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ABSTRACT

Hallucination detection is crucial for large language models (LLMs), as hallu-
cinated content creates significant barriers in applications requiring factual accu-
racy. Current detection methods mainly depend on internal signals like uncertainty
and self-consistency checks, using the model’s pre-trained knowledge to identify
unreliable outputs. However, pre-trained knowledge may become outdated and
has coverage limitations, especially for specialized or recent information. To ad-
dress these limitations, retrieval-augmented generation (RAG) has emerged as a
promising solution that grounds model outputs in external evidence. In this pa-
per, we target a critical and practical learning problem RAG-based hallucination
detection (RHD), where RAG is employed to enhance hallucination detection by
addressing information updating challenges. To address RHD, we propose a novel
method Evidence-Aligned Entity Verification (EAEV), which detects entity-level
hallucinations by leveraging RAG to align generated entities with retrieved evi-
dence contexts. Specifically, EAEV evaluates entity-evidence alignment through
three complementary dimensions and introduces counterfactual stability analysis
to ensure robust alignments under evidence perturbations. Experiments across
multiple RAG benchmarks demonstrate that EAEV achieves consistent improve-
ments over existing methods with strong generalization capabilities.

1 INTRODUCTION

The deployment of large language models (LLMs) in practical applications faces a critical challenge:
models frequently generate factually incorrect or inconsistent content, known as hallucinations (Ji
et al., 2023). This problem poses significant risks in domains where accuracy is essential, such as
medical diagnosis, educational assistance, and financial advisory services (Tang et al., 2024; Wang
et al., 2024). As organizations increasingly rely on LLMs for complex tasks, the consequences of
undetected hallucinations can range from misinformation propagation to decision-making failures,
making robust hallucination detection an urgent priority for trustworthy AI deployment.

Existing hallucination detection methods have established foundations across diverse paradigms.
Uncertainty-based approaches leverage model confidence signals and entropy to identify potentially
unreliable outputs (Manakul et al., 2023; Farquhar et al., 2024). Consistency-based methods evalu-
ate factual reliability through cross-generation agreement and semantic coherence (Li et al., 2023).
More recently, attention-based interpretability techniques and representational analysis have pro-
vided mechanistic insights into when models exhibit knowledge awareness versus hallucination
tendencies (Azaria & Mitchell, 2023; Burns et al., 2022). These methods perform well in their
evaluation settings and rely primarily on internal model signals for detection decisions.

However, traditional detection approaches face fundamental limitations when deployed in real-world
applications. As illustrated in Figure 1, models often generate hallucinations about recent events,
specialized domains, or rapidly evolving information that falls outside their training data coverage
(Mallen et al., 2022). Additionally, reliance on internal model signals makes these methods vulner-
able to distribution shifts and domain-specific biases that can compromise detection reliability. To
address these coverage and recency limitations, retrieval-augmented generation (RAG) has emerged
as a promising solution that grounds model outputs in external evidence sources (Lewis et al., 2020;
Gao et al., 2023). RAG systems dynamically incorporate relevant documents during generation, en-
abling models to access up-to-date information while providing explicit evidence for factual claims.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison of traditional and RAG-based entity hallucination detection methods.
Example adapted from (OpenAI, 2025).

Despite the promise of evidence-grounded generation, RAG introduces distinct challenges that ex-
pose new hallucination detection requirements. Models frequently fabricate entities even when cor-
rect information exists within context window, creating misalignments between retrieved evidence
and generated content (Niu et al., 2024). Current detection methods typically rely on external judge
models for verification, which introduce additional complexity and potential error propagation while
operating at token, sentence, or paragraph levels that miss the entity-level factual commitments users
most critically evaluate (Yue et al., 2023). This disconnect between detection granularity and user
verification behavior motivates a specialized approach to evidence-based hallucination detection.

Addressing these challenges requires overcoming fundamental obstacles that distinguish RAG-based
detection from traditional approaches. The spurious correlation problem occurs when hallucinated
entities accidentally align with retrieved text through surface-level keyword matches, creating false
signals of evidence support. The need for precise localization of factual inconsistencies at the en-
tity level becomes critical, as entities constitute the atomic units of factual information that users
prioritize when evaluating response trustworthiness (Thorne et al., 2018). When critical entities
such as names, dates, or quantities contain errors, user confidence in the entire response deteriorates
regardless of overall semantic coherence. This motivates our central question:

How can we leverage RAG to enhance hallucination detection by establishing direct
entity-evidence alignment within retrieved contexts?

Building on this foundation, we propose Evidence-Aligned Entity Verification (EAEV), a novel
method that operates entirely within retrieved contexts to verify entity mentions through comple-
mentary alignment mechanisms. EAEV evaluates each entity along three dimensions: identity
alignment for direct matches, semantic alignment for paraphrases, and consistency alignment for
quantitative attributes and conflicts. To address spurious correlations, EAEV incorporates counter-
factual stability analysis that distinguishes robust evidence support from fragile alignments. Exten-
sive experiments demonstrate EAEV’s effectiveness, achieving 87.89% AUROC on LLaMA2-13B
with strong generalization across datasets. Our main contributions are summarized as follows:

• We establish RAG-based hallucination detection (RHD) as a novel problem formulation that lever-
ages RAG for entity-level verification within retrieved contexts, tackling the remaining challenge
that prior methods rely on internal uncertainty or external judges without evidence traceability.

• We propose Evidence-Aligned Entity Verification (EAEV), a novel method that combines multi-
dimensional alignment with counterfactual stability analysis to distinguish genuine evidence sup-
port from spurious correlations in RAG settings.

• We demonstrate superior performance and generalization across multiple RAG benchmarks and
model architectures, achieving state-of-the-art results while maintaining practical deployability.

2 PRELIMINARY

In this section, we present necessary notations and establish the theoretical foundation for RAG-
based hallucination detection, emphasizing entity-centric verification within retrieved contexts.
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Basic Definitions Following standard conventions, we represent an LLM as a probability dis-
tribution Pθ(·) over token sequences, where θ denotes the model parameters. Given a query
q = [x1, . . . , xk], the model generates an answer Y = [xk+1, . . . , xk+l] through autoregressive
prediction Pθ(xj |x1, . . . , xj−1). For dataset representation, each instance consists of a query q,
generated answer Y , and retrieved context passages P = {pk}Kk=1. Each answer receives a binary
hallucination label y ∈ {0, 1} where y = 1 indicates truthful content.

Traditional Hallucination Detection Traditional hallucination detection aims to identify factu-
ally incorrect content in LLM outputs. Given a query q and answer Y , a detector D produces
ŷ = D(q, Y ) where ŷ ∈ {0, 1} indicates hallucination presence. Existing methods operate through
uncertainty estimation, consistency checking, or external verification, but face challenges when evi-
dence is explicitly available yet underutilized in RAG settings.

RAG-based Hallucination Detection RAG-based hallucination detection (RHD) represents a
fundamental shift from traditional approaches by leveraging retrieved evidence for verification. Un-
like conventional methods that rely solely on model internals, RHD operates under the assumption
that factual accuracy can be determined through explicit alignment between generated content and
available evidence within retrieved contexts P . We formalize RHD as follows:

Given a query q, retrieved contexts P , and generated answer Y , the objective of RHD is to learn a
detector D that determines factual accuracy through evidence alignment:

D(q, Y,P) =

{
1, if Y is supported by evidence in P,

0, otherwise.
(1)

The key insight is that factual errors in RAG settings manifest primarily at the entity level, where
specific named entities, temporal expressions, and quantities determine overall response reliability.

Entity-Centric Verification Framework For entity-centric verification, we extract candidate
mentions s from the generated answer Y , where each mention has type t ∈ {ENT,NUM,NP} cor-
responding to named entities, numerical values, and noun phrases. For each mention s, we retrieve
evidence windows from P and select primary evidence e∗ through relevance scoring. We define
three core alignment functions: identity alignment Id(s, e∗) ∈ [0, 1] measuring surface correspon-
dence, semantic alignment Sem(s, e∗) ∈ [−1, 1] capturing meaning preservation, and consistency
alignment Con(s, e∗) ∈ [0, 1] evaluating quantitative agreement and conflict detection.

For each mention s, we compute support signals through weighted combination of alignment dimen-
sions and detect conflicts through binary indicators. To distinguish robust evidence from spurious
correlations, we apply counterfactual stability analysis using perturbation sets U . Finally, mentions
are aggregated into entity-level decisions through canonicalization, producing interpretable verifica-
tion scores with direct evidence traceability.

3 METHODOLOGY

3.1 MOTIVATION AND OBSERVATIONS

Effective RAG verification requires understanding how factual errors manifest in the presence of
relevant evidence. As illustrated in Figure 1, traditional hallucination detection methods rely solely
on internal model signals and are limited by training data coverage, while our RAG-enhanced ap-
proach incorporates external evidence sources to improve detection accuracy and coverage. Con-
sider a model given documents stating “Adam Tauman Kalai graduated from Harvard University in
1996 and received a PhD from Carnegie Mellon University in 2001” but generating “Kalai received
his PhD in 1996 from CMU” (OpenAI, 2025). This example illustrates a fundamental challenge:
models can fabricate specific entities while correctly incorporating other factual elements from the
context, as noted by recent analysis of why language models hallucinate.

Existing detection methods operating at sentence or paragraph levels fail to localize such precise fac-
tual inconsistencies, as the overall semantic coherence remains high despite the critical entity-level
error. Empirical analysis across RAG benchmarks reveals that entity-level inconsistencies constitute
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the primary failure mode, with named entities, dates, and quantities representing the most frequent
error types that directly impact user trust and system reliability. This observation motivates our
entity-centric approach: rather than evaluating global semantic consistency, we decompose verifica-
tion into atomic factual units where evidence alignment can be precisely established and traced.

3.2 FRAMEWORK OVERVIEW

To address these challenges, we propose EAEV, which transforms entity verification into a system-
atic evidence alignment task through four interconnected stages that maintain evidence traceability
throughout verification. As shown in Figure 2, the framework operates under three core principles:
context-only verification where all signals derive from alignment between generated content and
retrieved evidence, entity-centric aggregation enabling cross-mention evidence consolidation, and
unified verification architecture supporting both rule-based decisions and model fine-tuning.

Figure 2: Framework Overview of our Methodology.

Given a query q, retrieved context P , and generated answer Y , EAEV proceeds through: (1) candi-
date mention extraction that identifies factual commitments in Y and constructs local answer win-
dows, (2) evidence retrieval and selection that retrieves top-k evidence windows from P and selects
primary evidence e∗ by maximizing relevance scores combining identity and semantic similarity,
(3) multi-dimensional alignment assessment that evaluates entity-evidence correspondence through
complementary signals while testing robustness via stability analysis, and (4) entity-centric aggre-
gation that consolidates mention-level signals into entity-level decisions and produces span, entity,
and answer-level verification outputs. This modular design enables comprehensive verification while
preserving evidence traceability for interpretable decisions.

3.3 MULTI-DIMENSIONAL ALIGNMENT ASSESSMENT

For each candidate mention s extracted from the answer and its selected primary evidence e∗ from
the retrieved context, we evaluate alignment through three complementary dimensions that capture
orthogonal aspects of evidential support.

Identity Alignment Identity alignment captures direct matches through lexical forms and aliases,
providing precise signals for exact alignment. This dimension uses a normalized similarity function
that blends exact substring matching with fuzzy token-level matching:

Id(s, e∗) = max (I[s ⊆ e∗ ∨ e∗ ⊆ s],TSR(s, e∗)) (2)
where I[·] is the indicator function and TSR(s, e∗) ∈ [0, 1] computes the normalized token set ratio
measuring lexical overlap between mention and evidence tokens. This formulation prioritizes exact
matches while gracefully handling orthographic variations and aliases through the fuzzy matching
fallback, ensuring robust identity detection across diverse lexical forms.

4
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Semantic Alignment Semantic alignment evaluates meaning preservation through embedding
similarity, capturing paraphrases and reformulations that maintain factual content despite variations:

Sem(s, e∗) = cos(fenc(s), fenc(e
∗)) (3)

where fenc(·) represents sentence-level embedding encoding that captures semantic correspondence
beyond explicit textual correspondence. This approach enables detection of semantically equivalent
expressions while maintaining computational efficiency, though it requires careful calibration to
prevent accepting spurious semantic matches that lack genuine factual grounding.

Consistency Alignment Consistency alignment addresses value correspondence and explicit fac-
tual conflicts through numerical overlap assessment combined with rule-based contradiction detec-
tion. For entities with quantitative attributes, we measure consistency through normalized intersec-
tion over union of extracted numerical values:

Con(s, e∗) =
|N(s) ∩N(e∗)|
|N(s) ∪N(e∗)|

+ banc · I[anchor(q, e∗)] (4)

where N(·) extracts and normalizes numerical values from text, and banc provides an anchor bonus
when evidence contains key terms from the original query, strengthening confidence in relevant re-
trievals. Additionally, we detect explicit contradictions through Sneg(s) ∈ {0, 1} using rule-based
patterns that identify temporal mismatches, numerical conflicts, and relational inconsistencies, pro-
viding high-precision negative signals that complement the positive consistency scores.

Type-Adaptive Support Synthesis We synthesize the three alignment dimensions into a unified
support score that adapts to mention types, recognizing that different entity categories require differ-
ent verification emphases. For each mention s of type t ∈ {ENT,NUM,NP}, we compute positive
support signals Spos(s) ∈ [0, 1] through weighted combination of alignment dimensions:

Spos(s) = w
(t)
I · Id(s, e∗) + w

(t)
S · Sem(s, e∗) + w

(t)
C · Con(s, e∗) (5)

where type-adaptive weights w(t)
I , w

(t)
S , w

(t)
C are optimized for each mention type—numerical men-

tions emphasize consistency alignment while named entities prioritize identity and semantic align-
ment. Additionally, we detect explicit conflicts through binary indicators Sneg(s) ∈ {0, 1} using
rule-based patterns that identify temporal mismatches, numerical conflicts, and relational inconsis-
tencies. We then compute a consistency margin SCM(s) = Spos(s) − β · Sneg(s) where β controls
conflict penalties, integrating positive evidence support with negative conflict signals.

3.4 COUNTERFACTUAL STABILITY ANALYSIS

A critical challenge in RAG-based verification is distinguishing genuine evidence support from spu-
rious correlations, where hallucinated content accidentally matches retrieved text through surface-
level similarities. Traditional alignment metrics can be deceived by coincidental keyword overlaps
or formatting artifacts that create false signals of factual support. To address this fundamental prob-
lem, we propose counterfactual stability analysis that tests whether evidence alignment remains
robust under controlled perturbations.

The core insight is that genuine factual correspondence should persist across minor variations in
text presentation, while spurious matches are inherently fragile and collapse when surface features
change. We define perturbation sets U containing controlled variations that preserve semantic con-
tent while altering surface characteristics. For each mention s, we compute stability bounds: mini-
mum support CRSmin(s) = minu∈U S

(u)
pos (s) measuring the lowest support under perturbations, and

stability gaps CRS∆(s) = Spos(s)− CRSmin(s) indicating robustness to variations.

We instantiate U with four targeted perturbations that address distinct sources of spurious correla-
tion: (1) leave-one-out evidence removal eliminates the strongest evidence window to test depen-
dency on single sources, preventing over-reliance on potentially misleading context; (2) punctuation
and case normalization removes formatting artifacts and capitalization patterns creating false lex-
ical matches, ensuring alignment reflects genuine content rather than presentation; (3) whitespace
compression eliminates spacing variations and tokenization inconsistencies that might artificially
inflate similarity scores; and (4) alphanumeric-only filtering retains only core semantic content by
removing symbols and special characters that could create spurious token-level alignments.
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High minimum support CRSmin(s) indicates that evidence alignment persists across these controlled
variations, indicating the factual correspondence is robust rather than circumstantial. Conversely,
large stability gaps CRS∆(s) reveal fragile correlations that depend on specific textual configura-
tions, flagging potentially unreliable evidence support. This stability analysis enables EAEV to dis-
tinguish authentic factual grounding from accidental surface-level matches, significantly improving
detection precision in challenging cases where traditional alignment metrics alone prove insufficient.

3.5 ENTITY-CENTRIC AGGREGATION

For entities with multiple mentions across the answer, we consolidate evidence signals to obtain
robust entity-level assessments. We canonicalize mention strings through lowercasing, punctuation
and article removal to identify coreferent mentions, and apply lightweight pronoun resolution that
links pronouns to the most recent non-pronoun entity.

For an entity e with mention set {si}, we aggregate verification signals conservatively. Positive
support uses top-K averaging ESpos(e) = mean(topK{Spos(si)}) to emphasize strongest evidence
across mentions. Negative signals use max pooling ESneg(e) = max{Sneg(si)} for conservative
conflict detection, ensuring any mention-level conflict propagates to entity level. Stability becomes
ECRSmin(e) = min{CRSmin(si)} to identify the weakest link across all entity mentions.

The entity consistency margin ESCM(e) = ESpos(e) − βe · ESneg(e) integrates these consolidated
signals, where βe controls entity-level conflict penalties. The final entity verification score integrates
consistency and stability through a multiplicative combination:

score(e) = σ(−ESCM(e)) · (1− σ(ECRSmin(e))) (6)

where σ(·) denotes the sigmoid function. This formulation produces high risk scores for entities
with weak evidence support or low stability, enabling answer-level assessment through max pooling
over entity scores while preserving traceability to specific evidence windows.

3.6 EAEV-GUIDED SUPERVISED LEARNING

The alignment and stability signals computed by EAEV provide direct supervision for training mod-
els to perform interpretable hallucination detection through entity-level annotation. Rather than
requiring complex architectural modifications, we leverage EAEV’s verification capabilities to con-
struct high-quality training data where models learn to reproduce answers while marking unsup-
ported entities with verification tags.

For each training instance, we generate target sequences where entities with ESCM(e) < τthreshold
are enclosed in ⟨E⟩ markers, creating supervision that directly transfers EAEV’s multi-dimensional
verification logic to generation. We optimize a token-weighted cross-entropy that transfers EAEV’s
entity-level signals into generation:

L =
∑
t

wt · CE(pθ(yt|x, y<t), yt) (7)

where

wt = clip
(
1 + α ·max

e∋t
σ(−ESCM(e)) + γ ·max

e∋t
(1− σ(ECRSmin(e))), wmin, wmax

)
(8)

and tokens outside any tagged entity use maxe∋t = 0. This approach enables standard supervised
fine-tuning to learn EAEV’s sophisticated verification patterns, transferring interpretable entity-level
detection capabilities into generation without requiring specialized decoding procedures or multi-
model coordination.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Datasets We evaluate EAEV across three representative RAG hallucination benchmarks that cover
diverse reasoning scenarios and evaluation granularities. RAGTruth provides high-quality manual

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

annotations with nearly 18,000 responses from multiple LLMs across question answering, data-to-
text generation, and news summarization tasks, offering fine-grained word-level annotations that
we aggregate to answer-level evaluation (Niu et al., 2024). HotpotQA represents multi-hop rea-
soning challenges built on Wikipedia articles with sentence-level supporting facts, requiring cross-
document evidence synthesis for accurate verification (Yang et al., 2018). DelucionQA focuses
on domain-specific hallucinations in automotive manuals with human-annotated labels, providing
specialized evaluation for technical content verification (Sadat et al., 2023). More details of the
datasets could be found in Appendix. This dataset combination ensures comprehensive evaluation
across commonsense reasoning, knowledge-intensive tasks, and domain-specific applications while
maintaining consistency in answer-level hallucination assessment.

Baselines We conduct experiments on three representative LLMs: Qwen2.5-7B (Yang et al.,
2024), LLaMA2-7B (Touvron et al., 2023), and LLaMA2-13B (Touvron et al., 2023). For hallu-
cination detection methods, we compare against eleven state-of-the-art baselines spanning different
detection paradigms. Uncertainty-based approaches include SelfCheckGPT (Manakul et al., 2023),
Semantic Entropy (Kuhn et al., 2023), and LLM-Check (Jain et al., 2024), which leverage model
confidence signals and internal activations for detection. Consistency-based methods such as Early-
Detect (Snyder et al., 2024) and NoVo (Ho et al., 2024) evaluate reliability through cross-generation
agreement and attention-level analysis. RAG-specific approaches include RAGAS (Es et al., 2024),
RefChecker (Hu et al., 2024), ReDEeP (Sun et al., 2024), and TSV (Park et al., 2025), which ex-
plicitly incorporate retrieved evidence for verification. We also include general detection methods
Linear Probe (Duan et al., 2024) and HaloScope (Du et al., 2024) that operate on model represen-
tations. We evaluate all methods using AUROC, Accuracy, and F1 score as our primary metrics to
ensure comprehensive performance assessment. Detailed baseline configurations and implementa-
tion details are provided in the Appendix B and A.1.2.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Main Results EAEV achieves consistent superiority across all evaluation settings, demonstrating
the effectiveness of entity-centric evidence alignment for RAG hallucination detection. As shown in
Table 1, our method attains 85.93% average AUROC on Qwen2.5-7B, 84.25% on LLaMA2-7B, and
87.55% on LLaMA2-13B, representing substantial improvements of 2.80, 2.40, and 3.34 percentage
points respectively over the strongest baseline TSV. The robustness of performance across diverse
model architectures validates our core hypothesis that entity-level factual errors constitute a model-
agnostic challenge in RAG systems. Notably, larger models show particularly pronounced improve-
ments, with LLaMA2-13B achieving the highest absolute performance, suggesting that EAEV ef-
fectively leverages enhanced model capabilities for more sophisticated evidence alignment while
maintaining consistent gains across different architectural families.

Cross-dataset evaluation reveals EAEV’s strong generalization capabilities across diverse reasoning
scenarios and domain requirements. On RAGTruth’s fine-grained annotations, our method achieves
the most substantial improvements, demonstrating effectiveness in detecting nuanced factual incon-
sistencies within general knowledge contexts. HotpotQA results highlight EAEV’s strength in multi-
hop reasoning scenarios, where our consistency alignment mechanism proves particularly valuable
for verifying complex logical chains that span multiple evidence sources. DelucionQA performance
validates applicability to specialized technical domains, where entity verification demands precision
in handling domain-specific terminology and quantitative relationships. This consistent performance
across datasets with fundamentally different characteristics—from general knowledge to multi-hop
reasoning to technical domains—confirms that our multi-dimensional alignment framework captures
universal patterns in entity-level hallucination detection rather than dataset-specific artifacts.

The performance scaling pattern provides additional validation of our design principles while high-
lighting EAEV’s practical deployability across diverse computational environments. Both 7B and
13B model variants benefit significantly from our approach, with the scaling behavior indicating
that our framework harnesses enhanced model capabilities without sacrificing robustness at smaller
scales. This versatility enables deployment in resource-constrained settings requiring smaller mod-
els while maximizing performance in high-capacity applications. The consistent benefits across all
tested architectures, combined with our method’s ability to achieve state-of-the-art results through
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Table 1: Performance comparison across different models and datasets. We report AUROC, Accu-
racy (Acc), and F1 scores for each method on three datasets. All results are averaged over three
independent runs, with the rightmost columns showing metrics averaged across datasets.

RAGTruth HotpotQA DelucionQA Average
Method AUROC Acc F1 AUROC Acc F1 AUROC Acc F1 AUROC Avg Acc Avg F1

Qwen2.5-7B

EarlyDetect 66.38 70.12 65.34 67.15 69.32 65.10 68.25 69.83 66.21 67.24 69.72 65.55
Selfcheckgpt 64.39 69.05 63.28 65.73 68.32 63.95 66.43 68.76 65.01 65.51 68.71 64.08

Novo 73.79 76.21 68.67 74.85 75.75 69.12 76.03 76.12 70.43 74.89 76.01 69.44
Linear Probe 75.27 77.38 69.52 76.11 77.02 69.84 77.10 77.54 71.02 76.16 77.31 70.13
HaloScope 71.01 74.16 67.70 72.24 73.90 68.20 73.01 74.16 69.05 72.08 74.05 68.32

LLM-Check 62.75 68.07 62.18 63.91 67.20 62.93 65.14 67.86 64.23 63.93 67.71 63.09
Semantic Entropy 65.43 70.65 64.71 66.87 69.83 65.25 68.02 70.19 65.84 66.75 70.19 65.27

RAGAS 74.76 77.32 69.90 76.02 76.84 70.40 76.89 77.01 71.43 75.89 77.06 70.58
RefCheck 73.25 75.89 68.43 74.61 75.30 68.81 75.20 75.76 70.01 74.35 75.65 69.08
ReDEeP 77.87 78.51 71.92 79.43 78.23 72.74 80.12 78.96 73.52 79.14 78.57 72.71

TSV 81.45 79.83 72.37 82.07 79.36 72.28 85.87 80.47 74.97 83.13 79.89 73.21
EAEV (Ours) 85.36 80.04 74.28 86.74 81.23 74.35 85.68 80.25 75.62 85.93 80.51 74.75

LLaMA2-7B

EarlyDetect 65.12 68.87 63.98 66.23 68.05 63.55 67.12 68.42 64.33 66.16 68.42 63.95
Selfcheckgpt 63.18 67.31 62.01 64.45 66.25 62.74 65.37 66.90 63.45 64.33 66.82 62.72

Novo 72.25 75.28 67.12 73.31 74.82 67.62 74.38 75.01 68.92 73.31 75.03 67.89
Linear Probe 73.56 76.36 68.23 74.25 75.43 68.55 75.48 75.62 70.02 74.44 75.68 68.92
HaloScope 69.83 73.24 66.31 70.92 72.43 66.75 71.74 73.25 67.45 70.83 72.96 66.82

LLM-Check 61.47 66.42 60.08 62.63 65.32 61.32 63.71 66.19 62.03 62.59 65.95 61.34
Semantic Entropy 64.12 69.01 63.43 65.25 68.32 63.78 66.30 69.02 64.01 65.22 68.78 63.71

RAGAS 73.11 76.25 68.11 74.43 75.62 68.75 75.45 76.12 70.12 74.33 76.69 68.99
RefCheck 71.66 74.83 66.92 73.08 74.41 67.30 74.02 74.88 68.15 72.92 74.71 67.46
ReDEeP 76.42 78.01 71.23 77.63 77.15 71.94 78.35 77.66 72.43 77.47 77.61 71.86

TSV 82.04 79.12 72.01 82.64 78.83 72.10 80.88 77.52 73.95 81.85 78.49 72.77
EAEV (Ours) 84.57 80.12 74.07 84.96 82.55 73.39 83.21 78.32 74.45 84.25 80.33 73.97

LLaMA2-13B

EarlyDetect 67.18 70.01 65.12 68.42 69.05 65.87 69.66 69.81 66.50 68.42 69.62 65.83
Selfcheckgpt 65.47 68.10 63.02 66.93 67.22 63.89 67.82 67.88 64.52 66.74 67.73 63.81

Novo 74.81 76.35 69.31 75.84 76.11 70.16 77.12 76.55 71.22 75.92 76.34 70.21
Linear Probe 76.31 77.65 70.54 77.54 77.33 71.39 78.82 77.97 72.82 77.55 77.63 71.53
HaloScope 71.74 74.45 68.20 72.81 73.25 68.91 73.93 74.15 69.85 72.83 73.93 68.99

LLM-Check 63.83 67.12 61.95 65.28 66.52 62.73 66.55 66.98 63.45 65.19 66.87 62.71
Semantic Entropy 66.02 70.20 64.62 67.35 69.02 65.21 68.40 70.10 65.83 67.26 69.77 65.22

RAGAS 75.67 77.32 70.22 76.88 77.01 71.01 78.02 77.66 72.52 76.86 77.33 71.25
RefCheck 74.25 76.00 68.85 75.66 75.43 69.33 76.92 76.41 70.44 75.61 75.95 69.54
ReDEeP 78.93 79.63 72.33 80.11 79.25 73.21 81.04 79.81 74.15 80.03 79.56 73.23

TSV 84.55 80.12 73.50 83.12 79.43 73.22 84.96 80.12 75.68 84.21 79.89 74.13
EAEV (Ours) 87.89 84.29 76.85 88.12 83.53 75.59 86.65 83.22 77.92 87.55 83.68 76.79

entity-centric verification within retrieved contexts, establishes EAEV as a reliable and scalable
solution for RAG hallucination detection across varied deployment scenarios.

Ablation Study To validate each component’s contribution, we conduct comprehensive ablation
studies across all benchmarks. As shown in Figure 3a and Table 2, counterfactual stability analysis
provides the most substantial contribution, confirming the necessity of our approach for distinguish-
ing genuine evidence support from spurious correlations. The results demonstrate that each align-
ment dimension contributes meaningfully to overall performance, with balanced degradation pat-
terns indicating that all components address distinct verification challenges. The full framework’s
superior performance validates our multi-dimensional design philosophy and demonstrates syner-
gistic effects among complementary alignment mechanisms. Details are provided in Appendix C.1.

Sensitivity Analysis We analyze EAEV’s robustness to answer-side window length, a key pa-
rameter controlling contextual span during evidence alignment. As shown in Figure 3b, the frame-
work achieves optimal performance with 30-token windows while maintaining stability across the
practical range. Smaller windows limit contextual information for accurate alignment, while larger
windows introduce noise that dilutes alignment signals. The framework demonstrates reasonable
robustness within the 25-35 token range, validating our parameter choice and confirming consistent
performance across deployment scenarios. This analysis establishes EAEV’s reliability and practical
applicability under varying configuration settings. Details are provided in Appendix C.2.
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Table 2: Ablation study on LLaMA2-13B model. Results are reported as AUROC, Accuracy (Acc),
and F1 on three benchmarks. The rightmost columns show averaged metrics across all datasets.

Variant RAGTruth HotpotQA DelucionQA Average
AUROC Acc F1 AUROC Acc F1 AUROC Acc F1 AUROC Acc F1

w/o Identity 85.10 82.00 74.70 86.00 81.30 73.20 84.20 81.00 75.80 85.10 81.43 74.57
w/o Semantic 83.80 81.40 73.60 85.40 81.10 73.10 83.00 80.80 75.60 84.07 81.10 74.10

w/o Consistency 85.60 82.10 74.50 83.40 79.30 71.00 81.80 78.90 73.30 83.60 80.10 72.93
w/o Stability 82.10 79.80 72.40 82.30 79.00 71.60 81.70 78.70 73.00 82.03 79.17 72.33

Full 87.89 84.29 76.85 88.12 83.53 75.59 86.65 83.22 77.92 87.55 83.68 76.79

(a) Ablation Study on Different Components (b) Window Size Sensitivity Analysis

Figure 3: Ablation study results on LLaMA2-13B, showing ablation analysis on different compo-
nents (left) and window size sensitivity (right).

5 RELATED WORK

Traditional Hallucination Detection Traditional hallucination detection methods primarily lever-
age uncertainty estimation and self-consistency mechanisms within model outputs. Representa-
tive approaches include SelfCheckGPT, which measures semantic consistency across multiple gen-
erations (Manakul et al., 2023), and Semantic Entropy, which operates on meaning-level diver-
gences (Farquhar et al., 2024). Recent advances explore attention-level interpretability through
NoVo (Ho et al., 2025) and representational analysis of knowledge-awareness directions (Ferrando
et al., 2025). While effective in controlled settings, these methods remain constrained by their re-
liance on internal model signals rather than explicit evidence verification.
Evidence-Based Hallucination Detection in RAG RAG environments present unique challenges
where hallucinations persist despite available evidence, motivating specialized detection approaches.
RARR employs research and revision stages for evidence attribution and consistency-based correc-
tion (Gao et al., 2022). FActScore provides atomic-level factual evaluation by decomposing gen-
erated text into verifiable claims (Min et al., 2023). CoVe introduces systematic self-verification
through question generation and independent answering (Dhuliawala et al., 2024). ReDeEP lever-
ages mechanistic interpretability to disentangle parametric and contextual knowledge contribu-
tions (Sun et al., 2024), while RAGTruth establishes evaluation infrastructure with fine-grained
annotations (Niu et al., 2024). These approaches highlight the importance of evidence-grounded
verification but typically operate at coarse granularities or require external verification mechanisms.
Our work addresses this limitation through entity-level verification within retrieved contexts, pro-
viding direct evidence traceability without dependencies on external judges.

6 CONCLUSION

Hallucination detection remains critical for reliable RAG system deployment in factual applica-
tions. We introduced EAEV, a novel framework that performs entity-level verification through
multi-dimensional evidence alignment and counterfactual stability analysis. By distinguishing gen-
uine factual support from spurious correlations, EAEV addresses fundamental challenges in RAG-
based verification where hallucinated content accidentally matches retrieved text. Experimental
results demonstrate substantial improvements across benchmarks and model architectures, achiev-
ing 87.55% average AUROC on LLaMA2-13B. The framework’s strong generalization capabilities
and practical deployability establish robust entity-level verification as a highly reliable approach for
accurate hallucination detection in modern evidence-grounded generation systems.
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or personally identifiable information is involved. The primary objective of this work is to advance
the understanding of hallucination detection in large language models, with an emphasis on trans-
parency, fairness, and responsible research practices.

REPRODUCIBILITY STATEMENT

All models and benchmark datasets employed in this study are publicly available. Detailed descrip-
tions of the datasets are given in Appendix A.1.1, while the implementation details of our method
are provided in Appendix A.1.2. To ensure reproducibility, all experiments were conducted on four
NVIDIA A100 GPUs within a controlled environment, using Python 3.10.18 and PyTorch 2.2.2
(CUDA 11.8).
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASETS DETAILS

RAGTruth RAGTruth provides a controlled environment for analyzing hallucinations in standard
RAG pipelines. The corpus aggregates responses from both open-source and closed-source LLMs,
accompanied by meticulous word-level manual annotations and instance-level labels across three
task categories: question answering, data-to-text generation, and news summarization. The dataset
comprises approximately 18,000 annotated responses in total. We compute all evaluation metrics at
the answer level to maintain consistency across comparisons (Niu et al., 2024).
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RAGBench (HotpotQA & DelucionQA) RAGBench is a large-scale benchmark containing ap-
proximately 100,000 examples with a standardized RAG schema that provides retrieved contexts and
answer annotations suitable for hallucination detection tasks. The benchmark spans five domains
and twelve component datasets. We utilize two representative components: (i) HotpotQA, a multi-
hop question answering benchmark built on Wikipedia articles with sentence-level supporting facts
that emphasizes cross-document reasoning capabilities; and (ii) DelucionQA, a domain-specific QA
dataset constructed from automotive user manuals, featuring human-annotated labels that indicate
whether answers contain hallucinations given the retrieved context. We adopt the benchmark’s eval-
uation protocol and consistently assess performance at the answer level (Friel et al., 2025; Yang
et al., 2018; Sadat et al., 2023).

A.1.2 IMPLEMENTATION DETAILS

We run all experiments on servers equipped with 4×NVIDIA A100 GPUs and server-grade multi-
core processors. Our implementation is based on PyTorch and Hugging Face Transformers. We use
LLaMA-Factory for LLM fine-tuning and inference (with LoRA). Unless otherwise specified, we
employ greedy search for generation decoding, and all other parameters follow the default settings
of each model.

For candidate construction and evidence retrieval, we retain at most 5 candidate windows per men-
tion with top bm25 = 2 and top embed = 2. Answer-side windows use window tokens = 30 and
stride = 15. For multi-dimensional alignment, we use type-adaptive weights with defaults ENT:
(0.45, 0.45, 0.10), NUM: (0.25, 0.25, 0.50), and NP: (0.35, 0.35, 0.30). We set default β = 1.0 for
consistency margin. For CRS analysis, we apply four perturbation types: leave-one-out, depunc-
tuating and lowercasing, compressing whitespace, and retaining only alphanumeric characters. For
entity grouping, we use conservative aggregation with default K = 2 and βe = 1.0. For decision
rules, we scan τscm ∈ [−0.5, 0.2], τescm ∈ [−0.5,−0.1], τcrs min ∈ [0.0, 0.5], and K ∈ {1, 2, 3} on
validation sets.

For EAEV-guided SFT, we insert ⟨E⟩...⟨/E⟩ markers and select (α, γ, wmin, wmax) on validation
sets. Fine-tuning uses LLaMA-Factory with LoRA, following framework defaults except for token
weighting and data annotation. All hyperparameters use validation set selection, and final results
report best validation configurations.

A.1.3 EVALUATION METRICS

Following prior works (Kuhn et al., 2023; Du et al., 2024), we employ three complementary metrics
to evaluate hallucination detection performance: area under the receiver operating characteristic
curve (AUROC), Accuracy, and F1 score.

AUROC measures the ability of a method to discriminate between truthful and hallucinated outputs
across different decision thresholds. A higher AUROC indicates better overall ranking performance
independent of a specific threshold.

Accuracy is calculated by comparing predicted labels with ground-truth annotations under a fixed
threshold (e.g., 0.5 on the similarity score between the generation and the reference). It reflects the
proportion of correctly classified instances but can be biased when classes are imbalanced.

F1 score, the harmonic mean of Precision and Recall, provides a balanced evaluation when both
false positives and false negatives are costly. It is particularly useful in assessing detection perfor-
mance under skewed class distributions.

Together, these metrics ensure a comprehensive assessment of both ranking quality and classification
reliability in hallucination detection.

A.1.4 MODEL DETAILS

We conduct our experiments on three widely used large language models that represent different
scales and training paradigms. Qwen2.5-7B (Yang et al., 2024) is an open-source model from Al-
ibaba’s Qwen series, designed with improved pre-training data and instruction tuning for multilin-
gual reasoning. LLaMA2-7B (Touvron et al., 2023) and LLaMA2-13B (Touvron et al., 2023) are
part of Meta’s LLaMA2 family, which have been extensively used as backbone models in academic
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research and industrial applications. Together, these models cover diverse capacities and training
corpora, providing a representative testbed for evaluating hallucination detection methods.

B DETAILS ABOUT BASELINE MODELS

We compare our approach against eleven representative hallucination detection baselines. Below we
briefly introduce each method and its underlying intuition.

• SelfCheckGPT (Manakul et al., 2023): A zero-resource, sampling-based detector that repeat-
edly queries the model to generate multiple candidate responses and then measures their con-
sistency. Greater inconsistency across samples suggests a higher risk of hallucination, making
this method effective even without external evidence.

• Semantic Entropy (Kuhn et al., 2023): Estimates hallucination likelihood by computing lin-
guistic invariances in token-level predictive distributions. When semantic alternatives diverge
strongly in probability space, the model exhibits higher semantic entropy, indicating uncer-
tainty and potential unreliability in factual grounding.

• LLM-Check (Jain et al., 2024): Probes internal hidden states of LLMs with lightweight clas-
sifiers to directly flag hallucinations. By exploiting activation-level features, LLM-Check can
detect subtle factual errors that do not manifest at the surface level but are encoded within the
model’s latent representations.

• Linear Probe (Duan et al., 2024): A straightforward but effective baseline that trains linear
classifiers on the hidden states of LLMs. By mapping internal activations to truthfulness la-
bels, Linear Probe directly tests how much factuality information is encoded within raw model
representations.

• HaloScope (Du et al., 2024): Leverages large quantities of unlabeled LLM outputs and applies
energy-based and representation-driven detectors. By clustering semantic patterns across gen-
erations, HaloScope effectively identifies outliers that correspond to hallucinated claims with
minimal supervision.

• EarlyDetect (Snyder et al., 2024): A proactive detector that monitors generation in-progress.
By analyzing partial outputs and their factual signals, EarlyDetect aims to catch hallucinations
early, before the model produces fully misleading answers, thus enabling faster correction or
intervention.

• NoVo (Ho et al., 2024): Stands for Norm Voting off hallucinations. This method measures the
norms of attention heads and aggregates their “votes” to infer factual reliability. It leverages
attention-level interpretability to highlight internal disagreement patterns that often precede
hallucinated generations.

• RAGAS (Es et al., 2024): Focuses on retrieval-augmented settings by breaking down model
outputs into atomic statements and verifying each against retrieved passages. Faithfulness is
quantified as the ratio of supported claims, allowing fine-grained detection of unsupported or
fabricated content.

• RefChecker (Hu et al., 2024): Constructs structured knowledge graphs from model outputs
and checks their alignment with external references. This graph-based perspective enables
detection of hallucinations that may not be obvious at sentence level but become evident when
relational consistency is examined.

• ReDEeP (Sun et al., 2024): Employs mechanistic interpretability in retrieval-augmented gen-
eration (RAG). By tracing attention flow from queries to evidence passages, ReDEeP identifies
whether the model’s factual claims are truly supported by retrieved documents or merely spu-
rious correlations.

• TSV (Park et al., 2025): Introduces the Truthfulness Separator Vector, which perturbs latent
representations during inference to evaluate the stability of factual claims. Robust claims re-
main separable under perturbations, while hallucinated ones collapse, offering a novel perspec-
tive on truthfulness detection.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on LLaMA2-13B model. Results are reported as AUROC, Accuracy (Acc),
and F1 on three benchmarks. The rightmost columns show averaged metrics across all datasets.

Variant RAGTruth HotpotQA DelucionQA Average
AUROC Acc F1 AUROC Acc F1 AUROC Acc F1 AUROC Acc F1

w/o Identity 85.10 82.00 74.70 86.00 81.30 73.20 84.20 81.00 75.80 85.10 81.43 74.57
w/o Semantic 83.80 81.40 73.60 85.40 81.10 73.10 83.00 80.80 75.60 84.07 81.10 74.10

w/o Consistency 85.60 82.10 74.50 83.40 79.30 71.00 81.80 78.90 73.30 83.60 80.10 72.93
w/o Stability 82.10 79.80 72.40 82.30 79.00 71.60 81.70 78.70 73.00 82.03 79.17 72.33

Full 87.89 84.29 76.85 88.12 83.53 75.59 86.65 83.22 77.92 87.55 83.68 76.79

(a) Ablation Result on RAGTruth (b) Ablation Result on HotpotQA

(c) Ablation Result on DelucionQA (d) Average Ablation Result

Figure 4: Detailed ablation results on LLaMA2-13B. Results are shown on RAGTruth (top-left),
HotpotQA (top-right), DelucionQA (bottom-left), and averaged across datasets (bottom-right).

C ADDITIONAL RESULTS

C.1 COMPLETE ABLATION STUDY

We provide comprehensive ablation analysis across all datasets and model architectures to vali-
date each component’s contribution. Table 3 presents the complete ablation results on LLaMA2-
13B, while Figures 4a through 4d show detailed performance degradation patterns across individual
datasets and averaged results.

The ablation visualizations reveal distinct component contributions across different evaluation sce-
narios. Counterfactual stability analysis demonstrates the most substantial impact across all datasets,
with removal leading to 5.52 AUROC points average degradation. This consistent pattern con-
firms the necessity of distinguishing genuine evidence support from spurious correlations regardless
of dataset characteristics. Consistency alignment shows particularly pronounced effects on Hot-
potQA and DelucionQA, where quantitative verification becomes critical for multi-hop reasoning
and domain-specific content. Semantic alignment exhibits stronger influence on RAGTruth, reflect-
ing its importance for handling paraphrased expressions in general knowledge contexts. Identity
alignment provides steady baseline performance through exact matching across all evaluation set-
tings.
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Table 4: Sensitivity to answer-side window length (LLaMA2-13B). Results are reported as AUROC,
Accuracy (Acc), and F1 on three benchmarks. The rightmost columns show averaged metrics across
all datasets.

RAGTruth HotpotQA DelucionQA Average
window size AUROC Acc F1 AUROC Acc F1 AUROC Acc F1 AUROC Avg Acc Avg F1

20 81.81 79.95 72.04 80.52 79.27 71.03 80.90 79.85 73.28 81.07 79.63 72.07
25 86.23 83.17 75.64 87.03 82.81 74.82 85.81 82.70 76.96 86.33 82.87 75.77
30 87.89 84.29 76.85 88.12 83.53 75.59 86.65 83.22 77.92 87.55 83.68 76.79
35 85.42 82.51 75.15 86.13 82.26 74.64 85.53 82.68 76.60 85.67 82.43 75.43
40 82.65 80.53 73.42 83.16 81.04 73.68 82.27 80.83 75.01 82.63 80.77 74.00

(a) Window Sensitivity on RAGTruth (b) Window Sensitivity on HotpotQA

(c) Window Sensitivity on DelucionQA (d) Average Window Sensitivity

Figure 5: Parameter sensitivity analysis of EAEV under different answer-side window lengths.
Results are shown on RAGTruth (top-left), HotpotQA (top-right), DelucionQA (bottom-left), and
averaged across datasets (bottom-right).

The balanced degradation curves across datasets validate our multi-dimensional design philosophy.
Each alignment dimension addresses distinct verification challenges while maintaining complemen-
tary effects, with no single component dominating performance. The stability analysis compo-
nent’s consistent importance across all scenarios confirms the practical value of robustness testing
in evidence-based verification systems.

C.2 SENSITIVITY ANALYSIS

Parameter sensitivity analysis demonstrates EAEV’s robustness across different configuration set-
tings. Table 4 provides detailed performance under varying answer-side window lengths, while
Figures 5a through 5d illustrate the characteristic inverted-U performance curves across individual
datasets.

The sensitivity visualizations reveal consistent optimal performance at 30-token windows across all
datasets, with graceful degradation patterns for both smaller and larger window sizes. RAGTruth
shows the sharpest sensitivity curve, indicating that fine-grained annotations benefit most from op-
timal contextualization. HotpotQA exhibits broader stability around the optimum, reflecting the
method’s robustness for multi-hop reasoning tasks. DelucionQA demonstrates intermediate sensi-
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Task. Given a question, supporting passages, and a model answer, mark any unsupported or contradic-
tory entity mentions in the answer using <E>...</E> tags. Keep the original answer text and only
add tags.

Question. {String}

Supporting Passages:
<W1> {String} </W1>
<W2> {String} </W2>
<W3> {String} </W3>

Original Answer. {String}

Instructions.
• Mark entities contradicted by the supporting passages.
• Mark entities lacking sufficient evidence support.
• Preserve all original text—only add <E>...</E> tags.
• Focus on named entities, dates, numbers, and key factual claims.

Expected Output. Answer text with <E>...</E> tags around unsupported entities.

Figure 6: Prompt template for EAEV-guided supervised fine-tuning.

tivity patterns, suggesting balanced requirements between contextual information and noise control
in domain-specific settings.

Performance degradation below 25 tokens reflects insufficient contextual information for accurate
alignment assessment, while degradation above 35 tokens indicates noise introduction from irrele-
vant content. The framework maintains reasonable stability within the 25-35 token range across all
datasets, supporting practical deployment flexibility. These results validate our parameter selection
methodology and confirm EAEV’s reliability under varying configuration requirements.

D DETAILS FOR PROMPT TEMPLATE

The EAEV-guided supervised fine-tuning transforms entity verification into an executable annota-
tion generation task. We design a structured prompt that enables models to learn EAEV’s multi-
dimensional alignment patterns through standard supervised training while maintaining evidence
traceability.

The prompt design follows several key principles to ensure effective knowledge transfer from
EAEV’s verification framework. The task description explicitly requires minimal modification
where only annotation tags are added without altering original answer text. Supporting passages
are clearly delineated with window markers (<W1>, <W2>, <W3>) to maintain precise evidence
traceability throughout verification. The instructions distinguish between contradicted entities and
those lacking sufficient support, reflecting EAEV’s multi-dimensional alignment assessment.

This structured approach enables standard supervised fine-tuning to learn sophisticated verification
patterns while preserving interpretability through direct evidence grounding. The prompt trans-
forms entity-level hallucination detection into a sequence labeling task that models can learn through
token-weighted cross-entropy loss, directly implementing the supervision mechanism described in
Section 3.

E USAGE CLAIM OF LLMS

We use LLM for grammar and spelling checks only, with prompt “Proofread the sentences”. All
conceptual development, analysis, writing, and editing were carried out solely by the authors without
LLM assistance.
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