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ABSTRACT

We present a framework for pre-training of 3D hand pose estimation from in-
the-wild hand images sharing with similar hand characteristics, dubbed SiM-
Hand. Pre-training with large-scale images achieves promising results in vari-
ous tasks, but prior methods for 3D hand pose pre-training have not fully uti-
lized the potential of diverse hand images accessible from in-the-wild videos.
To facilitate scalable pre-training, we first prepare an extensive pool of hand im-
ages from in-the-wild videos and design our pre-training method with contrastive
learning. Specifically, we collect over 2.0M hand images from recent human-
centric videos, such as 100DOH and Ego4D. To extract discriminative informa-
tion from these images, we focus on the similarity of hands: pairs of non-identical
samples with similar hand poses. We then propose a novel contrastive learning
method that embeds similar hand pairs closer in the feature space. Our method
not only learns from similar samples but also adaptively weights the contrastive
learning loss based on inter-sample distance, leading to additional performance
gains. Our experiments demonstrate that our method outperforms conventional
contrastive learning approaches that produce positive pairs solely from a single
image with data augmentation. We achieve significant improvements over the
state-of-the-art method (PeCLR) in various datasets, with gains of 15% on Frei-
Hand, 10% on DexYCB, and 4% on AssemblyHands. Our code is available at
https://github.com/ut-vision/SiMHand.

1 INTRODUCTION

Hands serve as a trigger for us to interact with the world, as seen in various human-centric videos.
The precise tracking of hand states, such as 3D keypoints, is crucial for video understanding (Sener
et al., 2022; Wen et al., 2023), AR/VR interfaces (Han et al., 2022; Wu et al., 2020), and robot
learning (Chao et al., 2021; Qin et al., 2022). To this end, 3D hand pose estimation has been studied
through constructing labeled datasets (Ohkawa et al., 2023a; Zimmermann et al., 2019; Chao et al.,
2021; Ohkawa et al., 2023b) and advancing supervised pose estimators (Cai et al., 2018; Ge et al.,
2019; Park et al., 2022; Liu et al., 2024; Fan et al., 2024). However, utilizing large-scale, unannotated
hand videos for pre-training remains underexplored, while collections of human-centric videos, like
3,670 hours of videos from Ego4D (Grauman et al., 2022) and 131-day videos from 100DOH (Shan
et al., 2020), are readily available.

In pre-training, contrastive learning has been utilized to learn from unlabeled images like Sim-
CLR (Chen et al., 2020), which maximizes agreement between positive pairs while repelling neg-
atives. Spurr et al. (Spurr et al., 2021) introduce pose equivariant contrastive learning (PeCLR)
for 3D hand pose estimation, which aligns the geometry of features encoded from augmented im-
ages with affine transformations. However, both SimCLR and PeCLR create positive pairs from a
single sample by applying data augmentation, limiting the gains from positive pairs as their hand
appearance and backgrounds are identical. Ziani et al. (Ziani et al., 2022) extend the contrastive
learning framework to video sequences by treating temporally adjacent hand crops as positive pairs.
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Figure 1: The pipeline of pre-training and fine-tuning. (Left) Previous pre-training methods (e.g.,
PeCLR (Spurr et al., 2021)) learn from positive pairs originating from the different augmentations
and fine-tune the network on a dataset. (Right) Our method is designed to learn from positive pairs
with similar foreground hands, sampled from a pool of hand images in the wild.

However, in-the-wild videos can challenge tracking hands across frames, especially in egocentric
views where hands are often unobservable due to camera motion. Meanwhile, this temporal positive
sample mining remains the limited appearance variation of hands and backgrounds.

In this work, we introduce SiMHand, a novel contrastive learning framework for 3D hand pose
pre-training, which leverages diverse hand images in the wild, with the largest 3D hand pose pre-
training set to date. We specifically collect 2.0M hand images from human-centric videos, from
Ego4D (Grauman et al., 2022) and 100DOH (Shan et al., 2020), using an off-the-shelf hand de-
tector (Shan et al., 2020). Our pre-training set significantly exceeds the scale of prior works by
two orders of magnitude, such as over 32-47K images in (Spurr et al., 2021) and 86K images from
100DOH in (Ziani et al., 2022).

Our method focuses on learning discriminative information by mining hands with similar charac-
teristics from various video domains. Based on our observations, contrastive learning can further
benefit from discriminating the foreground of hands in varying backgrounds. As shown in Fig. 1,
our positive pairs are sourced from different images, offering additional information gains from
different types of object interactions, backgrounds, and hand appearances. Specifically, we use an
off-the-shelf 2D hand pose estimator (Lugaresi et al., 2019) to identify similar hands from the pre-
training set.

Using the identified similar hands as positive pairs, we further propose adaptive weighting, to dy-
namically find informative pairs during training. A naive adaptation of the similar hands is to replace
the original positive pairs in contrastive learning, but this scheme struggles to exploit how similar
the paired hands are. To tackle this, we assign weights based on the similarity scores within the
mini-batch in the contrastive learning loss. The weights are designed to have higher values as the
similarity of the pairs increases. This allows the optimization of contrastive learning to explicitly
consider the proximity of samples, beyond binary discrimination between positives and negatives.

We validate the effectiveness of the pre-trained networks by fine-tuning on several datasets for 3D
hand pose estimation, namely FreiHand (Zimmermann et al., 2019), DexYCB (Chao et al., 2021),
and AssemblyHands (Ohkawa et al., 2023b). Our proposed method consistently outperforms con-
ventional contrastive learning methods, SimCLR and PeCLR. Additionally, we conduct extensive
ablation experiments to analyze: 1) performance with varying pre-training and fine-tuning data sizes,
2) the effect of adaptive weighting, and 3) the improvement with different levels of similarity.

In summary, the main contribution of this paper is threefold:

• We propose SiMHand, a contrastive learning method for 3D hand pose pre-training, lever-
aging positive samples with similar hands mined from 2.0M in-the-wild hand images.

• We introduce a parameter-free adaptive weighting mechanism in the contrastive learning
loss, enabling optimization guidance according to the calculated similarity.

• Our experiments demonstrate that our approach surpasses prior pre-training methods and
achieves robust performances across different hand pose datasets.
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2 RELATED WORK

3D hand pose estimation: The task of 3D hand pose estimation aims to regress 3D hand joints.
Since annotating 3D hand poses is challenging, only limited labeled datasets are available (Ohkawa
et al., 2023a), and most of which are constructed in controlled laboratory settings (Zimmermann
et al., 2019; Chao et al., 2021; Moon et al., 2020; Ohkawa et al., 2023b). Given this challenge, two
approaches have been proposed to facilitate learning from limited annotations: pseudo-labeling and
self-supervised pre-training. Pseudo-labeling methods learn from pseudo-ground-truth assigned on
unlabeled images (Chen et al., 2021c; Zheng et al., 2023; Liu et al., 2021; Yang et al., 2021; Ohkawa
et al., 2022; Liu et al., 2024). For example, S2Hand (Chen et al., 2021c) attempts to learn 3D pose
only from noisy 2D keypoints on a single-view image, while HaMuCo (Zheng et al., 2023) extends
such self-supervised learning to multi-view setups. Alternatively, pre-training methods aim to find
well-initialized models with unlabeled data for downstream tasks. Prior works propose contrastive
learning approaches but rely on relatively small pre-training sets (e.g., 32-47K images in (Spurr
et al., 2021) and 86K images in (Ziani et al., 2022)). We collect hand images from large human-
centric datasets such as Ego4D (Grauman et al., 2022) and 100DOH (Shan et al., 2020), expanding
our pre-training set to 2.0M images.

Contrastive learning: Contrastive learning has emerged as a powerful technique in self-supervised
learning, bringing positive samples closer while pushing negative samples apart (Chopra et al.,
2005; Schroff et al., 2015; Song et al., 2016; Sohn, 2016; He et al., 2020; Huang et al., 2023).
Standard methods generate positive samples from an identical image with data augmentation (i.e.,
self-positives) (Grill et al., 2020; Caron et al., 2020; Chen & He, 2021; Radford et al., 2021; Caron
et al., 2021), thus the positive supervision doesn’t explicitly model inter-sample relationships. To
address this, Zhang et al. propose a relaxed extension of self-positives, non-self-positives (Zhang
et al., 2022), which share similar characteristics but originate different images, such as images cap-
turing the same scene (Arandjelovic et al., 2016; Ge et al., 2020; Berton et al., 2022; Hausler et al.,
2021), the same person ID (Chen et al., 2021a;b), and multi-view images (Jie et al., 2024). The
positive supervision from non-self-positives enables considering diverse inter-sample alignment and
facilitates the learning of semantics more easily. Zhang et al. identify non-self-positives by search-
ing similar human skeletons from single-view images and adapt in action recognition (Zhang et al.,
2022). Jie et al. rely on multi-view (i.e. paired) images to define non-self-positives and propose pair-
wise weights to adaptively leverage useful multi-view pairs (Jie et al., 2024). Our work proposes the
mining of non-self-positives from 2D keypoint cues with additional pair-wise weighting to account
for similarity from unpaired data in pre-training.

3 METHOD

Our approach SiMHand aims to pre-train an encoder for 3D hand pose estimation with large-scale
human-centric videos in the wild. We first construct a pre-training set from egocentric and exocentric
hand videos (Sec. 3.1). Then, we find similar hand images to define positive pairs across videos
(Sec. 3.2). Finally, we incorporate these positive pairs into a contrastive learning framework and
employ adaptive weights to improve the effectiveness in pre-training (Sec. 3.3).

3.1 DATA PREPROCESSING

Our preprocessing involves creating a set of valid hand images for pre-training, which is sampled
from a set of N videos: {v1, v2, . . . , vN}. We use an off-the-shelf hand detector (Shan et al., 2020) to
select valid frames with visible hands. Given a video frame Ifull ∈ vi, the model detects the existence
of the hand and its bounding box, creating hand crops enclosing either hand identity (right/left)
from Ifull. To avoid bias related to hand identity, we balance the number of right and left hand
crops equally and then convert all crops to right-hand images. Then, we create a set of frames
for each video vi as Fi = {Ii,1, Ii,2, . . . , Ii,Ti

}, where Ii,j ∈ RH×W×3 represents the processed
crop with height H and width W , and Ti is the total number of crops in vi. The height H and
width W are defined post-resize to give the uniform image size. Using this frame set Fi, the video
dataset can be re-represented as V = {F1,F2, . . . ,FN}. Specifically, we processed two datasets,
Ego4D (Grauman et al., 2022) and 100DOH (Shan et al., 2020), to collect 1.0M images from 8K
and 21K videos, respectively. More details about our preprocessing can be found in the supplement.
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Figure 2: Visualization of similar hand samples in Top-K. Given the query image (I), the mined
similar samples are shown (“Top-1” corresponds to I+ in Sec. 3.2).

3.2 MINING SIMILAR HANDS

To incorporate diverse samples in contrastive learning, we design positive pairs from non-identical
images with similar foreground hands. Here we construct a mining algorithm to find similar hands
from V by focusing on pose similarity between hand images. We first extract 2D keypoints from I ,
embed in the feature space, and search a positive sample.

Pose embedding: We adopt estimated 2D keypoints (for 21 joints) to find similar hands. We use
an off-the-shelf 2D hand pose estimator ϕ (Lugaresi et al., 2019), but the outputs are prone to be
noisy in testing in the wild. To make it more robust, we obtain a D-dimensional embedding of 2D
hand keypoints, p ∈ RD, for each image I . This serves to reduce the noise effect while preserving
the semantics of hands. We use a concatenated 42-dimensional vector as the output of ϕ for later
use. Particularly, we apply PCA-based dimension reduction, which projects the keypoints vector
into a lower-dimensional space of size D. Given the PCA projection matrix M ∈ R42×D, the pose
embedding p is calculated as p = MTϕ(I).

Mining: This step is designed to identify a positive sample I+ ∈ RH×W×3 paired with a query
image I . We denote the similarity mining logic as I+ = SiM(I). As shown in Fig. 2, using
the closest (neighbor) sample in the PCA space encounters a trivial solution I, I+ ∈ vi, where
both images originate from the same video vi. Similarly to (Ziani et al., 2022), the supervision
by neighbor samples of the same video has less diversity in backgrounds, hand appearances, and
object interactions. Thus we are motivated to find similar hands derived from different videos.
Specifically, we search the minimum distance within the set of all frames except for vi, written as
Fc

i =
⋃

k ̸=i Fk. Given an query Ii,j , which represents the j-th image of the i-th video, the function
SiM(·) is formulated as

SiM(Ii,j) = argminx∈Fc
i
D(MTϕ(x),MTϕ(Ii,j)), (1)

where D(·, ·) is the Euclidean distance metric.

As a proof of concept, we illustrate examples after our mining SiM(·) in Fig. 2. We denote “Top-1”
(most similar) as our assigned positive sample I+ to the query image I . As references, the rest of
the figures (“Top-K”) represent the K-th similar samples. Our sampling highlights the diversity in
captured environments and interactions, while it also suggests that as the rank (distance) increases,
the sampled images become dissimilar. Additional visualization results of similar hands can be
found in supplement.

3.3 CONTRASTIVE LEARNING FROM SIMILAR HANDS WITH ADAPTIVE WEIGHTING

We detail our contrastive learning approach (see Fig. 3), learning from mined similar hands with
adaptive weighting.

Overview: The contrastive learning is designed to align positive samples (I, I+) in the feature
space, constructed in Sec. 3.2, and the rest of negative samples are pushed apart. Following (Chen
et al., 2020; Spurr et al., 2021), we treat all mini-batch samples other than the corresponding pos-
itive samples as negative samples I−. Feature extraction is performed by two learnable compo-
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Figure 3: Overview of our SiMHand. Starting from the left, hand images (I , I+, I−) and their
corresponding 2D keypoints are input to the model. After applying random augmentations through
transformation T, both the images and 2D keypoints are spatially transformed. The altered 2D
keypoints are then used to compute adaptive weights wpos and wneg, which guide contrastive learning
by strengthening or weakening the alignment between positive and negative samples.

nents: an encoder E(·) and a projection head g(·), which indicates the entire model as f = g ◦ E.
The extraction is combined with image augmentation T, which formulated as z = f(T(I)) and
z+ = f(T(I+)). Applying geometric transformations (e.g., rotation) in T can cause misalignment
between the image and feature spaces; we correct such an error with the inverse transformation T−1

as (Spurr et al., 2021). After applying the inverse transformation to the feature z, we obtain a feature
z̃ = T−1(z), where geometry is aligned to the original images. As such, all anchor, positive, and
negative samples are encoded as z̃, z̃+, and z̃−, respectively.

Adaptive weighting: During learning from our similar hands, we propose an adaptive weighting
per pair to focus more on informative samples that provide greater discriminative information. The
assigned weights are computed by the predefined similarity metric in Sec. 3.2. Given pre-processed
keypoints for two samples within the mini-batch, k1, k2, the weight w is computed by linear scaling
with the Euclidean metric D(·, ·) as

w =
dmax −D(k1,k2)

dmax − dmin
, (2)

where dmin, dmax are the minimum and maximum distances within the mini-batch. This assigned
weight w dynamically changes according to the sample statistics in the mini-batch, enabling adaptive
attention per iteration.

To address the distinction between positive and negative sample weighting, we introduce separate
weighting terms for positive and negative pairs. Specifically, wpos corresponds to the weight assigned
to positive pairs, while wneg is used for positive-negative pairs.

Contrastive loss with weighting: We finally formulate contrastive learning with the proposed
weighting scheme. We assume that a mini-batch contains 2N samples in total, including N query
samples and their corresponding N positive samples. We introduce separate weighting terms for
positives (I, I+) and negatives (I, I−) as wpos and wneg, respectively. With these weights, our con-
strastive learning loss based on the NT-Xent loss (Chen et al., 2020) is formulated as:

Li = − log
exp

(
wpos · sim(z̃i, z̃

+
i )/τ

)∑2N
k=1 1[k ̸=i] exp

(
wneg · sim(z̃i, z̃

−
k )/τ

) (3)
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Here τ is a temperature parameter, sim(z, z̄) = zT z̄
∥z∥∥z̄∥ is the cosine similarity function. Overall, our

adaptive weighting enables considering the importance separately for positive and negative samples,
while closer samples are assigned with higher weights and more distant ones receive lower weights.

4 EXPERIMENTS

In this section, we compare our method with existing baselines for pre-training of the 3D hand pose
estimation and conduct ablation experiments to support the validity of our approach. We begin by
providing a detailed explanation of the dataset and experimental setup (Sec. 4.1). Next, we demon-
strate that our model achieves competitive performance compared with existing methods (Sec. 4.2).
Following this, we present the results of ablation studies on weighting design in the pre-training
phase (Sec. 4.3). Finally, visualizations are used to illustrate the superiority and efficiency of our
approach (Sec. 4.4).

4.1 EXPERIMENTAL SETUP

Pre-training datasets: We curate a large collection of hand images from two major video datasets,
Ego4D (Grauman et al., 2022) and 100DOH (Shan et al., 2020), featuring egocentric and exocentric
views respectively. From Ego4D, a vast egocentric video dataset with 3,670 hours of footage, we
extracted 1.0M hand images from 8K videos. Similarly, from the exocentric dataset 100DOH, which
includes 131 days of YouTube footage, we extract 1.0M hand images from 20K videos. These
extensive datasets provide diverse hand-object interactions across different views. We also prepare
pre-training data with varying amount. “Exo-X” and “Ego-X” denote 100DOH and Ego4D datasets
with X images selected randomly (e.g., X = 50K, 100K, ..., 1M, 2M). “Ego&Exo-2M” shows our
final set combining both datasets with full images (i.e., 1.0M for each).

Fine-tuning datasets: We conduct fine-tuning experiments on three datasets with 3D hand pose
ground truth in various data size and viewpoints: exocentric datasets from FreiHand (Zimmermann
et al., 2019) and DexYCB (Chao et al., 2021), and an egocentric dataset AssemblyHands (Ohkawa
et al., 2023b). FreiHand consists of 130.2K training frames and 3.9K test frames, with both green
screen and real-world backgrounds. DexYCB contains 325.3K training images and 98.2K test im-
ages, focusing on natural hand-object interactions. AssemblyHands, the largest of the three, in-
cludes 704.0K training samples and 109.8K test samples, collected in object assembly scenarios.
Following (Spurr et al., 2021), we prepare 10% of the labeled FreiHand dataset, which is denoted
as “FreiHand*”, especially used for ablation studies. This allow us to assess the performance in a
limited supervision setting.

Implementation details: For similar hands mining, we choose the PCA embedding size as D = 14.
For the pre-training framework, we use ResNet-50 (He et al., 2016) as the encoder. Throughout the
pre-training phase, all models are trained using LARS (You et al., 2017) with ADAM (Kingma
& Ba, 2014) optimizer, with the learning rate of 3.2e-3. Following (Spurr et al., 2021), SimCLR
employs scale and color jitter as image augmentation, while PeCLR and SiMHand utilize scale,
rotation, translation, and color jitter. We use resized images with 128× 128 as the input. We set the
temperature parameter τ of contrastive learning as 0.5. We use 8 NVIDIA V100 GPUs with a batch
size of 8192 for pre-training.

For fine-tuning, we initialize our model with the pre-trained encoder E(·) and then fine-tune with
a 3D pose regressor on the labeled datasets. The 3D regressor involves 2D heatmap regression and
3D localization heads, similar to DetNet (Zhou et al., 2020). We use a single NVIDIA V100 GPU
with a batch size of 128. We provide more additional details in supplement.

Evaluation: We use the following evaluation metrics: the mean per joint position error (MPJPE)
in millimeters, which compares model predictions against ground-truth data, and the percentage of
correct keypoints based on the area under the curve (PCK-AUC), which measures the proportion of
predicted keypoints that fall within a specified distance (20mm to 50mm) from the ground truth with
varying thresholds.
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Table 1: Comparison with the state of the art. We show 3D hand pose estimation accuracy
(MPJPE↓) on the FreiHand (Exo) (Zimmermann et al., 2019), DexYCB (Exo) (Chao et al., 2021)
and AssemblyHands (Ego) (Ohkawa et al., 2023b) . The best results are highlighted in bold, and
the second-best results are underlined. SiMHand achieves the best results across various datasets.

FreiHand (Exo) DexYCB (Exo) AssemblyHands (Ego)Method Pre-training
MPJPE ↓ PCK-AUC ↑ MPJPE ↓ PCK-AUC ↑ MPJPE ↓ PCK-AUC ↑

w/o pre-training - 19.21 85.61 19.36 84.80 19.17 85.61

SimCLR
Exo-1M 19.30 85.36 20.13 83.75 20.01 84.21
Ego-1M 19.36 85.09 20.22 83.50 20.32 83.85

Ego&Exo-2M 20.07 84.32 21.09 82.25 21.24 82.29

PeCLR
Exo-1M 19.58 84.71 18.39 86.33 19.12 85.64
Ego-1M 19.07 85.62 18.99 85.40 19.20 85.57

Ego&Exo-2M 18.19 86.76 18.06 86.82 18.88 86.03

SiMHand
(Ours)

Exo-1M 16.73 88.66 17.34 87.84 18.50 86.56
Ego-1M 16.15 89.48 16.99 88.34 18.26 86.95

Ego&Exo-2M 15.79 90.04 16.71 88.86 18.23 86.90

FreiHand*Method Pre-training size
MPJPE ↓ PCK-AUC ↑

w/o pre-training - 48.19 49.17
SimCLR

Ego-50K
53.94 42.54

PeCLR 47.42 49.85
SiMHand 35.32 63.35
SimCLR

Ego-100K
53.49 43.12

PeCLR 46.00 51.50
SiMHand 31.06 68.66
SimCLR

Ego-500K
49.91 47.61

PeCLR 43.18 54.15
SiMHand 28.27 72.97
SimCLR

Ego-1M
46.17 50.62

PeCLR 34.42 64.93
SiMHand 23.68 79.62

Table 2: Comparison with different pre-training data
sizes. ’*’ indicates that we use a small amount of train-
ing data for fine-tuning to validate the effectiveness of
the pre-trained model. Our method demonstrates a lead-
ing advantage across all pre-training data scales.

% of labeled training data

M
PJ

PE
 (

↓
)

SiMHand-1M
SiMHand-2M

SimCLR-1M
PeCLR-1M

Figure 4: Comparison with different
data availability in fine-tuning on Frei-
Hand. Variations in the percentage of
labeled data correspond to different sub-
sets of the fine-tuning dataset, following
the experimental design in (Spurr et al.,
2021).

4.2 MAIN RESULTS

We compare our method with previous works for 3D hand pose estimation (Tab. 1). To make a fair
comparison, we evaluate all pre-training datasets of the same size against previous methods.

Comparison to contrastive learning methods: We compare our pre-training method with previous
methods (Chen et al., 2020; Spurr et al., 2021) in 3D hand pose estimation (Tab. 1). We observe that
our method significantly outperforms SimCLR and PeCLR across various datasets under the equal
pre-training data setups. When we compare our method against a randomly initialized model (w/o
pre-training), SiMHand improves performance by 17.7% over the scratch baseline.

In more details, our approach achieves a 15.31% improvement over previous methods PeCLR with
Ego-1M pre-training on the FreiHand. We observe that SimCLR shows limited performance com-
pared to the random initialization. This suggests pre-training without geometric prior (i.e., without
geometric augmentation) does not always help hand pose estimation, requiring spatial keypoint re-
gression. In contrast, our method demonstrates significant performance gain on larger datasets, with
a 10.53% gain on DexYCB and a 4.90% improvement on AssemblyHands compared to PeCLR.
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Table 3: Ablation study of proposed modules. We compare with and without our proposed mod-
ules in different methods. The experimental results demonstrate the generality of our method.

Method Proposals FreiHand*
(Pre-training size) Similar hands Adaptive weighting MPJPE ↓ PCK-AUC ↑

SimCLR
(Ego-100K)

× × 53.49 43.12
× ✓ 52.58 (1.8% ↓) 44.70 (1.58% ↑)

PeCLR
(Ego-100K)

× × 46.00 51.50
× ✓ 44.61 (3.0% ↓) 53.37 (1.87% ↑)

SiMHand
(Ego-100K)

✓ × 31.06 68.66
✓ ✓ 28.84 (7.18% ↓) 71.07 (2.41% ↑)

These results confirm that our model consistently achieves superior performance across various
fine-tuning datasets.

Furthermore, we pre-train all methods on the joint pre-training datasets (Ego&Exo-2M). Our ap-
proach further improves over the state-of-the-art method (PeCLR), achieving improvements of
13.19%, 7.4%, and 3.4% on the FreiHand, DexYCB, and AssemblyHands, respectively. Compared
to the pre-training with 1M samples (Ego-1M), doubling the pretraining data with Ego&Exo-2M
results in a 2.28% improvement on the FreiHand dataset. Notably, our method shows particular
strength in effectively handling larger, more varied datasets. This robust performance demonstrates
that our approach is highly effective and reliable for hand pose pre-training.

Ego & Exo view analysis: We evaluate how pre-training with egocentric views (Ego4D) and exo-
centric views (100DOH) affects the performance in datasets with their corresponding views, namely
AssemblyHands for egocentric and FreiHand and DexYCB for exocentric views. Interestingly,
matching pre-training viewpoints does not consistently enhance performance, indicating that the
view gaps have limited effects. Instead, factors like dataset diversity and the characteristics of pre-
training methods are more crucial in boosting performance. Combining the two datasets (the last row
of Tab. 1) leads to the best performance in all three datasets, underscoring the potential of enriching
data diversity with various camera views.

4.3 ABLATION EXPERIMENTS

This section presents ablation studies on SiMHand, focusing on four aspects: 1) pre-training dataset
size, 2) fine-tuning dataset size, 3) adaptive weighting, and 4) Top-K similar hands. First, we exam-
ine the size of the pre-training dataset using various methods, showing that our approach maintains
superior performance across different sizes (Tab. 2). Second, inspired by (Zimmermann et al., 2019),
we explore fine-tuning dataset size, demonstrating significant gains even with limited data (Fig. 4).
Furthermore, we also highlight the adaptive weighting design, which consistently outperforms com-
parison methods (Tab. 3). Finally, we conduct ablation analysis according to different levels of
similarity in the assigned positive hand pairs. (Tab. 4).

Effect of pre-training data size: We study results with different sizes of pre-training data, namely
50K, 100K, 500K, and 1M in Tab. 2. The results demonstrate that SiMHand reliably outperforms
the other methods across all settings, with improvement as the pre-training data size increases. With
changes in the size of the pre-training data from 50K to 1M, SiMHand achieves a reduction in
MPJPE from 35.32 to 23.68. The useful insights we can gather from this table include: 1) The
SiMHand method holds a leading advantage across various pre-training size. 2) As the size of the
pre-training dataset increases, the improvement for fine-tuning with limited labels is substantial.

Effect of fine-tuning data size: Fig. 4 illustrates the experiment under different proportions of la-
beled fine-tuning data, namely 10%, 20%, 40%, and 80% in FreiHand. Note that we denote methods
with “-1M/2M” as those pre-trained on the Ego-1M and the Ego&Exo-2M sets, respectively. The
results show that SiMHand-1M brings error reduction, achieving remarkably lower MPJPE scores
with merely 10% of labeled data. SiMHand-1M delivers the best performance over different size
of fine-tuning data, compared to SimCLR-1M and PeCLR-1M. SiMHand-2M further shows im-
provement over SiMHand-1M, while the gains become marginal as labeled data increase. From
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Table 4: Pre-training performance at different similarity ranks (Top-K). It can be seen that as
the similarity rank increases, the pre-training performance deteriorates.

Method FreiHand*
(Pre-training size)

Top-K
MPJPE ↓ PCK-AUC ↑

SiMHand
(Ego-100K)

Top-1 31.06 68.66
Top-2 31.46 67.89
Top-5 31.85 67.20
Top-10 31.87 67.18
Top-50 31.53 67.59

Top-100 31.54 67.70
Top-500 32.61 66.76

Top-1000 34.05 65.14
Top-5000 35.34 62.79

this analysis, we can draw two key conclusions: 1) The improvement resulting from an increase
of pre-training data becomes less significant as the amount of fine-tuning data increases; 2) SiM-
Hand maintains a strong advantage in scenarios with limited labeled data, particularly when larger
pre-training data are used.

Effect of adaptive weighting: We validate the proposed adaptive weighting and its generality when
applied to the other methods in Tab. 3. On the Ego-100K pre-training set, the MPJPE scores af-
ter adaptive weighting decrease by 1.8% and 3.0% for SimCLR and PeCLR, respectively, while
PCK-AUC increases by 1.58% and 1.87%. This indicates that the proposed weighting excels in its
applicability to various pre-training methods. In our SiMHand method, applying adaptive weighting
reduces MPJPE from 31.06 to 28.84, a 7.18% decrease, while PCK-AUC improves from 68.66 to
71.07, a 2.41% increase. We find the effectiveness of the proposed weighting when combined with
the mined similar hands.

Learning from Top-K similar hands: We test pre-training with different similarity levels of posi-
tive samples in Tab. 4. As illustrated in Fig. 2, we can sample similar pairs according to the distance
ranking (e.g., K = 1, 2, ..., 5000), where Top-1 is used to produce our final results. The performance
trend is initially subtle and somewhat fluctuating (Top-1∼100) but becomes increasingly pronounced
after Top-100. This indicates that as the similarity between positive samples increases, the global
trend decreases accordingly. Notably, using Top-5000 similar hand samples as positive samples de-
creases the MPJPE by 13.78% compared to Top-1. This study provides two insights: 1) Similar
samples with subtle noisiness (e.g., 1∼100) exhibit minimal variation in performance, indicating
that slight differences in similarity within this range do not significantly impact the pre-training
outcome. This suggests that the model is robust to minor variations when the positive samples are
highly similar. 2) The results support the validity of using Top-1 positive samples to produce final
results, as they consistently exhibit the best performance. This highlights the importance of selecting
the most similar samples in contrastive learning.

4.4 VISUALIZATION

In this section, we compare the fine-tuning results of various pre-training methods through detailed
visualizations on different datasets (Fig. 5). The pre-training model is trained on the Ego&Exo-2M
dataset and fine-tuned on the FreiHands (Zimmermann et al., 2019) and DexYCB (Chao et al., 2021)
datasets, respectively. We provide additional visualization in the supplementary material.

From the left four columns of Fig. 5, the visualization results show that SiMHand performs better
in pose estimation, with results closer to the ground truth, compared to the other methods in Frei-
Hands (Zimmermann et al., 2019) dataset. In particular, SiMHand outperforms the other methods in
challenging environments, such as those with varying lighting conditions, by better capturing hand
poses. These visual outputs highlight its robustness across various scenarios, solidifying its potential
for real-world applications.

As shown in the right four columns of Fig. 5, we highlight the occluded regions in the original images
of DexYCB (Chao et al., 2021) dataset using red circles. The results show that SiMHand is more
effective in tackling occlusion problems. Our pre-training method effectively addresses partially
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Figure 5: Visualization of FreiHand (Zimmermann et al., 2019) and DexYCB (Chao et al.,
2021). The first four columns on the left display the results for FreiHand, while the last four columns
on the right show the results for DexYCB (GT: Ground Truth; PT: Pre-training). It can be observed
that SiMHand pre-training method achieves better results.

occluded images by utilizing similar, though not identical, hand images, where the occluded parts in
the query image may be visible in the corresponding similar hand image, and vice versa.

5 CONCLUSION

We introduce SiMHand, a contrastive learning framework for pre-training 3D hand pose estimators
by mining similar hand pairs from large-scale in-the-wild images. Our approach leverages similar
hand pairs from diverse videos, significantly enhancing the information gained during pre-training
compared with existing methods. Experiments show that our pre-training method achieves com-
petitive performance in 3D hand pose estimation across multiple datasets, outperforming previous
pre-training approaches and demonstrating the benefits of large-scale pre-training with in-the-wild
images. We hope this work can lay a foundation for future research on pre-training of 3D hand pose
estimation.
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Figure 6: Overview of data preprocessing and similar hands mining. This image illustrates
a three-step process for SiMHand pre-training using datasets from Ego4D and 100DOH. Step 1
involves preprocessing the datasets to extract relevant frames. Step 2 employs a hand detector to
crop hand regions from these frames, creating a diverse pool of hand images in the wild. Step 3
calculates similarity and ranks the images using a pose estimator and PCA, producing a sorted list
of hand poses, from the most similar to the least similar to a given anchor pose.

6 APPENDIX

6.1 CONSTRUCTION OF LARGE-SCALE IN-THE-WILD HAND DATABASE

This section presents our method for constructing a large-scale hand image dataset by extracting and
processing hand images from various video datasets. We outline key preprocessing steps, including
1) preprocessing, 2) hand region detection, and 3) similarity calculation & ranking.

Preprocessing: We prepare two large-scale video datasets: Ego4D, containing 8k frames, and
100DOH, with 23k frames, both sampled at 1 fps. As shown in Fig. 6, first-person and third-person
hand images exhibit significant differences.

Hand region detection: After extracting frames from Ego4D and 100DOH, we use a lightweight,
fixed-weight network to detect hand regions via bounding boxes. Specifically, we adopt the method
from (Shan et al., 2020) and store all detected bounding boxes in sequence. This step constructs a
large-scale hand image dataset as Tango et al. (2022).

Similarity calculation & ranking: Once the hand image dataset is built, we use a lightweight,
fixed-weight network to extract raw keypoints for each sample via MediaPipe (Lugaresi et al., 2019).
To reduce noise, we apply PCA as described in Sec. 3.1. We then compute similarity scores for a
given query image I using Eq. 1 and rank the remaining samples accordingly. This process yields a
large-scale set of in-the-wild hand images with similar characteristics. For instance, in Ego4D, given
a query sample I , we retrieve all similar hand images and construct a ranked sequence, referred to as
”Top-K”. The Top-1 image in this sequence serves as the positive sample I+ for contrastive learning,
enhancing the effectiveness of SiMHand pre-training. As shown in Tab. 4, our experiments validate
that selecting Top-1 as the positive sample I+ is the optimal strategy.

6.2 FINETUNE FOR 3D HAND POSE ESTIMATION

In the fine-tuning stage, we discard the projection head and fine-tuning only the encoders. We load
the pre-training model weights into a heatmap-based 3D hand pose estimationand predition method:
DetNet(Zhou et al., 2020). To train DetNet, we utilize a comprehensive loss function designed to
optimize both 2D pose estimation and 3D spatial localization. The loss function is defined as:

Lheat + Lloc + Ldelta + Lreg (4)

where Lheat ensures that the predicted heatmaps H align closely with the ground truth heatmaps
HGT, Lloc and Ldelta measure the discrepancies between the predicted location maps L and delta
maps D and their corresponding ground truth LGT and DGT, with HGT weighting these discrep-
ancies to focus on the maxima of the heatmaps. Additionally, Lreg is an L2 regularization term to
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FreiHand*Method Pre-training size
MPJPE ↓ PCK-AUC ↑

PeCLR
Ego-50K

47.42 49.85
TempCLR 45.17 52.40
SiMHand 35.32 63.35
PeCLR

Ego-100K
46.00 51.50

TempCLR 44.54 53.28
SiMHand 31.06 68.66

Table 5: Comparison with the TempCLR method.’*’ indicates that we use a small amount of
training data for fine-tuning to validate the effectiveness of the pre-trained model. TempCLR out-
performs PeCLR by a modest margin, whereas SiMHand achieves a significant performance im-
provement over TempCLR.

prevent overfitting. Note that after passing through the encoder, we made simple adjustments to the
model, applying some upsampling to the features to fit the input.

This multi-task learning framework enables the network to simultaneously learn pose features from
2D images and spatial information from 3D data, enhancing the accuracy and robustness of detection
in real-world applications. For more details on fine-tuning, please refer to the (Zhou et al., 2020).

6.3 COMPARISON WITH TEMPCLR METHOD

We conduct an experimental comparison with the TempCLR (Ziani et al., 2022) method. Temp-
CLR proposes a pre-training framework for 3D hand reconstruction using time-coherent contrastive
learning and demonstrates better performance compared to PeCLR (Spurr et al., 2021). Although
TempCLR primarily focuses on reconstruction tasks, the parametric model it uses can also output
3D pose results, making it valuable to further compare our method with TempCLR.

However, TempCLR has certain limitations in data collection and the effectiveness of contrastive
learning. First, TempCLR treats hands from adjacent frames as positive samples during training. In
dynamic egocentric videos, hand occlusions or detection failures often lead to missed hand crops in
neighboring frames. In addition, images from adjacent frames typically lack background diversity,
limiting the contribution of positive sample pairs formed from neighboring frames in contrastive
learning.

In contrast to TempCLR, our method, SiMHand, significantly improves performance. SiMHand
leverages similar hand images, which provide richer diversity in features, including various types
of hand-object interactions, diverse backgrounds, and varying appearances. These features allow
SiMHand to effectively increase the diversity of positive samples in contrastive learning, resulting
in superior pre-training performance.

We further validate our approach on two different size of pre-training data, consisting of 50K and
100K hand images from the Ego4D dataset (Grauman et al., 2022). Tab. 5 shows the significant
progress made by SiMHand compared to TempCLR and PeCLR.

From the experimental results, TempCLR demonstrates better performance than PeCLR, which
matches the conclusion of the original paper. However, SiMHand provides more valuable posi-
tive samples for contrastive learning, leading to better results during the fine-tuning phase of 3D
hand pose estimation tasks.

6.4 COMPARISON WITH WEAKLY-SUPERVISED LEARNING SETTING

We compare our method with a weakly-supervised learning setting that uses 2D noisy keypoints
assigned on in-the-wild images. In a weakly-supervised learning setting, noisy 2D keypoints are
directly used as supervision signals during network training. The model treats these 2D keypoints
as targets, computing the loss between the predicted keypoints and the provided 2D keypoints (e.g.,
heatmap-based loss). However, our experiments reveal that directly conducting joint training on
labeled and unlabeled data results in degraded performance due to the noise and unreliability of
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FreiHand*Setting Unlabeled data
MPJPE ↓ PCK-AUC ↑

Weakly-supervised Ego-100K 61.65 33.92
Pre-training & Fine-tuning Ego-100K 31.06 68.66

Table 6: Comparison with weakly-supervised learning setting. We observe that directly incorpo-
rating noisy labels into the joint training in the weakly-supervised setting leads to a decline in model
performance, indicating that applying noisy labels for training presents certain challenges.

DexYCBMethod Backbone
MPJPE ↓

Xiong et al. (2019) ResNet50 25.57
Spurr et al. (2020) ResNet50 22.71
Spurr et al. (2020) HRNet32 22.26
Tse et al. (2022) ResNet18 21.22

Zhou et al. (2020) ResNet50 19.36
SiMHand ResNet50 16.71

Table 7: Comparison of 3D hand pose estimation methods on DexYCB (Chao et al., 2021).

AssemblyHandsMethod Backbone
MPJPE ↓

Han et al. (2022) ResNet50 32.91
Ohkawa et al. (2023b) ResNet50 21.92

Zhou et al. (2020) ResNet50 19.17
SiMHand ResNet50 18.23

Table 8: Comparison of 3D hand pose estimation methods on AssemblyHands (Ohkawa et al.,
2023b).

the 2D keypoints. As shown in Tab. 6, without any keypoint filtering or correction, the weakly-
supervised method performs significantly worse than our pre-training setting.

These findings demonstrate that directly incorporating noisy 2D annotations during weakly-
supervised training negatively impacts model performance, particularly when the labels contain high
levels of noise.

Before designing our pre-training approach, we identified several limitations of the weakly-
supervised setting for large-scale, in-the-wild hand data based on prior experience: (1) Data scale
constraints: When the amount of noisy hand data is significantly smaller than the noise-free hand
training dataset, it may provide some improvement but it is hard to guarantee that such noisy la-
bels are less in larger datasets (e.g., the two million in-the-wild hand images in this study) and (2)
Training efficiency issues: Introducing large-scale noisy data significantly prolongs training time
and slows convergence. In contrast, our pre-training method benefits from such large unlabeled
hand images with certain noisiness. This highlights our superiority in exploiting pre-training over
the weakly-supervised setting.

6.5 COMPARISON WITH THE OTHER 3D HAND POSE ESTIMATION METHODS

To better assess the value of this work and its position within the broader context, we have included
comparisons with other related works in the field of 3D hand pose estimation in this section.

As shown in Tab. 7 and 8, the comparative results on the DexYCB (Chao et al., 2021) and As-
semblyHands (Ohkawa et al., 2023b) datasets further validate the superiority of our approach across
multiple standard datasets, demonstrating the effectiveness of our pretraining strategy and its broad
potential for real-world applications.
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Figure 7: Visualization of Hand Pose Estimation Results on AssemblyHands. AssemblyHands
Ohkawa et al. (2023b) is a hand pose dataset captured from a first-person perspective during toy
assembly. It can be observed that SiMHand pre-training method achieves better results (GT: Ground
Truth; PT: Pre-training).

6.6 VISUALIZATION OF HAND POSE ESTIMATION RESULTS ON ASSEMBLYHANDS

We show the visualization results of hand pose estimation on another dataset, AssemblyHands
Ohkawa et al. (2023b). We highlight instances of hand-object occlusion in the data using red circles.
As observed with DexYCB (Chao et al., 2021), SiMHand pre-trained model demonstrates superior
performance in handling occlusion during the fine-tuning stage compared to the other pre-training
methods, showcasing stronger robustness.

6.7 VISUALIZATION OF SIMILAR HANDS

We present the visualization of Top-K similar hand images used to create positive pairs. As shown
in Fig. 8, we visualize a set of Top-K similar hand images. The figure displays the query image
alongside its corresponding similar hand sequence (Top-K). At the top of Fig. 8, a timeline indicates
that the images are deliberately sampled from consecutive frames of the same video.

From these visualizations, we derive three key insights: 1) Using adjacent frames from the same
video as positive samples in pre-training lacks diversity, as substantial variations may still exist
between samples. 2) As the ranking increases, the similarity between hand images decreases sig-
nificantly, leading to greater differences that may result in inaccurate feature representations during
pre-training. 3) Therefore, selecting the Top-1 image is a proper design to assign diverse yet similar
positive samples for the query images.
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Figure 8: Visualization of similar hand samples in Top-K. As the ranking increases, the differ-
ences between hand samples become more pronounced.
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