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Abstract

Time series foundation models have shown exceptional zero-shot forecasting capa-
bilities. However, achieving effectively unified training on time series remains an
open challenge. Existing approaches like MOIRAI pursues unified training by em-
ploying multiple input/output projection layers, each tailored to handle time series
at a specific frequency. We identify two major drawbacks to this human-imposed
frequency-level model specialization: (1) Frequency is not a reliable indicator
of the underlying patterns in time series. (2) The Non-stationarity of time series
leads to varied distributions even within a short context window of a single time
series. Frequency-level specialization is too coarse-grained to capture this level of
diversity. To address these limitations, this paper introduces MOIRAI-MOE, using
a single input/output projection layer while delegating the modeling of diverse time
series patterns to the sparse mixture of experts (MoE) within Transformers. With
these designs, MOIRAI-MOE reduces reliance on human-defined heuristics and
enables automatic token-level specialization. Extensive experiments on 39 datasets
demonstrate the superiority of MOIRAI-MOE over existing foundation models in
both in-distribution and zero-shot scenarios.

1 Introduction

Time series forecasting is experiencing a major shift. The traditional method of building individual
models for each dataset is giving way to the concept of universal forecasting [23]. In this approach, a
pretrained model is capable of being applied across diverse downstream tasks in a zero-shot manner,
regardless of variations in domain, frequency, dimensionality, context, or prediction length.

To succeed in zero-shot forecasting, time series foundation models are pretrained on data spanning
multiple sources. However, time series data is inherently heterogeneous, posing significant challenges
for unified time series training. Existing solutions such as UniTime [14] utilize language prompts to
achieve model specialization at the dataset level. MOIRAI [23] introduces a finer-grained categoriza-
tion based on time series frequency. They employ multiple input/output projection layers with each
tailored to a specific frequency, thereby enabling frequency-level specialization.

However, we argue that human-imposed frequency-level specialization lacks generalizability and
introduces several limitations. (1) Frequency is not always a reliable indicator of the true structure of
time series. As shown in Figure 1, time series with different frequencies can exhibit similar patterns,
while those with the same frequency may display diverse and unrelated patterns. This human-imposed
mismatch between frequency and pattern undermines the efficacy of model specialization, resulting
in inferior performance. (2) Furthermore, real-world time series are inherently non-stationary [15],
displaying varied distributions even within a short context window of a single time series. Clearly,
frequency-level specialization is too coarse-grained to capture this level of diversity, underscoring the
need for more fine-grained modeling approaches.
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Figure 1: An illustration of the challenges arising from grouping time series by frequency and
imposing frequency-level model specialization: the diversity of patterns within the same frequency
group, the similarity of patterns across different frequencies, and the variability of distributions within
a single time series. The examples are derived from real time series in Monash [8].

To address the aforementioned issues, this paper introduces MOIRAI-MOE, an innovative solution
for effective time series unified training, inspired by recent developments of Sparse Mixture of Experts
(MoE) Transformers [13, 7, 3]. The core idea of MOIRAI-MOE is to utilize a single input/output
projection layer while delegateing the modeling of diverse time series patterns to the sparse specialized
experts in Transformer layers. With these designs, specialization of MOIRAI-MOE is achieved in a
data-driven manner and operates at the token level. Moreover, this study introduces a new function
that leverages cluster centroids derived from a pretrained model to guide expert allocations. Our
contributions are summarized as follows:

• We propose MOIRAI-MOE, the first mixture-of-experts time series foundation model, achieving
token-level model specialization in a data-driven manner. We introduce a new expert gating function
for accurate expert assignments and improved performance.

• Extensive experiments on 39 datasets demonstrate the superiority of MOIRAI-MOE over existing
foundation models in both in-distribution and zero-shot scenarios.

2 Method

In this section, we introduce MOIRAI-MOE, a mixture-of-experts model built upon the time series
foundation model MOIRAI [23]. Figure 2 presents a comparison. While MOIRAI-MOE inherits many
of the strengths of MOIRAI, it significantly improves upon it by: rather than using multi input/output
projection layers to model time series with different frequencies, MOIRAI-MOE employs a single
projection layer while delegating the task of capturing diverse time series patterns to the mixture
of experts in the Transformer. In addition, MOIRAI-MOE proposes a novel gating function that
leverages knowledge from a pretrained model, and adopts a decoder-only training objective to improve
training efficiency by enabling parallel learning of various context lengths in a single model update.

2.1 Time series token construction

By aggregating adjacent time series data into patches, patching techniques [17, 5, 14, 23] effectively
capture local semantic information and significantly reduce computational overhead when processing
long inputs. Given a time series with length S, we segment it into non-overlapping patches of size P ,
resulting in a sequence of patches x ∈ RN×P , where N = ⌈ S

P ⌉. We then normalize the patches to
mitigate distribution shift issues [15, 25]. In a decoder-only (autoregressive) model, where each patch
predicts its succeeding patch, applying a causal normalizer to each patch is the most effective way to
achieve accurate normalization. However, this approach generates N subsequences with different
lengths, diminishing the parallel training that decoder-only models typically offer. To address this, we
introduce the masking ratio r as a hyperparameter, which specifies the portion of the entire sequence
used exclusively for robust normalizer calculation, without contributing to the prediction loss. Finally,
we forward the patches through a single projection layer to generate time series tokens x ∈ RN×D,
where D is the dimension of the Transformers. This layer is implemented as a residual multi-layer
perceptron to enhance representation capacity [4].
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Figure 2: Comparison of MOIRAI (left) and MOIRAI-MOE (right).

2.2 Mixture of experts for transformers

A decoder-only Transformer [6] is constructed by stacking L layers of Transformer blocks. We
establish the mixture of experts by replacing each feed-forward network (FFN) with a MoE layer,
which is composed of M expert networks {E1, . . . , EM} and a gating function G. Only a subset of
experts is activated for each token, allowing experts to specialize in distinct patterns of time series
and ensuring computational efficiency. The output of the MoE layer is computed as:

M∑
i=1

G(x)i · Ei(x) (1)

where Ei(x) is the output of the i-th expert network, and G(x)i is the i-th token-to-expert affinity
score generated by the gating function. In this work, we propose a new gating mechanism that
leverages cluster centroids derived from the token representations of a pretrained model to guide
expert allocations. Specifically, we utilize the self-attention output representations of a pretrained
model (in our case, we use the MOIRAI model) and apply k-means clustering to generate clusters.
The number of clusters is set to match the total number of experts. During MoE training, each token
computes the Euclidean distance to each cluster centroid C ∈ RM×D, and these distances serve as
token-to-expert affinity scores for expert assignments:

G(x) = Softmax(TopK(Euclidean(x,C))) (2)

2.3 Training objective

Let xt−l+1:t = {xt−l+1, . . . ,xt} denote the context window of length l for a token at position t. In
this study, to facilitate both point and probabilistic forecasting, our goal is formulated as forecasting
the predictive distribution of the next token p(xt+1|ϕ) by predicting the mixture distribution parame-
ters ϕ̂ [23]. These parameters are derived from the output tokens of the Transformer, followed by a
single output projection layer. The following negative log-likelihood is minimized during training:

Lpred = − log p(xt+1| ϕ̂), ϕ̂ = fθ(xt−l+1:t) (3)

3 Results

To ensure a fair comparison with MOIRAI in terms of activated parameters, we configure the number
of activated experts as K = 2 for MOIRAI-MOE, resulting in 11M/86M activated parameters per
token for MOIRAI-MOES/MOIRAI-MOEB, closely matching the dense model MOIRAIS/MOIRAIB
that contains 14M/91M activated parameters. The total number of experts M is set to 32, yielding
total parameter sizes of 117M for MOIRAI-MOES and 935M for MOIRAI-MOEB.

We begin with an in-distribution evaluation using a total of 29 datasets from the Monash benchmark
[8]. Their training set are included in LOTSA [23], holding out the test set which we now use for
assessments. The evaluation results in Figure 3 show that MOIRAI-MOE beats all competitors. In
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Figure 3: In-distribution forecasting evaluation. We use asterisks (*) to mark the methods that used
the evaluation datasets here in their pretraining corpora. Values are normalized by seasonal naive,
followed by geometric mean.

particular, MOIRAI-MOES drastically surpasses its dense counterpart MOIRAIS by 17%, and also
outperforms the larger models MOIRAIB and MOIRAIL by 8% and 7%, respectively. Compared to the
foundation model Chronos, which MOIRAI could not surpass, MOIRAI-MOE successfully bridges
the gap and delivers superior results with up to 65× fewer activated parameters. Next, we conduct an
out-of-distribution evaluation on 10 datasets not included in LOTSA. To establish a comprehensive
comparison, we report results for both probabilistic and point forecasting, using continuous ranked
probability score (CRPS) and mean absolute scaled error (MASE) as evaluation metrics. The
results are presented in Table 1. MOIRAI-MOEB achieves the best zero-shot performance, even
outperforming TimesFM and Chronos, which include partial evaluation data in their pretraining
corpora. When compared to all sizes of MOIRAI, MOIRAI-MOES delivers a 3%–14% improvement
in CRPS and an 8%–16% improvement in MASE. These improvements are remarkable, considering
that MOIRAI-MOES has only 11M activated parameters – 28× fewer than MOIRAIL.

Table 1: Zero-shot performance of probabilistic and point forecasting. We use asterisks (*) to mark
the non-zero-shot datasets because they were used in the pretraining corpus of TimesFM and Chronos.
The Average column is normalized by seasonal naive, followed by geometric mean. Best average
results are highlighted in red, and second best results are in blue. Power: Turkey Power. Traffic:
Istanbul Traffic. Weather: Jena Weather. BizITObs: BizITObs-L2C.

Method Metric Electricity Solar Power ETT1 ETT2 Traffic MDENSE Walmart Weather BizITObs Average

Seasonal Naive
CRPS 0.070 0.512 0.085 0.515 0.205 0.257 0.294 0.151 0.068 0.262 1.000
MASE 0.881 1.203 0.906 1.778 1.390 1.137 1.669 1.236 0.782 0.986 1.000

TimesFM
CRPS 0.045* 0.456 0.037 0.280 0.113 0.131 0.070 0.067 0.042 0.080 0.488
MASE 0.655* 1.391 0.851 1.700 1.644 0.678 0.702 0.735 0.440 0.310 0.689

ChronosS
CRPS 0.043* 0.389* 0.038 0.360 0.097 0.124 0.087 0.079 0.089 0.087 0.543
MASE 0.629* 1.193* 0.717 1.799 1.431 0.622 0.834 0.849 0.606 0.301 0.694

ChronosB
CRPS 0.041* 0.341* 0.039 0.387 0.092 0.109 0.075 0.080 0.058 0.084 0.499
MASE 0.617* 1.002* 0.722 1.898 1.265 0.553 0.712 0.849 0.583 0.301 0.656

ChronosL
CRPS 0.041* 0.339* 0.038 0.404 0.091 0.117 0.075 0.073 0.062 0.084 0.500
MASE 0.615* 0.987* 0.702 1.959 1.270 0.597 0.724 0.788 0.601 0.310 0.660

MOIRAIS
CRPS 0.072 0.471 0.048 0.275 0.101 0.173 0.084 0.103 0.049 0.081 0.578
MASE 0.981 1.465 0.948 1.701 1.417 0.990 0.836 1.048 0.521 0.301 0.798

MOIRAIB
CRPS 0.055 0.419 0.040 0.301 0.095 0.116 0.104 0.093 0.041 0.078 0.520
MASE 0.792 1.292 0.888 1.736 1.314 0.644 1.101 0.964 0.487 0.291 0.736

MOIRAIL
CRPS 0.050 0.406 0.036 0.286 0.094 0.112 0.095 0.098 0.051 0.079 0.514
MASE 0.751 1.237 0.870 1.750 1.436 0.631 0.957 1.007 0.515 0.285 0.729

MOIRAI-MOES
CRPS 0.046 0.429 0.036 0.288 0.093 0.108 0.071 0.090 0.056 0.081 0.497
MASE 0.719 1.222 0.737 1.750 1.248 0.563 0.746 0.927 0.476 0.298 0.670

MOIRAI-MOEB
CRPS 0.041 0.382 0.034 0.296 0.091 0.100 0.071 0.088 0.057 0.079 0.478
MASE 0.638 1.161 0.725 1.748 1.247 0.510 0.721 0.918 0.509 0.290 0.651

4 Conclusion

In this work, we introduce MOIRAI-MOE, the first time series MoE foundation model. By utilizing
token-level specialization in a data-driven approach, MOIRAI-MOE delivers significant performance
improvements over its predecessor MOIRAI and other competitive time series foundation models.
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A Related Work

Foundation Models for Time Series Forecasting Time series foundation models serve as versatile
zero-shot forecasting tools. A key challenge in training these models is accommodating the high
diversity of time series data, underscoring the possible need for designing specialization modules.
Current approaches like TEMPO [2] and UniTime [14] utilize language-based prompts to identify data
sources, facilitating model specialization at the dataset level. MOIRAI [23] advances this by focusing
on a time series meta feature – frequency. This method designs separate input/output projection
layers for specific frequencies, allowing for frequency-specific specialization. Similarly, TimesFM
[5] operates at this level of specialization by incorporating a frequency embedding dictionary to
differentiate data. Some methods, like Chronos [1], Lag-LLaMA [20], Moment [9], and Timer [16],
do not incorporate any specialization modules. Instead, they utilize the same architecture for all time
series data, which can potentially increase the learning complexity and demand a large number of
parameters to memorize the diverse input patterns. In this work, we propose to achieve automatic
token-level specialization by using sparse mixture of experts, where diverse time series tokens are
processed by specialized experts, while similar tokens share parameter space, thereby reducing
learning complexity.

Sparse Mixture of Experts Mixture of experts (MoE) has emerged as an effective method for
significantly scaling up model capacity while minimizing computation overhead in Large Language
Models (LLMs) [7, 3, 27]. In this study, our motivation for using MoE is primarily centered on
its capacity to enable token-level model specialization. A common approach for integrating MoE
into Transformers involves replacing Feed-Forward Networks (FFNs) with MoE layers. An MoE
layer consists of multiple expert networks and a gating function, where each expert shares the
same structure as a standard FFN. The gating function is responsible for producing a gating vector
that indicates the expert assignment. The assignment is usually sparse to maintain computational
efficiency in the MoE layer, meaning that each token is generally processed by only one [7] or two
[19, 10] experts.

B More experimental results

Table 2: Model variants performance on Monash.

Model Variant Aggregated MAE

Multi Projection w/ Masked Encoder 0.78
Multi Projection w/ Decoder-Only 0.75
Single Projection & MoE w/ Decoder-Only 0.65

In the main results, we simultaneously enable
the mixture of experts and switch the training
objective from a masked encoder approach to a
decoder-only approach. To ensure a more rigor-
ous comparison, we conduct further experiments
where only the learning objective is changed.
Table 2 presents the Monash evaluation results
using the small model, with the first and last rows representing MOIRAIS and MOIRAI-MOES,
respectively. This outcome suggests that altering the learning objective alone yields modest perfor-
mance improvements, while the major gains stem from leveraging experts for automatic token-level
specialization.

C More evaluation details

C.1 In-distribution forecasting

Following MOIRAI [23], we perform evaluations on 29 datasets from the Monash benchmark [8],
including M1 Monthly, M3 Monthly, M3 Other, M4 Monthly, M4 Weekly, M4 Daily, M4 Hourly,
Tourism Quarterly, Tourism Monthly, CIF 2016, Australian Electricity Demand, Bitcoin, Pedestrian
Counts, Vehicle Trips, KDD Cup 2018, Australia Weather, NN5 Daily, NN5 Weekly, Carparts,
FRED-MD, Traffic Hourly, Traffic Weekly, Rideshare, Hospital, COVID Deaths, Temperature Rain,
Sunspot, Saugeen River Flow, and US Births. The full results of time series foundation models are
shown in Table 3.
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Table 3: Full MAE results of time series foundation models on the Monash Benchmark. The other
baseline results can be found in [23].

Dataset Seasonal Naive LLMTime TimesFM MOIRAISmall MOIRAIBase MOIRAILarge ChronosSmall ChronosBase ChronosLarge MOIRAI-MOESmall MOIRAI-MOEBase

M1 Monthly 2,011.96 2,562.84 1,673.60 2,082.26 2,068.63 1,983.18 1,797.78 1,637.68 1,627.11 1,992.49 1,811.94
M3 Monthly 788.95 877.97 653.57 713.41 658.17 664.03 644.38 622.27 619.79 646.07 617.31
M3 Other 375.13 300.30 207.23 263.54 198.62 202.41 196.59 191.80 205.93 185.89 179.92
M4 Monthly 700.24 728.27 580.20 597.60 592.09 584.36 592.85 598.46 584.78 569.25 544.08
M4 Weekly 347.99 518.44 285.89 339.76 328.08 301.52 264.56 252.26 248.89 302.65 278.37
M4 Daily 180.83 266.52 172.98 189.10 192.66 189.78 169.91 177.49 168.41 172.45 163.40
M4 Hourly 353.86 576.06 196.20 268.04 209.87 197.79 214.18 230.70 201.14 241.58 217.35
Tourism Quarterly 11,405.45 16,918.86 10,568.92 18,352.44 17,196.86 15,820.02 7,823.27 8,835.52 8,521.70 9,508.07 7,374.27
Tourism Monthly 1,980.21 5,608.61 2,422.01 3,569.85 2,862.06 2,688.55 2,465.10 2,358.67 2,140.73 2,523.66 2,268.31
CIF 2016 743,512.31 599,313.84 819,922.44 655,888.58 539,222.03 695,156.92 649,110.99 604,088.54 728,981.15 453,631.21 568,283.48
Aus. Elec. Demand 455.96 760.81 525.73 266.57 201.39 177.68 267.18 236.27 330.04 215.28 227.92
Bitcoin 7.78E+17 1.74E+18 7.78E+17 1.76E+18 1.62E+18 1.87E+18 2.34E+18 2.27E+18 1.88E+18 1.55E+18 1.90E+18
Pedestrian Counts 65.60 97.77 45.03 54.88 54.08 41.66 29.77 27.34 26.95 41.35 32.37
Vehicle Trips 32.48 31.48 21.93 24.46 23.17 21.85 19.38 19.25 19.19 21.62 21.65
KDD Cup 2018 47.09 42.72 40.86 39.81 38.66 39.09 38.60 42.36 38.83 40.21 40.86
Australia Weather 2.36 2.17 2.07 1.96 1.80 1.75 1.96 1.84 1.85 1.76 1.75
NN5 Daily 8.26 7.10 3.85 5.37 4.26 3.77 3.83 3.67 3.53 4.04 3.49
NN5 Weekly 16.71 15.76 15.09 15.07 16.42 15.30 15.03 15.12 15.09 15.74 15.29
Carparts 0.67 0.44 0.50 0.53 0.47 0.49 0.52 0.54 0.53 0.45 0.44
FRED-MD 5,385.53 2,804.64 2,237.63 2,568.48 2,679.29 2,792.55 938.46 1,036.67 863.99 1,651.76 2,273.61
Traffic Hourly 0.013 0.030 0.009 0.020 0.020 0.010 0.013 0.012 0.010 0.013 0.014
Traffic Weekly 1.19 1.15 1.06 1.17 1.14 1.13 1.14 1.12 1.12 1.13 1.14
Rideshare 1.60 6.28 1.36 1.35 1.39 1.29 1.27 1.33 1.30 1.26 1.26
Hospital 20.01 25.68 18.54 23.00 19.40 19.44 19.74 19.75 19.88 20.17 19.60
COVID Deaths 353.71 653.31 623.47 124.32 126.11 117.11 207.47 118.26 190.01 119.00 102.92
Temperature Rain 9.39 6.37 5.27 5.30 5.08 5.27 5.35 5.17 5.19 5.33 5.36
Sunspot 3.93 5.07 1.07 0.11 0.08 0.13 0.20 2.45 3.45 0.10 0.08
Saugeen River Flow 21.50 34.84 25.16 24.07 24.40 24.76 23.57 25.54 26.25 23.05 24.40
US Births 1,152.67 1,374.99 461.58 872.51 624.30 476.50 432.14 420.08 432.14 411.61 385.24

C.2 Zero-shot forecasting

We conduct zero-shot evaluations on the datasets listed in Table 4, which cover five domains and span
frequencies ranging from minute-level to weekly. We use a non-overlapping rolling window approach,
where the stride equals the prediction length. The test set consists of the last h ∗ r time steps, where
h is the forecast horizon and r is the number of rolling evaluation windows. The validation set is
defined as the last forecast horizon before the test set, while the training set includes all preceding
data.

Table 4: Summary of datasets used in the zero-shot forecasting evaluations.
Dataset Domain Frequency Prediction Length Rolling Evaluations

Electricity [21] Energy H 24 7
Solar [12] Energy H 24 7
Turkey Power 3 Energy H 24 7
ETT1 [26] Energy D 30 3
ETT2 [26] Energy D 30 3
Istanbul Traffic 4 Transport H 24 7
M-DENSE [11] Transport D 30 3
Walmart [22] Sales W 8 4
Jena Weather [24] Nature 10T 144 7
BizITObs-L2C [18] Web/CloudOps 5T 48 20

3https://www.kaggle.com/datasets/dharanikra/electrical-power-demand-in-turkey
4https://www.kaggle.com/datasets/leonardo00/istanbul-traffic-index
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