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Abstract001

Inference-time alignment enhances the perfor-002
mance of large language models without re-003
quiring additional training or fine-tuning but004
presents challenges due to balancing computa-005
tional efficiency with high-quality output. Best-006
of-N (BoN) sampling, as a simple yet pow-007
erful approach, generates multiple responses008
and selects the best one, achieving improved009
performance but with a high computational010
cost. We propose TreeBoN, a novel frame-011
work that integrates a speculative tree-search012
strategy into Best-of-N (BoN) Sampling. Tree-013
BoN maintains a set of parent nodes, iteratively014
branching and pruning low-quality responses,015
thereby reducing computational overhead while016
maintaining high output quality. Our approach017
also leverages token-level rewards from Di-018
rect Preference Optimization (DPO) to guide019
tree expansion and prune low-quality paths.020
We evaluate TreeBoN using AlpacaFarm, HH-021
RLHF, UltraFeedback, GSM8K, and TutorEval022
datasets, demonstrating consistent improve-023
ments. Specifically, TreeBoN achieves the024
highest win rate of 65% on TutorEval and025
around 60% win rates across other different026
datasets, outperforming standard BoN with the027
same computational cost and showcasing its028
scalability and alignment efficacy.029

1 Introduction030

Aligning large language models (LLMs) with hu-031

man values is essential for ensuring their outputs re-032

flect human intentions and ethical standards. When033

data on human preferences is available, a pretrained034

LLM can be fine-tuned to align with these prefer-035

ences. One popular approach for fine-tuning is036

Reinforcement Learning from Human Feedback037

(RLHF), where a reward model is trained on a038

human-labeled preference dataset, followed by039

reinforcement learning to fine-tune the LLM as040

a policy model (Ouyang et al., 2022). Alterna-041

tive methods such as Direct Preference Optimiza-042

tion (Rafailov et al., 2024b) and its variants (Azar043

et al., 2024a; Ethayarajh et al., 2024; Meng et al., 044

2024) enable direct alignment via fine-tuning us- 045

ing a contrastive loss, eliminating the need for a 046

separate reward model. 047

This paper focuses on optimizing inference-time 048

alignment of large language models (LLMs). By 049

leveraging inference-time search, the capability 050

of LLMs is enhanced during the generation pro- 051

cess, improving real-time decision-making. Vari- 052

ous techniques, such as Monte Carlo Tree Search 053

(MCTS), have been effectively applied to rea- 054

soning, planning, and accelerated decoding tasks 055

(Zhao et al., 2024; Hao et al., 2023; Brandfonbrener 056

et al., 2024; Choi et al., 2023), demonstrating the 057

potential for better decoding outcomes (Liu et al., 058

2024a). In this work, we aim to explore tree search 059

strategies to further capitalize on decoding-time 060

alignment. Our goal is to enhance the quality of 061

alignment while simultaneously reducing the com- 062

putational cost of inference, providing a more effi- 063

cient and aligned LLM experience. 064

A most simple, yet powerful inference-time 065

alignment method is the Best-of-N (BoN) method. 066

We start our discussion with BoN to motivate our 067

development of more efficient solutions. BoN 068

generates multiple sample responses and chooses 069

the best one based on a reward function r(y|x) 070

which characterizes how well-aligned a generated 071

response y is with respect to the given prompt 072

x. More formally, BoN aims to approximate the 073

solution to the following optimization problem: 074

maxy r(y|x) where the only access to y is through 075

auto-regressively sampling the next token yt from 076

the base policy πbase(·|x,y1:t−1), conditioned on 077

the previous tokens. BoN generates N samples 078

and selects the response from y1,y2, . . . ,yN that 079

achieves the highest reward model score. Due to its 080

simplicity and effectiveness, Best-of-N sampling 081

and its variants are widely studied to align LLM 082

outputs with human preferences (Wang et al., 2024; 083

Sessa et al., 2024; Gui et al., 2024; Khaki et al., 084

1



2024; Jinnai et al., 2024; Liu et al., 2024b; Xiong085

et al., 2024). Also, Best-of-N Sampling is com-086

monly used in Expert Iteration and iterative fine-087

tuning (Havrilla et al., 2024), which plays an im-088

portant role in the alignment of Llama2 (Touvron089

et al., 2023) and Llama3 (Dubey et al., 2024). In de-090

tail, Llama2 (Touvron et al., 2023) combines rejec-091

tion sampling with Proximal Policy Optimization092

(PPO) in an iterative fine-tuning process to align093

Llama 2 with human preferences. More recently,094

Llama3 (Dubey et al., 2024) uses rejection sam-095

pling to generate high-quality data for alignment in096

an iterative process.097

While Best-of-N sampling has proven effective,098

it has a significant drawback: efficiency. Naively099

implementing BoN requires generating N separate100

responses and the total inference FLOPs scales lin-101

early with N . This not only demands N times102

more computation but also potentially leads to N103

times longer latency. The computational overhead104

can be prohibitively expensive for LLMs with bil-105

lions of parameters, particularly when real-time or106

low-latency responses are needed.107

Some potential solutions involve more intelligent108

sampling strategies such as pruning to improve effi-109

ciency. Speculative Best-of-N (SBoN) (Zhang et al.,110

2024) alleviates the problem by continuing the gen-111

eration of high-quality responses and rejecting the112

low-quality responses at an early stage of the gen-113

eration. Cascade Reward Sampling(CARDS) (Li114

et al., 2024) use rejection sampling to iteratively115

generate small semantic segments to form such pre-116

fixes, based on rewards computed using incomplete117

sentences.118

These accelerated methods are based on the hy-119

pothesis that utterances receiving high/low rewards120

early on in the generation process are likely to yield121

high/low rewards in the final complete response.122

However, this hypothesis is too good to be true.123

In fact, off-the-shelf reward models are typically124

trained on complete responses, and therefore the125

score of partial completions by the reward model is126

usually chaotic and doesn’t accurately predict the127

final output’s quality, especially for long responses.128

Our analysis confirmed that rewards of partial com-129

pletions are not necessarily positively correlated130

with the final reward (see our experiment results in131

Section 4.2.4 and Appendix G).132

To enable faster, efficient inference-time align-133

ment, we propose to incorporate a tree search strat-134

egy into BoN sampling, in order to improve the135

alignment quality as well as reduce the overall in-136

ference cost. Our TreeBoN method maintains an 137

active set of nodes, and actively grows a tree via 138

branching and pruning. In other words, TreeBoN 139

would sample more frequently from good parent 140

nodes but prunes nodes with low predicted rewards. 141

This tree search strategy makes it possible to effi- 142

ciently explore the search space. 143

Another design feature of TreeBoN is the use 144

of implicit reward from DPO-aligned models for 145

guidance of the tree research. DPO (Rafailov et al., 146

2024b) states that the DPO policy model can pro- 147

vide an implicit reward. Rafailov et al. (2024a) fur- 148

ther points out that DPO training implicitly learns 149

a token-level reward function. Thus, we design 150

TreeBoN to be able to leverage any off-the-shelf 151

DPO model for inference-time decoding of the tar- 152

get model. Our extensive experiments show that 153

a weighted combination of implicit DPO rewards 154

would lead to superior, robust performance. Our 155

observation is consistent with the fact that one can 156

detect safety levels of the full response using the 157

first few tokens Qi et al. (2024). 158

Our experiments show that under the same com- 159

puting budget, TreeBoN achieves better perfor- 160

mance than BoN extensively and stably, with the 161

highest win-rates of 65% on TutorEval (Cheva- 162

lier et al., 2024), 63% on AlpacaFarm (Dubois 163

et al., 2024) with length 192 and 384, above 60% 164

across HH-RLHF (Bai et al., 2022) and UltraFeed- 165

back (Cui et al., 2024), and increased pass@1 solve 166

rate on GSM8K (Cobbe et al., 2021) as well. By 167

choosing a smaller N, TreeBoN could achieve bet- 168

ter performance and improve efficiency at the same 169

time. With only 6.3% of the compute, TreeBoN 170

still maintains a 55% win-rate against BoN. On 171

the other hand, SBoN can be viewed as a special 172

example of our method with a two-layer tree whose 173

children number is equal to one and BoN can be 174

viewed as a two-layer tree with the children num- 175

ber equal to N. TreeBoN has the potential to further 176

improve efficiency than expected by taking advan- 177

tage of the key-value cache which is especially 178

beneficial to the tree structure since the keys and 179

values of parent tokens can be cached and shared 180

by children. 181

The main contributions of this paper are as fol- 182

lows: 183

1. We incorporate the Speculative Tree-search 184

framework into Best-of-N Sampling to en- 185

hance efficiency and alignment performance 186

simultaneously. 187
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2. We apply weighted implicit reward from DPO188

to provide the partial reward, which replaces189

the traditional reward model. We also offer a190

comprehensive analysis of traditional reward191

models on partial responses.1192

3. TreeBoN demonstrates robust improvements193

in alignment quality and efficiency in compre-194

hensive evaluations.195

2 Preliminaries196

2.1 Best-of-N sampling (BoN)197

To approximate the optimization problem of maxi-198

mizing the reward function r(y|x) which measures199

how well a generated response y sampled from200

the base policy πbase(·|x) aligns with respect to the201

given prompt x, Best-of-N Sampling (BoN) selects202

the response with the highest reward score from203

N independent and identically distributed (i.i.d.)204

responses generated by the language model πbase:205

y⋆ = argmax
y∈{yk∼πbase(·|x)}Nk=1

r(y|x),206

207 where the only access to y is through auto-208

regressively sampling the next token yt from the209

base policy πbase(·|x,y1:t−1), conditioned on the210

previous tokens. The algorithm is listed in Ap-211

pendix B.212

2.2 Token-Level Markov Decision Process and213

Soft Q-Learning214

Rafailov et al. (2024b) demonstrated that under the215

Max-Entropy reinforcement learning (RL) formula-216

tion, the token-level log-ratio can be interpreted as217

an implicit token-level reward or advantage func-218

tion, which remains invariant under reward shap-219

ing.220

Below, we briefly restate the key setting and221

results.222

The token-level Markov Decision Pro-223

cess (MDP) defines the state st =224

(x1, x2, . . . , xm, y1, y2, . . . , yt) as the tokens225

generated so far, and the action at = yt+1 as the226

next token to be predicted. The auto-regressive227

language model is thus a policy π(at|st). The tran-228

sition dynamics are deterministic: st+1 = st|at,229

simply appending the next token to the current230

generated tokens to form a new sequence.231

1See Appendix G for our sentence-level and token-level
experiments and examples

The RLHF formulation can be expressed as a 232

Max-Entropy RL problem: 233

Ex∼X ,y∼πθ(·|x)
[
r(y|x) + β log πref(y|x)

]
+ βEx∼X [H(πθ(·|x))] .

234

Or equivalently at the token level: 235

Es0∼X ,at∼πθ(·|st)
[ T∑
t=1

r′(st,at)
]

+ βEs0∼X [H(πθ(·|s0))] ,
236

with the token level reward function r′ for any 237
(st,at) defined as: 238

r′(st,at) :=

{
β log πref(at|st), if st+1 is not terminal,
r(y|x) + β log πref(at|st), if st+1 is terminal.

239

For simplicity, let us assume that the horizon is 240

fixed at T . The derivation of the Max-Entropy 241

RL formulation (Ziebart, 2010; Rafailov et al., 242

2024a) utilizes the (soft) optimal value function 243

V ∗ and the (soft) optimal Q-function Q∗, as fol- 244

lows: V ∗(sT+1) = 0 when sT+1 is the termi- 245

nal state; Q∗(st,at) = r′(st,at) + V ∗(st+1), 246

V ∗(st) = log
∑

a exp(Q
∗(st,a)), when t ≤ T . 247

The optimal policy π∗ satisfies the following 248

equation: β log π∗(at|st) = Q∗(st,at) − V ∗(st), 249

which can be further rewritten when t < T : 250

β log
π∗(at|st)
πref(at|st)

= V ∗(st+1)− V ∗(st). 251

This suggests that we can use the partial sum of the 252

implicit reward from a DPO policy to characterize 253

the potential final reward given a prefix sequence 254

of length K: 255

K−1∑
t=0

β log
π∗(ak|sk)
πref(ak|sk)

= V ∗(sK)− V ∗(s0). 256

Since s0 = (x1, x2, . . . , xm) = x, V ∗(s0) is the 257

same for all responses. 258

3 Method 259

In this section, we introduce TreeBoN, a novel 260

inference-time algorithm that enhances alignment 261

quality and efficiency by incorporating a specula- 262

tive tree-search structure into the Best-of-N (BoN) 263

sampling framework. TreeBoN iteratively expands 264

high-reward partial responses, pruning low-quality 265

candidates at early stages. The algorithm leverages 266

a weighted implicit reward from a Direct Prefer- 267

ence Optimization (DPO) policy model to improve 268

the quality of partial response evaluation. Below, 269

we describe the key steps involved in TreeBoN. 270
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Prompt: Were unicorns easily caught in medieval times?

Best of N

TreeBoN

No. Unicorns are mythical creatures, not real animals, and …
Keep generating until all 
N responses are finished 

Yes, unicorns were considered a mythological creature and …

No. Unicorns are 
mythical creatures…

Yes, unicorns were 
considered a …

Stop generating low-quality 
response earlier and 
hierarchically expand on 
good ones

These creatures were 
typically described as …

These were real animals, 
such as  aurochs, which …

…

…

Figure 1: An illustration of different response generation strategies. Best-of-N completes all candidate generations,
while TreeBoN (our method) introduces early termination of low-quality responses using a DPO reward model and
hierarchically expands promising responses. See Table 15 for the detailed example.

3.1 Overview of TreeBoN Algorithm271

TreeBoN operates by generating candidate re-272

sponses layer-by-layer in a tree structure. The al-273

gorithm begins with a set of initial root responses,274

and at each subsequent layer, only high-reward re-275

sponses are selected and expanded into multiple276

children. This speculative search through the tree277

space improves both the efficiency and the final278

response quality. The overall structure of TreeBoN279

is illustrated in Algorithm 1 and Figure 2.280

The algorithm takes as input the prompt x,281

a base policy πbase for generating candidate re-282

sponses, a partial-reward function r, and key hyper-283

parameters including the number of root samples284

N , maximum response length lmax, branching fac-285

tor(number of children per node) Nchildren, and the286

number of tree layers Nlayer.287

Furthermore, Ci denotes the candidate set con-288

taining all partial responses generated in the i-th289

layer. Pi denotes the i-th layer active set contain-290

ing all promising partial responses for expansion291

in the next layer. li is the max new token length for292

generation in each layer, where li =
lmax
Nlayer

.293

3.2 TreeBoN Generation Process294

The generation process in TreeBoN consists of the295

following key steps:296

1. Initial Candidate Generation: TreeBoN be-297

gins by generating N candidate responses298

C1 = {y1,y2, . . . ,yN} with a length of l1 us-299

ing the base policy πbase. The total maximum300

response length lmax is split into segments301

l1, l2, . . . , lNlayer evenly where li =
lmax
Nlayer

.302

2. Partial Reward Scoring: At each layer i,303

the reward model or partial-reward function304

r(y|x) is used to compute the reward score 305

for each candidate response y ∈ Ci. This is 306

performed after generating partial responses 307

of length li. 308

3. Pruning and Selection: Based on the reward 309

scores, the top N
Nchildren

candidates from the cur- 310

rent layer are selected to form the active set 311

Pi. These high-reward parent responses are 312

used to generate child responses at the next 313

layer. 314

4. Response Expansion: For each parent re- 315

sponse y ∈ Pi, TreeBoN generates Nchildren 316

child responses by sampling from the base pol- 317

icy πbase with a maximum new token length 318

li+1. This process generates the next-layer 319

candidate set Ci+1. It is worth noting that the 320

set size of the candidate set is always N and 321

the set size of Pi is always N
Nchildren

to ensure an 322

equal number of total generated tokens with- 323

out requiring extra computing budget. 324

5. Final Selection: After generating candidates 325

for all layers, the reward model computes the 326

final rewards for the candidate responses in 327

the last layer CNlayer . The response y⋆ with the 328

highest reward is selected as the final output: 329

y⋆ = argmax
y∈CNlayer

r(y|x). 330

3.3 Weighted Implicit Reward As Guidance 331

One of the key contributions of TreeBoN is the use 332

of a weighted implicit reward function, inspired 333

by Rafailov et al. (2024b,a); Qi et al. (2024), to 334

evaluate partial responses. This approach allows 335
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Figure 2: Visualization of speculative tree-search process for the prompt "Were unicorns easily caught in medieval
times?". Nodes represent partial responses, with color indicating normalized reward scores. We normalize the
reward values within each layer. Solid blue lines show the expansion of high-reward paths, while dotted lines
represent pruned low-reward branches. The solid blue line expansion path in this example shows the setting that
N = 8 initial candidate responses and Nchildren = 4 in Algorithm 1. In detail, labeled nodes A2 (Yes, unicorns were
considered a mythological creature and easily caught in medieval times) and A5 (Unicorns were believed to be
easily caught in medieval times) include hallucinations and therefore generating future responses from low-quality
prefixes makes it hard to get a high-quality result. Meanwhile, A3 (No. Unicorns are mythical creatures, not
real animals, and therefore could not have been caught in medieval times) and A4 (No, unicorns were not
easily caught in medieval times. In fact, unicorns were mythical creatures and did not exist in reality) are
high-reward prefixes that are more likely to produce high-quality complete responses in the future. More details of
labeled nodes are presented in Table 15.

Algorithm 1 TreeBoN Algorithm
1: Input: Prompt x, base policy πbase, partial-reward func-

tion r, number of root samples N , max length lmax, branch-
ing factor Nchildren, number of tree layers Nlayer.

2: Output: Response y⋆ with the highest reward using Tree-
BoN.

3: Initialization: Split the total max length lmax into seg-
ments l1, l2, . . . , lNlayer where li =

lmax
Nlayer

.
4: Generate N initial candidate responses for the first-layer

candidate set C1 = {y1,y2, . . . ,yN}, each with a length
of l1.

5: for i = 1 to Nlayer − 1 do
6: Query the reward model or partial reward function

r(y|x) to compute the reward scores for each candi-
date response y ∈ Ci.

7: Select the top N
Nchildren

candidates from Ci based on
reward scores to form the i-th layer active set Pi.

8: for each parent response y ∈ Pi do
9: For each parent y, continue generation by sampling

Nchildren child responses from the base policy πbase,
each with a max new token length li+1, to form the
next set of candidates Ci+1.

10: end for
11: end for
12: After all layers are generated, query the reward model for

the final set of responses CNlayer .
13: Find the response y⋆ with the highest reward:

y⋆ = argmax
y∈CNlayer

r(y|x).

14: Return the response y⋆.

TreeBoN to replace the traditional reward model 336

with a DPO policy model, which provides more 337

accurate rewards for incomplete responses. The 338

partial reward for a sequence y:K is computed as: 339

rpartial(y:K |x) =
K−1∑
k=0

wk log
π∗(yk|x,y:k)

π(yk|x,y:k)
, 340

where wk = 1
|y:k| acts as a weighting factor 341

to adjust the contribution of each token-level log- 342

likelihood ratio. This weighted reward helps prune 343

low-quality responses early and encourages the con- 344

tinuation of higher-quality candidates throughout 345

the tree expansion process. We also test several 346

different variants of partial reward modeling in Ap- 347

pendix F. 348

4 Experiments 349

4.1 Experiment Setting 350

We use a set of Llama models: LLaMA3-iterative- 351

DPO-final (Xiong et al., 2024; Dong et al., 2024) 352

as the DPO policy model (referred as the DPO 353

model in this section)2, with its SFT (supervised 354

2See model card https://huggingface.co/RLHFlow/
LLaMA3-iterative-DPO-final
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fine-tuning) checkpoint trained from Llama 3355

8B (AI@Meta, 2024) and reward model FsfairX-356

LLaMA3-RM-v0.1 (Dong et al., 2023; Xiong et al.,357

2024) from Llama 3 8B Instruct (AI@Meta, 2024).358

The SFT model was trained on a set of high-quality359

instruction datasets for 1 epoch; the reward model360

was formulated as a Bradley-Terry model optimiz-361

ing the negative log-likelihood loss function on a362

mixture of filtered datasets; and notably, the DPO363

policy model was initialized from the SFT model364

and updated on the online preference signals pro-365

duced by the aforementioned reward model (as366

a proxy of human feedback). We refer readers367

to (Xiong et al., 2024) for the details of iterative368

online RLHF and the training of these models. We369

also use an additional DPO model Llama-3-8B-370

SFR-Iterative-DPO-R3, referred as the SFR model371

in this section. The baseline is the Best-of-N sam-372

pling with N equal to 128 and the max token length373

of responses varies from 192 to 768. For Tree-374

based BoN with Weighted Implicit Reward, unless375

otherwise specified, we set the number of tree lay-376

ers as 4, the number of children per node 4. Con-377

sidering the cost of the evaluation, we take 100378

randomly selected samples from each dataset, fol-379

lowing the same setting as SBoN (Zhang et al.,380

2024). We evaluate the baseline and our meth-381

ods and take the average of 3 runs of different382

seeds on AlpacaFarm (Dubois et al., 2024), Ultra-383

Feedback (Cui et al., 2024), GSM8K (Cobbe et al.,384

2021), and HH-RLHF (Bai et al., 2022). For Tu-385

torEval (Chevalier et al., 2024), we choose 100386

closed-book questions.387

4.1.1 Metrics388

See a detailed explanation of below metrics in Ap-389

pendix C.390

4 Win-rate For all datasets except for GSM8k,391

we conduct the standard GPT4 win-rate evaluations392

of our proposed method against the baseline.393

Pass@1 Solve Rate For GSM8k, we report the394

zero-shot pass@1 solve rate (Cobbe et al., 2021).395

FLOPs We consider FLOPs as a cost metric. We396

can show that the computation costs of TreeBoN397

and Best-of-N are the same and will only be con-398

trolled by the number of root samples N and maxi-399

mum generation length lmax as in Appendix C.3.400

3This is the official release, trained with the
same SFT and reward model, see model card
for details https://huggingface.co/Salesforce/
LLaMA-3-8B-SFR-Iterative-DPO-R

4.2 Results 401

4.2.1 Improvement over Diverse Datasets 402

We evaluate the baseline and our methods by 403

answering 100 randomly selected prompts from 404

AlpacaFarm (Dubois et al., 2024), UltraFeed- 405

back (Cui et al., 2024), and HH-RLHF (Bai et al., 406

2022). For TutorEval (Chevalier et al., 2024), we 407

choose 100 closed-book questions. TreeBoN con- 408

sistently outperforms the baseline across various 409

datasets when evaluated using GPT4 win-rate (Fig- 410

ure 3). The full numerical results of this section 411

can be found in Table 3, 4 and 5 of Appendix D. 412

Notably, with a maximum length of 192 tokens, 413

TreeBoN with the SFR model achieves a 65% win- 414

rate than Best-of-N sampling on TutorEval, a 64% 415

win-rate on AlpacaFarm, and at least 60% win-rate 416

on other datasets. TreeBoN with the DPO model 417

also achieves a 64%win-rate on AlpacaFarn, and 418

at least 60% on others. This demonstrates that 419

TreeBoN’s layered tree structure, combined with 420

the use of a weighted implicit reward function to 421

evaluate partial responses, enables better alignment 422

with human preferences. 423

For longer responses (max length 384 tokens), 424

TreeBoN with the SFR model maintains a signif- 425

icant performance lead, showing a 65% win-rate 426

over BoN on TutorEval, 63% on AlpacaFarm and 427

HH-RLHF. If using the DPO model, TreeBoN 428

achieves a 62% win-rate on AlpacaFarm as well. 429

Notably, for the SFR model, from length 384 to 430

length 768, the win-rates are steadily high. This 431

suggests that TreeBoN is also well-suited for han- 432

dling tasks that require generating more complex or 433

nuanced responses, where multiple layers of explo- 434

ration yield better results than repeated sampling. 435

In the same setting, we also evaluate TreeBoN 436

with the SFR model on the entire AlpacaFarm 437

dataset, which has 805 prompts. We obtain 65.67% 438

and 60.57% win-rates over BoN with max length 439

192 and 384 respectively, showing that TreeBoN’s 440

performance is generalizable. 441

In addition to general alignment improvements, 442

TreeBoN’s zero-shot performance on mathemati- 443

cal reasoning dataset GSM8K (Cobbe et al., 2021) 444

also sees a non-trivial boost. In Table 5, TreeBoN 445

with the DPO model outperformed BoN by an im- 446

pressive 9% margin of pass@1 solve rate at max- 447

imum response lengths of 576 tokens, indicating 448

that the hierarchical nature of TreeBoN allows it to 449

effectively manage challenging reasoning tasks that 450

require long CoT reasoning, making it adaptable 451
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Figure 3: GPT4 win-rate of TreeBoN against BoN on multiple datasets. The SFR model refers to using Llama-3-
8B-SFR-Iterative-DPO-R as the DPO model, and the DPO model refers to using LLaMA3-iterative-DPO-final. See
Table 3 and 4 for numerical results

across different domains.452

4.2.2 Explore Different Tree Structures with453

Same Computation454

We further explored the effect of different tree struc-455

tures by varying the number of layers and children456

per node (Table 6 and 7) separately, while keep-457

ing N = 128 and lmax the same, thus the over-458

all computation is unchanged. We use the set of459

Llama models: LLaMA3-iterative-DPO-final, its460

SFT checkpoint, FsfairX-LLaMA3-RM-v0.1 on461

AlpacaFarm, and compute the win-rate against462

BoN. We can observe in Table 6 that increasing463

the number of tree layers consistently improves464

performance on AlpacaFarm, and in Table 7, the465

optimal number of children nodes is different for466

two maximum generation lengths. Above all, re-467

gardless of the tree structure, our approach main-468

tains a win-rate of around 60% against the baseline,469

indicating its effectiveness and robustness under470

different tree structures, and the potential to further471

improve the performance in the future by exploring472

more hyper-parameters tailored to different tasks.473

4.2.3 Efficiency Evaluation474

As shown previously, the computation costs mea-475

sured by FLOPs of TreeBoN and BoN are only476

determined by number of root nodes N and max477

length lmax. In Table 2, we show the FLOPs used by478

different configurations. We then compare the com-479

putation cost of our TreeBoN and Best-of-N. We480

use the same sets of Llama models on AlpacaFarm481

with a max length of 384. As observed in Table 8,482

with increasing computation budget, the win-rate of483

TreeBoN against BoN is also increasing. Thus, our484

proposed method is more scalable than the baseline 485

and can utilize the additional computation budget 486

more efficiently. In Table 9, TreeBoN of increasing 487

N are compared to BoN with N = 128. We can 488

see that even with a very small N = 8 (6.3% of 489

FLOPs), TreeBoN can still outperform BoN with 490

a much greater computation budget at a win-rate 491

of 55%, and the quality is monotonic increasing on 492

N . 493

4.2.4 Comparison over Other Baselines under 494

Same Compute 495

We compare TreeBoN to other baselines (Li et al., 496

2024; Zhang et al., 2024) by the win-rates against 497

BoN in Table 1, with the same set of Llama models 498

introduced earlier for all methods for max length 499

384 and 192. 500

To ensure a fair comparison, we constrain the 501

total number of tokens generated during infer- 502

ence. However, for CARDS (Li et al., 2024), the 503

rejection-based sampling with semantic segmen- 504

tation mechanism introduces uncertainty in token 505

acceptance, leading to variations in the number of 506

generated tokens and requiring random numbers of 507

completions per step. As a result, the total token 508

count remains dynamic and context-dependent. 509

We adopt the hyperparameters from Li et al. 510

(2024) for LLaMA 7B, as they are the most similar 511

to our setup. We then compute the average number 512

of tokens generated per prompt in the AlpacaFarm 513

dataset, which amounts to 3002.3 tokens for a max 514

length of 192 and 5867.3 tokens for 384. 515

For both BoN and TreeBoN, the total number of 516

generated tokens follows the relation: Total Tokens 517

7



= lmax × N. Thus, we set N = 16 for BoN and518

TreeBoN, resulting in total token counts of 3072519

and 6144 for the respective cases, aligning closely520

with the results of CARDS.521

For SBoN, we adopt the hyperparameters522

from Zhang et al. (2024) for their case of LLaMA3-523

8B as the language model and LLaMA3-8B-RM524

as the reward model, given their similarity to our525

setup. We apply a rejection rate of α = 30%. To en-526

sure comparable computations, we set NSBoN = 19527

for SBoN, where the total token count is computed528

as lmax ×
(
1− α

2

)
× NSBoN. This results in total529

token counts of 3101 and 6202 for two max lengths.530

The comparison results are presented in Table 1.531

Under the same compute constraints, TreeBoN con-532

sistently outperforms other methods, achieving the533

highest GPT4 win-rates against BoN across both534

evaluated sequence lengths.535

At max length 192, TreeBoN significantly sur-536

passes both SBoN and CARDS, achieving a win-537

rate of 63.21%, compared to 51.01% for CARDS538

and 49.66% for SBoN. At max length 384, Tree-539

BoN still maintains its superior performance with540

a win-rate of 55.18%.

Table 1: Comparison of different methods with baseline
models in terms of total tokens and GPT4 win rates.

Max Length Methods GPT4 Win Rates (%)

192
SBoN 49.66± 2.90

CARDS 51.01± 2.90

TreeBoN 63.21± 2.79

384
SBoN 48.83± 2.90

CARDS 49.66± 2.90

TreeBoN 55.18± 2.88

541

4.2.5 Ablation Study542

We also experiment with different implicit rewards543

in Appendix F, and ablate the two components of544

TreeBoN: the tree-search process, and weighted545

implicit reward in Appendix E. We conclude that546

our weighted implicit reward fits best with the tree-547

search setting compared to other implicit rewards,548

and both speculative tree-search and weighted im-549

plicit reward are needed for substantial improve-550

ment.551

5 Conclusion 552

TreeBoN is a novel framework that combines the 553

speculative tree-search strategy with Best-of-N 554

(BoN) Sampling and token-level reward guidance 555

modified from DPO implicit reward. Through ex- 556

tensive experiments, we show that TreeBoN not 557

only has robust alignment improvements but also 558

maintains efficiency, which provides a potential 559

solution for efficient inference and alignment of 560

LLMs. 561
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Limitations562

While TreeBoN achieves robust improvements, it563

greatly relies on the high quality of the reward564

model on incomplete responses to accelerate the565

inference without losing performance by itera-566

tive expansion and pruning, which is also key to567

SBoN (Zhang et al., 2024). Though implicit reward568

from the DPO model provides a candidate solution569

for the token-level reward guidance, it can only570

compare responses with the same length. Also,571

the poorly trained DPO model and its SFT check-572

points would fail to provide good partial rewards.573

Therefore, the accurate reward modeling of partial574

responses is still an open question. Reinforcement575

learning may provide better solutions for partial576

reward modeling but suffers from the difficulty of577

training.578
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A Related Works923

A.1 Best-of-N Sampling for Alignment924

Best-of-N (BoN) sampling is a commonly used925

strategy for aligning large language models with926

human preferences by selecting the best sample out927

of N candidates. At training time, (Amini et al.,928

2024) fine-tunes models by minimizing the KL929

divergence to approximate the BoN distribution,930

improving value alignment using variational BoN,931

which reduces the computational cost during infer-932

ence. (Sessa et al., 2024; Gui et al., 2024) further933

enhance alignment by distilling the BoN sampling934

behavior directly into the model during training,935

aiming to replicate the BoN distribution with a sin-936

gle sample at inference time. At inference time,937

(Zhang et al., 2024) speeds up BoN by stopping the938

generation of unlikely candidates, and (Khaki et al.,939

2024) combines rejection sampling with preference940

optimization to improve efficiency without sacri-941

ficing alignment performance. From a theoretical942

perspective, an initial estimate for the KL diver-943

gence between the BoN output policy and the base944

model was provided for small values of N (Coste945

et al., 2024), (Gao et al., 2023), (Go et al., 2024),946

and this estimate was later improved to cover all947

values of N (Beirami et al., 2024). It has also been948

shown that BoN and KL-regularized reinforcement949

learning methods achieve similar asymptotic ex-950

pected rewards, with minimal KL deviation be-951

tween them (Yang et al., 2024a). Compared with952

the works mentioned above, our work utilizes a953

tree-structured search scheme / segment-wise beam954

search to accelerate best-of-N sampling by pruning955

the low-reward branches early. To terminate low-956

reward branches early, we utilize the implicit value957

function from a DPO policy.958

A.2 Tree-Search/MCTS For Language Model959

MCTS has been employed in large language model960

tasks recently (Kocsis and Szepesvári, 2006). Zhao961

et al. (2024) and Hao et al. (2023) integrates MCTS962

into planning and logical reasoning tasks. VerM-963

CTS (Brandfonbrener et al., 2024) utilizes a logi-964

cal verifier to guide a modified Monte Carlo Tree965

Search (MCTS) for code generation. KCTS (Choi966

et al., 2023) guides the language model to generate967

text aligned with the reference knowledge at each968

decoding step by combining a knowledge classifier969

score and MCTS. PPO-MCTS(Liu et al., 2024a)970

combines MCTS and PPO value network for de-971

coding.972

Speculative Decoding is introduced to acceler- 973

ate LLM inference while keeping the distribution 974

of LLM’s output distribution unchanged by using 975

a much smaller draft model to predict the LLM 976

outputs which are verified later in parallel by the 977

LLM (Chen et al., 2023; Leviathan et al., 2023). 978

SpecDec++ (Huang et al., 2024b) adaptively se- 979

lects candidate token lengths using a trained accep- 980

tance prediction head, achieving substantial infer- 981

ence speedups on large language models by reduc- 982

ing verification costs without sacrificing accuracy. 983

SpecInfer and SpecTr extend the sequence to a to- 984

ken tree, increasing the number of accepted tokens 985

by the target model (Sun et al., 2024; Miao et al., 986

2024). SEQUOIA further proposes the method for 987

constructing the optimal tree structure for the spec- 988

ulated tokens by introducing a dynamic program- 989

ming algorithm (Chen et al., 2024b). Medusa (Cai 990

et al., 2024) is designed to accelerate large language 991

model (LLM) inference by using multiple parallel 992

decoding heads to predict multiple tokens simulta- 993

neously, reducing decoding steps without requiring 994

a separate draft model, thus improving efficiency 995

and speed while maintaining output quality. 996

While our tree-structured search framework 997

bears resemblance with MCTS or tree-based spec- 998

ulative decoding, they are fundamentally different: 999

most MCTS algorithms are designed for planning 1000

and logical reasoning tasks with a clear reward sig- 1001

nal in the end, while our work focuses on using tree 1002

search to accelerate best-of-N sampling and LLM 1003

alignment and the signal is obtained throughout 1004

the search process. Tree-based speculative decod- 1005

ing is used to accelerate sampling from the target 1006

distribution, while ours is used to accelerate sam- 1007

pling for the best of the N responses. PPO-MCTS 1008

doesn’t consider the efficiency, instead, it focuses 1009

on token-level tree expansion involving the backup 1010

stage which takes more time. Also, the guidance 1011

of PPO-MCTS is a value network from PPO which 1012

differs from ours. 1013

A.3 Reward Modeling 1014

Full-sequence reward modeling. RLHF uses the 1015

Bradley-terry model to learn a reward function 1016

for full-sequence (Christiano et al., 2017; Stien- 1017

non et al., 2020). DPO (Rafailov et al., 2024b) 1018

implicitly solves the KL-regularized RLHF prob- 1019

lem by representing the reward with a language 1020

model.SimPO (Meng et al., 2024) considers a dif- 1021

ferent BT model based on the average (length- 1022

normalized) reward rather than the sum of rewards. 1023
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It is worth noting that alignment can go beyond a1024

reward model due to the inconsistency in human1025

preference. To this end (Azar et al., 2024b; Ros-1026

set et al., 2024; Wu et al., 2024), also optimize1027

LLM’s log-ratio according to different criteria, and1028

the log-ratio can serve as sequence-level reward1029

indicator.1030

Partial/Token-level reward modeling. Not ev-1031

ery token contributes to human preference equally.1032

A token-level reward signal is thus desirable so1033

that we can do credit assignments to each token.1034

Reward grounding (Yang et al., 2024b) attempts1035

to learn a token-level reward via Maximum Like-1036

lihood Estimation (MLE). They define a specific1037

aggregation function so that token rewards can be1038

transformed into sequence rewards, which can then1039

be learned via MLE under the BT model. Reward1040

reshaping can also be used to obtain token-level1041

rewards. For instance, Chan et al. (2024) uses at-1042

tention weights to redistribute the sequence reward1043

to each token. Mudgal et al. (2024) and Han et al.1044

(2024) propose learning a value function to guide1045

token-level sampling in controlled decoding tasks.1046

Inverse Q preference learning: DPO reward1047

is a token-level reward model More recent works1048

go beyond reward modeling by treating the problem1049

as inverse Q-learning. Rafailov et al. (2024a) shows1050

that the DPO loss can be interpreted as implicitly1051

learning a token-level Q∗ function, represented by1052

the LLM’s logits. Similarly, Contrastive Preference1053

Learning (CPL) (Hejna et al., 2024) assumes that1054

human preferences follow a Bradley-Terry model1055

based on the sum of Q values rather than the sum1056

of rewards, and proposes to learn the Q function1057

directly. Zeng et al. (2024) similarly expand on1058

this idea, presenting token-level direct preference1059

optimization based on the Q value function.1060

In this work, we examine the effectiveness of1061

these reward modeling approaches by incorporat-1062

ing these signals with our tree-search BoN frame-1063

work. Additionally, we propose a new design: the1064

weighted sum of implicit DPO rewards that turns1065

out highly effective.1066

A.4 Decoding-Time Alignment1067

DeAL views decoding as a heuristic-guided search1068

process and integrates alignment to decoding us-1069

ing a wide range of alignment objectives (Huang1070

et al., 2024a). RAD (Deng and Raffel, 2023)1071

uses a unidirectional reward model and ARGS de-1072

signs a weighted scoring function involving the1073

reward model (Khanov et al., 2024) to do the1074

reward-guided search for decoding-time alignment. 1075

URIAL (Lin et al., 2023) and RAIN (Li et al., 1076

2023b) use in-context learning by prompting the 1077

LLMs to do the self-alignment without SFT or 1078

RLHF. Controlled decoding (Mudgal et al., 2024) 1079

trains a value function from the reward model 1080

for better token-level scoring. RLMEC (Chen 1081

et al., 2024a) trains a generative token-level re- 1082

ward model for alignment. Cascade Reward Sam- 1083

pling(CARDS) (Li et al., 2024) uses a reward 1084

model on semantically complete segments to ac- 1085

celerate the decoding. Shi et al. (2024) extends 1086

decoding-time alignment to multiple objectives by 1087

generating the next token from a linear combina- 1088

tion of predictions of all base models. 1089

Cascade Reward Sampling(CARDS) (Li et al., 1090

2024) use rejection sampling to iteratively gener- 1091

ate small semantically complete segments, based 1092

on rewards computed on incomplete responses 1093

by a reward model. The assumption is that 1094

semantically-complete high-reward prefixes induce 1095

high-reward complete text. However, as shown 1096

in Appendix G.3, for responses that are longer 1097

than 128 which are not included by CARDS, we 1098

show that in our tree search setting where partial 1099

responses are 1/3 of the length, the partial reward 1100

of a reward model, even on semantically complete 1101

segments, has little correlation to the reward on the 1102

full response, thus unsuitable to be combined with 1103

Tree-Search. 1104

B Algorithm of BoN 1105

Algorithm 2 Best-of-N Sampling (BoN)

1: Input: Prompt x, base policy πbase, reward
model r, number of samples N , max length
lmax

2: Output: Response y⋆ with the highest reward
using BoN

3: Initialization: Generate N responses
{y1,y2, . . . ,yN}, each with maximum length
lmax

4: Query the reward model to compute the reward
scores r(y|x) for each generated response y ∈
{y1,y2, . . . ,yN}

5: Find the response y⋆ with the highest reward:

y⋆ = argmax
y∈{y1,y2,...,yN}

r(y|x)

6: Return the response y⋆
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B.1 Comparison to Baseline Methods1106

TreeBoN builds upon and extends earlier sampling1107

strategies, such as Accelerating Best-of-N via Spec-1108

ulative Rejection (SBoN) (Zhang et al., 2024), by1109

integrating a speculative tree-search framework and1110

partial reward function. SBoN relies on the assump-1111

tion that partial-reward scores are positively corre-1112

lated with full-response rewards. However, this as-1113

sumption often leads to suboptimal performance in1114

alignment tasks due to the inaccurate scoring of par-1115

tial responses by reward models which are typically1116

trained on complete responses. TreeBoN addresses1117

this limitation by utilizing a more precise implicit1118

reward signal derived from the Direct Preference1119

Optimization (DPO) policy model, which signif-1120

icantly enhances the reliability of partial-reward1121

approximation.1122

Moreover, TreeBoN leverages a hierarchical tree1123

structure to explore the response space more com-1124

prehensively, balancing both alignment quality and1125

computational efficiency. This tree-based approach1126

allows for more flexible and effective pruning of1127

low-quality responses while expanding promising1128

candidates over multiple layers. As a result, Tree-1129

BoN can be seen as a generalization of SBoN,1130

where setting Nchildren = 1 and Nlayer = 2 reduces1131

TreeBoN to the two-layered structure of SBoN.1132

Compared to traditional Best-of-N (BoN) sam-1133

pling, which explores candidate responses with-1134

out any hierarchical structure, TreeBoN employs a1135

more structured exploration strategy. By generat-1136

ing and refining responses layer by layer, TreeBoN1137

achieves a more efficient search of the response1138

space using fewer overall samples. This leads to1139

improvements in both speed and performance, as1140

the tree-based generation effectively balances the1141

trade-off between exploration and exploitation.1142

TreeBoN can be further accelerated while main-1143

taining high alignment quality by taking advantage1144

of key-value caching mechanisms, particularly ben-1145

eficial in the tree structure, where the keys and1146

values of parent tokens can be reused by their chil-1147

dren.1148

C Metrics1149

C.1 GPT4 Win-rate1150

Given the same prompt, a response from the base-1151

line and a response from the compared method1152

are fed to an automatic evaluator of AlpacaE-1153

val (Li et al., 2023a) with randomized positions,1154

which then formats them into a prompt, and asks1155

GPT4 (Achiam et al., 2023) to rank both re- 1156

sponses.4 1157

C.2 Pass@1 Solve Rate 1158

Pass@k measures the rate of successfully passing 1159

the test (answering the math question correctly) 1160

from the k responses that the algorithm generates. 1161

Thus, pass@1 means that the algorithm only out- 1162

puts one response per question.5 We first split the 1163

response by space into words and numbers, and 1164

then count it to be correctly solved if the answer is 1165

in any of the numbers. We extract the number after 1166

"answer is " as the final answer. 1167

C.3 FLOPs 1168

The cost of LLMs mainly arises from the number of 1169

generated tokens and the matrix multiplications for 1170

dense transformers like Llama 3, considering the 1171

practical implementations of KV Cache that enable 1172

keys and values of parent tokens to be reusable 1173

(for the reward model and DPO model as well), we 1174

can approximate inference FLOPs with the same 1175

formula as in (Brown et al., 2024): 1176

FLOPs per token ≈ 2 ∗ (num parameters + 2∗
num layers ∗ token dim ∗ context length)

= 2 ∗
(
8 ∗ 109 + 2 ∗ 32 ∗ 4096 ∗ 8192

)
≈ 2 ∗ 1010

total inference FLOPs for BoN ≈ 2∗
(num prompt tokens ∗ FLOPs per token

+ lmax ∗N ∗ FLOPs per token)

total inference FLOPs for TreeBoN ≈ 2∗

(num prompt tokens ∗ FLOPs per token +
lmax

Nlayer

∗N ∗ FLOPs per token + (Nlayer − 1) ∗ lmax

Nlayer
∗

Nchildren ∗
N

Nchildren
∗ FLOPs per token)

= total inference FLOPs for BoN.

1177

The extra multiplication of a factor of 2 is due to 1178

the cost of running a reward model for BoN and a 1179

DPO model for TreeBoN. We can see that in our 1180

4We use the default alpaca_eval_gpt4 automatic evalu-
ator. See https://github.com/tatsu-lab/alpaca_eval
for the prompt and other details.

5Though both BoN and TreeBoN generate multiple re-
sponses, only the final response picked by the algorithm is
considered the output and evaluated.
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setup, the computation cost of TreeBoN and Best-1181

of-N will only be controlled by the number of root1182

samples N and maximum generation length lmax.1183

The estimated FLOPs are listed in Table 2.

N / Max Length 192 384
8 6.26 ∗ 1013 1.24 ∗ 1014

16 1.24 ∗ 1014 2.47 ∗ 1014
32 2.47 ∗ 1014 4.93 ∗ 1014
64 4.93 ∗ 1014 9.84 ∗ 1014
128 9.84 ∗ 1014 1.97 ∗ 1015
256 1.97 ∗ 1015 3.93 ∗ 1015

Table 2: FLOPs of Both BoN and TreeBoN with differ-
ent number of roots and lengths

1184

D Detailed Results1185

This section lists the full numerical re-1186

sults produced under all lengths, in Ta-1187

ble 3, 4, 5, 6, 7, 8, 9, 10, and 11.1188

E Ablation Study1189

We verify the effectiveness of both key compo-1190

nents of our proposed method: the weighted im-1191

plicit reward from a DPO model as a guidance,1192

and generating a tree structure instead of BoN. We1193

ablate them on AlpacaFarm, with the same tree1194

structure: 128 root examples, 4 layers, and 4 chil-1195

dren per node. Recall that BoN generates N sam-1196

ples in parallel, and uses the score from a reward1197

model to pick a sample with the highest score as1198

the final response, and TreeBoN generates samples1199

layer-by-layer in a tree structure, and uses our pro-1200

posed weighted implicit reward from a DPO model1201

as a partial-reward function to select the children1202

nodes with higher score to kept and then expanded1203

for each layer. We refer to using the score of the1204

reward model instead of our weighted implicit re-1205

ward with the same tree structure as TreeBoN with1206

Reward Model, and using our weighted implicit1207

reward instead of the reward model at the end of1208

BoN as BoN with Weighted Implicit Reward.1209

In addition, we also use the vanilla DPO implicit1210

reward at the end of BoN as BoN with Implicit1211

Reward.1212

As shown in Figure 4 (and Table 10), TreeBoN1213

with Reward Model (replacing the weighted im-1214

plicit reward based on a DPO model) only have1215

very slight advantage over traditional BoN, attribut-1216

ing to the fact that reward models are not trained1217
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GPT4 Win-rate of Ablating Both Components of TreeBoN
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Figure 4: GPT4 win-rate of TreeBoN with Re-
ward Model, BoN with Implicit Reward, BoN with
Weighted Implicit Reward, and TreeBoN against BoN
with N = 128 on AlpacaFarm. TreeBoN with Reward
Model uses the reward model as the partial-reward func-
tion, BoN with Weighted Implicit Reward uses our
weighted implicit reward as the reward function, and
BoN with Implicit Reward uses vanilla DPO implicit
reward as the reward function. The results of two max
lengths 192 and 384 are shown.

to score partial responses and confirming the im- 1218

portance of using our proposed weighted implicit 1219

reward. Using the DPO model, for BoN with Im- 1220

plicit Reward (applying the vanilla DPO implicit 1221

reward function to the traditional BoN), we observe 1222

that this variant only outperforms BoN at shorter 1223

lengths (192 tokens). At longer lengths (384 to- 1224

kens), this variant’s performance degraded severely. 1225

BoN with Weighted Implicit Reward (applying 1226

the weighted implicit reward function to the tradi- 1227

tional BoN) has a similar performance as well. The 1228

trend on the SFR model (Table 11) is even more 1229

obvious: TreeBoN outperforms all other variants 1230

at all lengths. Thus, we can conclude that only our 1231

proposed TreeBoN is able to keep large margins 1232

compared to the baseline at most lengths, reinforc- 1233

ing that the combination of TreeBoN’s hierarchical 1234

search structure and weighted implicit reward func- 1235

tion is necessary for sustained improvements. 1236

F Explore Different Implicit Rewards 1237

We also experiment with different implicit rewards: 1238

DPO Implicit Reward 1239

The vanilla implicit reward derived in (Rafailov 1240

et al., 2024b) with β = 1 1241

rpartial(y:K |x) =
K−1∑
k=0

log
π∗(yk|x,y:k)

π(yk|x,y:k)
. 1242
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Dataset/Max Length 192 384 576 768
TutorEval 65.00± 2.76 65.10± 2.77 61.28± 2.83 55.89± 2.89

AlpacaFarm 63.67± 2.78 62.54± 2.80 60.61± 2.84 58.19± 2.86
HH RLHF 63.14± 2.82 62.84± 2.81 60.74± 2.83 57.58± 2.87

UltraFeedBack 60.74± 2.83 59.73± 2.85 55.00± 2.88 54.67± 2.88

Table 3: GPT4 win-rate of TreeBoN with the SFR model against BoN on multiple datasets.

Dataset/Max Length 192 384 576 768
TutorEval 62.67± 2.80 53.67± 2.88 48.48± 2.90 46.64± 2.89

AlpacaFarm 63.55± 2.79 62.21± 2.81 58.19± 2.86 51.33± 2.89
HH RLHF 61.90± 2.84 53.87± 2.90 46.96± 2.91 51.85± 2.90

UltraFeedBack 60.94± 2.84 56.67± 2.87 56.52± 2.87 48.67± 2.89

Table 4: GPT4 win-rate of TreeBoN with the DPO model against BoN on multiple datasets.

Method/Max Length 96 192 384 576 768
BoN 20 58 62 64 65

TreeBoN with the DPO model 20 60 65 73 67
TreeBoN with the SFR model 9 51 69 67 63

Table 5: Test Solve Rate of TreeBoN and BoN on
GSM8K

Number of Layers/Length 192 384
3 63.00± 2.79 58.53± 2.85
4 63.55± 2.79 62.21± 2.81
5 64.43± 2.78 62.54± 2.80

Table 6: GPT4 win-rate of TreeBoN (the DPO model)
against BoN on AlpacaFarm with different number of
tree layers.

Weighted DPO Implicit Reward1243

Our proposed reward that weights each token1244

rpartial(y:K |x) =
K−1∑
k=0

wk log
π∗(yk|x,y:k)

π(yk|x,y:k)
,1245

where wk = 1
|yk| .1246

Weighted DPO Implicit Reward with Expo-1247

nential Decay1248

Similar to Weighted Implicit Reward, but us-1249

ing an exponential decay term as the weight1250

rpartial(y:K |x) =
K−1∑
k=0

wk log
π∗(yk|x,y:k)

π(yk|x,y:k)
,1251

where wk = λk, λ = 0.951252

Length Normalized DPO Implicit Reward1253

Normalizing DPO Implicit Reward by the re-1254

sponse length1255

rpartial(y:K |x) = 1

K

K−1∑
k=0

log
π∗(yk|x,y:k)

π(yk|x,y:k)
.1256

Number of Children/Length 192 384
2 60.33± 2.83 60.40± 2.84
4 63.55± 2.79 62.21± 2.81
8 68.33± 2.69 58.86± 2.85

Table 7: GPT4 win-rate of TreeBoN (the DPO model)
against BoN on AlpacaFarm with different branching
factors.

N for Both Methods /Length 384
8 56.38± 2.88

16 55.18± 2.88
32 59.00± 2.84
64 58.53± 2.85
128 62.21± 2.81
256 63.00± 2.79

Table 8: GPT4 win-rate of TreeBoN (the DPO model)
against BoN on AlpacaFarm with same number of root
samples, thus same computation.

DPO Policy Log Probability Sum 1257

Only using the log-likelihood of the DPO model 1258

rpartial(y:K |x) =
K−1∑
k=0

log π∗(yk|x,y:k). 1259

SimPO Reward 1260

Normalizing DPO Policy Log Probability Sum 1261

by the response length, as proposed in (Meng et al., 1262

2024) 1263

rpartial(y:K |x) = 1

K

K−1∑
k=0

log π∗(yk|x,y:k). 1264

We report the results of the default configuration 1265

of TreeBoN with different implicit rewards using 1266

the Llama models on AlpacaFarm in Table 12, and 1267

our proposed Weighted Implicit Reward fits best 1268

with the tree search setting, achieving the highest 1269

GPT4 win-rate. 1270
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N for TreeBoN only 384
8 54.52± 2.88
16 54.70± 2.89
32 56.00± 2.87
64 56.33± 2.87

128 62.21± 2.81

Table 9: GPT4 win-rate of TreeBoN (the DPO model)
with different number of root samples against BoN with
N = 128 on AlpacaFarm. The computation of TreeBoN
is gradually increased and eventually matches that of
BoN at the end of the table.

G Reward Model Analysis1271

G.1 Sentence-level Reward Analysis1272

The sentence-level reward analysis focuses on un-1273

derstanding how the reward model assigns values1274

to partial responses in Llama3-8B paired with the1275

FsfairX-LLaMA3-RM-v0.1 reward model (Dong1276

et al., 2023; Xiong et al., 2024). By examin-1277

ing 100 randomly selected prompts from Alpaca-1278

Farm(Dubois et al., 2024), we can track how the1279

reward changes sentence by sentence. We show1280

two examples of the sentence-level reward change1281

on best responses using Best-of-N Sampling in Fig-1282

ure 5.1283

SBoN (Zhang et al., 2024) claims to speed up1284

the process while only sacrificing minimal perfor-1285

mance on reward compared to the Best-of-N. One1286

important assumption is that the reward scores of1287

partial completions are positively correlated to the1288

reward scores of full completions. However, RMs1289

are typically trained on complete responses, and1290

therefore the score of partial completions by the re-1291

ward model is chaotic and not accurate. As shown1292

in Table 13 and Table 14, the partial rewards are1293

very fluctuating and due to the fluctuation, a low1294

partial reward may still have the potential to have1295

a very high final reward. The reward prediction of1296

incomplete responses from the traditional reward1297

model remains a challenge as demonstrated by our1298

findings.1299

In Table 131300

• Sentence 11 (+3.05): Significant increase for1301

trying to introduce an example, which en-1302

hances understanding.1303

• Sentence 13 (-2.57): Decrease possibly due1304

to presenting code without context or explana-1305

tion.1306

• Sentence 18 (+3.71): Large increase for con- 1307

cisely defining a set, contrasting with the pre- 1308

vious explanation of lists. 1309

In Table 14 1310

• Sentence 5 (-6.13): Sharp drop, likely due 1311

to abruptly introducing the formula without 1312

proper setup. 1313

• Sentence 7 (+4.12): Significant increase for 1314

beginning to explain the components of the 1315

formula. 1316

• Sentence 11 (+3.41): Large increase for pro- 1317

viding a clear explanation of what the formula 1318

calculates. 1319

• Sentence 13 (+3.26): Substantial increase for 1320

introducing a concrete example to illustrate 1321

the concept. 1322

• Sentence 15 (+4.47): High reward for starting 1323

to walk through the calculation process. 1324

G.2 Analysis of Example Responses for 1325

Speculative Tree-search Process 1326

As shown in Table 15 high score nodes (A3, A4, 1327

B6, B8, C2, C7) consistently provide accurate in- 1328

formation about unicorns being mythical creatures, 1329

not real animals that could be caught. For instance, 1330

node A3 states, "No. Unicorns are mythical crea- 1331

tures, not real animals, and therefore could not have 1332

been caught in medieval times." This response is 1333

factual and directly addresses the question. The 1334

high-score nodes also tend to provide additional, 1335

relevant historical context. For example, node C7 1336

mentions the aurochs, a real animal sometimes mis- 1337

taken for a unicorn: "The aurochs was a type of 1338

wild cattle that once roamed Europe and Asia. It 1339

was believed to have been the ancestor of modern 1340

cattle breeds." 1341

In contrast, low-score nodes (A2, A5, B13, B16, 1342

C10, C16) often perpetuate myths or provide mis- 1343

leading information. Node A2, for instance, in- 1344

correctly asserts, "Yes, unicorns were considered 1345

a mythological creature and easily caught in me- 1346

dieval times." This response contradicts itself by ac- 1347

knowledging unicorns as mythological while claim- 1348

ing they were easily caught. Similarly, nodes B13 1349

and C10 propagate the myth of unicorns being at- 1350

tracted to virgins, which, while a part of medieval 1351

folklore, is presented without the crucial context 1352

that unicorns are not real. 1353
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Method/Length 192 384 576 768
RM TreeBoN 50.51± 2.91 51.68± 2.90 51.33± 2.89 53.00± 2.89

Implicit Reward BoN 64.88± 2.77 51.33± 2.89 43.14± 2.87 39.26± 2.83
Weighted Implicit Reward BoN 58.53± 2.85 52.19± 2.90 57.53± 2.86 53.18± 2.89

TreeBoN 63.55± 2.79 62.21± 2.81 58.19± 2.86 51.33± 2.89

Table 10: GPT4 win-rate of ablation study using the DPO model.

Method/Length 192 384 576 768
RM TreeBoN 50.51± 2.91 51.68± 2.90 51.33± 2.89 53.00± 2.89

Implicit Reward BoN 61.62± 2.83 56.00± 2.87 56.33± 2.87 54.88± 2.89
Weighted Implicit Reward BoN 60.07± 2.84 56.86± 2.87 58.25± 2.87 54.85± 2.88

TreeBoN 63.67± 2.78 62.54± 2.80 60.61± 2.84 58.19± 2.86

Table 11: GPT4 win-rate of ablation study using the SFR model.

Implicit Reward/Length 384
DPO Implicit Reward 61.54± 2.82

Weighted Implicit Reward 62.08± 2.82
Weighted Implicit Reward with Exponential Decay 57.00± 2.86

Length Normalized DPO Implicit Reward 59.06± 2.85
DPO Policy Log Probability Sum 21.74± 2.39

SimPO Reward 22.00± 2.40

Table 12: GPT4 Winrate of TreeBoN with different
implicit rewards on AlpacaFarm

As seen in Figure 2, the highest-reward nodes in1354

the first layer (A3 and A4) lead to the generation of1355

better children (B6 and B8), which in turn produce1356

high-quality grandchildren (C2 and C7). This illus-1357

trates how generating from partial responses with1358

high rewards tends to yield children nodes with1359

similarly high rewards.1360

G.3 Token-Level Reward Analysis1361

In this section, we provide rationales to apply im-1362

plicit reward from DPO instead of a trained re-1363

ward model and analyze partial reward at token1364

level, including using the concept of the seman-1365

tically complete segment from Cascade Reward1366

Sampling (CARDS)(Li et al., 2024). We follow1367

the setting in (Li et al., 2024), use llama-7b-rm-1368

float326 as the reward model, the entropy of LLM1369

logits at each token as predictive uncertainty, and1370

uncertainty threshold as 3, meaning that if a token1371

has entropy greater than 3, we determine that it is1372

at the end of a semantically complete segment. To1373

verify the usability under our tree search setting.1374

we then analyze different responses generated by1375

BoN given one prompt from AlpacaFarm (Dubois1376

et al., 2024). In Figure 6, partial rewards of pre-1377

fixes of exactly 1/3 of the length, and prefixes be-1378

6https://huggingface.co/argsearch/llama-7b-rm-float32

fore 1/3 that end with semantic complete segments, 1379

are plotted against the reward of the full response. 1380

Standard linear regressions are performed for both 1381

scatter plots. The reward and partial rewards are 1382

computed by the reward model on the responses 1383

generated by BoN with a max new length of 192. 1384

From the linear regression, we can see that though 1385

partial rewards of semantic complete prefixes have 1386

a slightly higher coefficient of correlation, the cor- 1387

relation is still very weak, and we can conclude 1388

that there is barely any correlation between par- 1389

tial rewards of prefixes and the rewards of full re- 1390

sponses. thus we conclude that the assumption 1391

in SBON (Zhang et al., 2024) does not hold. In 1392

Figure 7, token-level rewards at each token index 1393

are plotted for two responses generated by BoN 1394

with a max new length of 192. Token-level rewards 1395

are computed by the reward model on all prefixes 1396

created from the first token until every token po- 1397

sition. The entropy, which serves as a measure of 1398

predictive uncertainty, is also plotted, along with 1399

3 being the threshold. The green crosses note the 1400

reward of a prefix that ends with the semantically 1401

complete segment. We can see that the token-level 1402

rewards fluctuate rapidly, and the partial rewards 1403

at the end of the semantically complete segment 1404

are not showing any better trend either. Thus, we 1405

demonstrate that the reward model is not capable of 1406

generating scores on short prefixes that align well 1407

with the reward for the whole response, as it is only 1408

trained on complete sequences. 1409
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# Sentence Text ∆ Reward

1 Explain the difference between sets and lists in Python. 3.70
2 How would you use them in a real-world scenario? -2.66
3 In Python, sets and lists are two fundamental data structures used

to store collections of items.
1.52

4 While they share some similarities, they have distinct differences
in terms of their functionality, behavior, and use cases.

1.04

5 **Lists (Mutable, Ordered, Indexed)** -1.57
6 A list is a collection of items that can be of any data type, including

strings, integers, floats, and other lists.
0.20

7 Lists are: 1.07
8 1. **Mutable**: Lists can be modified after creation by adding,

removing, or changing elements.
1.33

9 2. **Ordered**: Lists maintain the order in which elements were
added.

0.71

10 3. **Indexed**: Lists are indexed, meaning you can access spe-
cific elements using their index (zero-based).

-0.69

11 Example: 3.05
12 “‘python 1.70
13 my_list = [1, 2, 3, 4, 5] -2.57
14 print ( my_list [0]) # Output: 1 1.16
15 my_list .append(6) # Add an element to the end -1.40
16 print ( my_list ) # Output: [1, 2, 3, 4, 5, 6] 1.46
17 “‘ **Sets (Immutable, Unordered, Unindexed)** -0.73
18 A set is an unordered collection 3.71

Table 13: # 0003 Response Text Detail from Llama3-8B model
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# Sentence Text ∆ Reward

1 Can you help me understand how I can estimate the variance of a
variable? I’m having trouble understanding the concept of variance
and how it is used in statistics.

3.97

2 Variance is a measure of how spread out a set of data is from its
mean value.

2.12

3 In other words, it measures how much the data points deviate from
the average value.

-0.18

4 A high variance indicates that the data points are spread out over a
wide range, while a low variance indicates that the data points are
clustered around the mean.

0.32

5 To estimate the variance of a variable, you can use the following
formula:

-6.13

6 Variance =
∑

(xi − µ)2/(n− 1) 0.56
7 Where: * xi is each data point 4.12
8 * µ is the mean of the data -1.71
9 * n is the number of data points -1.93
10 *

∑
is the summation symbol, which means "sum of" 0.73

11 This formula calculates the sum of the squared differences between
each data point and the mean, and then divides that sum by the
number of data points minus one.

3.41

12 This gives you an estimate of the variance. -1.56
13 For example, let’s say you have the following data points: 1, 2, 3,

4, 5.
3.26

14 The mean of this data is 3. -1.24
15 The sum of the squared differences 4.47

Table 14: # 0019 Response Text Detail from Llama3-8B Model
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Node ID Response Content

A2 Yes, unicorns were considered a mythological creature and easily caught in medieval times.
What was the main purpose of the unicorn in medieval times? The unicorn was

A3 No. Unicorns are mythical creatures, not real animals, and therefore could not have been
caught in medieval times. However, during medieval times, there were

A4 How were they hunted? No, unicorns were not easily caught in medieval times. In fact,
unicorns were mythical creatures and did not exist in reality.

A5 Why? Unicorns were believed to be easily caught in medieval times because they were often
depicted as gentle and trusting creatures. According to legends, unicorns could

B6 No. Unicorns are mythical creatures, not real animals, and therefore could not have been
caught in medieval times. However, during medieval times, there were some creatures that
were considered unicorns or similar mythical creatures. These creatures were typically
described as having a single horn on their forehead and were often associated with purity
and

B8 No. Unicorns are mythical creatures, not real animals, and therefore could not have been caught
in medieval times. However, during medieval times, there were creatures that were considered
unicorns. These were real animals, such as the aurochs, which were large, powerful, and
majestic. The aurochs

B13 Why? Unicorns were believed to be easily caught in medieval times because they were often
depicted as gentle and trusting creatures. According to legends, unicorns could be caught by a
virgin maiden, as their horn was said to be attracted to the purity of a virgin. They were
also believed to be attracted to the color

B16 Why? Unicorns were believed to be easily caught in medieval times because they were often
depicted as gentle and trusting creatures. According to legends, unicorns could be captured
by luring them with a virgin maiden or a beautiful woman. The unicorn was said to be so
fascinated by the maiden’s beauty that it would approach

C2 No. Unicorns are mythical creatures, not real animals, and therefore could not have been
caught in medieval times. However, during medieval times, there were some creatures that were
considered unicorns or similar mythical creatures. These creatures were typically described as
having a single horn on their forehead and were often associated with purity and strength. Some
of these creatures include the ünicorn of the sea(̈which was actually a narwhal), the ünicorn
of the woods(̈which

C7 No. Unicorns are mythical creatures, not real animals, and therefore could not have been caught
in medieval times. However, during medieval times, there were creatures that were considered
unicorns. These were real animals, such as the aurochs, which were large, powerful, and majestic.
The aurochs was a type of wild cattle that once roamed Europe and Asia. It was believed to
have been the ancestor of modern cattle breeds. The aurochs had

C10 Why? Unicorns were believed to be easily caught in medieval times because they were often
depicted as gentle and trusting creatures. According to legends, unicorns could be caught by a
virgin maiden, as their horn was said to be attracted to the purity of a virgin. They were also
believed to be attracted to the color white, which is why they were often depicted with a white
horn. Additionally, they were thought to be shy and elusive creatures, which made them
easier to catch

C16 Why? Unicorns were believed to be easily caught in medieval times because they were often
depicted as gentle and trusting creatures. According to legends, unicorns could be captured by
luring them with a virgin maiden or a beautiful woman. The unicorn was said to be so fascinated
by the maiden’s beauty that it would approach her, allowing the hunters to catch it. However,
this myth was likely created to serve as a cautionary tale against the dangers of trust and
innocence. In

Table 15: Detailed responses for selected nodes in Figure 2. The table shows the content of partial responses at
different layers of the tree (A: first layer, B: second layer, C: third layer). Children nodes share the same response
prefix with their parent node, demonstrating the expansion process of TreeBoN. The new content generated at each
node is bold. The prompt for this example is "Were unicorns easily caught in medieval times?".
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Figure 5: Reward vs # Sentence plot for Llama3-8B Model. It shows the reward change as the response is generated.

Figure 6: Partial rewards of prefixes of exactly 1/3 of the length, and prefixes before 1/3 that end with semantic
complete segments against the reward of the full response with linear regressions.

H Analysis of TreeBoN Performance in1410

LLM Reasoning1411

H.1 TreeBoN with PRM Experiment Methods1412

We continue to use similar set of Llama mod-1413

els: LLaMA3-iterative-DPO-final and Llama-3-1414

8B-SFR-Iterative-DPO-R7 which still referred as1415

the DPO model and the SFR model respectively1416

throughout this section. The TreeBoN implemen-1417

tation follows the methodology described in Sec-1418

tion 3. For the evaluation of the reward for the pro-1419

cess, we take the average of each reward for each1420

step as the final reward (Lightman et al., 2023)1421

and follow the Qwen2.5-Math-PRM-7B 8 (Zhang1422

7https://huggingface.co/Salesforce/
LLaMA-3-8B-SFR-Iterative-DPO-R

8https://huggingface.co/Qwen/Qwen2.
5-Math-PRM-7B

et al., 2025) official model card which is the PRM 1423

we choose. During inference, we specify a prompt 1424

template that instructs the LLM to output the fi- 1425

nal answer after a designated marker (i.e., #### 1426

<final_answer>, as shown in the GSM8K dataset) 1427

(Cobbe et al., 2021). We then extract only the 1428

numerical value that follows this marker as the 1429

predicted answer. To evaluate performance, we 1430

randomly sample 100 questions from the GSM8K 1431

dataset and repeat the evaluation multiple times 1432

to compute the mean and standard deviation of 1433

Pass@1 solve rate. We experiment with different 1434

maximum token lengths, number of candidates, and 1435

generative models, applying both BoN and Tree- 1436

BoN approaches. The complete results are reported 1437

in Table 16 and Table 17. 1438
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Figure 7: Token-level rewards at each token index for two responses generated by BoN with max new length 192,
with the entropy along with the threshold. The green crosses note the reward of a prefix that ends with semantically
complete segment.

Method / Length 192 384
BoN w/ DPO 43.67± 2.08 97.33± 2.52
BoN w/ SFR 24.67± 2.08 91.33± 2.31

TreeBoN w/ DPO 51.00± 1.73 95.67± 3.06
TreeBoN w/ SFR 25.67± 2.52 90.00± 1.41

Table 16: Pass@1 Solve Rate (%) on GSM8K using
PRM Qwen2.5-Math-PRM-7B with N = 128.

Method / Length 192 384
BoN w/ DPO 45.67± 2.08 96.33± 3.21
BoN w/ SFR 26.67± 1.53 91.67± 0.58

TreeBoN w/ DPO 50.33± 3.06 95.33± 2.08
TreeBoN w/ SFR 26.33± 1.53 89.00± 4.24

Table 17: Pass@1 Solve Rate (%) on GSM8K using
PRM Qwen2.5-Math-PRM-7B with N = 32.

H.2 TreeBoN Also Work on Reasoning Task1439

With both N = 32 and N = 128 configurations,1440

we find that TreeBoN improves Pass@1 solve rate1441

over BoN when using the Process Reward Model1442

(PRM) (Lightman et al., 2023) with a maximum1443

token length of 192. In Table 17, TreeBoN with1444

DPO modle and Qwen2.5-Math-PRM-7B process1445

reward model achieves 50.33%, exceeding BoN’s1446

45.67% by +4.66%. Moreover, in Table 16, this1447

improvement continues with larger number of can-1448

didates (N ): TreeBoN with DPO model + PRM im-1449

proves from BoN’s 43.67% to 51.00%, a +7.33%1450

gain. This result validates that TreeBoN better1451

exploit the reward information under a restricted1452

token length.1453

For a maximum token length of 384, the per-1454

formance of TreeBoN and BoN methods is similar1455

across all experimental settings. This is because the1456

long token length of 384 already provides sufficient1457

capacity for the model to complete most reason- 1458

ing tasks effectively. Even with a relatively small 1459

number of candidates (e.g., N = 32), the gener- 1460

ation quality reaches a performance ceiling, leav- 1461

ing limited room for TreeBoN to further improve 1462

over BoN sampling. As a result, the structural ad- 1463

vantage of TreeBoN becomes less obvious when 1464

the generative model already produces high-quality 1465

completions within the given token length. 1466

These results highlight TreeBoN’s strength in 1467

leveraging early-stage completions. When decod- 1468

ing is limited, like 192 tokens, BoN sampling strat- 1469

egy sometimes fails to reach informative states, 1470

particularly when using the DPO policy model. In 1471

contrast, TreeBoN incrementally expands promis- 1472

ing candidates via its tree structure and early prunes 1473

low-reward children, making more efficient use of 1474

PRM’s fine-grained supervision within the same 1475

limited token length. This ability to prioritize and 1476

extend promising partial completions is crucial 1477

when the available token length is insufficient for 1478

complete full task reasoning, as it increases the 1479

chance of discovering better outputs. 1480

In this way, TreeBoN not only improves perfor- 1481

mance but also unlocks more of the underlying po- 1482

tential of large language models under constrained 1483

generation settings. 1484

I Additional Results Compared to Beam 1485

Search 1486

We also compare TreeBoN with simple beam 1487

search. Under the same compute, TreeBoN, us- 1488

ing the SFT model to decode and a DPO-aligned 1489

model to provide partial reward, outperforms naive 1490
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beam search that uses the own probabilities to1491

guide decoding of the same DPO-aligned model1492

in TreeBoN. We conduct an additional experiment1493

that compare TreeBoN using the SFR model with1494

N = 64 against beam search using the same SFR1495

model with width 128 for fair comparison. The1496

win-rate is 55.33± 2.88% on max length 192, and1497

58.00± 2.85% on 384.1498

J Computing Requirement1499

All experiments can be performed on a single1500

NVIDIA H100. Depending on the specific tree1501

configurations, one run could take from 1 hour to1502

24 hours.1503
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