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Abstract
Temporal abstraction in reinforcement learning
is the ability of an agent to learn and use high-
level behaviors, called options. The option-critic
architecture provides a gradient-based end-to-end
learning method to construct options. We propose
an attention-based extension to this framework,
which enables the agent to learn to focus differ-
ent options on different aspects of the observation
space. We show that this leads to behaviorally
diverse options which are also capable of state ab-
straction, and prevents the degeneracy problems
of option domination and frequent option switch-
ing that occur in option-critic, while achieving a
similar sample complexity. We also demonstrate
the more interpretable and reusable nature of the
learned options in comparison with option-critic
through different transfer settings. Experimental
results in a relatively simple four-rooms environ-
ment and the more complex ALE (Arcade Learn-
ing Environment) showcase the efficacy of our
approach.

1. Introduction
Humans are effortlessly adept at many forms of abstraction.
We plan and perform actions at a high-level of decision
making, and not at the level of individual muscle movements.
Such high-level actions typically last for an extended period
of time. This is known as temporal abstraction. When
observing our surroundings before making a decision, we
rely and focus on only the important aspects of our sensory
input, and ignore the unnecessary signals. This is called
state abstraction.

Within the options framework (Sutton et al., 1999; Precup,
2000), the end-to-end learning of hierarchical behaviors has
recently become possible via the option-critic architecture
(Bacon et al., 2017), which enables the learning of intra-
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option policies, the termination functions and the policy
over options, to maximize the expected return. However, if
this is the sole objective for option discovery, the benefit that
options have over primitive action policies is questionable.
Indeed, the option-critic architecture eventually results in
option degeneracy i.e. either one option dominates and is
the only one that is used, or there is frequent termination
of and switching between options. Introduced to combat
this problem, the deliberation cost model (Harb et al., 2018)
modifies the termination gradient to assign a penalty to op-
tion termination. This leads to extended options, but is sus-
ceptive to a hard-to-interpret cost parameter. Alternatively,
the termination critic (Harutyunyan et al., 2019) employs
a predictability objective for option termination to prevent
option collapse and improve planning.

We adopt the view that options should be diverse in their
behavior by explicitly learning to attend to different parts
of the observation. In doing so, we solve the degeneracy
problem by ensuring that options are only used when their
respective attentions are activated. This lends credibility to
the notion of options specializing to achieve specific behav-
iors. For example, in the four-rooms environment (Sutton
et al., 1999), it makes little sense to use the complete ob-
servation when deciding how to move out of a particular
room. Current option discovery methods in the function
approximation setting do just this. Our approach also, in ef-
fect, relaxes the strong assumption – made by many option
discovery methods – that all options are available every-
where, and acts as a proxy towards learning the initiation
sets for options (Sutton et al., 1999), which are otherwise in-
convenient to directly learn using a gradient-based learning
approach.

The view of bounded rationality (Simon, 1957) can be seen
as one of the motivations for temporal abstraction. The
added capability of state abstraction takes this one step
further, and serves as an additional rationale for our work.

2. Background
A discrete-time finite discounted MDP (Markov Decision
Process)M (Puterman, 1995; Sutton and Barto, 1998) is
characterized by the tuple {S,A, R, P, γ}, where S is the
set of states, A is the set of actions, R : S ×A → R is the
reward function, P : S × A × S → [0, 1] is the transition



Attention Option-Critic

probability function which specifies the dynamics of the
environment, and γ ∈ [0, 1) is the scalar discount factor.
A Markovian stationary policy π : S × A → [0, 1] is a
probabilistic mapping from the set of states S to the set of
actions A. At each timestep t, the agent observes state st ∈
S and takes an action at ∈ A according to policy π, thereby
receiving reward rt+1 = R(st, at) and transitioning to state
st+1 ∈ S with probability P (st+1|st, at). For policy π,
the discounted state value function is given by: V π(s) =
Eπ[
∑∞
t=0 γ

trt+1|s0 = s] and the discounted action value
function by: Qπ(s, a) = Eπ[

∑∞
t=0 γ

trt+1|s0 = s, a0 =
a].

For a parameterized policy πθ with J(θ) = Vπ(s0) as the
objective function, the policy gradient theorem (Sutton et al.,
2000) can be used to learn the optimal policy π∗θ that maxi-
mizes Vπ(s0) as:

∇θJ(θ, s0) =
∑
s

dπ(s|s0)
∑
a

∇θπ(s, a)Qπ(s, a) (1)

where dπ(s|s0) =
∑∞
t=0 γ

tP (st = s|s0, π) is the dis-
counted weighting of states with s0 as the starting state.
In actor-critic methods (Konda and Tsitsiklis, 2000), the
action values Qπφ(s, a), parameterized by φ, are typically
estimated by using temporal difference (TD) learning (Sut-
ton, 1988). For instance, the update rule for 1-step TD(0)
follows as: φ = φ + αδt∇φQπφ(st, at) where the TD(0)
error δt = rt+1 + γQπφ(st+1, at+1) −Qπφ(st, at) and α is
the learning rate.

2.1. The Options Framework

A Markovian option ω ∈ Ω (Sutton et al., 1999) is a tuple
that consists of an initiation set Iω ⊆ S, which denotes
the permissible set of states where the option can be initi-
ated, an intra-option policy πω : S × A → [0, 1], which
specifies a probabilistic mapping from states to actions, and
a termination condition βω : S → [0, 1], which signifies
the probability of option termination in a state. Ω(s) de-
notes the set of available options for state s and an option
ω is available in state s if s ∈ Iω. Ω is the union of all
Ω(s),∀s ∈ S.

Similar to Bacon et al. (2017), we consider call-and-return
option execution. In this model, when the agent is in state st,
it chooses an option ω ∈ Ω(st) according to a policy over
options πΩ. The intra-option policy πω is then followed
until the current option terminates according to βω after
which a new option that is available at the new state is
chosen by πΩ, and the process repeats. Like many existing
option discovery methods, we too make the assumption that
all options are available everywhere, i.e., ∀s ∈ S,∀ω ∈ Ω :
s ∈ Iω. However, we show that our approach relaxes this
assumption, in effect, and provides an elegant way to learn
distinct initiation sets for options.

The option-critic architecture (Bacon et al., 2017) provides
an end-to-end gradient-based method to learn options. For
parameterized intra-option policies πω,θ and option termi-
nations βω,ν , the option-value function is:

QΩ(s, ω) =
∑
a

πω,θ(a|s)QU (s, ω, a) (2)

where QU : S × Ω × A → R is the value of executing
action a in the context of state-option (s, ω):

QU (s, ω, a) = r(s, a) + γ
∑
s′

P (s′|s, a)U(ω, s′) (3)

and U : Ω× S → R is the option-value on arrival (Sutton
et al., 1999) and represents the value of executing option ω
in state s′:

U(ω, s′) = (1−βω,ν(s′))QΩ(s′, ω)+βω,ν(s′)VΩ(s′) (4)

where VΩ(s) =
∑
ω πΩ(ω|s)QΩ(s, ω) is the option-level

state value function. The intra-option policies and option
terminations can be learned by using the policy gradient
theorem to maximize the expected discounted return (Bacon
et al., 2017). The gradient of this objective with respect to
intra-option policy parameters θ when the initial condition
is (s0, ω0) is:

∇θJ(θ, s0, ω0) =
∑
s,ω

{
µΩ(s, ω|s0, ω0

×
∑
a

[
∇θπω,θ(a|s)

]
QU (s, ω, a)

} (5)

where µΩ(s, ω|s0, ω0) is the discounted weighting of state-
option pairs along trajectories that start with (s0, ω0):
µΩ(s, ω|s0, ω0) =

∑∞
t=0 γ

tP (st = s, ωt = ω|s0, ω0).
Similarly, the gradient with respect to option termination
parameters ν with initial condition (s1, ω0) is:

∇νJ(ν, s1, ω0) = −
∑
s′,ω

{
µΩ(s′, ω|s1, ω0)

×
[
∇νβω,ν(s′)

]
AΩ(s′, ω)

} (6)

where AΩ(s, ω) = QΩ(s, ω) − VΩ(s) is the advantage of
choosing option ω in state s.

2.2. Attention

The attention mechanism was first proposed in language
translation tasks (Bahdanau et al., 2015) but has since been
applied in vision (Sorokin et al., 2015) and reinforcement
learning (Mnih et al., 2014) as well. It enables the localiza-
tion of important information before making a prediction.
In our approach, soft attention (smoothly varying and dif-
ferentiable) is applied as a learnable mask over the state
observations.
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3. Attention Option-Critic
We introduce the Attention Option-Critic (AOC) architec-
ture to enable options to learn to be attentive to specific
features in the observation space in order to diversify their
behavior and prevent degeneracy. An attention mechanism
hω,φ, parameterized by φ, is applied to the observation s
for each option ω as: oω = hω,φ(s) � s where � denotes
element-wise multiplication. hω,φ consists of values in [0, 1]
and is the same size as the original observation s. The result
oω is used to determine the value of the option, the intra-
option policy and the termination condition. This is done
for each option separately, and ensures only the required fea-
tures from the observation determine the option’s behavior.
We refer to o as the list of all attention-modified observa-
tions for each option o = {oω : ω ∈ Ω}. The learning of
the option terminations and intra-option policies is similar
to the option-critic architecture. The complete algorithm is
shown in Algorithm 1.

The attention for each option is learned to maximize the

expected cumulative return of the agent while simultane-
ously maximizing a distance measure between the atten-
tions of the options, so that they are attentive to different
features. Additionally, some regularization is added to facil-
itate the emergence of desired option characteristics. The
attention parameters φ are updated with gradient ascent as
φ = φ+αφ∇φ

[
QΩ(oω, ω) +L

]
, where L denotes the sum

of the distance measure and the regularization, weighted by
their respective importance. More details are specified in
the next section.

The attention mechanism brings an aspect of explainabil-
ity to the agent, and allows one to easily understand each
option’s focus and behavior. Also, it provides a highly in-
terpretable knob to tune options since the characteristics
of the resulting options can be controlled by affecting how
the attentions of the options are learned during training.
For example, constraining attentions to be distinct enables
the diversity of options to be set explicitly as a learning
objective. Alternatively, penalizing differences in option
attention values for states along a trajectory results in tem-
porally extended options, which achieves an effect similar
to the deliberation cost model (Harb et al., 2018), but in a
more explainable way.

The resulting attention for each option also serves as an
indication of the regions of state space where that option
is active and can be initialized. Thus, along with the intra-
option policies and option terminations, AOC essentially
learns the initiation sets of the options in that an option is
typically only initiated in a particular state when the cor-
responding attention of that option in that state is high. It
is this result which prevents the options from degenerating.
Since every option cannot be executed or initiated every-
where, it prevents frequent option termination and switching,
and also prevents option domination (Figure 6) by ensuring
that a single option cannot always be followed.

3.1. Optimality of Learned Solution

Since each option receives different information, it is not
immediately obvious whether the solution that is learned
by AOC is flat, hierarchically or recursively optimal (Diet-
terich, 2000). However, each option learns to act optimally
based on the information that it sees, and apart from some
constraints enforced via option attentions, individual option
optimality is driven through the policy over options to max-
imize the total expected return. Since there is no pseudo
reward or subtask assigned to each option, their attentions
and areas of usage are learned to maximize this objective
and we reason that in the absence of attention constraints, a
flat optimal policy will be learned in the limit. In the pres-
ence of constraints, the optimality of the learned options
will depend on the interactions between the multiple objec-
tives. Even in such cases, AOC is capable of achieving a flat
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(a)

(b)

(c)

Figure 1. An example of learned options in the four-rooms domain with goal at north hallway (shown in green). (a) example of degenerate
options learned by OC. Darker color indicates more frequent option execution in that particular state. Option 1 dominates and is used
88.12% while Option 0 is used 11.88%. Options 2 and 3 are unused. (b) the resulting attention learned for each option with AOC. (c) the
options learned using AOC. The options are diverse and respect their attentions. The option usage is relatively balanced at 19.5%, 34.3%,
8.1% and 38.1% respectively.

optimal solution as shown empirically in the next section.

4. Experimental Results
In this section, we show the benefit of attention and empir-
ically demonstrate that it prevents option degeneracy, pro-
vides interpretability, and promotes reusability of options in
transfer settings.

4.1. Learning in the four-rooms environment

We start off by showing the benefit of attention in the four-
rooms navigation task (Sutton et al., 1999) where the agent
must reach a specified goal. The observation space consists
of one-hot-encoded vectors for every permissible state in
the grid. The available actions are up, down, left and right.

The chosen action is executed with probability 0.98 and
a random action is executed with 0.02 probability. The
reward is +20 upon reaching the goal, and -1 otherwise. The
agent starts in a uniformly random state and the goal is set
randomly for each run.

We use 4 options for learning, with a discount factor of
0.99. The attention hω,φ for each option ω is initialized
randomly as a vector of the same length as the input ob-
servation s. Thus, in this situation, the option attentions
are independent of the state observation. We employ a 2-
layer shared-parameter neural network to approximate the
intra-option policy, the option termination functions, and
the option values. In our implementation of AOC (for all
experiments), the network learns the option values QΩ to
which the ε-greedy strategy is applied to determine the pol-

(a) Training curves (b) Goal transfer (c) Blocked hallway

Figure 2. Learning and transfer (averaged over 15 runs) in the four-rooms domain with 4 options.
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icy over options πΩ. Intra-option exploration is enforced
with entropy regularization. The architecture is shown in
section C.

The option attentions, option values, intra-option policies
and option terminations are learned in an end-to-end manner
to maximize the total expected discounted return. The co-
sine similarity between the option attentions is added to the
loss to ensure that the learned attentions are diverse. Further-
more, a regularization loss – the sum of absolute differences
between attentions (for each option) of adjacent states in
a trajectory – penalizes irregularities in the option atten-
tions of states in close temporal proximity along trajectories.
This results in smooth attentions and leads to temporally
extended options by minimizing switching, and achieves a
similar effect to deliberation cost (Harb et al., 2018). Thus,
for the four-rooms domain, the L term in Algorithm 1 is
enforced by adding w1L1 + w2L2 to the overall network
loss function, where L1 is the total sum of cosine similar-
ities between the attentions of every pair of options, L2 is
the temporal regularization loss for option attentions, and
w1 and w2 are the respective weights for these additional
objectives. We found that a value of 2.0 for both w1 and w2

resulted in the most diverse options, judged quantitatively
(see section A.5) and qualitatively (Figure 1). Further details
regarding hyperparameters and reproducibility are provided
in section C.

The resulting option usage and their attentions are shown
in Figure 1. The learned options are distinct and special-
ized in their behavior, and they perform state abstraction by
focussing on a subset of the observation to perform their
specific tasks. The option usage respects the correspond-
ing area of attention, which indicates that the options are
typically limited to this area and that their behavior can
be reasonably interpreted from their attentions. AOC also
learns stable options and the behavior and usage of options
does not vary significantly during the course of training.
This is in contrast to option-critic (OC), which tends to learn
degenerate options that are volatile and continuously change
behavior. A qualitative comparison that demonstrates AOC
option stability is shown in section A.1.

Although AOC additionally needs to learn option attentions,
it learns faster than OC, as shown in Figure 2a. One possible
reason could be that in AOC, options specialize to different
regions and enable quicker learning because of less overlap
between their usage. Each learning curve is averaged over
15 independent runs, each with a random goal location. A
comparison between option domination in AOC and OC
(see A.2) during training indicates that the latter prevents it.

4.2. Transfer in the four-rooms environment

We perform two experiments to assess the transfer capabil-
ity of AOC in the four-rooms domain, both after 30,000

episodes of training. The first is goal transfer, where the
location of the goal is changed to a new random location
and the second is blocked hallway, where the goal is the
same but a random hallway is blocked. AOC transfer I and
transfer II respectively represent the scenarios where the
weights w1 and w2 are kept unchanged or are set to 0 to
give priority to option learning over attention regulariza-
tion, before learning in the new task. From Figures 2b and
2c, it can be seen that in spite of the option volatility that
aids OC transfer, AOC transfer II performs similarly in the
goal transfer setting and both variants of AOC show supe-
rior initial performance in the blocked hallway setting with
transfer II being faster overall. The speed of AOC transfer
II is even more apparent when the agent needs to go all
the way around the blocked hallway (see section A.3). The
slower transfer of AOC transfer I can be explained by the
over-preference towards optimizing attention characteristics
which AOC transfer II mitigates. Each curve is averaged
over 15 independent runs with different blocked hallways
and different goals before and after transfer.

From another perspective, upon transfer, option-critic com-
pletely relearns the options. Figure 3 shows a specific in-
stance of transfer. Comparing Figure 1a with Figures 3a and
3b shows that there is little similarity between the option be-
havior before and after transfer with OC. We argue that for
options to be beneficial for generalization and lifelong learn-
ing, they should exhibit similar behavior upon transfer, and
only change as required, so that previously learned behav-
iors can be leveraged, and so that options can be efficiently
composed into even higher levels of behavior. AOC exhibits
this quality. A comparison of Figures 1b and 1c with Figures
3c to 3f shows that option attentions remain fixed indicating
that each option remains in its assigned space, and that the
option behavior remains relatively consistent upon transfer.

4.3. Arcade Learning Environment

We now demonstrate the performance of AOC in the Arcade
Learning Environment (Bellemare et al., 2013). We use 2
options with a discount factor of 0.99. The input observation
s is a stack of 4 frames. The option attentions hω,φ are
state dependent and are learned with a convolutional neural
network. Each option’s attention has the same dimensions
as a single frame, and is shared across all frames in the
input stack. We refer to this as the shared-attention model.
The option policies, values and terminations are learned
with a shared-parameter deep neural network, similar to
option-critic. The architecture is shown in section C.

Apart from maximizing the total expected return, the atten-
tions are constrained to exhibit some desired characteristics.
Attention diversity is enforced by maximizing the L1 norm
between the object attentions of the options and attention
sparsity is incentivized by penalizing non-zero attentions for
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. (a) and (b): resulting options learned by option-critic upon goal transfer and transfer with blocked hallway respectively. (c) and
(d): the resulting option attentions and usage upon goal transfer. (e) and (f): the resulting option attentions and usage upon transfer with
blocked hallway. For the goal transfer plots above, the goal is shifted from north hallway to the top left state in the north west room. For
blocked hallway transfer, the goal is kept fixed as the north hallway, but the east hallway is blocked. The transfer results shown here are
with OC and AOC transfer I. The goal states are shown in green.

the background. Lastly, attention regularity is promoted be-
tween object pixels by penalizing frequent changes in their
attention values. The objects and background are identified
by finding the connected components in the observation
(Figure 4b). Thus, for the atari domain, the L term in Algo-
rithm 1 is enforced by addingw1L1+w2L2+w3L3+w4L4

to the network loss function, where L1, L2, L3 are the losses
for attention diversity, sparsity and regularity respectively.
The additional regularizer L4 is added to prevent an op-
tion’s attention from collapsing to zeros. w1, w2, w3 and w4

represent their respective weights. More details regarding

hyperparameters are provided in section C.

For training in the Asterix environment, we found that the
values 5000, 0.01, 100, and 1 for the weights w1, w2, w3

and w4 respectively, resulted in diverse attentions and good
performance. Figure 4 shows the performance and learned
option attentions. Figure 4a shows that AOC achieves a
similar sample complexity compared to OC, despite also
having to learn the state-dependent attention mechanism.
We reason that learning the attentions enable options to spe-
cialize early on in the training process, and hence speed
up training, despite having more parameters to learn. Each
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(a) Training curves (b) Asterix frame (c) Attention of option: 0 (d) Attention of option: 1

Figure 4. Training curves, an example game frame and corresponding learned option attentions for Asterix. The options respectively focus
on the top and bottom halves of the frame.

curve is averaged over 3 different random seeds. Figures 4c
and 4d show the resulting option attentions and indicate that
option 0 and option 1 have respectively specialized to be-
haviors pertaining to the main sprite’s position in the upper
or lower half of the frame. Thus, AOC allows for learning
diverse and interpretable options in complex environments
too. Additional atari results are shown in section B.

5. Related work
There has been extensive research on the benefit of temporal
abstraction for reinforcement learning (Parr and Russell,
1998; Dayan and Hinton, 1993; Dietterich, 2000; McGov-
ern and Barto, 2001; Stolle and Precup, 2002; Mann and
Mannor, 2014). Specific to the options framework (Sutton
et al., 1999; Bacon et al., 2017), there have been many re-
cent approaches to incentivize learned options to be diverse
(Eysenbach et al., 2018), temporally extended (Harb et al.,
2018), more abstract (Riemer et al., 2018), and easy to plan
(Harutyunyan et al., 2019) and explore (Jinnai et al., 2019)
with.

The interest option-critic method (Khetarpal et al., 2020)
provides a gradient-based approach towards learning where
to initialize options by modeling the initiation sets as dif-
ferentiable interest functions. However, the initialization
of the interest functions is biased towards all options be-
ing available everywhere. In contrast, our AOC approach
is completely end-to-end and does not require any special
initializations, and in effect, is able to learn distinct areas
where options can be initialized and remain active.

Deep skill chaining (Bagaria and Konidaris, 2020) is another
approach that relaxes the assumption of universal option
use. This method learns a chain of options by backtracking
from the goal and ensuring that the learned initiation set of
one option overlaps with the termination of the preceding
option. Although each option performs state abstraction, the
resulting options are highly dependent on the given task and
must be relearned upon transfer. Furthermore, results were
mostly confined to navigation-based tasks.

The MAXQ (Dietterich, 2000) approach towards hierarchi-
cal reinforcement learning decomposes the value function
of the target MDP into value functions of smaller MDPs. Al-
though this decomposition creates an opportunity to perform
state abstraction, the overall approach is based on the heavy
assumption that the subgoals, and the subtasks necessary to
achieve them, are specified beforehand.

6. Conclusion
To the best of our knowledge, our method is the first to com-
bine temporal and state abstraction in a flexible end-to-end
gradient based approach and results in learned options that
are diverse, stable, interpretable, reusable and transferable.
We demonstrate that the addition of an attention mechanism
prevents option degeneracy, a major long standing problem
in option discovery, and also relaxes the assumption of uni-
versal option availability. It also provides a highly intuitive
method to control the characteristics of the learned options.

From the lifelong learning perspective, an interesting future
direction is to meta-learn the attentions and options across
a range of tasks from the same environment. This could
lead to faster transfer, while keeping the existing benefits
of our approach. From the view of model-based reinforce-
ment learning, predictive approaches with option attentions
could allow for efficient long-horizon planning by predict-
ing option activation through predicted attentions. Lastly,
the approach we have presented is versatile and can be ap-
plied to many existing option discovery methods. We leave
such avenues of possible combination as future work.
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Appendix

A. Other four-rooms experiments
A.1. Comparison of option stability between AOC and OC

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. (a) to (c): even after convergence, options learned with OC are volatile and continue to change frequently. (d) to (f): AOC
learns more stable options which continue to exhibit similar behavior. In the snapshots of the options above, for both OC and AOC,
100,000 frames of training has been performed between successive rows. The goal is the north hallway, shown in green.

A.2. Comparison of dominant option usage in AOC and OC

A comparison of the usage of the dominant option in AOC and OC is shown in Figure 6. At each training checkpoint, the
dominant option usage is averaged over 50 test episodes for each of the 15 independent training runs. The shaded region
represents 1 standard deviation.
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Figure 6. Comparison of average usage of the dominant option in the four-rooms domain.

A.3. Blocked hallway transfer: hard transfers

There are cases where blocking a hallway may mean that the agent has to go all the way around this blockage to reach the
goal. For example, if the goal is in the top right room, the east hallway is blocked and the agent starts in the lower right
room, then the agent must navigate all the way around the environment, through 3 hallways, to reach the goal. This subset of
blocked hallway runs are referred to as hard transfers. A comparison between AOC and OC in handling such hard transfers
is shown in Figure 7b and indicates the more apparent benefit of AOC with hard transfers. It was also observed that on
some occasions with hard transfer, OC failed to learn altogether unlike AOC which always learned an optimal policy upon
transfer. The runs shown in Figure 7b are a subset (approximately half) of the runs shown in Figure 7a. Note that Figure 7a
is the same as Figure 2c.

(a) Blocked hallway: all (b) Blocked hallway: only hard transfer

Figure 7. (a) Transfer comparison for all transfers in the blocked hallway setting. (b) Transfer comparison for hard transfers in the blocked
hallway setting.

A.4. Hardcoded option attentions

In the case of hardcoded attention where each option’s attention is manually limited to one specific and distinct room (i.e. 1
for all states inside the room and 0 elsewhere), slower learning is observed. This is likely because hardcoding attentions de
facto removes option choice from the agent, and requires all options to be optimal to get good performance. When we tried
hardcoded attention with 8 options (2 per room), we got better performance, but still significantly slower than AOC and OC.
Figure 8 shows the comparison of the learning curves. Each curve is averaged over 15 runs and the shaded region indicates
0.25 standard deviation.

A.5. Quantitative measures for four-rooms options and attentions

All of the following quantitative measures are averaged over 15 independent runs with different goal locations.
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Figure 8. Comparison of OC, AOC, and AOC with hardcoded attentions

A.5.1. QUANTITATIVE MEASURE FOR ATTENTION DIVERSITY

After training, the argmax operation applied on the option dimension across the attention maps gives the option with most
attention for each state in the environment. Let the option which has the highest attention in most states be termed the
most attentive option and let the ratio of its number of highest attention states to total states be called most attentive option
coverage. Similarly, let the option which has the highest attention in least states be termed the least attentive option and let
the ratio of its number of highest attention states to total states be called least attentive option coverage. The closer both
the least and most attentive option coverages are to 25% (in the case of 4 options), the more diverse the attentions. When
the weights w1 and w2 are 2.0 (which we found to be the most optimal), least attentive option coverage = 8.07% and most
attentive option coverage = 48.58%. These values indicate that each option has a non-zero area where it is most attentive.

A.5.2. QUANTITATIVE MEASURE FOR ATTENTION OVERLAP

After training, let the matrix of maximum attention values for each state (across options) be termed as
max attention matrix. Let the matrix of next maximum (2nd highest) attention values for each state (across options)
be termed as second max attention matrix. Let the difference between these two matrices be called diff . Then,
a measure of the percentage of state space area where only one option attends to can be calculated as sum((diff >
0.3)&&(second max attention matrix < 0.05)) ∗ 100/total states. Here, && denotes the element-wise logical and
operation. This measure calculates the percentage of area where there is no competition among option attentions and there is
clearly only one option’s attention for each state in this area. The higher this measure is, the better. When the weights w1

and w2 are 2.0, this measure was 53.33%. For the remaining 46.66% of the area, it was usually observed to be the case that
2 options’ attentions competed for this area (note that this also includes cases where the difference in option attentions is
very high i.e. 0.5 or greater but where the second highest option attention was non negligible like 0.15).

A.5.3. QUANTITATIVE MEASURES OF VARIANCE IN OPTION USAGE

The mean option usage for both AOC and OC is near 0.25 for each option (option domination balances out across runs in
OC). The standard deviation of option usages for AOC and OC are respectively [0.19, 0.19, 0.22, 0.18] and [0.27, 0.33, 0.37,
0.35] i.e. OC has 3 to 4 times more variance.

A.5.4. QUANTITATIVE MEASURE OF CONSISTENCY BETWEEN OPTION ATTENTIONS AND USAGE

The probability that an option is executed when its corresponding attention in a state is < 0.05 is only 0.089. This indicates
that option usage is largely consistent with the corresponding option attentions.

It should be noted that in the cases where multiple options have significant non-zero attentions in a state, it can be expected
that any of these options may be executed. For example, Figure 9 shows the case where multiple options attend to states in
the bottom right room. In this case, there is some overlap between the usage of the options that have high attention in these
states. Usage in other rooms is still quite distinct.
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(a)

(b)

Figure 9. When multiple options have significant overlapping attentions in a state, any of these options may be executed. The goal is
shown in green.

B. Other atari experiments
B.1. Atari shared-attention results

As described previously, in the shared-attention model, each option’s attention is shared across all the frames of the
input stack. The advantage of this approach is that the obtained attentions are much more distinct and the options are
more specialized. The disadvantage is that the learning performance and the option diversity is sensitive to the chosen
hyperparameters. Figure 10 shows the training curves and the option attentions when trained with hyperparameter values
5000, 0.01, 100, and 1 for the weights w1, w2, w3 and w4 respectively (these weights were obtained after tuning on
the Asterix environment with the frame-dependent attention model). From the figure, it can be observed that the AOC
shared-attention model achieves similar performance compared to OC and also results in diverse options with distinct areas
of focus.

B.2. Atari frame-dependent attention results

In the frame-dependent attention model, each option’s attention is learned individually for each frame on the input stack.
Frame stacking implicitly enforces temporal regularization between attentions of successive frames, so we do not specially
account for this. The advantage of this approach is the lower sensitivity towards the attention hyperparameters. The
disadvantage is the increased overlap between option attentions resulting in decreased option diversity. Figure 11 shows the
training curves and the option attentions when trained with hyperparameter values 5000, 0.01, 100, and 1 for the weights w1,
w2, w3 and w4 respectively (these weights were obtained after tuning on the Asterix environment with the frame-dependent
attention model). From the figure, it can be observed that the AOC frame-dependent attention model achieves similar
performance compared to OC and also results in diverse options with distinct areas of focus. Comparing the learning curves
of the shared-attention model and the frame-dependent attention model, it can be seen that the latter has slower initial
performance, and this is expected since it must learn more parameters (since option attentions are learned individually for
each input frame in the stack).

C. Reproducibility and training details
The models are implemented in PyTorch and experiments were run on an NVIDIA V100 SXM2 with 16GB RAM.

C.1. Four-rooms environment

For all experiments in the four-rooms domain, we use the following option learning model for both AOC and the OC
baseline: a 2-layer neural (layerwise with 60 and 200 neurons followed by ReLU activation) with fully-connected branches
for option values, intra-option policies (with softmax function) and the option terminations (with sigmoid function). The
parameters used for both AOC and baseline OC (after a hyperparameter search) are shown in Table 1.

We performed a grid search across multiple values for w1 and w2, the weights for cosine similarity between the attentions
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(a)

(b)

(c)

(d)

Figure 10. AOC results for the shared-attention model. Column-wise: learning curves, game frame, option 0 attention, option 1 attention.
(a) Asterix (b) Assault (c) Krull (d) Yars’ Revenge

PARAMETER VALUE

NUMBER OF WORKERS 5
GAMMA (γ) 0.99
NUMBER OF OPTIONS 4
OPTIMIZER RMSPROP
LEARNING RATE 10−3

OPTION EXPLORATION LINEAR(100 , 10−1 , 105)
ENTROPY LINEAR(102 , 10−1 , 105)
ROLLOUT LENGTH 5

Table 1. Hyperparameters for four-rooms

and the temporal regularization loss respectively. The search space for both weights was the range [0, 5.0] in increments of
0.5. The best values (judged according to qualitative attention diversity and quantitative measures explained above) were
found to be 2.0 for both w1 and w2. The shaded regions in Figure 2a represent 0.5 standard deviation, and 0.25 standard
deviation in Figures 2b and 2c.
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(a)

(b)

(c)

(d)

Figure 11. AOC results for the frame-dependent-attention model. Note that the attention maps shown here are the sum of frame-wise
attention maps for each option. Framewise attentions are much more distinct and are similar to the attention maps from the shared-attention
model. Column-wise: learning curves, game frame, option 0 attention, option 1 attention. (a) Asterix (b) Assault (c) Krull (d) Yars’
Revenge

(a) Architecture for four-rooms (b) Architecture for atari

Figure 12. The shared network models for option learning with AOC. � denotes element-wise multiplication. (a) In the four-rooms
environment, the attentions are independent of the state observation. (b) In atari environments, the attentions are observation dependent.

C.2. Arcade Learning Environment

For experiments in the Arcade Learning Environment, the structure of the option learning model for both AOC and the OC
baseline is shown in Table 2.

Each convolution layer is followed by ReLU activation. The FC1 layer is followed by fully-connected branches for option
values, intra-option policies (with softmax function) and the option terminations (with sigmoid function). For AOC, the
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LAYER IN-CHANNELS OUT-CHANNELS KERNEL-SIZE STRIDE

CONV1 - 32 8 4
CONV2 32 64 4 2
CONV3 64 64 3 1
FC1 7× 7× 64 512 - -

Table 2. Option learning model for ALE environment

structure of the attention learning model is the same as in Table 2, but another layer FC2 is connected to FC1. In terms of
model architecture, the only difference between the shared-attention model and the frame-dependent attention model is the
number of neurons in FC2. For the former, it is equal to the number of pixels in a single frame of the input stack and for the
latter it is equal to the total number of pixels in the input stack. The parameters used for both models of AOC and baseline
OC (after a hyperparameter search) are shown in Table 3. The input observation is a grayscale 84× 84× 4 tensor.

PARAMETER VALUE

NUMBER OF WORKERS 16
GAMMA (γ) 0.99
NUMBER OF OPTIONS 2
OPTIMIZER RMSPROP
LEARNING RATE 10−4

OPTION EXPLORATION 10−1

ENTROPY 10−2

ROLLOUT LENGTH 5
FRAMESTACK 4

Table 3. Hyperparameters for ALE

We performed a grid search across multiple values for w1 and w2 (weights for attention diversity), w3 (weight for attention
sparsity), and w4 (weight for attention regularity). The search space for all weights was the range [10−1, 105] in semi-
logarithmic increments. The best weight values were found to be 5000, 1.0, 0.01 and 100 respectively, tuned on the
shared-attention model for the Asterix environment.

Each atari learning curve is an average over 3 random seeds and the shaded region represents 1 standard deviation.


