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Abstract
Offline reinforcement learning (RL) is a learn-
ing paradigm where an agent learns from a fixed
dataset of experience. However, learning solely
from a static dataset can limit the performance due
to the lack of exploration. To overcome it, offline-
to-online RL combines offline pre-training with
online fine-tuning, which enables the agent to fur-
ther refine its policy by interacting with the envi-
ronment in real-time. Despite its benefits, existing
offline-to-online RL methods suffer from perfor-
mance degradation and slow improvement dur-
ing the online phase. To tackle these challenges,
we propose a novel framework called Ensemble-
based Offline-to-Online (E2O) RL. By increasing
the number of Q-networks, we seamlessly bridge
offline pre-training and online fine-tuning without
degrading performance. Moreover, to expedite on-
line performance enhancement, we appropriately
loosen the pessimism of Q-value estimation and
incorporate ensemble-based exploration mecha-
nisms into our framework. Experimental results
demonstrate that E2O can substantially improve
the training stability, learning efficiency, and final
performance of existing offline RL methods dur-
ing online fine-tuning on a range of locomotion
and navigation tasks, significantly outperforming
existing offline-to-online RL methods.

1. Introduction
Reinforcement learning (RL) has shown remarkable success
in solving complex decision-making problems, from playing
virtual games (Vinyals et al., 2019; Silver et al., 2017; 2018)
to controlling tangible robots (Mnih et al., 2015; Tsividis
et al., 2021; Schrittwieser et al., 2020). In RL, an agent
learns to maximize the cumulative return from large amount
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of experience data obtained by interacting with an environ-
ment. However, in many real-world applications, collecting
experience data can be expensive, time-consuming, or even
dangerous. This challenge has motivated the development
of offline RL, where an agent learns from a fixed dataset of
experience collected prior to learning (Fujimoto et al., 2019;
Wu et al., 2019).

Offline RL has several advantages over online RL, including
the ability to reuse existing data, the potential for faster learn-
ing, and the possibility of learning from experiences that
are too risky or costly to collect online (Silver et al., 2018).
However, offline RL also poses significant challenges, such
as the potential for overfiting to the training data and the dif-
ficulty of ensuring that the learned policy is safe and optimal
in the real-world environment. To address these challenges,
offline-to-online RL has emerged as an attractive research
direction. This approach combines offline pre-training with
online fine-tuning using RL, with the goal of learning from
a fixed dataset of offline experience and then continuing
to learn online in the real-world environment (Nair et al.,
2020; Lee et al., 2022). Offline-to-online RL has the po-
tential to address the limitations of offline RL, such as the
sub-optimality of the learned policy. Furthermore, starting
with an offline RL policy enables offline-to-online RL to
achieve strong performance using fewer online environment
samples, compared to collecting large amounts of training
data by rolling out policies from scratch.

Prior researches have shown that directly initializing an
agent with an offline RL method for online fine-tuning can
impede efficient policy improvement due to pessimistic
learning (Nair et al., 2020; Zhao et al., 2022). A naive
solution to this problem is directly removing the pessimistic
term during online training. However, this approach can
lead to unstable learning or degraded performance in that
the distributional shift between offline datasets and online
interactions creates large initial temporal difference errors,
causing the oblivion of information learned from offline RL
(Lee et al., 2022; Mark et al., 2022). Existing offline-to-
online RL methods have attempted to address these chal-
lenges through implicit policy constraints (Nair et al., 2020),
filtering offline data used for online fine-tuning (Lee et al.,
2022; Mao et al., 2022; Mark et al., 2022), adjusting policy
constraint weights carefully (Zhao et al., 2022), or training
more online policies (Zhang et al., 2023). Nevertheless,
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these methods still face performance degradation in some
tasks and settings, and their performance improvement in
the online phase is limited.

Taking inspiration from leveraging Q-ensembles in offline
RL (An et al., 2021), we propose a novel approach to ad-
dress the challenges of offline-to-online RL. Specifically, we
conduct comprehensive experiments by discarding the pes-
simistic term in existing offline RL algorithms and increas-
ing the number of Q-networks in both offline and online
phases. We find that Q-ensembles help to alleviate unsta-
ble training and performance degradation, and can serve
as a more flexible pessimistic term by encompassing vari-
ous target computation and exploration methods during the
online fine-tuning phase. Based on this discovery, we pro-
pose an Ensemble-based framework for Offline-to-Online
RL (E2O) that bridges offline pre-training and online fine-
tuning. We demonstrate the effectiveness of E2O framework
by instantiating it on existing offline RL algorithms (Kumar
et al., 2020; Chen et al., 2022) across diverse benchmark
tasks. The main contributions of this work are summarized
as follows:

• We demonstrate the effectiveness of Q-ensembles in
bridging the gap between offline pre-training and on-
line fine-tuning, providing a solution for mitigating the
common problem of unstable training and performance
drop.

• We propose a unified framework E2O for offline-to-
online RL, which enables a wide range of offline RL
algorithms to transition from pessimistic offline pre-
training to optimistic online fine-tuning, leading to
stable and efficient performance improvement.

• We empirically validate the effectiveness of E2O on
various benchmark tasks, including locomotion and
navigation tasks, and verify that E2O achieves state-
of-the-art performance in comparison to all baseline
methods.

2. Related Works
Offline RL Offline RL algorithms focus on training RL
agents with pre-collected datasets. However, these algo-
rithms face the challenge of distribution shift between the
behavior policy and the policy being learned, which can
cause issues due to out-of-distribution (OOD) actions sam-
pled from the learned policy and passed into the learned
critic. To mitigate this problem, prior methods constrain
the learned policy to stay close to the behavior policy via
explicit policy regularization (Fujimoto et al., 2019; Kumar
et al., 2019; Wu et al., 2019), via implicit policy constraints
(Peng et al., 2019; Siegel et al., 2020; Kostrikov et al., 2021;
Zhou et al., 2021; Chen et al., 2022), by leveraging auxil-
iary behavioral cloning losses (Fujimoto & Gu, 2021), by

penalizing the Q-value of OOD actions to prevent selecting
them (Kumar et al., 2020; Lyu et al., 2022; An et al., 2021;
Bai et al., 2022; Yang et al., 2022), or through model-based
training with conservative penalties (Yu et al., 2020; Ki-
dambi et al., 2020; Argenson & Dulac-Arnold, 2020; Yu
et al., 2021). Among the above methods, we choose several
representative algorithms such as CQL (Kumar et al., 2020)
and LAPO (Chen et al., 2022) to be the base methods in
the offline component of our framework due to their wide
applicability and superior performance.

Offline-to-Online RL Offline-to-online RL refers to the
process of improving the well-trained offline policy by incor-
porating online interactions. Directly applying pre-trained
offline policy to the online fine-tuning stage may lead to poor
performance due to excess conservatism (Nair et al., 2020;
Lee et al., 2022; Zhao et al., 2022). To adapt offline RL
algorithms to the online environment, several modifications
are required. AWAC (Nair et al., 2020) is the first algorithm
proposed to perform well in the offline-to-online RL setting,
which forces the policy to imitate actions with high advan-
tage estimates. AW-Opt (Lu et al., 2021) improves upon
AWAC by incorporating positive sample filtering and hybrid
actor-critic exploration during the online stage. Balanced
Replay (Lee et al., 2022) trains an additional neural network
to prioritize samples in order to effectively use new data
as well as near-on-policy samples from the offline dataset.
PEX (Zhang et al., 2023) proposes a policy expansion ap-
proach for offline-to-online RL, which trains more policies
from scratch in the online phase and combine them with the
pre-trained offline policy to make decisions jointly. A con-
current work with us is O3F (Mark et al., 2022), which also
aims to eliminate pessimism in online learning. However,
our research takes a more holistic perspective by connecting
the pessimistic offline learning and optimistic online phases
through ensemble modeling, proposing a more applicable
framework that encapsulates the implementation of O3F as
a special case.

Q-Ensembles in RL Q-Ensemble methods have been
widely utilized to enhance the performance of RL (Van Has-
selt et al., 2016; Osband et al., 2016; Anschel et al., 2017;
Fujimoto et al., 2018; Ciosek et al., 2019; Lan et al., 2020;
Chen et al., 2021; Lee et al., 2021). TD3 (Fujimoto et al.,
2018) leverages an ensemble of two value functions and
uses their minimum for computing the target value during
Bellman error minimization. REDQ (Chen et al., 2021)
minimizes over a random subset of Q-functions in the target
to reduce over-estimation bias. For offline RL, a number of
works have extended this to propose backing up minimums
or lower confidence bound estimates over larger ensembles
(Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019;
Agarwal et al., 2020; An et al., 2021; Bai et al., 2022; Yang
et al., 2022). In particular, EDAC (An et al., 2021) achieves
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impressive performance by simply increasing the number
of Q-networks along with the clipped Q-learning and fur-
ther proposes to reduce the required number of ensemble
networks through ensemble gradient diversification for the
purpose of reducing computational cost. PBRL (Bai et al.,
2022) and RORL (Yang et al., 2022) both employ an ensem-
ble of bootstrapped Q-functions for uncertainty quantifica-
tion and perform pessimistic updates to penalize Q functions
with high uncertainties. Recent work (Ghasemipour et al.,
2022) advocates for using independently learned ensembles
without sharing target values and optimizing a policy based
on the lower confidence bound of predicted action values. In
our work, we discover that Q-ensembles are highly effective
in addressing the performance degradation that occurs in
the offline-to-online setting, and we advocate for using Q-
ensembles for both offline and online algorithms to achieve
steady and sample-efficient offline-to-online RL.

Exploration Mechanisms Various exploration ap-
proaches have been proposed to accelerate the efficiency of
online training in recent years. These methods can typically
be divided into two main categories following (Hao et al.,
2023): uncertainty-oriented exploration and intrinsic
motivation-oriented exploration. The former employs
heuristic design to formulate various intrinsic motivations
for exploration, based on factors such as visitation count
(Bellemare et al., 2016; Ostrovski et al., 2017; Tang
et al., 2017), curiosity (Savinov et al., 2018), information
gain (Houthooft et al., 2016), etc. Uncertainty-oriented
exploration methods adopt the principle of optimism in
the face of uncertainty and use Q-ensembles to encourage
agents to explore areas with higher uncertainty (Badia et al.,
2020; Ecoffet et al., 2021; Lee et al., 2021). In this paper,
we investigate uncertainty-based exploration mechanisms
under the unified framework of Q-ensembles to enhance the
performance during the online fine-tuning phase.

3. Why Can Q-Ensembles Help
Offline-to-Online RL?

To get a better understanding of our ensemble-based frame-
work, we begin with examples that highlight the advantages
of Q-ensembles for offline-to-online RL. A natural start-
ing point for offline-to-online RL is to simply initialize the
agent with the one trained by an existing offline RL method
and then directly perform online fine-tuning without us-
ing the offline dataset. However, this approach can hinder
efficient online performance improvement due to the inher-
ent pessimism of the offline learning paradigm (Lee et al.,
2022; Mark et al., 2022). To support this claim, we present
CQL (Kumar et al., 2020) as a representative and conduct
preliminary experiments on the D4RL Walker2d-medium-
expert-v2 dataset. The learning curve of CQL during online
fine-tuning in Figure 1(a) shows that CQL can maintain the

offline performance at the initial stage of online fine-tuning
and steadily improve during the training process. This can
be attributed to the use of pessimistic Q-functions, which en-
ables the agent to visit states resembling those in the offline
dataset and maintain pessimistic towards unseen actions
during the initial stage of online fine-tuning. However, the
pessimistic objective impedes proper exploration in the on-
line stage and restrict the agent from efficiently improving
its performance (Lee et al., 2022; Mark et al., 2022).

To tackle the aforementioned issue of limited exploration,
one might be tempted to remove the conservative estimation
component in order to reduce the conservatism of the learn-
ing process. However, as shown in Figure 1(a), this naive
solution leads to unstable training or performance degrada-
tion when switching from CQL to Soft Actor-Critic (SAC)
(Haarnoja et al., 2018) during online fine-tuning, which has
also been reported in previous offline-to-online RL works
(Lu et al., 2021; Nair et al., 2020; Lee et al., 2022; Mark
et al., 2022). The reason is that SAC lacks accurate estima-
tion of Q-values for unknown state-action pairs. Without
the conservative constraints of CQL, the Q-values tend to
be overestimated, leading to policy misguidance.

So is it possible to find a method that retains suitable pes-
simistic constraints to mitigate performance degradation,
while also tailoring these constraints to be more conducive
to exploration during the online phase, rather than being
as conservative as traditional offline RL algorithms such
as CQL? Inspired by increasing the number of Q-networks
in (An et al., 2021), we introduce Q-ensembles and set the
number of Q functions in CQL and SAC to N. Specifically,
the target Q value is estimated by selecting the minimum
value from all the Q-ensembles. We refer to these interme-
diate methods as CQL-N and SAC-N. Figure 1(a) shows the
effectiveness of using SAC-N for online fine-tuning of an
offline policy pre-trained with CQL-N. Surprisingly, after
incorporating Q-ensembles, we observe that the training
becomes more stable and performance drop is no longer
observed when switching to online fine-tuning. Moreover,
this constraint method not only enhances the final perfor-
mance of the offline stage, but also improves the efficiency
of online learning.

To comprehend the reason behind how Q-ensembles help
alleviate unstable training and performance drop, we ex-
amine the averaged Q-values over the dataset of different
algorithms in Figure 1(b). We observe that if we directly
remove the pessimistic constraints during the online fine-
tuning stage (i.e. CQL→SAC), the estimation of the Q-
value will fluctuate violently, resulting in unstable training
and performance drop, as depicted in Figure 1(a). However,
with our integration of Q-ensembles, SAC-N still has the
ability to conservatively estimate, and the variation range of
Q-value in CQL-N→SAC-N is much smaller than that of
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Figure 1. (a) Normalized return curves of some motivated examples while performing online fine-tuning with offline policy trained on
Walker2d-medium-expert-v2 dataset. (b) Comparison of the average Q-values of SAC and SAC-N. (c) Histograms of the distances
between the actions from each method (CQL, SAC-N, and a random policy) and the actions from the dataset.

CQL→SAC. This phenomenon indicates that appropriately
retaining the conservative capabilities is crucial in avoiding
unstable training and performance drop.

We have seen that both SAC-N and CQL can prevent perfor-
mance drop during online fine-tuning, but why does SAC-
N exhibit better performance compared to CQL? To an-
swer this question, we analyze the distance between the
actions selected by each method and the actions in the
dataset, as shown in Figure 1(c). Specifically, we mea-
sure E(s,a)∼D,â∼πθ(·|s)

[
∥â− a∥22

]
for SAC-N, CQL and

a random policy by performing online fine-tuning on the
Walker2d-medium-expert-v2 dataset. Our findings reveal
that SAC-N has a wider range of action choices compared
to CQL, and a more diverse set of actions can lead to im-
proved performance, as stated in previous exploration meth-
ods (Badia et al., 2020; Ecoffet et al., 2021; Lee et al., 2021).
Therefore, we can incorporate Q-ensembles into existing
offline RL algorithms like CQL, and discard the original
conservative term designed for offline algorithms during the
online phase to improve the online learning efficiency.

To summarize, our primary empirical analysis indicates the
following observation:

Q-ensembles can maintain certain conservative ca-
pabilities to mitigate unstable training and perfor-
mance drop, functioning as a more versatile con-
straint method for exploring more diverse actions
during online fine-tuning compared to offline RL
algorithms such as CQL.

With Q-ensembles in hand, we can further improve on-
line learning efficiency by flexibly leveraging various ap-
proaches based on this mechanism, which will be presented
in our proposed framework in the following section.

4. Ensemble-based Offline-to-Online
Reinforcement Learning

Based on the empirical observations discussed earlier, we
propose our Ensemble-based Offline-to-Online (E2O) RL
Framework. In this section, we first present merits of Q-
ensemble using additional empirical results and then pro-
gressively introduce more ensemble-based mechanisms into
our framework. Although each individual design decision in
E2O may seem relatively simple, their specific combination
outperforms baselines in terms of training stability, learning
efficiency and final performance.

4.1. Q-Ensembles

As discussed in Section 3, Q-ensembles can bridge offline
and online phases to help pre-trained offline agents perform
stable online fine-tuning. In this section, we present com-
prehensive empirical results to further verify its advantages.

Given an offline RL algorithm named OfflineRL, we intro-
duce Q-ensembles to get OfflineRL-N, indicating that the
algorithm uses N Q-networks and takes the minimum value
of all the Q-networks in the ensemble to compute the target.
With the pre-trained OfflineRL-N agent, we load it as the
initialization of the online agent and remove the originally
designed pessimistic term (if possible) to obtain OnlineRL-
N. Then OnlineRL-N is trained online. In all methodol-
ogy sections, we instantiate OfflineRL as CQL, and thus
OfflineRL-N refers to CQL-N, and OnlineRL-N refers to
SAC-N, as described in Section 3. To comprehensively ver-
ify the effectiveness of Q-ensembles in stabilizing training
process and mitigating performance drop, we consider three
MuJoCo locomotion tasks (Todorov et al., 2012): HalfChee-
tah, Hopper, and Walker2d from the D4RL benchmark suite
(Fu et al., 2020). Specifically, we consider the medium,
medium-replay and medium-expert datasets, as in typical
real-world scenarios, we rarely use a random policy or have
an expert policy for system control.
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Figure 2. Aggregated learning curves of different offline-to-online
RL approaches on all considered MuJoCo datasets.

Figure 2 shows the aggregated normalized return across all
nine datasets. Consistent with the results of the previous
illustrative experiment, online training of OfflineRL is sta-
ble but leads to slower asymptotic performance. Directly
switching to OnlineRL causes unstable training process and
performance drop. In contrast, OfflineRL-N → OnlineRL-N
no longer experiences performance collapse after switching
to online fine-tuning, and the training process is relatively
stable. Additionally, OfflineRL-N → OnlineRL-N achieves
better fine-tuned performance than OfflineRL → OfflineRL.

Although the ensemble-based method OfflineRL-N →
OnlineRL-N has made certain improvements compared to
existing method OfflineRL → OfflineRL, it still fails to be
improved rapidly in the online stage compared with stan-
dard online RL algorithms. Therefore, we shift our focus
to analyzing whether we can appropriately loosen the pes-
simistic estimation of Q-values in the online phase to further
improve learning efficiency while ensuring stable training.

4.2. Loosing Pessimism

In the previous section, we employ OnlineRL-N as our pri-
mary method for the online phase. This method selects the
minimum value of N parallel Q-networks as the Bellman
target to enforce their Q-value estimates to be conservative.
While OfflineRL-N → OnlineRL-N has achieved satisfactory
performance, selecting the minimum of N Q-networks in
the ensemble to compute the Q-target is still too conserva-
tive for online training, compared with standard online RL
algorithms without pessimistic constraint. Consequently,
while ensuring that the online training process is stable, we
consider to appropriately loosen the pessimistic estimation
of Q-values by modifying the Q-target computation method
in OnlineRL-N to efficiently improve online performance.

Specifically, we compare several Q-target computation meth-
ods. (a) MinQ is what we use in OnlineRL-N, where the
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Figure 3. Aggregated learning curves of OnlineRL-N using dif-
ferent Q-target computation methods on all considered MuJoCo
datasets.

minimum value of all the Q-networks in the ensemble is
taken to compute the target. (b) MeanQ leverages the aver-
age of all the Q-values to compute the target. (c) REM is a
method originally proposed to boost performance of DQN
in the discrete-action setting, which uses the random convex
combination of Q-values to compute the target (Agarwal
et al., 2020). It is similar to ensemble average (MeanQ),
but with more randomization. (d) RandomMinPair uses a
minimization over a random subset 2 of the N Q-functions,
which is proposed in prior methods (Chen et al., 2021). (e)
WeightedMinPair computes the target as the expectation
of all the RandomMinPair targets, where the expectation is
taken over all N -choose-2 pairs of Q-functions. Random-
MinPair can be considered as a uniform-sampled version of
WeightedMinPair.

Figure 3 presents the results of using different Q-target com-
putation methods in the online phase based on OnlineRL-N.
With MinQ, which is originally used in OnlineRL-N, as the
bound, both MeanQ and REM exhibit poor performance,
while RandomMinPair and WeightedMinPair outperform
the other candidates with their efficient and stable online
learning process. As the WeightedMinPair method is more
stable on many datasets than the RandomMinPair method,
we adopt the WeightedMinPair. Proceeding here, we refer to
this intermediate algorithm as OnlineRL-N + WeightedMin-
Pair. Despite the superior online fine-tuning performance
of this approach, we continue to explore ways to further
improve the online learning efficiency by leveraging the
ensemble characteristics.

4.3. Optimistic Exploration

In the previous sections, we use pessimistic learning to
obtain a satisfactory start point for online learning and grad-
ually loosen the pessimistic constraint to improve online
learning. In this section, we investigate the use of ensemble-
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Figure 4. Aggregated learning curves of OnlineRL-N + Weight-
edMinPair using different exploration methods on all considered
MuJoCo datasets.

based exploration methods to further improve performance
and learning efficiency.

Specifically, we compare three ensemble-based exploration
methods. (a) Bootstrapped DQN (Osband et al., 2016) uses
ensembles to address some shortcomings of alternative pos-
terior approximation schemes, whose network consists of
a shared architecture with N bootstrapped “heads” branch-
ing off independently. (b) OAC (Ciosek et al., 2019) pro-
poses an off-policy exploration strategy that adjusts to maxi-
mize an upper confidence bound to the critic, obtained from
an epistemic uncertainty estimate on the Q-function com-
puted with the bootstrap through Q-ensembles. (c) SUN-
RISE (Lee et al., 2021) presents ensemble-based weighted
Bellman backups that improve the learning process by re-
weighting target Q-values based on uncertainty estimates.

The results of different exploration methods is presented
in Figure 4. Among them, OnlineRL-N + WeightedMin-
Pair + SUNRISE achieves the highest aggregated return.
Consequently, we turn OnlineRL-N + WeightedMinPair +
SUNRISE into our final ensemble-based framework E2O.
Algorithm 1 summarizes the offline and online procedures of
E2O. Note that as many offline RL algorithms can integrate
ensemble technique in Q-functions, E2O can thus serve as
a common plugin. We will further show the plug-and-play
character of E2O by applying OfflineRL-N → OnlineRL-N
+ WeightedMinPair + SUNRISE on different offline RL
algorithms in the experiments. For a comprehensive view of
the detailed results of this section, appending the combina-
tion of RandomMinPair and different exploration methods,
please refer to Appendix D.4.

5. Experiments
In this section, we present the empirical evaluations of our
E2O framework. We begin with locomotion tasks from

D4RL (Fu et al., 2020) to measure the training stability,
learning efficiency and final performance of E2O by com-
paring it with several state-of-the-art offline-to-online RL
methods. Additionally, we evaluate E2O on more challeng-
ing navigation tasks to verify its versatility.

5.1. Locomotion Tasks

We first evaluate our E2O framework on MuJoCo (Todorov
et al., 2012) locomotion tasks, i.e., HalfCheetah, Walker2d,
and Hopper from the D4RL benchmark suite (Fu et al.,
2020). To demonstrate the applicability of E2O on various
suboptimal datasets, we use three dataset types: medium,
medium-replay, and medium-expert. Specifically, medium
datasets contain samples collected by a medium-level pol-
icy, medium-replay datasets include all samples encoun-
tered while training a medium-level agent from scratch, and
medium-expert datasets consist of samples collected by both
medium-level and expert-level policies. We pre-train the
agent for 1M training steps in the offline phase and perform
online fine-tuning for 250K environmental steps. Additional
experimental details can be found in Appendix C.

Comparative Evaluation We consider the following
methods as baselines.

• AWAC (Nair et al., 2020): an offline-to-online RL
method that forces the policy to imitate actions with
high advantage estimates in the dataset.

• Balanced Replay (Lee et al., 2022): an offline-to-
online RL method that trains an additional network to
prioritize samples in order to effectively use new data
as well as near-on-policy samples in the offline dataset.

• PEX (Zhang et al., 2023): a recent offline-to-online RL
method utilizing an offline policy within a policy set,
expanding it with additional policies, and constructing
a categorical distribution based on their values at the
current state to select the final action.

• IQL (Kostrikov et al., 2021): a representative RL algo-
rithm demonstrating superior offline performance and
enabling seamless online fine-tuning through direct
parameter transfer.

• SAC (Haarnoja et al., 2018): a SAC agent trained from
scratch. This baseline highlights the benefit of offline-
to-online RL, as opposed to fully online RL, in terms
of learning efficiency.

• Scratch: training SAC-N + WeightedMinPair + SUN-
RISE online from scratch without offline pre-training,
as opposed to our E2O framework.

Figure 5 shows the performance of the E2O-CQL method
(E2O instantiated on CQL) and baseline methods during
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Figure 5. Online learning curves of different methods across five seeds on MuJoCo locomotion tasks. The solid lines and shaded regions
represent mean and standard deviation, respectively.

the online fine-tuning phase. Compared with pure online
RL methods such as SAC and Scratch, E2O-CQL starts
with a well-performed policy and learns quickly and stably,
proving the benefits of offline pre-training. For offline RL
methods, IQL shows limited improvement as complete pes-
simistic training is no longer suitable for online fine-tuning,
while E2O-CQL displays fast fine-tuning. Among other
offline-to-online RL methods, the performance of AWAC
is limited by the quality of the dataset due to the operation
of training its policy to imitate actions with high advantage
estimates, resulting in slow improvement during the online
phase. While Balanced Replay can attain performance sec-
ond only to E2O-CQL on some datasets, it also suffers from
unstable training. PEX experiences severe performance
drop during the initial stage of online fine-tuning on several
datasets as the new policies trained in the online phase are
random at the beginning and have a negative impact on the
training stability. Overall, our E2O-CQL method outper-
forms the baseline methods in terms of training stability,
learning efficiency and final performance on most tasks.

5.2. Navigation Tasks

We further verify the effectiveness of E2O on D4RL naviga-
tion task Antmaze (Fu et al., 2020) by integrating another
offline RL algorithm LAPO (Chen et al., 2022). In detail,
we specialize E2O as LAPO-N + WeightedMinPair + SUN-
RISE, i.e., E2O-LAPO. For the Antmaze task, we consider
three types of mazes: umaze, medium and large mazes, and
two data compositions: play and diverse. The data composi-
tions vary in their action coverage of different regions of the
state space and the sub-optimality of the behavior policy.

Comparative Evaluation Since Antmaze is a more chal-
lenging task, most offline RL methods struggle to achieve
satisfactory results in the offline phase, we only compare our
E2O-LAPO method on this task with two effective baseline
methods, IQL and PEX.

Figure 6 presents the performance of E2O-LAPO and base-
line methods during the online fine-tuning phase. First,
LAPO demonstrates better offline performance than IQL,
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Figure 6. Online learning curves of different methods across five seeds on Antmaze navigation tasks. The solid lines and shaded regions
represent mean and standard deviation, respectively.

providing a higher starting point for the online phase, espe-
cially in the umaze and medium maze environments where
it almost reaches the performance ceiling. In the online
stage, IQL shows slower asymptotic performance due to of-
fline policy constraints. Building upon IQL, PEX enhances
the degree of exploration by incorporating additional new
policies trained from scratch, but the strong randomness
of these policies in the early online stage causes perfor-
mance drop. Note that although both IQL and PEX share
the same starting point, PEX exhibits more severe perfor-
mance drop on most tasks. By employing our proposed E2O
framework, we demonstrate that E2O-LAPO can not only
enhance the offline performance, but also facilitate stable
and rapid performance improvement while maintaining the
offline performance without degradation. This approach
enables the offline agent to quickly adapt to the real-world
environment, providing efficient and effective online fine-
tuning. Additionally, we directly leverage LAPO with two
Q networks for offline-to-online training and use the com-
parison with our E2O-LAPO method to further verify the
effectiveness of our E2O framework. The results including
some ablation studies can be found in Appendix D.

6. Conclusions and Limitations
In this work, we have demonstrated that Q-ensembles can be
efficiently leveraged to alleviate unstable training and perfor-
mance drop, and serve as a more flexible constraint method
for online fine-tuning in various settings. Based on this
observation, we propose Ensemble-based Offline-to-Online

(E2O) RL Framework, which enables many pessimistic of-
fline RL algorithms to perform optimistic online fine-tuning
and improve their performance efficiently while maintain-
ing stable training process. The proposed framework is
straightforward and can be combined with many existing
offline RL algorithms. We instantiate E2O with different
combinations and conducted experiments on a wide range
of tasks to demonstrate its effectiveness.

Despite the promising results, there are some limitations to
our work that should be acknowledged. First, although E2O
is designed to be a flexible plugin for various offline RL al-
gorithms, it may require further modifications or fine-tuning
to achieve optimal performance in different contexts. For in-
stance, adjusting the weight coefficient of the BC item may
result in better online fine-tuning performance for TD3+BC
(Fujimoto & Gu, 2021). Second, the computational cost of
using ensembles and uncertainty estimates may limit the
scalability of E2O to large-scale problems. Future work
could investigate ways to reduce the computational over-
head by using deep ensembles (Fort et al., 2019) or ensem-
ble distillation (Hinton et al., 2015) while maintaining the
performance benefits of ensembles and uncertainty estima-
tion by using Bayesian compression (Louizos et al., 2017)
or variational approximations (Kingma & Welling, 2013).
These methods could make E2O more scalable and prac-
tical for large-scale problems and real-world applications,
enabling the development of more efficient and reliable
offline-to-online RL systems.
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A. Pseudocode

Algorithm 1 E2O: Ensemble-based Offline-to-Online RL Framework
Input: Offline dataset Doffline, offline RL algorithm OfflineRL
Output: Offline to online learning algorithm
// Offline Phase
Turning offline RL algorithm OfflineRL into OfflineRL-N with integration of Q-ensembles.
Training OfflineRL-N using Doffline

// Online Phase
Removing original pessimistic term in OfflineRL (if possible) and thus turn OfflineRL-N to OnlineRL-N
Setting the Q-target computation method to WeightedMinPair and obtain OnlineRL-N + WeightedMinPair
Introducing SUNRISE to encourage exploration and obtain OnlineRL-N + WeightedMinPair + SUNRISE
return OfflineRL-N → OnlineRL-N + WeightedMinPair + SUNRISE

B. Environment Settings
MuJoCo Gym We investigate three MuJoCo locomotion tasks, namely HalfCheetah, Walker2d, and Hopper (Todorov
et al., 2012). The goal of each task is to move forward as fast as possible, while keeping the control cost minimal. For
each task, we consider four types of datasets. The random datasets consist of policy rollouts generated by random policies.
The medium datasets contain rollouts from medium-level policies. The medium-replay datasets encompass all samples
collected during the training of a medium-level agent from scratch. In the case of the medium-expert datasets, half of the
data comprises rollouts from medium-level policies, while the other half consists of rollouts from expert-level policies. In
this study, we exclude the random and the expert datasets, as in typical real-world scenarios, we rarely use a random policy
or have an expert policy for system control. We utilize the v2 version of each dataset.

Antmaze We investigate the Antmaze navigation tasks that involve controlling an 8-DoF ant quadruped robot to navigate
through mazes and reach a desired goal. The agent receives sparse rewards of +1/0 based on whether it successfully
reaches the goal or not. We study each method using the following datasets from D4RL (Fu et al., 2020): large-diverse,
large-play, medium-diverse, medium-play, umaze-diverse, and umaze. The difference between diverse and play datasets is
the optimality of the trajectories they contain. The diverse datasets consist of trajectories directed towards random goals
from random starting points, whereas the play datasets comprise trajectories directed towards specific locations that may not
necessarily correspond to the goal. We use the v1 version of each dataset.

C. Experiment Details
Baselines For CQL, SAC and AWAC, we use the implementation provided by (Seno & Imai, 2022): https://github.
com/takuseno/d3rlpy with default hyperparameters. For CQL-N and SAC-N, we keep the default setting from the
CQL and SAC experiments other than the ensemble size N. For Balanced Replay (BR), as the official implementation
provided by the author of (Lee et al., 2022) does not contain the offline pre-training part, we implement Balanced
Replay based on d3rlpy. For LAPO-N, we extend the official implementation provided by the author of (Chen et al.,
2022): https://github.com/pcchenxi/LAPO-offlineRL to easily adjust the size of ensemble. For PEX and
IQL, we use the original implementation provided by the author of (Zhang et al., 2023): https://github.com/
Haichao-Zhang/PEX. While we do not utilize the code provided by the original paper for certain methods, some of the
our results obtained using the employed code demonstrate superior performance compared to those reported in the original
paper. Moreover, when compared to the results provided in the original paper, our proposed E2O framework consistently
outperforms them. We list the hyperparameters for these methods in Table 1.

Offline Pre-training For all experiments, we conduct each algorithm for 1M training steps with 5 different seeds,
following the common practice in offline RL works. Specifically, for the D4RL Antmaze tasks, IQL and PEX apply a
reward modification by subtracting 1 from all rewards, as described in https://github.com/tinkoff-ai/CORL/
issues/14. This modification effectively introduces a survival penalty that encourages the agent to complete the maze as
quickly as possible. Additionally, LAPO multiplies all rewards by 100, which also enhances the distinction between the
rewards for completing tasks and the rewards for unfinished tasks. These reward transformation techniques prove to be

https://github.com/takuseno/d3rlpy
https://github.com/takuseno/d3rlpy
https://github.com/pcchenxi/LAPO-offlineRL
https://github.com/Haichao-Zhang/PEX
https://github.com/Haichao-Zhang/PEX
https://github.com/tinkoff-ai/CORL/issues/14
https://github.com/tinkoff-ai/CORL/issues/14
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Table 1. Hyperparameters used in the D4RL MuJoCo experiments

Hyperparameters CQL-N SAC-N LAPO-N AWAC BR PEX IQL

policy learning rate 3e-5 3e-5 2e-4 3e-4 3e-5 3e-4 3e-4
critic learning rate 3e-4 3e-4 2e-4 3e-4 3e-4 3e-4 3e-4
alpha learning rate 1e-4 1e-4 - - 3e-4 - -
VAE learning rate - - 2e-4 - - - -
value learning rate - - - - - 3e-4 3e-4
ensemble size 10 10 10 2 5 2 2
batch size 256 256 512 1024 256 256 256

crucial for achieving desirable performance on the Antmaze tasks.

Online Fine-tuning For all experiments, we report the online fine-tuning performance over 250K timesteps with 5 seeds.
Specifically, our framework loads all pre-trained networks, including the policy network, ensemble Q network and ensemble
target Q network, while appending the necessary temperature hyperparameter for SAC to facilitate further fine-tuning. In the
Antmaze environment, we maintain the same reward modification as the offline phase during training but keep the rewards
unchanged during evaluation. To ensure a fair comparison with IQL and PEX, which utilize offline data, we also load LAPO
and E2O-LAPO with offline data for online fine-tuning.

D. Additional Results
In this section, we provide more experiments and detailed results to help understand our proposed E2O framework more
comprehensively.

D.1. Ablation on Offline Data

We conduct an ablation study to investigate the impact of using offline data during the online fine-tuning phase for all
MuJoCo locomotion tasks, as shown in Figure 7. Our results show that E2O-CQL buffer, which initializes the online
buffer with offline data, exhibits slow performance improvement, while discarding the offline data allows it to achieve
higher sample efficiency. This suggests that although many offline-to-online RL methods utilize offline data to alleviate
performance degradation, it can adversely affect their online sample efficiency. In contrast, E2O-CQL successfully avoids
significant performance drop even without using offline data, thereby enhancing learning efficiency during the online stage.

D.2. Comparison of LAPO and E2O-LAPO

On the Antmaze tasks, we have conducted a comparative analysis between our E2O-LAPO method and several offline-
to-online RL methods. To further validate the effectiveness of our E2O framework, we directly utilize LAPO with two Q
networks for offline-to-online training and compare it with our E2O-LAPO method. The results are shown in Figure 8. As
original LAPO can achieve near-optimal performance in simple environments such as umaze and medium mazes during
the offline stage, the online fine-tuning performance of both LAPO and E2O-LAPO is comparable. However, in the more
challenging large maze environment, directly using the offline pre-trained LAPO agent for online fine-tuning leads to slow
performance improvement. By employing our proposed E2O framework, we demonstrate that E2O-LAPO can not only
enhance the offline performance of LAPO, but also facilitate more rapid performance improvement while maintaining
the offline performance without degradation. This approach enables the offline agent to quickly adapt to the real-world
environment, providing efficient and effective online fine-tuning.

D.3. Visualization and Analysis

To better understand the training efficiency of E2O in comparison to traditional pessimistic offline RL algorithms, we
compare the distribution of states generated by CQL, E2O-CQL in the online phase, and the distribution of states from the
offline dataset. To visualize the results clearly, we plot the distribution with t-Distributed Stochastic Neighbor Embedding
(t-SNE) (Hinton & Roweis, 2002). The results are shown in Figure 9, it can be found that both the distribution of E2O-CQL
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Figure 7. Ablation on offline data. The solid lines and shaded regions represent mean and standard deviation, respectively, across five runs.

states and CQL states bear some similarity to the distribution of offline states. However, the online states accessed by CQL
are located on the edge of the offline area, but most still overlap with the offline states. On the other hand, the online states
accessed by E2O-CQL deviate further from the offline states. With our ensemble-based design for optimistic exploration,
E2O empowers the offline agent to explore more states beyond those contained in the offline dataset. This capability allows
for swift adaptation to online environments and facilitates rapid performance improvement.

D.4. Detailed Results of E2O Components

In this section, we provide all learning curves of E2O components that are restricted by the length of the text in the main
paper.

Q-Ensembles Figure 10 illustrates the performance of various offline-to-online RL approaches on MuJoCo locomotion
tasks. It is evident that the OfflineRL → OnlineRL method exhibits the best performance in the HalfCheetah environment.
However, it demonstrates unstable learning in the more complex environments of Walker2d and Hopper. On the other
hand, the OfflineRL → OfflineRL approach remains stable but shows slower asymptotic performance. In contrast, the
OfflineRL-N → OnlineRL-N method no longer experiences performance collapse after transitioning to online fine-tuning,
and its training process is relatively stable across all tasks. Additionally, OfflineRL-N → OnlineRL-N achieves superior
fine-tuned performance compared to OfflineRL → OfflineRL. It is worth noting that the Hopper-medium-expert-v2 dataset
represents a special case where all considered offline-to-online methods exhibit varying degrees of performance drop, as
depicted in this figure and subsequent figures. Nevertheless, our E2O framework consistently achieves state-of-the-art
performance in comparison to all baseline methods across most tasks.

Loosing Pessimism Figure 11 displays the performance of OnlineRL-N utilizing different Q-target computation methods
on MuJoCo locomotion tasks. It is evident that MinQ exhibits remarkable stability across all tasks, albeit with slower
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Figure 8. Online learning curves of LAPO and E2O-LAPO across five seeds on Antmaze tasks. The solid lines and shaded regions
represent mean and standard deviation, respectively.
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Figure 9. Visualization of the distribution of states generated by E2O-CQL, CQL in online phase and states in offline dataset.

performance improvement in the HalfCheetah and Walker2d environments. MeanQ and REM demonstrate excellent
performance in the HalfCheetah environment, but struggle to improve in the more challenging environments of Walker2d
and Hopper, and their learning process is characterized by instability. In contrast, RandomMinPair and WeightedMinPair
showcase superior performance across most tasks, with the exception of the Hopper-medium-replay-v2 dataset where they
exhibit slight instability in learning. Among these two methods, WeightedMinPair demonstrates slightly better stability
and performance, thus we select it as the component of our final E2O framework and present the experiments related to
RandomMinPair in the appendix.

Optimistic Exploration Figure 12 and Figure 13 present the performance of OnlineRL-N + WeightedMinPair and
OnlineRL-N + RandomMinPair using different exploration methods on MuJoCo locomotion tasks, respectively. These two
figures exhibit similar observations. In the Hopper environment, OAC achieves the best performance, but its performance
improvement in HalfCheetah and Walker2d is relatively slow. The use of Bootstrapped DQN leads to minimal improvement
in performance, while SUNRISE enhances the learning efficiency of OnlineRL-N + WeightedMinPair across most tasks,
with the exception of the Hopper-medium-replay-v2 dataset where they exhibit slight instability in learning.

D.5. Offline Performance

In this section, we provide the offline learning curves of different methods on locomotion and navigation tasks.
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Figure 10. Online learning curves of different offline-to-online approaches across five seeds on MuJoCo locomotion tasks. The solid lines
and shaded regions represent mean and standard deviation, respectively.

Locomotion Tasks Figure 14 shows the offline performance of different methods on MuJoCo locomotion tasks. We
observe that on certain datasets such as HalfCheetah-medium-v2 and HalfCheetah-medium-replay-v2, E2O-CQL exhibits a
slight performance improvement compared to CQL. This indicates that the introduction of Q-ensembles indeed has some
benefits for the performance in the offline stage. However, it is important to note that the use of Q-ensembles can impact the
convergence speed. For instance, on the Hopper-medium-expert-v2 dataset, E2O-CQL demonstrates a noticeably slower
convergence speed compared to CQL. Nevertheless, if both algorithms are allowed to continue training, for example, for 3M
training steps, we believe that the performance of E2O-CQL can still surpass that of CQL.

Although different offline RL algorithms may have varying final performance in the offline stage, with some methods
potentially performing worse than E2O-CQL, our comparisons in the online stage remain fair. On one hand, the introduction
of Q-ensembles can enhance the performance of existing algorithms in the offline stage, which is a inherent advantage of
Q-ensembles. On the other hand, higher performance in the offline stage can actually lead to performance drop in the online
stage, while lower performance in the offline stage is less prone to such drop. Our proposed E2O framework ensures that the
offline policy maintains high performance from the offline stage, and achieves rapid performance improvement in the online
stage without encountering performance drop.

Navigation Tasks Figure 15 displays the offline performance of various methods on Antmaze navigation tasks. Firstly, we
observe that LAPO outperforms IQL in terms of offline performance, providing a higher starting point for the online phase.
This is particularly evident in the umaze and medium maze environments, where LAPO nearly reaches the performance
ceiling. Regarding LAPO and E2O-LAPO, since LAPO achieves near-optimal performance in simple environments such
as umaze and medium mazes, their offline performance is comparable. However, in the more challenging large maze
environment, the inclusion of Q-ensembles enables E2O-LAPO to surpass LAPO in terms of performance.
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Figure 11. Online learning curves of OnlineRL-N using different Q-target computation methods across five seeds on MuJoCo locomotion
tasks. The solid lines and shaded regions represent mean and standard deviation, respectively.
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Figure 12. Online learning curves of OnlineRL-N + WeightedMinPair using different exploration methods across five seeds on MuJoCo
locomotion tasks. The solid lines and shaded regions represent mean and standard deviation, respectively.
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Figure 13. Online learning curves of OnlineRL-N + RandomMinPair using different exploration methods across five seeds on MuJoCo
locomotion tasks. The solid lines and shaded regions represent mean and standard deviation, respectively.
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Figure 14. Offline learning curves of different methods across five seeds on MuJoCo locomotion tasks. The solid lines and shaded regions
represent mean and standard deviation, respectively.
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Figure 15. Offline learning curves of different methods across five seeds on Antmaze navigation tasks. The solid lines and shaded regions
represent mean and standard deviation, respectively.


