)
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where W2 is the 2-Wasserstein distance between pθ,ϕ(s | x) and p(s | x), Var(s | x) =
Ep(s|x)

[
∥s− µs|x∥2

]
is the conditional variance and µs|x = Ep(s|x)[s] is the conditional mean.

Proof. Please refer to Appendix B.1 for the detailed proof.

However, in practical scenarios, the mapping from x to s is typically one-to-many. We model this
situation using a multi-modal Gaussian distribution, as presented in Theorem 2, and we prove that
the error between the estimated state and the centers of the multi-modal distribution also admits a
bounded error.

Theorem 2 (Multi-Modal Error Bound with Latent Variable). Under the following conditions: (1) The
true conditional distribution p(s | x) =

∑N
i=1 wiN (s;µi(x),Σi(x)) has N modes with minimum

inter-mode distance D = mini̸=j ∥µi(x) − µj(x)∥ ≥ 2
√
d. (2) Mode separation condition: D >

4
√
C1Kδ2 + C2εKL +maxi Tr(Σi(x)) (3) The model satisfies E[∥ϵθ − ϵ∥2] ≤ δ2 and DKL(pϕ(z |

x)∥p(z | x)) ≤ εKL. Then, for any generated sample ŝ ∼ pθ,ϕ(s | x), there exists a mode µj(x) such
that:

E
[
∥ŝ− µj(x)∥2

]
≤ C1Kδ

2 + C2εKL + 2max
i

Tr(Σi(x)) +O
(
e−D

2/(8σ2
max)
)
, (13)

where σ2
max = maxi Tr(Σi(x)), and C1, C2 are constants depending on the diffusion scheduler and

latent space geometry.

Proof. Please refer to Appendix B.3 for the detailed proof.

In essence, Theorem 1 offers a universal error bound, while Theorem 2 provides a stronger, more
specialized guarantee for the multi-modal settings our method is designed for. These results provides
strong theoretical support for our approach. Consistent with our theoretical findings, the empirical
results depicted in Figure 5 quantitatively verify the high fidelity of our method in state reconstruction.

4.3 PRACTICAL IMPLEMENTATION

Architecture We adopt a model consisting of repeated convolutional residual blocks to implement
the global state diffusion process. The overall architecture resembles the types of U-Nets (Ronneberger
et al., 2015), but with two-dimensional spatial convolutions replaced by one-dimensional temporal
convolutions. Because the model is fully convolutional, the horizon of the inference is determined
not by the model architecture but by the input dimensionality. This model can change dynamically
during inference if desired.

Training Mechanism In the practical implementation, we first train an initial global state diffusion
model based on an offline dataset. Subsequently, during online execution, we continuously update
the global state diffusion model with the collected data to compensate for the distribution mismatch
between offline and online settings. This approach ensures that the global state diffusion model plays
a role from the early stages of algorithm training, reducing the instability of MARL algorithms caused
by the generative model. In addition, during integration with the CTDE mechanism, we employ the
true global state in the policy training phase to reduce computational cost. During the decentralized
execution phase, each agent makes decisions based on the inferred global state. The overall process
is shown in Algorithm 1.

5 EXPERIMENTS

We designed our experiments to answer the following questions: Q1: Can our method accurately
infer the global state from the local observations? Q2: Can the global states generated by our method
improve the performance of the MARL algorithm? Q3: Does our method outperform other generative
models?
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Figure 3: Comparison results with global state inference baselines in SMAC-v1 (PO) tasks with win
rate over three random seeds.
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Figure 4: Comparison results with global state inference baselines in SMAC-v2 (PO) tasks with win
rate over three random seeds.

5.1 SETUP

To answer these questions, we evaluate our method and baselines on SMAC, which is a cooperative
MARL environment based on the real-time strategy game StarCraft II (Rashid et al., 2020). It includes
various unique scenarios where agents can obtain local observations within a certain visual radius.
The objective across all scenarios is to command allied units to eliminate enemy units. In addition,
SMAC-v2 (Ellis et al.) further reduces the correlation between the local observation and the global
state by adding random team compositions and random start positions.

zerg 5v5 zerg 10v10
Scene
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Figure 8: Win rate with various sight
range in original SMAC tasks.

Benchmark for Partial Observability Nevertheless, we
are surprised to find that the original SMAC environment is
not well-suited for studying partial observability problems.
Specifically, we adjust the sight range of each agent from
9 to 3 in SMAC-v2 and run the standard MARL algorithm
MAPPO. As shown in the Figure 8, the MAPPO’s perfor-
mance exhibits only a marginal decline (merely 0.03 drop)
as the observation range narrows. This is because the lo-
cal observations retain sufficient environmental information.
Therefore, we modify the SMAC environment by removing
enemy unit types and hit points from local observations to
better evaluate partial observability issues, with this adapted
environment named as SMAC-v1 (PO) and SMAC-v2 (PO).
To ensure fair comparison, all experiments are conducted under identical environmental settings, with
three random seeds employed per experiment.

Baselines We compare our approach with three representative baselines. Learned Belief Search
(LBS) (Hu et al., 2021) learns an auto-regressive counterfactual belief model to approximate hidden
information given the trajectory of an agent and uses a public-private policy architecture with RNNs to
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Figure 5: Visualization of global states generated by GlobeDiff, VAE and MLP. The first plot
displays true states and subsequent plots show inferred states per agent. White points denote individual
states with polygons highlighting local neighborhoods. Gradient shading (light green to purple)
indicates training progression. The similarity between the polygon structures of the inferred and true
states reflects the predicted quality.
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Figure 6: Comparison results with generative model baselines in SMAC-v1 (PO) tasks with win rate
over three random seeds.

encode action-observation histories. Dynamic belief (Zhai et al., 2023) predicts the evolving policies
of other agents from recent action-observation histories using a variational inference framework.
CommFormer (Hu et al., 2024) learns a dynamic communication graph via continuous relaxation and
attention-based message passing, jointly optimizing the graph and policy parameters. In the practical
implementation, we combine our method and baselines with the standard MARL algorithm MAPPO.
Please refer to Appendix D for the detailed implementation setting.

5.2 MAIN RESULTS

Answer for Question 1: To intuitively demonstrate the GlobeDiff’s ability to infer the global state,
we visualize both the true global states and the states reconstructed by GlobeDiff in the SMAC-V2
(PO) Zerg 5v5 scenario. For trajectories sampled during online training, we apply t-SNE (Maaten &
Hinton, 2008) to project their high-dimensional states into a two-dimensional space. In Figure 5, the
first plot shows the ground-truth states, while the subsequent plots depict the global states inferred
by each agent. Each white point represents a specific state. To facilitate a visual comparison of
the underlying structure, we overlay Voronoi polygons (Balzer et al., 2005). Each polygon defines
the region of space closest to a single state point, effectively highlighting the local neighborhood.
This allows for an intuitive assessment of accuracy: the more the polygon shapes in an inferred plot
resemble those in the ground-truth plot, the better the state representation. The background is shaded
with a gradient from light green to deep purple, where darker regions indicate episodes that occurred
later in the online training process.
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Figure 7: Comparison results with generative model baselines in SMAC-v2 (PO) tasks with win rate
over three random seeds.

The similarity between the Voronoi polygon structures of the inferred and true states reflects the
reconstruction quality. As shown in the Figure 5, the inferred states closely match the real states,
indicating that GlobeDiff effectively enables agents to infer the global state from local information.
Moreover, as training progresses (i.e., as the background color deepens), the inferred polygons
become increasingly similar to the true ones, demonstrating steady improvement in reconstruction
performance.

Answer for Question 2: We conduct experiments on SMAC-v1 (PO) and SMAC-v2 (PO) respec-
tively. Specifically, for SMAC-v1 (PO), we derive auxiliary information based on the individual
agent’s historical trajectory, as detailed in Equation 1. For SMAC-v2 (PO), we leverage the communi-
cation between agents to construct auxiliary information, as outlined in Equation 2. The experimental
results in Figure 3 and Figure 4 show that GlobeDiff consistently and significantly outperforms
baseline algorithms in most maps. This performance gap can be attributed to the constrained capacity
of baseline algorithms in modeling complex multi-modal distributions. For example, LBS tends to
gradually accumulate errors when inferring belief states in long-horizon tasks. The inference process
of Dynamic Belief remains unimodal, restricting its ability to capture the multi-modal global state
distributions. CommFormer requires explicit communication and accurate message aggregation,
which can be unreliable under severe partial observability. In contrast, GlobeDiff formulates the
state inference process as a multi-model denoising procedure, implicitly modeling complex distri-
butions within the noise network. This offers a highly expressive model that enhances algorithmic
performance through accurate global state inference.
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Figure 9: Ablation of prior network.

Answer for Question 3: Same with the scenario de-
scribed in Answer for Question 2, we conduct experiments
on SMAC-v1 (PO) and SMAC-v2 (PO) respectively. We
employ VAE (Kingma & Welling, 2014) and MLP as com-
parative baselines for generative models. Specifically, we
replace the GlobeDiff with the conditional VAE or an MLP,
while keeping everything else unchanged, and name them
respectively as MAPPO (VAE) and MAPPO (MLP). Fur-
thermore, in the SMAC-v2 (PO) scenario, where agents can
obtain information from adjacent agents, we incorporate the
agents’ joint observations as policy input. This approach is
named as MAPPO (Joint) and serves as an additional base-
line to evaluate the role of generative models in state inference. Please refer to Appendix D for
detailed description.
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Figure 10: Ablation study for diffusion step and residual blocks on the zerg 5v5 task.

The experimental results in Figure 6 and Figure 7 show that GlobeDiff outperforms all baselines on
the super-hard maps. The MLP and VAE show no significant performance improvement over vanilla
MAPPO in most maps, which is attributed to their limited representation capacity. Moreover, in
SMAC-v2 (PO), MAPPO (Joint) performs worse than vanilla MAPPO in some maps. This shows
the necessity of the global state inference model, which can extract essential features from such
high-dimensional inputs.

Ablation Study for prior network We conduct the ablation study for the prior network pϕ by
removing the KL constraint in Equation 9 and prior network pϕ in training process, which is named
GlobeDiff w/o p. We conduct experiments on the various maps. The experimental results in
the Figure 9 indicate that the performance of GlobeDiff can be effectively enhanced by introducing
the prior network.

Ablation Study for Hyper-parameters To study the robustness of GlobeDiff across different
hyper-parameters, we conduct the following ablation studies. Specifically, we change the diffusion
step K from 1 to 8. The experimental results in the left part of Figure 10 show that the state inference
is more accurate with the longer denoising steps. In addition, we conduct ablation studies for the
model parameters of the U-Net with various residual blocks. The experimental results in the right
right of Figure 10 show that the model’s capacity has a relatively minor impact on the algorithm’s
performance. We only need a small model to achieve accurate global state inference.

6 CONCLUSION

In this paper, we study the partial observability problem in multi-agent systems. We first propose a
generative model-based global state inference framework under two scenarios. Then, we propose
the Global State Diffusion Algorithm (GlobeDiff), which formulates the state inference process as a
multi-modal diffusion process. The theoretical analysis shows that the estimation error of GlobeDiff
can be bounded. Extensive experiments demonstrate that GlobeDiff can not only accurately infer
the global state, significantly enhance the algorithm’s performance, and be easily integrated with
current MARL algorithms. In the future, we will apply our algorithm to real-world tasks to address
the challenges of partial observability in real environments.

REPRODUCIBILITY STATEMENT

We have provided the source code in the supplementary materials, which will be made public after the
paper is accepted. We have provided theoretical analysis in the Appendix B. We have also provided
implementation details in the Appendix D.
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A ALGORITHM

Algorithm 1 Global State Diffusion Process

1: Initialize the parameters of MARL algorithm and the diffusion model
2: Add offline data to online buffer D
3: for each episode do
4: for t← 1 to T do
5: Obtain local observation ot
6: Construct auxiliary state xt
7: Calculate the encoded latent variables z based on pϕ(z | xt)
8: Infer the global state s0t based on the Eq. 11
9: Each agent makes decision based on the inferred state s0t

10: Send at to environment and receive ot+1, st+1, rt
11: Store transitions in replay buffer D
12: end for
13: Update MARL algorithm
14: if Update Global State Diffusion Model then
15: Update global state diffusion model based on the Eq. 9
16: end if
17: end for
18: end

14
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B THEORETICAL ANALYSIS

B.1 ERROR BOUND ANALYSIS FOR SINGLE SAMPLES WITH LATENT VARIABLE

Theorem. 1 (Single-Sample Expectation Error Bound with Latent Variable) Assume the
trained model satisfies the following two assumptions. (1) Diffusion noise prediction MSE:
Esk,x,z,k[∥ϵθ(sk, x, z, k) − ϵ∥2] ≤ δ2, (2) Prior alignment: DKL(pϕ(z | x)∥p(z | x)) ≤ εKL.
Then, for any generated sample ŝ ∼ pθ,ϕ(s | x) =

∫
pθ(s | x, z)pϕ(z | x)dz and true sample

s ∼ p(s | x), the expected squared error is bounded by:

E
[
∥ŝ− s∥2

]
≤ 2W 2

2 (pθ,ϕ(s | x), p(s | x)) + 4Var(s | x), (14)

where W2 is the 2-Wasserstein distance between pθ,ϕ(s | x) and p(s | x), Var(s | x) =
Ep(s|x)

[
∥s− µs|x∥2

]
is the conditional variance and µs|x = Ep(s|x)[s] is the conditional mean.

Proof. Step 1: Error Decomposition via Variance-Bias Tradeoff
Let µs|x = Ep(s|x)[s]. For any ŝ and s, we expand:

∥ŝ− s∥2 = ∥(ŝ− µs|x)− (s− µs|x)∥2. (15)

By the triangle inequality and Young’s inequality:

∥ŝ− s∥2 ≤ 2∥ŝ− µs|x∥2 + 2∥s− µs|x∥2. (16)

Taking expectation:

E
[
∥ŝ− s∥2

]
≤ 2E

[
∥ŝ− µs|x∥2

]
+ 2E

[
∥s− µs|x∥2

]
. (17)

Step 2: Bounding the First Term via Wasserstein Distance
The first term represents the deviation of the generated sample from the true conditional mean. By
properties of the Wasserstein distance:

Epθ,ϕ(s|x)
[
∥ŝ− µs|x∥2

]
≤W 2

2 (pθ,ϕ(s | x), δµs|x) ≤W
2
2 (pθ,ϕ(s | x), p(s | x))+W 2

2 (p(s | x), δµs|x),
(18)

where δµs|x is the Dirac delta at µs|x. The second term equals Var(s | x), giving:

E
[
∥ŝ− µs|x∥2

]
≤W 2

2 (pθ,ϕ(s | x), p(s | x)) + Var(s | x). (19)

Step 3: Bounding the Second Term
The second term is exactly the conditional variance:

E
[
∥s− µs|x∥2

]
= Var(s | x). (20)

Step 4: Final Synthesis
Combining all results:

E
[
∥ŝ− s∥2

]
≤ 2

(
W 2

2 (pθ,ϕ(s | x), p(s | x)) + Var(s | x)
)
+ 2Var(s | x) (21)

= 2W 2
2 (pθ,ϕ(s | x), p(s | x)) + 4Var(s | x). (22)

which completes the proof.

B.2 CONNECTING TRAINING LOSS TO WASSERSTEIN BOUND WITH LATENT VARIABLE

Lemma 1. Let the following hold. (1) Noise prediction MSE: Esk,x,z,k[∥ϵθ(sk, x, z, k)− ϵ∥2] ≤ δ2,
(2) KL divergence: DKL(pϕ(z | x)∥p(z | x)) ≤ εKL. Then the Wasserstein-2 distance between
pθ,ϕ(s | x) and p(s | x) is bounded by:

W 2
2 (pθ,ϕ(s | x), p(s | x)) ≤ C1Kδ

2 + C2εKL, (23)

where C1 = maxk

(
1−αk√
αk(1−ᾱk)

)2∏K
i=k+1(α

i)−1, C2 is a constant depending on the latent space

dimension and geometry, and K is the total number of diffusion steps.
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Proof. Step 1: Single-Step Error Propagation for Diffusion
The reverse process update at step k conditioned on z is:

sk−1 =
1√
αk
sk − 1− αk√

αk(1− ᾱk)
ϵθ(s

k, x, z, k) +
√
βkϵ. (24)

The deviation caused by noise prediction error ∆ϵk = ϵθ − ϵ satisfies:

∆sk−1 =
1− αk√
αk(1− ᾱk)

∆ϵk +
1√
αk

∆sk. (25)

Step 2: Error Accumulation Over K Steps
Unrolling the error through all K steps:

∆s0 =

K∑
k=1

(
K∏

i=k+1

1√
αi

)
1− αk√
αk(1− ᾱk)

∆ϵk. (26)

Taking the expectation of the squared norm:

E[∥∆s0∥2] = E

∥∥∥∥∥
K∑
k=1

Ak∆ϵk

∥∥∥∥∥
2
 , (27)

where Ak =
(∏K

i=k+1
1√
αi

)
1−αk√
αk(1−ᾱk)

.

Expanding the square:

E[∥∆s0∥2] =
K∑
k=1

∥Ak∥2E[∥∆ϵk∥2] + 2
∑

1≤k<l≤K

E[⟨Ak∆ϵk, Al∆ϵl⟩]. (28)

Assuming the noise prediction errors at different steps are uncorrelated, the cross terms vanish:

E[∥∆s0∥2] =
K∑
k=1

∥Ak∥2E[∥∆ϵk∥2] ≤ δ2
K∑
k=1

∥Ak∥2. (29)

Now, we need to bound
∑K
k=1 ∥Ak∥2. Let:

∥Ak∥2 =

(
K∏

i=k+1

1

αi

)(
1− αk√
αk(1− ᾱk)

)2

. (30)

Let C1 = maxk

(∏K
i=k+1

1
αi

)(
1−αk√
αk(1−ᾱk)

)2

. Then:

K∑
k=1

∥Ak∥2 ≤ C1K, (31)

Thus:
E[∥∆s0∥2] ≤ C1Kδ

2. (32)

Step 3: Incorporating KL Divergence Error
The KL divergence bound εKL ensures that the prior pϕ(z | x) is close to the true posterior p(z | x).
By the data processing inequality for Wasserstein distance:

W 2
2

(∫
pθ(s | x, z)pϕ(z | x)dz,

∫
p(s | x, z)p(z | x)dz

)
≤ C2W

2
2 (pϕ(z | x), p(z | x)), (33)

16



Published as a conference paper at ICLR 2026

where C2 depends on the Lipschitz constant of the mapping z 7→ p(s | x, z). The constant
C2 depends on the latent space dimension for the following reasons. (1) Dimension Scaling of
Wasserstein Distance: For distributions in Rdz , the Wasserstein distance typically scales with

√
dz

due to concentration of measure phenomena. This is known as the "curse of dimensionality" in
optimal transport. (2) Talagrand’s Inequality: If p(z | x) is log-concave (e.g., Gaussian), then
Talagrand’s inequality gives:

W 2
2 (pϕ(z | x), p(z | x)) ≤ 2CTIDKL(pϕ(z | x)∥p(z | x)), (34)

where CTI is the Poincaré constant of p(z | x). For isotropic Gaussians in Rdz , this constant scales as
O(dz). (3) Lipschitz Constant: The mapping z 7→ p(s | x, z) typically has a Lipschitz constant that
grows with the dimension dz due to the increased complexity of the conditional distribution. Thus,
we can write:

W 2
2 (pϕ(z | x), p(z | x)) ≤ C ′

2dzεKL, (35)

where C ′
2 is a dimension-independent constant.

Step 4: Combined Bound
Combining both error sources using the triangle inequality for Wasserstein distance:

W 2
2 (pθ,ϕ(s | x), p(s | x)) ≤ 2W 2

2 (pθ,ϕ(s | x), p(s | x, z)p(z | x)) + 2W 2
2 (p(s | x, z)p(z | x), p(s | x))

(36)

≤ 2C1Kδ
2 + 2C ′

2dzεKL. (37)

Absorbing constants into C1 and C ′
2. Denote C ′

2 as C2, and noting that C ′
2 depends on dz , we obtain

the final bound:
W 2

2 (pθ,ϕ(s | x), p(s | x)) ≤ C1Kδ
2 + C2εKL. (38)

B.3 ONE-TO-MANY MAPPING CASE WITH LATENT VARIABLE

Theorem. 2 (Multi-Modal Error Bound with Latent Variable) Under the following conditions: (1) The
true conditional distribution p(s | x) =

∑N
i=1 wiN (s;µi(x),Σi(x)) has N modes with minimum

inter-mode distance D = mini̸=j ∥µi(x) − µj(x)∥ ≥ 2
√
d. (2) Mode separation condition: D >

4
√
C1Kδ2 + C2εKL +maxi Tr(Σi(x)) (3) The model satisfies E[∥ϵθ − ϵ∥2] ≤ δ2 and DKL(pϕ(z |

x)∥p(z | x)) ≤ εKL. Then, for any generated sample ŝ ∼ pθ,ϕ(s | x), there exists a mode µj(x) such
that:

E
[
∥ŝ− µj(x)∥2

]
≤ C1Kδ

2 + C2εKL + 2max
i

Tr(Σi(x)) +O
(
e−D

2/(8σ2
max)
)
, (39)

where σ2
max = maxi Tr(Σi(x)), and C1, C2 are constants depending on the diffusion scheduler and

latent space geometry.

Proof. Step 1: Voronoi Partitioning and Projection Operator
The state space Rd is partitioned into N Voronoi regions {Vi}Ni=1 centered at the mode centers
{µi(x)}. Define the projection operator:

ϕ(s) =

N∑
i=1

µi(x) · 1{s∈Vi}, (40)

which maps any point s to the center of its containing Voronoi region.

Step 2: Conditional Distribution Definitions
For each Voronoi region Vi, define the conditional distributions:

• True state conditional distribution: pi(s) = p(s | x, s ∈ Vi)

• Generated state conditional distribution: qi(ŝ) = pθ,ϕ(ŝ | x, ŝ ∈ Vi)

17
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Under the mode separation condition, the true state conditional distribution pi(s) approximates
unimodel Gaussian distribution N (µi(x),Σi(x)) with exponentially small error:

W 2
2 (pi(s),N (µi(x),Σi(x))) ≤ O

(
e−D

2/(8σ2
max)
)
. (41)

Step 3: Per-Region Projection Error Bound
For each Voronoi region Vi, consider the conditional expectation of the projection error:

E[∥ŝ− ϕ(ŝ)∥2 | ŝ ∈ Vi] = E[∥ŝ− µi(x)∥2 | ŝ ∈ Vi]. (42)

Using the triangle inequality for Wasserstein distance:

E[∥ŝ− µi(x)∥2 | ŝ ∈ Vi] =W 2
2 (qi, δµi(x)) (43)

≤
(
W2(qi, pi) +W2(pi, δµi(x))

)2
(44)

≤ 2W 2
2 (qi, pi) + 2W 2

2 (pi, δµi(x)), (45)

where δµi(x) is the Dirac delta distribution at µi(x). For the first term, according to Llama1, we have:

W 2
2 (qi, pi) ≤

W 2
2 (pθ,ϕ(s | x), p(s | x))

P (ŝ ∈ Vi)
+O

(
e−D

2/(8σ2
max)
)
≤ C1Kδ

2 + C2εKL

P (ŝ ∈ Vi)
+O

(
e−D

2/(8σ2
max)
)
.

(46)
And for the second term, we have:

W 2
2 (pi, δµi(x)) = Epi [∥s−µi(x)∥2] ≤ Tr(Σi(x))+O

(
e−D

2/(8σ2
max)
)
≤ σ2

max+O
(
e−D

2/(8σ2
max)
)
.

(47)

Step 5: Aggregation Over All Regions
Compute the global expectation:

E[∥ŝ− ϕ(ŝ)∥2] =
N∑
i=1

P (ŝ ∈ Vi) · E[∥ŝ− ϕ(ŝ)∥2 | ŝ ∈ Vi] (48)

≤
N∑
i=1

P (ŝ ∈ Vi)
[
2

(
C1Kδ

2 + C2εKL

P (ŝ ∈ Vi)
+O

(
e−D

2/(8σ2
max)
))

+ 2
(
σ2

max +O
(
e−D

2/(8σ2
max)
))]

(49)

=

N∑
i=1

[
2(C1Kδ

2 + C2εKL) + 2P (ŝ ∈ Vi)σ2
max +O

(
e−D

2/(8σ2
max)
)]

(50)

= 2N(C1Kδ
2 + C2εKL) + 2max

i
Tr(Σi(x)) +O

(
e−D

2/(8σ2
max)
)
. (51)

Redefining constants C ′
1 = 2NC1 and C ′

2 = 2NC2, and absorbing factors:

E[∥ŝ− ϕ(ŝ)∥2] ≤ C1Kδ
2 + C2εKL + 2max

i
Tr(Σi(x)) +O

(
e−D

2/(8σ2
max)
)
. (52)

When D ≫ σmax, the exponential term becomes negligible.
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C ADDITIONAL EXPERIMENTS

C.1 QUANTIFYING THE DIVERSITY

We conducted additional experiments to illustrate the semantic representation learned by z. Specifi-
cally, in the SMAC-v2 Zerg 5v5 environment, we collected observational data across all timesteps
and identified both the true global states and the global states generated by GlobeDiff. These state
samples were then projected into a two-dimensional plane using t-SNE for visualization, and a 3D
density surface was estimated using Kernel Density Estimation (KDE). The experimental results in
Figure 11 show that the resulting 3D plots illustrate the normalized probability density (z-axis) over
the 2D t-SNE embedding (x- and y-axis).

In the leftmost subplot, we observe that the same observational input often corresponds to multiple
real global state clusters at distinct locations in the 2D plane, forming several prominent Gaussian
modes. The latent variable z can thus be interpreted as a positional encoding for the coordinates of
these Gaussian modes in the embedded space. The three subplots on the right display the global states
generated by three selected agents, which faithfully reconstruct the multi-modal characteristics of
the true state distribution. Notably, the location, shape, and amplitude of the reconstructed Gaussian
modes closely resemble those of the real state distribution, empirically demonstrating z’s role in
capturing semantic variations.
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Figure 11: Experiments of the qualitative analysis.

C.2 EXPERIMENTS UNDER SAME PARAMETER COUNT

We conducted a new experiment where we increased the parameter count of the vanilla MAPPO
networks to match the total number of parameters in GlobeDiff (which includes both the diffusion
model and the RL policy). We calculated the total parameters in GlobeDiff to be approximately
12–14M. Accordingly, we expanded both the MAPPO actor and critic networks to four-layer MLPs
with 2048 hidden units per layer, creating a "Vanilla MAPPO (Large)" baseline with a comparable
parameter budget (approx. 13.5–14M parameters).

The experimental results in Table 1 show that despite this significant increase in capacity, the
performance gain of Vanilla MAPPO (Large) remains limited. These results suggest that merely
increasing the capacity of a standard recurrent policy is insufficient for it to implicitly learn the
complex task of multi-modal global state reconstruction, highlighting the necessity of an explicit
generative module like GlobeDiff.
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Vanilla MAPPO Vanilla MAPPO (Large) GlobeDiff

zerg 5v5 0.22±0.01 0.23±0.00 0.33±0.02
protoss 5v5 0.21±0.02 0.24±0.01 0.38±0.01
terran 5v5 0.16±0.01 0.17±0.00 0.24±0.01
zerg 10v10 0.13±0.01 0.15±0.01 0.25±0.01
zerg 10v11 0.06±0.01 0.07±0.01 0.12±0.01

terran 10v11 0.02±0.00 0.03±0.00 0.07±0.01
MMM2 0.27±0.08 0.01±0.01 0.49±0.11

3s5z vs 3s6z 0.20±0.01 0.01±0.01 0.28±0.04
6h vs 8z 0.12±0.01 0.01±0.00 0.47±0.04

Table 1: Comparison results between Vanilla MAPPO, Vanilla MAPPO (Large), and GlobeDiff
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D IMPLEMENTATION DETAILS

In practical implementation, to mitigate the data bias in the offline dataset and ensure the effective
state inference, we update the GlobeDiff during online learning with an update interval of 50 episodes.
Under the CTDE framework, we select the historical observation length m = 3. Please refer to
Table 2, Tables 3 and 4 for the detailed hyper-parameters.

The architecture of the Diffusion model consists of a U-Net structure with two repeated residual
blocks, as shown in Figure 12. Each block consisted of two temporal convolutions, followed by group
norm (Wu & He, 2018), and a final Mish nonlinearity (Misra, 2019). The U-Maze dim refers to the
multiplicative factor that reduces the output dimension relative to the input dimension during the
down-sampling process.
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Figure 12: U-Net architecture in Diffusion model.

Table 2: Hyper-parameters for MAPPO.

Hyper-parameters Value Hyper-parameters Value Hyper-parameters Value

Critic Learning Rate 5e-4 Actor Learning Rate 5e-4 Use GAE True
Gain 0.01 Optim 1e-5 Batch Size 64
Training Threads 4 Num Mini-Batch 1 Rollout Threads 8
Entropy Coef 0.01 Max Grad Norm 10 Episode Length 400
Optimizer Adam Hidden Layer Dim 64 GAE λ 0.95
Activation Function Relu PPO Epoch 15 γ 0.99

Table 3: Hyper-parameters for prior network pϕ and posterior network qψ .

Prior Network pϕ Value Posterior Network qψ Value

z dim 16 z dim 16
Hidden Layer Dim 1024 Hidden Layer Dim 1024
Hidden Layer Num 3 Hidden Layer Num 3
Activation Function Relu Activation Function Relu
Learning Rate 2e-4 Learning Rate 2e-4
Weight Decay 1e-4 Weight Decay 1e-4
Batch Size 32 Batch Size 32
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Table 4: Hyper-parameters for Generative methods.

GlobeDiff Value VAE Value MLP Value

Down-sampling Factor 8 Latent Dim 256 Hidden Layer Dim 1024
Diffusion Steps 5 Hidden Layer Dim 1024 Hidden Layer Num 4
Residual Blocks 2 Activation Function Relu Activation Function Relu
Learning Rate 2e-4 Learning Rate 1e-4 Learning Rate 3e-4
Batch Size 32 Batch Size 32 Batch Size 32
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