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Abstract

Recent advances in large-scale neural recordings have enabled accurate decoding
of behavior and cognitive states, yet decoding anatomical regions remains underex-
plored, despite being crucial for consistent targeting in multiday recordings and
effective deep brain stimulation. Current approaches typically rely on external
anatomical information, from atlas-based planning to post hoc histology, which
are limited in precision, longitudinal applicability, and real-time feedback. In
this work, we develop a self-supervised learning framework, Lfp2vec, to infer
anatomical regions directly from the neural signal in vivo. We adapt an audio-
pretrained transformer model by continuing self-supervised training on a large
corpus of unlabeled local-field-potential (LFP) data, then fine-tuning for anatomi-
cal region decoding. Ablations show that combining out-of-domain initialization
with in-domain self-supervision outperforms training from scratch. We demon-
strate that our method achieves strong zero-shot generalization across different
labs and probe geometries, and outperforms state-of-the-art self-supervised models
on electrophysiology data. The learned embeddings form anatomically coherent
clusters and transfer effectively to downstream tasks like disease classification
with minimal fine-tuning. Altogether, our approach enables zero-shot prediction
of brain regions in novel subjects, demonstrates that LFP signals encode rich
anatomical information, and establishes self-supervised learning on raw LFP as
a foundation to learn representations that can be tuned for diverse neural decod-
ing tasks. Code to reproduce our results is found in the github repository at
https://github.com/tianxiaol8/Lfp2vec,.

1 Introduction

The ability to precisely localize high-density multielectrode recording sites in-vivo is a critical first
step for systems and cognitive neuroscience research. Without accurate knowledge of which brain
layer or sub-region each channel captures, subsequent analysis of cell-type specificity [1], circuit
motifs [2], or disease biomarkers [3] become unreliable. In clinical settings such as deep brain
stimulation at focal sites, the precision of electrode placement can significantly impact therapeutic
outcomes and cognitive changes post-operation [4]. Today, most laboratories plan probe trajectories
pre-operatively using brain atlas coordinates [5] or MRI scans [6], and validate them post-operatively
by follow-up scans or ex-vivo histology [7]. However, these approaches lack in vivo knowledge
of probe locations, and they are labor intensive, error-prone (limited by imaging resolution) and
unsuitable for chronic recordings, flexible probes or clinical settings where tissue cannot be sacrificed.
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As multishank arrays scale to over a thousand channels [8]], both the data collection throughput and
the need for accurate localization performance increases.

Recent work has attempted to address this using spike-based localization with action potential
waveforms [9]] or firing rates [10} [11]]. However, these approaches require potentially inefficient and
error-prone spike sorting [[12]] and ignore the rich structure in the local field potential (LFP) band [13}
14]. In parallel, self-supervised learning has been applied to unlabeled time series and various
downstream tasks in audio [[L5]] and neural signals [9} 116} 17]. Most existing work decodes behavioral
states [18], discrete events [19]], or speech [20] from LFP, rather than anatomical mapping. General
purpose time series SSL models are typically designed with temporal prediction objectives [21]], but
they ignore anatomical priors and laminar continuity that characterize linear probes, which limits their
use for brain region localization [22]. To our knowledge, no existing study has applied self-supervised
learning to raw LFP signals, nor tested whether such models can generalize across species, probe
types, and labs for scalable and reproducible brain region localization.

To this end, we introduce Lfp2vec, a self-supervised framework for anatomical localization from
raw LFP recordings. Our approach adapts from wav2vec 2.0 [21], a foundation model pre-trained on
audio signals, to the domain of electrophysiology. Using contrastive learning with masked prediction,
we train on raw voltage traces without labels or probe geometry. A key aspect of our approach is
transfer learning across modalities: instead of training from scratch, we initialize the model using
wav2vec 2.0 and continue self-supervised training on large-scale LFP data. We hypothesize that
representations learned from general purpose time series data are partially transferable to the neural
domain. As our ablation studies will show (Fig. [5), this cross-domain initialization provides a
substantial performance boost over random initialization, highlighting the value of out-of-domain
foundation models for biomedical applications.

We then evaluate the output embeddings on recordings from four labs: Allen Institute [23], Interna-
tional Brain Lab [24]], Neuronexus SiNAPs [8]], and Neuropixel-NHP with macaque reaching dataset.
We find that the embeddings cluster by anatomical subregion across sessions and animals, and can be
decoded with high accuracy using multilayer perceptron. Beyond localization, these embeddings are
also transferable to downstream tasks such as Alzheimer’s disease classification from hippocampal
dynamics. Together, our results show that neural population activity encodes brain region identity,
and highlight the potential of self-supervised model to handle noisy and non-stationary neural time
series data.

The contributions of this work include:

* A novel application of self-supervised learning to LFP signals, extracting embeddings for
multiple downstream tasks.

» Empirical evidence that raw LFP signals encode rich anatomical and functional information,
with SSL extracted features outperforming handcrafted features.

* A robust automatic probe localizer that achieves high-accuracy zero-shot prediction on
held-out subjects and sessions, and generalizes across probe geometries, labs, and species
(rodent to non-human primate).

2 Related Work

2.1 Self Supervised Learning in Extracellular Recordings

Self-supervised learning (SSL) has become a powerful tool in both machine learning and neural data
science, enabling generalization across a wide range of downstream tasks. Models such as wav2vec
2.0 [21]], timesFM [15]] learn latent structure from time series via masked prediction, but they are not
tailored to extracellular recordings and overlook domain-specific challenges such as biological noise,
non-stationarity, and diverse sampling rates. In neural data science, SSL has shown promise primarily
in the spike domain. Methods such as POYO [9]], NEMO [L1], NDT2 [[17]], and NEDS [16] use
contrastive or masked objectives to learn embeddings from spiking activity. However, these methods
typically rely on firing rates, spike times, or waveform features that are sensitive to spike sorting
quality [25], and do not extend to local field potentials which are more broadly accessible. Models
like BrainBERT [20]], Brant [26] and related intracranial models [27]] use broadband signals to decode



speech and cognitive states, but are not designed for anatomical localization. While effective, they do
not incorporate anatomical priors or evaluate spatial generalization.

2.2 Brain Region Decoding

Traditional brain region decoding often relies on hand-crafted electrophysiological features or
biomarkers. For example, sharp wave ripples help identify CA1 sublayers in the hippocampus
[28], gamma coherence distinguishes hippocampal subregions [29]], and firing statistics (e.g., bursti-
ness, firing rates) differentiate cortical layers in V1 [30]. However, these approaches are typically
heuristic, region-specific, and not learned from data. More recent methods apply deep learning on
firing rates and spike timing to infer anatomical identity [31]], but still rely on manual feature design
and dense region labels, limiting scalability. Self-supervised models like NEMO [ 1] learn neuron
embeddings for region decoding at single-unit level, yet they ignore population-level dynamics that
captures brain region identity. Furthermore, most models are trained and evaluated within a single
lab and do not evaluate generalization across labs and species, despite known variability in surgical
procedures, probe designs, and behavioral paradigms [32} 24]]. To address these limitations, we apply
self-supervised learning to raw, multi-channel LFP recordings to learn anatomically meaningful
representations that generalize across labs and recording setups.

3 Datasets

For brain region decoding, we apply two publicly available datasets and two private datasets across
different species, recording probes, and experimental setup.

IBL Reproducible Electrophysiology Dataset. This dataset consists of Neuropixels recordings
from mice performing visual decision-making task [24], collected by International Brain Lab (IBL).
Ground-truth anatomical labels were obtained through post hoc histology by registering fluorescent
probe tracks to the Allen Common Coordinate Framework. Labeled brain regions include secondary
visual cortex (VISa), hippocampal subregions (CA1, CA3, dentate gyrus), and thalamic nuclei (LP,
PO).

Allen Visual Coding Dataset.  This dataset consists of Neuropixels recordings from mice perform-
ing a visual stimulus presentation task [23]]. Recordings were sampled at 1250 Hz and span regions
across the visual cortex, hippocampus (CA1, CA2, CA3, dentate gyrus), and thalamus. Ground-truth
labels were obtained via post hoc histological analysis.

Neuronexus Multi-Shank Dataset.  This dataset consists of 1024-channel Multi-shank Simultane-
ous Neural Active Pixel Sensor (SiNAPS) probe recordings from mice during spontaneous activity
[8]. It includes five transgenic mice modeling Alzheimer’s Disease (APP/PSENT1) and two normal
controls. Recordings target hippocampal subregions including CA1, CA2, CA3, dentate gyrus, and
surrounding cortex. The SiNAPs probe has 8 shanks with 128 channels per shank, enabling denser
spatial coverage of the hippocampus than standard Neuropixels probes. Anatomical labels were
assigned by expert annotation using electrophysiological landmarks and manual registration to a
brain atlas.

Macaque Sequential Reaching Dataset. This dataset consists of Neuropixels-NHP recordings
from a macaque monkey performing center-out and sequential reaching tasks. Recordings target
motor-related regions including the basal ganglia, supplementary motor area (SMA), and primary
motor cortex (M1). Ground-truth region labels were obtained by registering a 3D-printed electrode
grid to MRI data and the recording chamber.

4 Methods

4.1 Preprocessing

To reduce non-physiological artifacts, we preprocess raw LFP recordings using the International
Brain Lab (IBL) destriping pipeline [33]]. Signals are zero-phase high-pass filtered at 2 Hz to remove
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Figure 1: Overview of the Lfp2vec pipeline. a) Example multi-species local-field-potential (LFP)
segments: SiNAPs (mouse), Neuropixels—IBL (mouse), Neuropixels—Allen (mouse), and Neuropixels-
NHP (Macaque), segmented into short spatiotemporal windows. b) Each window is encoded using a
1-D convolutional encoder and a Transformer, trained with a masked-prediction contrastive objective
to learn spatially coherent representations. The pretrained model is then fine-tuned for downstream
tasks. ¢) Learned embeddings after fine-tuning: rodent hippocampus (top), macaque motor regions
(middle), and healthy vs. disease-model recordings (bottom). Colors denote ground-truth anatomical
or experimental labels. d) Embeddings drive lightweight decoders for downstream tasks: brain-
region localization (top: rodent, middle: macaque) and session-level disease classification (bottom;
Alzheimer’s model vs. healthy). Each dot shows predicted region probabilities pie charts per trial.
Columns correspond to trials, rows to channels, and colors represent brain regions or disease labels
in c).

slow drifts, bad channels are detected using amplitude and spectral criteria and interpolated, and
common-mode noise is removed by subtracting the per-sample median across valid channels. The
cleaned recordings are segmented into 3-second trials and normalized (Fig. [Th), which standardizes
inputs across devices (e.g., Neuropixels vs. Neuronexus) and species (mouse vs. macaque). In
practice, model performance is sensitive to preprocessing and signal quality; insufficient artifact
removal or quality control can substantially degrade representation quality and downstream accuracy.

4.2 Model Architecture

We adapt the wav2vec 2.0 framework [21]] to LFP recordings, as shown in Fig. [Tp. Rather than
handcrafted spectral features (e.g., band power or spectrograms), we learn tokens directly from raw
LFP by segmenting the continuous signal and encoding each window with a 7-layer 1D CNN for
each channel and trial. The resulting tokens are masked and passed to a 12-layer Transformer context
network, which predicts the correct target among distractors at masked time steps using surrounding
context. For downstream decoding, we mean-pool Transformer outputs across time and apply a
two-layer MLP classifier to predict brain-region or disease labels (Fig. [Id).



4.3 Objectives

We train Lfp2vec in two stages, adapting from a pretrained self supervised model to LFP recordings,
as shown in Figure[T|b. The objective closely follows the wav2vec 2.0 contrastive learning framework.

Self-supervised pretraining. Given an LFP segment z € R”, we compute tokens z = E(z) and
discretize them via Gumbel-softmax quantization ¢ = @Q(z) with multiple codebooks [21]. We
randomly mask time steps M in z , feed the masked latents Z into the Transformer, and obtain
contextual embeddings ¢ = C(2). For each masked step m € M, we apply a contrastive objective
that pulls the context token c,, (Transformer output at m) toward the target token g, (quantized
vector at m), while pushing it away from distractors {qy } k. sampled from other time steps in the
same batch. With temperature 7, the loss is:

eXp(Sim(Cma qm)/T)
Log, = — log : '
SSL m%; > ke (m) EXP(sim (i, qr) /7)

where KC(m) denotes the set of distractors unioned with the true quantized vector g,,. To encourage
diverse codebook usage, we additionally apply a diversity loss L4y weighted by A. The overall
pretraining objective is Lgsy, + ALy [21].

Supervised fine-tuning. We attach a classification head h(-) to the pooled context outputs ¢ =
POOL(c), and fine-tune all parameters end-to-end on anatomical region labels {y; }. Denoting model
outputs as §; = h(¢;), we minimize cross-entropy:Lcg = — D i yiT log ¥;, allowing the network to
refine its representations for accurate region decoding.

4.4 Post processing

To improve decoding performance, we incorporate temporal and spatial priors via a lightweight
post-processing pipeline (Figure[I|d). We first smooth model’s per-timepoint predictions by averaging
class probabilities over a temporal window W, with class prior 7., and assign the final label as j; =
arg max. ﬁ Dov ew, P/ cTe., which suppresses transient fluctuations and abrupt label changes.

We then enforce spatial continuity by assigning each channel the majority label of its 5 nearest
neighbors, smoothing out isolated misclassifications. This step leverages the strong anatomical prior
that adjacent channels on a linear probe are highly likely to reside in the same or contiguous brain
regions. As shown in Figure [2ld, these two steps improve channel-wise location prediction without
retraining or requiring anatomical atlases, and run in milliseconds per session.

S Experiments

5.1 Baselines

For baseline comparisons, we implemented a classical spectrogram model and two self-supervised
methods, each paired with a two-layer MLP decoder (128 hidden units, ReLU) trained using Adam
optimizers. Spectrograms were computed using Short Time Fourier Transform, producing 500
frequency bins x 16 time bins per trial. For SImCLR [34]], a CNN encoder with an MLP projection
head was trained on 3-second raw LFP segments (1.25 kHz) using InfoNCE loss (temperature = 0.606)
with temporal masking. BrainBERT [35]] uses a transformer encoder pretrained on spectrograms
via masked token prediction. After pretraining, we fine-tune only the MLP head while freezing
the encoder. All models share the same decoding architecture, isolating differences in encoder
representation quality rather than decoder design.

5.2 Evaluation

To avoid implicitly exploiting spatial or temporal correlations between training and test data, we
adopt an across-session and across-lab evaluation protocol.



Across-session evaluation.  We split each lab’s recordings by session, reserving 15% sessions for
testing, 30% for validation. Models are trained on all channels and trials independently in remaining
sessions, and evaluated on the held-out session. We report both balanced accuracy and macro F1
to account for class imbalance across five brain regions, and assess embedding quality via PCA of
encoder representation.

Across-lab evaluation.  To test cross-lab generalization, we train on all sessions from one lab and
evaluate zero-shot on another lab with different probes and tasks. We also include one-shot transfer
condition by adding a single session from the target lab to training. This setup tests each model’s
ability to extract anatomy-relevant features without relying on probe geometry or task structure.

6 Results

6.1 Brain Region Decoding Across Sessions

We evaluate all models on cross-session region decoding in three large-scale LFP datasets (Neu-
ronexus, Allen, and IBL). As shown in Figure 2, Lfp2vec achieves the highest balanced accuracy and
macro F1, outperforming both the spectrogram baseline and SSL methods (SimCLR, BrainBERT),
with the largest improvements on Allen and Neuronexus. Fewer performance gains are observed on
IBL, likely due to its simpler classification task (fewer region classes). On the Allen dataset, confusion
matrices (Figure 2b) show that Lfp2vec achieves the fewest errors across all classes, including in
underrepresented subregions such as CA2 and CA3. All models perform best on CA1 and cortex,
likely due to their distinctive signatures and class prevalence.

PCA projections of latent embeddings (Figure [2k) suggest that Lfp2vec produces more compact and
separable clusters by region. To test whether this structure reflects neuroanatomy rather than probe-
identity or session-specific artifacts, we quantitatively evaluated cluster quality using the Silhouette
score (1 = perfect separation, 0 = no structure) and linear probing accuracy, as shown in Fig. [Zp,
right. Lfp2vec achieved a markedly higher Silhouette score for region clustering (0.576+0.026)
than the spectrogram (—0.054+0.015), SimCLR (-0.062+0.050), and BrainBERT (0.146+0.026)
baselines, while showing no meaningful clustering by session (—0.053+0.009) or probe identity
(-0.266%0.006). Linear probing results mirrored this trend: although embeddings encode minor
session and probe information, anatomical region dominates, with Lfp2vec enabling far more accurate
region decoding (0.921+£0.004) than baselines. Together, these findings demonstrate that Lfp2vec
learns more anatomically aligned representations.

Figure [2d shows the channel-wise prediction map compared to the ground truth. Although all models
capture the coarse anatomical layout, Lfp2vec’s predictions more closely adhere to the known laminar
organization of the hippocampus. For instance, in the example shown, it clearly delineates the CA1-
DG boundary, a distinction that is less precise in the baseline models. A zoomed view (Figure 2d,
right) highlights how our post-processing steps further refine these boundaries to improve localization
accuracy.

6.2 Brain Region Decoding Across Labs

In addition to within-lab evaluation, we assess the robustness of Lfp2vec under cross-lab transfer. We
initialize Lfp2vec with pretrained weights, fine tune the model on one lab, and evaluate its zero-shot
prediction accuracy on another lab with different tasks and probe geometries (Figure [2¢). Diagonal
entries represent within-lab performance, with chance-level accuracy shown in parentheses. We
observe strong zero-shot transfer between the IBL and Allen datasets, likely due to their shared use
of Neuropixels probes and similar visual task structure (Figure 2k, left). In contrast, transfer from the
Neuronexus dataset to others is weaker, possibly due to its distinct probe design and spontaneous
recordings. When a single session from the target lab is included (one-shot transfer), accuracy
improves substantially, often matching within-lab performance (Figure [2, right), suggesting that
minimal data can suffice to adapt Lfp2vec to new labs.

6.3 Brain Region Decoding Across Species

To test cross-species generalization, we apply Lfp2vec to the macaque Neuropixels-NHP dataset
(Figure [3p) using the same across-session protocol. As shown in Figure [3p, Lfp2vec outperforms
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Figure 2: Model performance comparison in region decoding across rodent datasets. a)
Balanced test accuracy and macro-F1 (left) for brain-region decoding on three mouse LFP datasets
(Neuronexus, Allen, IBL). Silhouette score and linear probing accuracy (right) quantifies how well
embeddings cluster by brain region, session, and probe identity in Allen sessions. b) Confusion
matrices showing the brain region classification performance across all models in Allen sessions. c)
PCA projections of channel embeddings for Allen sessions, colored by distinct brain regions, showing
clusters by brain regions. d) Channel-wise predicted regions on a Neuronexus probe compared to
ground truth. Each dot represents a region probability pie chart (right top), with temporal smoothing
(right middle) and spatial smoothing (right bottom) improving prediction. e) Cross lab generalization
matrix for zero-shot (middle) and one-shot (right) performance across three mice datasets (left), here
high off-diagonal values indicate good generalization performance from one lab to another.



all baselines (spectrogram, SimCLR, BrainBERT), achieving the highest test accuracy and macro
F1 without any species-specific adaptation. The confusion matrices (Figure [3c) reveal that Lfp2vec
has the fewest misclassifications, especially between closely related regions such as SMA and M1.
Latent space projections (Figure [3[d) further show that Lfp2vec produces more compact and separable
region-specific clusters, suggesting that its representations preserve fine anatomical distinctions.
These results highlight Lfp2vec’s ability to extract generalizable, anatomically meaningful features
from LFP signals across species and experimental settings.
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6.4 Disease Prediction

Besides the brain region decoding task, we evaluate Lfp2vec on a downstream task of Alzheimer’s
disease (AD) classification using LFP recordings from App x Psenl transgenic mice [8]. A lightweight
classifier is fine-tuned on top of pretrained Lfp2vec embeddings to distinguish AD mice from
healthy controls. As shown in Figure #h, Lfp2vec outperforms SimCLR and BrainBERT in both
accuracy and F1 score. PCA projections of Lfp2vec embeddings (Figure[db) show clear separation
between diseased and healthy samples, suggesting the model captures disease-relevant neural features.
To further localize abnormalities and analyze sources of error, we compute channel-level disease
probabilities across trials (visualized as pie charts in Figure fc—d), and aggregate them into region-
level abnormality scores shown in the bar plots below. AD mice exhibit lower abnormality level in
regions such as CA3 and DG, while healthy controls show consistently low abnormality scores across
all regions. These findings highlight Lfp2vec’s ability to detect and localize pathological neural
signatures without supervision.
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Figure 4: Disease Prediction and Abnormality Study by Brain Regions. a) Classification per-
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Psenl) from healthy controls using different self-supervised models. Lfp2vec consistently outper-
forms SimCLR and BrainBERT. b) PCA projection of learned Lfp2vec embeddings shows distinct
clustering between diseased and healthy animals. c—d) Channel-wise predictions and region-level
abnormality scores for AD model mice (c) and healthy controls (d). Each dot represents a channel’s
prediction across trials. Bar plots below summarize region-wise abnormality scores, showing which
anatomical regions have higher deviation from normal activity. CA3 and DG show the least abnormal
signals in AD mice, while abnormality scores in healthy controls remain low across all regions.

6.5 Ablation Study

To isolate the benefits of our learning strat-
egy, we conducted an ablation study (Fig.
[) evaluating two key factors: the amount
of self-supervised pre-training on LFP data,
and the choice of model initialization. We
compared models initialized with random
weights against models initialized with
weights from the audio-pretrained wav2vec
2.0 model. Across all datasets, continued
self-supervised pre-training on LFP data
consistently improves downstream decod-
ing performance, with accuracy increasing
with the number of unlabeled trials. More
importantly, audio-initialized models sig-
nificantly outperformed randomly initial-
ized ones. For instance, on the Neuronexus
dataset, the audio-initialized model with
only a small amount of LFP pre-training
(6k trials) already matches the performance
of a randomly-initialized model trained on
over 400k trials. This demonstrates that
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Figure 5: Ablation Study. Brain region decoding accu-
racy across three datasets (Neuronexus, Allen, and IBL)
using different number of unlabeled pretraining trials
for a random session. Solid lines show accuracy from
models trained with self-supervised learning, initial-
ized either randomly (gray) or with pretrained weights
(blue). Pretraining consistently boosts the decoding per-
formance and improves with more trials, demonstrating

the benefit of combining SSL with pretrained models.

features learned from audio provide a strong inductive bias for modeling neural signals. The best per-
formance is consistently achieved by combining both strategies: initializing from an audio foundation
model and continuing self-supervised learning on a large corpus of in-domain LFP data.



7 Discussion

In this work, we presented Lfp2vec, a self-supervised model that learns anatomy-aware represen-
tations directly from raw local field potential (LFP) signals. Across three mouse datasets spanning
probe geometries and experimental paradigms, Lfp2vec outperforms traditional features such as
spectrograms and previous self-supervised models (SimCLR, BrainBERT) on hippocampal subregion
decoding under across-session and across-lab evaluation, suggesting the representations capture fine-
grained anatomical structure rather than session-specific correlations. Lightweight post-processing
via temporal aggregation and spatial smoothing further improves channel-level localization. We
additionally observe strong cross-domain transfer: Lfp2vec generalizes across laboratories and probe
types (Neuropixels to Neuronexus), and extends to a non-rodent setting with improved decoding
accuracy on macaque motor cortex recordings without redesigning the architecture. Finally, we
demonstrate that Lfp2vec embeddings support a downstream Alzheimer’s disease classification
task, indicating that anatomically grounded representations may also capture functionally relevant
biomarkers.

Despite these advances, several limitations remain. Our current study focuses on cortical and
hippocampal areas due to data availability. Future work will incorporate datasets with well-labeled
deep structures to test whether performance and embedding consistency persist in more heterogeneous
regions. Performance is also sensitive to preprocessing (IBL destriping), suggesting that end-to-end
artifact suppression or adaptive filtering could further improve robustness. Disease classification
results, while promising, are based on limited mouse samples and require larger studies to assess
clinical relevance in humans. Clinical translation would additionally require multi-site validation,
cross-species studies, and comparison with established biomarkers. Finally, our evaluation assumes
session-level splits; streaming or real-time use will likely require online adaptation.

Looking forward, we see several potential directions. Incorporating explicit spatial priors into the
SSL loss could further regularize embeddings and improve cross-probe generalization. Multi-modal
fusion with spiking data or imaging modalities may generate richer, interpretable representations
for both neuroscience and clinical applications. From a practical standpoint, the ability to perform
zero-shot localization in vivo opens the door to adaptive electrode placement and real-time feedback
in closed-loop neurophysiology experiments. These methods could also be applied in chronic or
clinical settings, such as locating physiological events preemptively (e.g. predict which electrodes the
seizure/sharp wave ripple occur), so we can do early discharges during closed loop stimulation.

8 Broader Impact

Our framework for self-supervised LFP representation learning has the potential to reduce reliance
on labor-intensive histology, enabling real-time electrode localization. It could support clinical
applications such as adaptive deep brain stimulation and closed-loop brain—computer interfaces with
targeted ultrasound neuromodulation. In safety-critical settings, incorrect localization could lead
to inappropriate stimulation targets, so clinical deployment should include calibrated uncertainty
estimates and human verification. For the ML community, Lfp2vec shows that transformer-based
time series foundation models can be successfully adapted to nonstationary, noisy neural recordings,
setting a new benchmark for self-supervised learning on biomedical signals. By releasing our code and
pretrained weights, we aim to spur further work on domain adaptation, spatiotemporal regularization,
and ethical deployment of ML methods for neural data.
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Supplementary Material

A Brain Region Decoding Results

In addition to the Allen dataset discussed in the main text, we also present extended decoding results
for the Neuronexus and IBL datasets (Figure [6). The confusion matrices show how each model
performs across different brain regions. Lfp2vec consistently shows more focused diagonal patterns,
indicating better region-specific accuracy across all datasets. While regions like the cortex and CA1
are reliably identified by all models, subfields such as CA2 and CA3 remain harder to distinguish.
This is likely due to the sparsity of region labels and their lower biological separability. Notably,
Lfp2vec maintains strong performance across all datasets. In the IBL dataset, all models perform well,
possibly because of sparser labeling and the absence of more challenging classes. These findings
support Lfp2vec’s ability to generalize across recording platforms with varied probe geometries and
signal characteristics.

B Baseline Settings

SimCLR We implement SimCLR [34] as a baseline for contrastive self-supervised learning. The
input to SimCLR is a 2D spectrogram derived from the raw LFP signals. For data augmentation,
we apply temporal masking, by randomly masking out segments along the time axis to encourage
temporal invariance. The encoder architecture is a convolutional neural network (CNN) followed
by a projection head composed of two linear layers with ReLU activation. During pretraining, we
use the NT-Xent loss (normalized temperature-scaled cross-entropy loss) to maximize agreement
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Figure 6: Decoding performance comparisons across models and datasets. Here we compare
confusion matrix for anatomical region classification across datasets (Neuronexus, Allen, IBL) and
models (spectrogram, SimCLR, BrainBERT, Lfp2vec). Each matrix shows predicted versus true
region labels. Across all datasets, Lfp2vec shows more concentrated diagonal patterns. The cortex
and CA1 regions are consistently well-identified across models, while hippocampal subfields such
as CA2 and CA3 remain more challenging. Lfp2vec generalizes better than baselines, maintaining
stable performance across datasets with diverse probe geometries and recording conditions.

between positive pairs generated from the same signal. After pretraining, we discard the projection
head and fine-tune an MLP classifier on top of the encoder for brain region decoding.

BrainBERT We adopt BrainBERT following the implementation in [35]], which adapts a transformer
architecture to 2D spectrograms from electrophysiology signal. The model is trained from scratch on
our dataset using masked token prediction as the pretraining task. After pretraining, the transformer
encoder is frozen, and we train an MLP classification head for downstream decoding. The MLP
consists of two fully connected layers with ReLU activation and dropout. We use Cross Entropy Loss
for classification and perform Bayesian optimization over the learning rate, dropout rate, and hidden
size of the MLP to select hyperparameters. This two-stage training mirrors the original BrainBERT
protocol while allowing adaptation to our LFP data.

C Hyperparameters Settings

Training Schedule. We use separate training schedules for pretraining and fine-tuning in Lfp2vec.
During self-supervised pretraining, the encoder is optimized using the AdamW optimizer with a
learning rate of le-5, a batch size of 32, and trained for 50 epochs. For fine-tuning, we use a learning
rate of 3e-5, keep the batch size at 32, and train for 10 epochs. We apply gradient accumulation
over 4 steps to simulate a larger effective batch size, and use a linear warmup schedule over 10% of
the total training steps. This specific set of hyperparameters are suitable for Allen dataset, and may
require further hyperparameter tuning for novel datasets.

Model Architecture. The model architecture consists of four main components: a convolutional
encoder, a product quantizer, a Transformer module, and an MLP classifier. The encoder is a 7-layer
1D convolutional stack with kernel sizes of (10, 3, 3, 3, 3, 2, 2) and strides of (5, 2, 2, 2, 2, 2, 2), each
followed by GELU activation and LayerNorm.
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Table 2: Hyperparameter Settings for Lfp2vec

Stage Hyperparameter Value(s) Description
Pretraining  Learning Rate 1 x 107°  Step size for encoder during self-supervised learning
Batch Size 32 Number of samples per training batch
Epochs 50 Number of training iterations
Optimizer AdamW  Optimization algorithm
Fine-tuning Learning Rate 3 x 107°  Step size for encoder during fine tuning
Batch Size 32 Number of samples per training batch
Epochs 10 Number of fine-tuning iterations
Optimizer AdamW  Optimization algorithm

Gradient Accumulation 4
Warmup Ratio 0.1

Batches per optimizer step
Fraction of steps for learning rate warmup

This produces a 512-dimensional latent representation at each time step. The quantizer discretizes
these features using Gumbel-softmax sampling. A diversity loss is applied to encourage full usage of
the codebooks. The Transformer module contains 12 layers with 12 attention heads, a hidden size of
768, a feedforward size of 3072, and a dropout rate of 0.1. Finally, the classifier is a two-layer MLP
with 256 hidden units and ReLU activation, mapping the output to one of five brain region classes.

15



Table 3: Model Hyperparameters for Lfp2vec

Component  Parameter Value
Encoder # Layers 7
Kernel Sizes (10, 3,3,3,3,2,2)
Strides 5,2,2,2,2,2,2)
Activation GELU
Normalization LayerNorm per layer
Output Dim 512
Quantizer Codebooks 2 x 320
Total Dimension 640
Sampling Method ~ Gumbel-softmax
Auxiliary Losses  Diversity Loss
Transformer # Layers 12
# Attention Heads 12
Hidden Size 768
Feedforward Size 3072
Dropout 0.1
Classifier Hidden Units 256
Activation ReLU
Output Classes 5 (brain regions)

D Post-processing

We post-process the model’s per-timepoint predictions p; . = p(y = ¢ | z;) by averaging class
probabilities across a temporal window. This acts as a lightweight denoising step that suppresses
local fluctuations in predictions. For each channel ¢, we compute a smoothed class score:

1
De = ( Z pt’,cﬂ'c)>
Wil S5,

where W, denotes a symmetric window around ¢. This temporal smoothing preserves softmax
semantics and can be interpreted as a local belief update under the assumption of short-term temporal
consistency. And we optionally incorporate a class prior 7. to bias predictions toward frequent classes.
7. may be uniform or estimated empirically from the training distribution. The final prediction is
obtained by taking the most probable class:

Y = arg mcaxpt,o

This smoothing strategy increases temporal coherence without introducing model parameters or
transition assumptions. For spatial smoothing, we apply majority voting across neighboring channels
within each timepoint. Specifically, each prediction ¢ . is replaced with the most frequent label
among a fixed spatial neighborhood N, around channel c. This encourages spatial contiguity and
reduces anatomically implausible local fluctuations.

The effectiveness of these post-processing strategies is summarized in Figure [/l The temporal
smoothing ensures that each channel receives a single, consistent anatomical label across trials. And
the spatial smoothing ensures that there are no discontinuities in channel prediction. As shown in
panels b, d, and f, this significantly reduces noise-driven fluctuations in the raw predictions and
produces cleaner anatomical maps, particularly in deeper structures where variability across trials is
most pronounced. The accuracy plots (a, c, €) confirm that this approach yields measurable improve-
ments, especially for Lfp2vec, which produces rich but sometimes inconsistent predictions. These
findings highlight that post-processing does not merely boost metrics, but selectively compensates for
dataset-specific and region-specific noise patterns inherent in neural data.
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Figure 7: Effect of post-processing on anatomical decoding across datasets and models.. a, c, e)
Classification accuracy before and after post-processing (temporal smoothing, spatial smoothing)
across datasets (Neuronexus, Allen, IBL) and models. Accuracy consistently improves or remains
stable after post-processing, with the largest gains seen for Lfp2vec. b, d, f) Visualization of predicted
anatomical labels across channels and trials for an example session, before and after post-processing,
compared to ground truth. Raw predictions exhibit spatial and temporal discontinuity, particularly
in deeper regions. Temporal and spatial smoothing align predictions more closely with anatomical
boundaries, reducing local inconsistencies and increasing interpretability.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
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acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our key contributions—self-
supervised LFP representation learning, zero-shot anatomical decoding, cross-lab and
cross-species generalization, and downstream task transfer, which are all substantiated by
the empirical and methodological results presented in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a dedicated discussion of limitations in Section 7, noting constraints
such as the focus on hippocampal regions, reliance on a specific preprocessing pipeline, and
the preliminary nature of the disease classification results.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present formal theoretical theorems or proofs; instead, it
provides algorithmic objectives and empirical validation without relying on novel theoretical
results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail preprocessing steps, model architecture, training protocols (data
splits, optimizer settings, early stopping), and post-processing procedures in Sections 4 and
5 and in the Supplementary Material, enabling full reproduction of our results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We commit to releasing all code, pretrained Lfp2vec weights, and instructions
for accessing public datasets; private dataset instructions and anonymized processing scripts
will be included in the github repo.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:Sections 4.1-4.4 and 5.2 provide comprehensive details on data splits
(train/val/test), hyperparameters (learning rates, batch sizes, dropout), optimizer settings
(AdamW), and early-stopping criteria, with full configuration available in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bars (standard deviations) on all quantitative plots (e.g.,
Figures 2, 3, 4), computed via repeated train/validation splits and model initializations, and
describe in the text that these capture variability across sessions and random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: While we detail model architectures, data splits, and training schedules, we do
not specify the GPU types, memory requirements, or total training time; this information
will be added in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
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10.

11.

Justification: All animal experiments were conducted under institutional IACUC or equiva-
lent approval at collaborating labs, and we adhere to community guidelines on data handling
and privacy for neural recordings.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include a dedicated “Broader Impact” paragraph outlining benefits for
real-time electrode localization and closed-loop neurostimulation, as well as neuroprivacy
risks and proposed mitigation strategies.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We advocate for controlled sharing of pretrained weights under ethical licenses,
rigorous consent protocols, and guidelines to prevent misuse in surveillance or coercive
applications.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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12.

13.

14.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:

Justification: While we cite all public datasets and software packages, we have not yet
specified the exact licenses; these will be clarified in the final manuscript and supplementary.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We commit to releasing the Lfp2vec code, pretrained model checkpoints, and
preprocessing scripts, each accompanied by usage documentation in our GitHub repository.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our study involves only animal electrophysiology recordings and does not
include human or crowdsourced experiments.

Guidelines:
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16.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects are involved; all animal work was conducted under
appropriate institutional animal care and use approvals.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not use large language models in our methodology; all components are
self-supervised or transformer-based models applied to electrophysiology data.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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