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Abstract

Parallel-in-time (PinT) techniques have been proposed to solve systems of time-
dependent differential equations by parallelizing the temporal domain. Among
them, Parareal computes the solution sequentially using an inaccurate (fast) solver,
and then “corrects” it using an accurate (slow) integrator that runs in parallel across
temporal subintervals. This work introduces RandNet-Parareal, a novel method to
learn the discrepancy between the coarse and fine solutions using random neural
networks (RandNets). RandNet-Parareal achieves speed gains up to x125 and x22
compared to the fine solver run serially and Parareal, respectively. Beyond theoreti-
cal guarantees of RandNets as universal approximators, these models are quick to
train, allowing the PinT solution of partial differential equations on a spatial mesh
of up to 105 points with minimal overhead, dramatically increasing the scalability
of existing PinT approaches. RandNet-Parareal’s numerical performance is illus-
trated on systems of real-world significance, such as the viscous Burgers’ equation,
the Diffusion-Reaction equation, the two- and three-dimensional Brusselator, and
the shallow water equation.

1 Introduction

Parallel-in-time (PinT) methods have been used to overcome the saturation of well-established spatial
parallelism approaches for solving (prohibitively expensive) initial value problems (IVPs) for ordinary
and partial differential equations (ODEs and PDEs), described by systems of d ∈ N ODEs (and
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similarly for PDEs)

du

dt
= h(u(t), t) on t ∈ [t0, tN ] , with u (t0) = u0, N ∈ N, (1)

where h : Rd × [t0, tN ] → Rd is a smooth multivariate function, u : [t0, tN ] → Rd is the time
dependent column vector solution, and u0 ∈ Rd is the initial value at t0. PinT schemes are particularly
important when the sequential application of an accurate numerical integrator F over [t0, tN ] is
infeasible in a reasonable wallclock time. There are three general approaches for PinT computation:
parallel across-the-problem, parallel-across-the-step, and parallel-across-the-method. In [17, 55],
another classification is provided: multiple shooting, methods based on waveform relaxation and
domain decomposition, multigrid approaches, and direct time-parallel methods. Parallel-across-the-
step methods, in which solutions at multiple time-grid points are computed simultaneously, include
Parareal (approximation of the derivative in the shooting method) [45], Parallel Full Approximation
Scheme in Space and Time (PFASST) (multigrid method) [13, 50], and Multigrid Reduction in
Time (MGRIT) [14, 16] methods (see [19] for details). Among them, Parareal [45] has garnered
popularity, with extensive theoretical analyses, improved versions, and empirical applications [17, 55].
This is due to its non-intrusive nature which allows seamless integration with arbitrary temporal
and spatial discretizations, and to its successful performance across diverse fields, such as plasma
physics [64, 66, 67], finance [4, 56], and weather modeling [59, 60]. Limited theoretical results are
available for MGRIT and PFASST, with a few extensions and empirical applications. Interestingly,
combined analyses have shown equivalences between Parareal and MGRIT, and connections between
MGRIT and PFASST. In Parareal, a coarse and fast solver G is run sequentially to obtain a first
approximation of the solution, which is then corrected by running a fine (accurate) but slow integrator
F in parallel across N temporal subintervals. This procedure is then iterated until a convergence
criterion is met after k ≤ N iterations, leading to a speed-up compared to running F sequentially
over the entire time interval. A recent advancement, GParareal [57], improves Parareal convergence
rates (measured as k/N ) by learning the discrepancy F − G using Gaussian Processes (GPs). This
method outperforms Parareal for low-dimensional ODEs and a moderate number of computer cores
N . However, the cubic cost (in the number of data points, roughly kN at iteration k) of inverting
the GP covariance matrix hinders its broader application. Subsequent research introduced nearest
neighbors (nns) GParareal (nnGParareal) [21], enhancing GParareal’s scalability properties in both
N and d through data reduction. Significant computational gains were achieved by training the GP
on a small subset of nns, resulting in an algorithm loglinear in the sample size. This allowed scaling
its effectiveness up to systems with a few thousand ODEs, beyond which it loses its potential. Indeed,
being based on the original GP framework, it uses a costly hyperparameter optimization procedure
that requires fitting one GP per ODE dimension.

This study introduces RandNet-Parareal, a new approach using random neural networks (RandNets)
to learn the discrepancy F − G . RandNets are a family of single-hidden-layer feed-forward neural
networks (NNs), where hidden layer weights are randomly sampled and fixed, and only the output
(or readout) layer is subject to training. Compared to standard artificial NNs, RandNets are hence
much simpler to train: the input data are fed through the network, the predictions observed, and the
weights of the linear output (or readout) layer are obtained as minimizers of a penalized squared loss
between the NN outputs and the training targets. Since this optimization problem admits a closed-
form solution, no backpropagation is required, and the issues of vanishing and exploding gradients
persisting for standard fully trainable NNs are therefore avoided. The literature on the topic is rich
and somewhat fragmented, and different names are used for essentially the same model. RandNets are
related to Random Feature Networks [6, 49, 62, 63, 65] and Reservoir Computing [24, 26, 25, 27, 28],
Random Fourier Features (RFFs) and kernel methods [41, 61, 70, 74]. Some authors use the name
Extreme Learning Machines (ELMs) [34–37, 44] to refer to RandNets, while others use the term
randomized or random NNs [5, 32, 39, 46, 78, 82] for the same paradigm. RandNets show excellent
empirical performance, and have been used in the context of mathematical finance [22, 33, 38],
mathematical physics [52], electronic circuits [69], photonic [47] and quantum systems [23, 48],
random deep splitting schemes [53], scientific computing [10, 11, 79, 81], and have shown excellent
empirical performance in numerous further applications. Moreover, recent work [22, 25] proves that
RandNets are universal approximators within spaces of sufficiently regular functions, and provides
explicit approximation error bounds, with these results generalized to a large class of Bochner spaces
in [52]. These contributions show that RandNets are a reliable machine learning paradigm with
provable theoretical guarantees.
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In this paper, we show that endowing Parareal with RandNets-based learning of F − G , the new
proposed RandNet-Parareal algorithm, leads to significantly improved scalability, convergence speed,
and parallel performance with respect to nnGParareal, GParareal, and Parareal. This allows us
to solve PDE systems on a fine mesh of up to 105 discretization points with negligible overhead,
outperforming nnGParareal by two orders of magnitude and reducing its model cost by several orders.

Here, we compare the performance of Parareal, nnGParareal, and RandNet-Parareal on five in-
creasingly complex systems, some of which are drawn from an extensive benchmark study of
time-dependent PDEs [75]. These include the one-dimensional viscous Burgers’ equation, the two-
dimensional Diffusion-Reaction equation, a challenging benchmark used to model biological pattern
formation [76], the two- and three-dimensional Brusselator, known for its complex behavior, including
oscillations, spatial patterns, and chaos, and the shallow water equations (SWEs). Derived from the
compressible Navier-Stokes equations, the SWEs are a system of hyperbolic PDEs exhibiting several
types of real-world significance behaviors known to challenge numerical integrators, such as sharp
shock formation dynamics, sensitive dependence on initial conditions, diverse boundary conditions,
and spatial heterogeneity. Example applications include of tsunamis or flooding simulations.

We intentionally chose two hyperbolic equations (Burgers’ and SWE) to challenge RandNet-Parareal
on systems for which Parareal is known to struggle, with slow or non-convergent behavior [2, 3, 9,
18, 72]. Previous works have developed ad-hoc coarse solvers to address Parareal’s slow convergence
for Burgers’ [7, 40, 68, 71], and for SWE [1, 31, 54, 73]. Here, we adopt a different strategy: by
leveraging the generalization capabilities of RandNets within the Parareal algorithm, we enhance the
performance of standard, off-the-shelf integration methods such as Runge-Kutta, obtaining speed
gains up to x125 and x22 compared to the accurate integrator F and Parareal, respectively. All
experiments have been executed on Dell PowerEdge C6420 compute nodes each with 2 x Intel
Xeon Platinum 826 (Cascade Lake) 2.9 GHz 24-core processors, 48 cores and 192 GB DDR4-2933
RAM per node. To illustrate our proposed algorithm and facilitate code adoption, we provide a
step-by-step Jupyter notebook outlining RandNet-Parareal. Moreover, all simulation outcomes,
including tables and figures, are fully reproducible and accompanied by the necessary Python code at
https://github.com/Parallel-in-Time-Differential-Equations/RandNet-Parareal.

It is well acknowledged that comparing PinT methods based on different working principles is
extremely hard, with [55] representing a recent survey article with some comparisons. Quoting
[55],“caution should be taken when directly comparing speedup numbers across methods and im-
plementations. In particular, some of the speedup and efficiency numbers are only theoretical in
nature, and many of the parallel time methods do not address the storage or communication overhead
of the parallel time integrator”. [19] is one of very few recent attempts to systematically compare
different PinT classes. However, it is limited exclusively to the Dahlquist problem. Thus, it has
become conventional to compare new techniques to the existing state-of-the-art methods within the
same group of solvers. This is why, in this work, we compare RandNet-Parareal with the original
Parareal and its recently improved versions, GParareal [57], and nnGParareal [21].

The rest of the paper is organized as follows. In Section 2, we describe the Parareal algorithm.
Section 3 briefly explains GParareal and nnGParareal, focusing on the latter. RandNet-Parareal is
introduced in Section 4, while Sections 5 and 6 present our numerical results, and a final discus-
sion. A computational complexity analysis of RandNet-Parareal, a robustness evaluation of the
proposed algorithm, complementary simulation studies, and other additional results are available in
the Supplementary Material.

Notation. We denote by v ∈ Rn a column vector with entries vi, i ∈ {1, . . . , n}, and by ∥v∥ and
∥v∥∞ its Euclidean and infinity norms, respectively. We use A ∈ Rn×m to denote a real-valued
n × m matrix, n,m ∈ N, with elements Aij , jth column A(·,j), j ∈ {1, . . .m}, and ith row
A(i,·), i ∈ {1, . . . , n}. We write A⊤, A†, and ∥A∥F for the A matrix transpose, Moore-Penrose
pseudoinverse, and Frobenius norm, respectively. In denotes the identity matrix of dimension n.

2 The Parareal algorithm

The idea of Parareal is to solve the d-dimensional ODE (and similarly PDE) system (1) in a parallel-
in-time fashion, dividing the original IVP into N sub-IVPs

dui

dt
= h (ui (t | U i) , t) , t ∈ [ti, ti+1] , ui (ti) = U i, for i = 0, . . . , N − 1,
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where the number of time intervals N is also the number of available machines/cores/processors,
ui (t | U i) is the solution at time t of the ith IVP with initial condition u(ti) = U i ∈ Rd, i =
0, . . . , N − 1. If the initial conditions were known and satisfied the continuity conditions U i =
ui−1 (ti|U i−1) (for the coherent temporal evolution of the system across sub-intervals), then the
sub-IVPs could be trivially solved in parallel on a dedicated machine. Unfortunately, this is not the
case, as only the first initial condition U0 = u0 ∈ Rd at time t0 appears available. To account for
this, Parareal introduces another numerical integrator G , much faster but less accurate than F , to
approximate the missing initial conditions U i, i = 1, . . . , N − 1, sequentially. G trades off accuracy
for computational feasibility, usually taking seconds/minutes instead of hours/days of F 2.

The algorithm works as follows. We use Uk
i to denote the Parareal approximation of ui(ti) = U i

at iteration k ≥ 0. At k = 0, the initial conditions {U0
i }N−1

i=1 are initialized using a sequential
application of the coarse solver G , obtaining U0

i = G (U0
i−1), i = 1, . . . , N − 1, with U0

0 = U0.
At k ≥ 1, the obtained initial conditions Uk−1

i−1 are “propagated” through F in parallel on N cores
to obtain F (Uk−1

i−1 ), i = 1, . . . , N . Note that for every initial condition Uk−1
i−1 , we compute both

F (Uk−1
i−1 ), i.e. a precise evaluation of ui−1(ti|Uk−1

i−1 ), and G (Uk−1
i−1 ), an inaccurate evaluation of the

same term. Hence, we can interpret F and G as functions mapping an initial condition to the next one,
thereby evolving (1) by one interval. We can then use their difference, (F − G )(Uk−1

i−1 ), to correct
the inaccuracy of G on future evaluations. This gives rise to the original Parareal predictor-corrector
rule Uk

i = G (Uk
i−1) + (F − G )(Uk−1

i−1 ), with i = 1, . . . , N − 1, k ≥ 1 [18], where the sequential
prediction G (Uk

i−1) is corrected by adding the discrepancy F −G computed at the previous iteration
k − 1. However, this formulation can be changed to use data from the current iteration k [57], and
generalized to account for different ways of computing the discrepancy, leading to [21]

Uk
i = G (Uk

i−1) + f̂(Uk
i−1), (2)

where f̂ : Rd → Rd specifies how the correction function F − G is computed or approximated
based on some observation U ∈ Rd. Parareal uses

f̂Para(U
k
i−1) = (F − G )(Uk−1

i−1 ), (3)

while other variants will be introduced in the subsequent sections. The Parareal solution (2) is
considered converged for a given threshold ϵ > 0 and up to time tL ≤ tN , if solutions across
consecutive iterations have stabilized. That is, for some pre-defined accuracy level ϵ > 0, it holds that

∥Uk
i −Uk−1

i ∥∞ < ϵ, 0 < i ≤ L ≤ N − 1. (4)

Other stopping criteria are also possible [66, 67]. Converged Parareal approximations Uk
i , i ≤ L, are

no longer iterated to avoid unnecessary overhead [12, 20, 21, 57, 58]. Instead, unconverged solution
values Uk

i , i > L, are updated during future iterations by first running F in parallel and then using
the prediction-correction rule (2). The Parareal algorithm stops at some iteration KPara ≤ N when
all initial conditions have converged, that is when (4) is satisfied with L = N−1 and thus KPara = k.
Note that during every Parareal iteration k > 1, the “leftmost” fine solver evaluation F (Uk

L) is either
run from the outcome of a previous fine computation Uk

L = F (Uk−1
L−1), or from a converged initial

condition ∥Uk
L −Uk−1

L ∥∞ < ϵ. This guarantees that, either way, the maximum number of iterations
to convergence for any Parareal-based algorithm is KPara = N , in which case it sequentially attains
the fine solver solution, with the added computational cost of running G and evaluating f̂ N times. A
Parareal pseudocode is presented in Algorithm 1 in Supplementary Material A.

3 GParareal and Nearest Neighbors GParareal

The performance of Parareal can be improved by a careful selection of f̂ in (2), combined with a better
use of the available information present at iteration k. Let Dk denote the dataset consisting of Nk

pairs of inputs U j
i−1 ∈ Rd and their corresponding outputs (F − G )(U j

i−1) ∈ Rd, i = 1, . . . , N ,
j = 0, . . . , k − 1, that is

Dk := {(U j
i−1, (F − G )(U j

i−1)), i = 1, . . . , N, j = 0, . . . , k − 1}. (5)

2F and G can be two different solvers or the same solver with different time steps.
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While Parareal relies on one observation to construct the correction f̂ in (3), GParareal and following
works, including this one, use all the discrepancy terms F − G and information in Dk to make their
predictions. The idea of GParareal is to learn the map Rd → Rd, Uk

i−1 7→ (F − G )(Uk
i−1), via d

independent scalar GPs Rd → R, Uk
i−1 7→ f̂

(s)
GPara(U

k
i−1), s = 1, . . . , d, one per ODE dimension,

whose predictions are concatenated into f̂GPara(U
k
i−1) = (f̂

(1)
GPara(U

k
i−1), . . . , f̂

(d)
GPara(U

k
i−1))

⊤ ∈
Rd, and finally plugged into the predictor-corrector rule (2). In particular, each GP prediction
f̂
(s)
GPara(U

k
i−1) is obtained as the GP posterior mean µ

(s)
Dk

(Uk
i−1) ∈ R, computed by conditioning

the corresponding GP prior on the dataset Dk, i.e. f̂
(s)
GPara(U

k
i−1) = µ

(s)
Dk

(Uk
i−1). We refer to

Supplementary Material B and [57] for a thorough description of the algorithm, including all
relevant quantities of interest, namely the d GP priors, the likelihood, the hyperparameters and
their optimization procedure, and an explicit expression of the posterior means. Here, it is worth
highlighting that the GPs are trained once per iteration to leverage the new incoming data, and then
their predictions are used to sequentially update the initial conditions in (2). Using all information
stored inDk instead of a single observation (as for Parareal) is the primary driver of faster convergence
rates experienced by GParareal. Other benefits of this algorithm are increased stability to different
initial conditions, the ability to incorporate legacy data (that is, the possibility of using datasets
coming from previous runs of the algorithm with different starting conditions or settings, leading to
faster convergence), lower sensitivity to poor choices of the coarse solver G , and the possibility of
parallelizing the training of the d GPs over the N available cores. The main drawback of GParareal
is the heavy computational burden incurred when inverting the GP covariance matrices, which is
of order O(d(Nk)3) at iteration k. This negatively impacts the algorithm’s wallclock time, which
may be higher than Parareal despite a lower number of iterations needed to converge. This is why
GParareal has been proposed mainly for low-dimensional ODE systems with a relatively small
number of processors/intervals N (up to hundreds), limiting its use and parallel scalability [57].

The nnGParareal algorithm [21] has been proposed to tackle GParareal’s scalability issue, sensibly
reducing the computational time and memory footprint of GPs by using their nns version (nnGPs).
In this framework, at iteration k, the d GPs are all trained on a smaller dataset of size m, Di−1,k,
composed out of the m nns (in Euclidean distance) of Uk

i−1 in Dk, leading to the nnGParareal
correction f̂nnGPara(U

k
i−1) = (f̂

(1)
nnGPara(U

k
i−1), . . . , f̂

(d)
nnGPara(U

k
i−1))

⊤, with

f̂
(s)
nnGPara(U

k
i−1) = µ

(s)
Di−1,k

(Uk
i−1), s = 1, . . . , d.

Here, µ(s)
Di−1,k

∈ R, s = 1, . . . , d, denotes the nnGP posterior mean computed by conditioning the
corresponding GP prior on the reduced dataset Di−1,k of size m. Due to the decreased sample size,
each nnGP covariance matrix can be inverted at a cost of O(m3) independent of k or N . However,
contrary to GParareal which trains the GPs once per iteration, the nnGPs are re-trained every time
a new prediction f̂nnGPara(U

k
i−1) is made, which are at most N − k at iteration k (as at least k

intervals have converged at iteration k), yielding a combined O(d(N − k)m3) complexity. Several
experiments on different ODE and PDE systems have shown that m ∈ {15, . . . , 20} offer accuracy
comparable to the full GP [21] at a much lower cost. Although faster than GParareal, nnGParareal
still exhibits some of the drawbacks inherited from the GP framework, such as the cost of optimizing
the hyperparameters through a numerical maximization of a non-convex likelihood, and the use of d
scalar nnGPs. The latter is particularly critical. On the one hand, despite the possibility of training
the d nnGPs in parallel, the inversion of a m×m matrix is so efficient that parallel overheads may
outweigh the theoretical benefits. On the other hand, when solving PDEs, nnGParareal will incur
additional costs due to insufficient hardware resources, as usually d≫ N , forcing the d nnGPs to
queue among the N available processors, which is why the algorithm has been proposed for high-
dimensional ODE and PDE systems with d ≤ N . We refer to Supplementary Material B and [21] for
more details on nnGParareal, and to Algorithm 2 in Supplementary Material A for the pseudocode of
the nnGP training. In the next section, we address the nnGParareal issues by introducing RandNets.

4 Random neural networks Parareal (RandNets-Parareal)

In RandNet-Parareal, we propose to learn the map Rd → Rd, U 7→ (F − G )(U) via RandNets,
obtaining the RandNet-Parareal correction f̂RandNet-Para, which we then use within the predictor-
corrector rule (2). Prior to that, we define how RandNets work in a general setting with input U ∈ Rd
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and output or target Y ∈ Rd. Later in the text we will go back to the input of interest Uk
i . Let M

denote the number of hidden neurons, and HA,ζ
W (U) be a single-hidden-layer feed-forward neural

network used to learn F − G , given by

HA,ζ
W (U) = W⊤σ(AU + ζ) ∈ Rd, U ∈ Rd, (6)

where A ∈ RM×d is the matrix of random, non-trainable weights of the hidden layer, ζ ∈ RM

is a random non-trainable bias vector, and W ∈ RM×d is the matrix of trainable output weights.
Here, σ : RM → RM denotes an activation function obtained as the componentwise application of a
non-linear map σ : R→ R which we choose to be ReLU σ(x) = max(x, 0) with x ∈ R, to satisfy
the assumption of Proposition 1 below. The entries of A and ζ are randomly sampled from given
distributions PA and Pζ , respectively, and kept fixed. After observing the dataset Dk, the output
weights W are obtained as the minimum ℓ2 norm least squares (or simply min-norm least squares)
estimator or as the solution of the following penalized empirical minimization problem:

ŴDk = lim
λ→0

arg min
W∈RM×d

 ∑
(U ,Y )∈Dk

∥∥∥HA,ζ
W (U)− Y

∥∥∥2 + λ ∥W∥2F

 ,

which is also called a “ridgeless” (interpolation) estimator [30], and can be more compactly written
as

ŴDk = lim
λ→0

(
X⊤X + λIM

)−1
X⊤Y. (7)

Here, X ∈ RNk×M is a matrix with (X(l,·))
⊤ := σ(A(U(l,·))

⊤ + ζ), l = 1, . . . , Nk, and
U, Y ∈ RNk×d are the collection of inputs and outputs of Dk in matrix form,respectively, de-
fined as (U(l,·))

⊤ = U j
i , (Y(l,·))

⊤ = Y j
i , l = jN + i + 1, i = 0, . . . , N − 1, j = 0, . . . , k − 1.

Whenever Nk ≥M and the rank of X⊤X ∈ RM×M is M , (7) reduces to the standard least squares
estimator ŴDk =

(
X⊤X

)−1
X⊤Y , while if the rank of X⊤X is Nk, the solution admits a closed

form
ŴDk =

(
X⊤X

)†
X⊤Y.

We get inspired by [21], where only m nns are used in the training. In this setting, M ≫ Nk = m,
and in this overparametrized linear regression case, the ridgeless estimator interpolates the training
data, which is a desirable feature since the problem is genuinely deterministic [29, 49].

Several ingredients control the performance of RandNets, such as the dimension of the network M
and the choice of distributions PA and Pζ . In this work, we take the rows of the weight matrix A and
the bias entries of ζ to be independent and uniformly distributed. For this case, the approximation
bounds are available [25, Proposition 3], which we report below using our notation.
Proposition 1 (Approximation bound, [25], Proposition 3). Let H∗ : Rd → R, U 7−→ H∗(U) be an
unknown function we wish to approximate with HA,ζ

W defined in (6). Suppose H∗ can be represented
as H∗(U) =

∫
Rd e

i⟨w,U⟩g(w)dw for some complex-valued function g on Rd and all U ∈ Rd with
∥U∥ ≤ Q, where ⟨·, ·⟩ is the inner product on Rd. Assume that

∫
Rd max

(
1, ∥w∥2d+6

)
|g(w)|2 dw <

∞. For ρ > 0, suppose the rows of A are i.i.d. random variables with uniform distribution on
Bρ ⊂ Rd, the Euclidean ball of radius ρ around 0, and that the M components of ζ are i.i.d. uniform
random variables on [−max(Qρ, 1),max(Qρ, 1)]. Assume that A and ζ are independent and let
σ : R → R be given by σ(x) = max(x, 0). Then, there exist a RM×d-valued random variable W
and an explicit (see (33) in [25]) constant C∗ > 0 such that

E
[
∥HA,ζ

W (U)−H∗(U)∥2
]
≤ C∗

M ,

and for any δ ∈ (0, 1), the random neural network HA,ζ
W satisfies

P
((∫

Rd

∥HA,ζ
W (U)−H∗(U)∥2µU (dU)

)1/2

≤
√
C∗

δ
√
M

)
≥ 1− δ.

Our choice of PA and Pζ satisfies the conditions of Proposition 1 if ∥U∥ ≤ Q. If this is not met,
we rescale the ODE/PDE system via a change of variables. We found these bounds empirically
useful in informing a good choice for the sampling distribution, which we follow. If no prior
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information were available, the common approach would have been to take PA ∼ Unif(−a, a)M×d,
Pζ ∼ Unif(−b, b)M , and optimize a, b ∈ R+ via expensive cross-validation procedure.

Unlike nnGParareal, GParareal, and the corresponding nnGPs and GPs, training RandNets is so fast
that parallelization across the d dimensions is unnecessary. Hence, the predictions of the random
network are computed jointly on all d coordinates, yielding the RandNet-Parareal correction function

f̂RandNet-Para(U
k
i−1) = HA,ζ

ŴDi−1,k
(Uk

i−1) ∈ Rd. (8)

Here, the estimated weights ŴDi−1,k are obtained using the reduced dataset Di−1,k consisting of the
mRandNet nns of Uk

i−1, requiring the retraining of the RandNet for every prediction. Employing a
multi-output model instead of independently training d scalar-output models addresses one of the
pitfalls of GPs, allowing for better scalability when d ≫ N . The fact that training the RandNets
reduces to a closed-form ridgeless interpolation solution presents a substantial difference and im-
provement with respect to (nn)GPs. Moreover, expensive hyperparameter optimization is avoided
in RandNets, addressing the other major pitfall of GParareal and nnGParareal. The pseudocode for
training RandNets is reported in Algorithm 3 in Supplementary Material A.

In Supplementary Material C, we derive the theoretical computational costs of nnGParareal and
RandNet-Parareal, illustrating them as a function of dimension d and number of processors N in
Figure 3. These theoretical findings confirm the significantly superior scalability of RandNet-Parareal
which we observe in the numerical experiments reported in Section 5.

In Supplementary Material D, we study the robustness of RandNet-Parareal to changes in the number
of nns mRandNet (and thus the input data size), the number of neurons M , and the randomly sampled
network weights A, ζ. Intuitively, one might anticipate that a larger data sample would yield a more
accurate approximation of the correction F − G , and that a higher number of neurons M would
reduce the prediction error of RandNets (as in Proposition 1). One may also suspect the algorithm
to be sensitive to the particular sampling seed. Remarkably, our empirical findings demonstrate
that these factors have a limited impact on the number of iterations needed by RandNet-Parareal
to converge, which remains largely consistent (up to a few iterations) across different values and
ODE/PDE systems, for sensible choices of mRandNet and M . For the end user, this eliminates the
need of ad-hoc tuning, making the proposed RandNet-Parareal a convenient out-of-the-box algorithm.

5 Numerical Experiments

In this section, we first compare the performance of Parareal, nnGParareal, and RandNet-Parareal
on the viscous Burgers’ equation (one spatial dimension and one variable, also considered in nnG-
Parareal [21]), to showcase Parareal and nnGParareal challenges as the number of space discretization
and, correspondingly, the dimensions d, increases. Then, we consider the Diffusion-Reaction equation,
a larger system defined on a two-dimensional spatial domain with two non-linearly coupled variables,
and the SWEs (two spatial dimensions and three variables), representing a suitable framework for
modeling free-surface flow problems on a two-dimensional domain. Two additional challenging
systems, the 2D and 3D Brusselator PDEs, known for their complex behavior, including oscillations,
spatial patterns, and chaos, are considered in Supplementary Material E. The simulation setups
used for obtaining the results in this section are provided in Supplementary Material G, with the
corresponding accuracies and runtimes for RandNet-Parareal, Parareal, and nnGParareal reported in
Supplementary Material F.

Let TF and TG be the time it takes to run F and G over one interval [ti, ti+1], respectively, and let
NF and NG denote the number of steps for the fine and coarse solvers over one interval, respectively.
We can measure the parallel efficiency of an algorithm via its parallel speed-up Salg, defined as the
ratio of the serial over the parallel runtime, i.e. Salg := NTF/Talg. Salg captures the wallclock gains
of parallel procedures and, unlike other quantities (such as the number of algorithm iterations needed
to converge), also includes the model training cost.

5.1 Viscous Burgers’ equation

Our initial example is a non-linear, one-dimensional PDE (illustrated in Figure 7 of Supplementary
Material H) exhibiting hyperbolic behavior [68], described by the equation

vt = νvxx − vvx, (x, t) ∈ [−L,L]× [t0, tN ], (9)
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Table 1: Empirical scalability and speed-up analysis for viscous Burgers’ equation

d = 128, N = 128

Algorithm K NTG TF Tmodel Talg Salg

Fine – – – – 13h 5m 1
Parareal 90 0s 6m 0s 8h 54m 1.47
nnGParareal 14 0s 6m 12m 1h 39m 7.90
RandNet-Parareal 10 0s 6m 1s 1h 2m 12.61

d = 1128, N = 128

Algorithm K NTG TF Tmodel Talg Salg

Fine – – – – 18h 52m 1
Parareal 91 0s 9m 0s 12h 57m 1.41
nnGParareal 6 2s 9m 1h 25m 2h 17m 8.26
RandNet-Parareal 4 2s 9m 1s 38m 29.98

Speed-up Salg of Parareal, nnGParareal (mnnGP=18), and RandNet-Parareal (mRandNet=4, M=100)
for the 1D viscous Burgers’ equation. TF and TG are the interval runtimes of the fine and coarse
solvers, respectively, K the number of iterations to converge, Tmodel the overall time to evaluate f̂
across K iterations, including training and predicting, and Talg thealgorithm runtime.

with initial condition v(x, t0) = v0(x), x ∈ [−L,L], L > 0, and Dirichlet boundary conditions
v(−L, t) = v(L, t), vx(−L, t) = vx(L, t), t ∈ [t0, tN ]. We use the same setting and parameter
values as in [21]. More specifically, we choose L = 1, diffusion coefficient ν = 0.01, and discretize
the spatial domain using finite difference [15] and equally spaced points xj+1 = xj + ∆x, with
∆x = 2L/d and j = 0, . . . , d. We hence reformulate the PDE as a d-dimensional ODE system.

In our first numerical experiment, we choose N = d = 128, v0(x) = 0.5(cos( 92πx) + 1), t0 = 0,
and tN = 5.9 as in [21], and consider G = RK1,F = RK8, NG = 4 and NF = 4e4, where RK1
stands for Runge-Kutta of order 1, and similarly for RK4 and RK8. The results, reported at the top
of Table 1, show how RandNet-Parareal converges in fewer iterations and has a higher speed-up than
Parareal and nnGParareal. The difference in the model training costs is striking, with the nnGP’s
being approximately 700 times higher than that of RandNets, reducing thus its potential speed-up.

As real-world (one-dimensional) problems would require a higher spatial discretization, we increase
d by one thousand to d = 1128, keeping N fixed. Unlike assuming matching hardware resources
to the system size (as implicitly done in [21], where d = N ), we deliberately do not increase N to
assess the algorithms’ performances under constrained conditions. Instead, both time discretization
numbers are increased to NF = 6e5 and NG = 293 (resulting thus in longer TF and TG times)
to account for the finer spatial mesh [43]. As observed from the bottom of Table 1, as d/N > 1,
nnGParareal’s issues become more pronounced, as the d scalar GPs cannot be run all in parallel
across the N processors, but need d/N = 10 runs instead, slowing down the algorithm. In contrast,
RandNet-Parareal has a training cost comparable with the previous example, leading to an even
higher speed-up, running in approximately 38 minutes compared to the almost 13 hours of Parareal.

5.2 Diffusion-Reaction system

We now turn to a more challenging case study. The Diffusion-Reaction equation [75] (illustrated
in Figure 8 in Supplementary Material H) is a system of two non-linearly coupled variables, the
activator u = u(t, x, y) and the inhibitor v = v(t, x, y), defined on a two-dimensional spatial domain
as

∂tu = Du∂xxu+Du∂yyu+Ru, ∂tv = Dv∂xxv +Dv∂yyv +Rv.

Here, Du, Dv are the diffusion coefficients for the activator and inhibitor, respectively, and Ru =
Ru(u, v), Rv = Rv(u, v) are their reaction functions defined by the Fitzhugh-Nagumo equation [42]

Ru(u, v) = u− u3 − c− v, Rv(u, v) = u− v,

where c = 5e−3, Du = 1e−3, and Dv = 5e−3. We take (x, y) ∈ (−1, 1)2 and t ∈ [0, 20]. The initial
condition u(0, x, y) is generated as standard Gaussian noise. We apply a no-flow Neumann boundary
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condition Du∂xu = 0, Dv∂xv = 0, Du∂yu = 0, Dv∂yv = 0 for (x, y) ∈ (−1, 1)2. The spatial
domain is discretized by the finite volume method [51], resulting in a d = 2NxNy-dimensional ODE
with Nx and Ny the number of space discretizations along x and y, respectively. The time integration
is conducted with RK of variable order for G and F (see Table 6 in Supplementary Material G).

As in the previous example, we conduct two experiments for this system, with speed-ups and runtimes
reported in Figure 1. In the first one, we increased d and N proportionately (with d/N ∈ [11, 13])
while maintaining all other quantities (i.e. G ,F ,mnnGP,mRandNet) fixed until N = 256. This
scenario reflects a situation where more resources are allocated to solve larger problem sizes. In
contrast, in the second experiment, N remains fixed at 512, with d increasing proportionately with NG

to maintain algorithm stability. Moreover, F is chosen to be RK8, with NF automatically selected
by the used Python library scipy [77]. This second setting simulates a scenario with constrained
resources, where the user aims to solve the system using a finer spatial mesh. Table 8 in Supplementary
Material I shows that for N ≥ 256 and d/N ≫ 1, nnGParareal fails to converge within a 48-hour
budget. Parareal converges always, albeit at a considerably slower rate than RandNet-Parareal, which
is x3-5 faster than Parareal (and up to x120 than the fine solver).
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Figure 1: Speed-ups (left) and runtimes (right) of Parareal, nnGParareal (mnnGP=20), and RandNet-
Parareal (mRandNet=4, M=100) for the two-dimensional Diffusion-Reaction system versus the
number d of dimensions (bottom x-axis) and N cores (top x-axis) capped at 512 to simulate limited
resources.

5.3 Shallow water equation

Finally, we focus on SWEs on a two-dimensional domain, described by a system of hyperbolic PDEs

∂th+∇hu = 0, ∂thu+∇(u2h+ 1
2grh

2) = −grh∇b,

where u = (u, v) represents the velocities in the horizontal u = u(t, x, y) and vertical v = v(t, x, y)
directions, h = h(t, x, y) denotes the water depth, b = b(x, y) describes a (given) spatially varying
bathymetry, and hu can be interpreted as the directional momentum components. The parameter gr
describes the gravitational acceleration, while ∂tf denotes the partial derivative with respect to time,
and ∇f the gradient of a function f . Following [75], we solve a radial dam break scenario where
a Gaussian-shaped water column (blue) inundates nearby plains (green) within a rectangular box
subject to Neumann boundary conditions, causing the water to rebound off the sides of the box, as
depicted in Figure 2. More details on the simulation setup are given in Supplementary Material G.1.

In this case, our algorithm also converges much faster than Parareal, with a speed gain of x1.3-3.6,
while nnGParareal fails to converge within the 48-hour time budget as d≫ N . Although the speed
gain is lower than for the Diffusion-Reaction, the improvements are remarkable. RandNet-Parareal
takes up to 4-10 hours and 37 days less than the Parareal and sequential solver, respectively.

6 Discussion and limitations

This study improves the scalability properties, convergence rates, and parallel performance of Parareal
and a more recently proposed PinT solver for ODEs and PDEs, nnGParareal [21]. By replacing the
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Figure 2: Numerical solution of the SWE for (x, y) ∈ [−5, 5]× [0, 5] with Nx = 264 and Ny = 133
for a range of system times t. Only the water depth h (blue) is plotted.

Table 2: Speed-up analysis for the shallow water PDE as a d-dimensional ODE system, N = 235

d KPara KRandNet-Para TF TPara TRandNet-Para SPara SRandNet-Para

15453 52 14 22h 54m 5h 8m 1h 25m 4.47 16.16
31104 50 13 3d 2h 15h 43m 4h 9m 4.68 17.69
60903 14 9 13d 15h 19h 30m 12h 34m 16.73 25.92
105336 8 6 38d 4h 1d 7h 23h 34m 29.37 38.90

K· is the number of iterations to converge, T· wallclock time and S· speed-up for the Parareal (Para)
and RandNet-Parareal (mRandNet=4, M=100). TF is the sequential runtime of F . The results for
nnGParareal (mnnGP=20) are not reported as it fails to converge within a 48-hour time budget.

nnGP with random networks, we decreased the model costs (in learning the discrepancy between
the fine and coarse solvers) by several orders of magnitude. The reasons behind this are multi-fold.
Training of RandNets is cheap due to the availability of the closed-form solution for its output
(readout) weights, and avoids any expensive hyperparameter optimization. Moreover, it is possible
to simultaneously learn and predict the d-dimensional correction map instead of d scalar maps (in
parallel if the number of processors N is comparable to d, or queuing if smaller). The latter “liberates”
RandNet-Parareal from requiring d ≈ N , extending its application to high-dimensional settings, a
key/notable improvement with respect to nnGParareal. We tested the proposed algorithm on systems
of real-world significance, such as the Diffusion-Reaction equation, the SWE, and the Brusselator.
solving them on a fine spatial mesh of up to 105 discretization points. These systems and requirements
align with those outlined in the benchmark PDE dataset [75] as necessary prerequisites for using such
algorithms in practical scenarios. The strength of RandNet-Parareal is the cheap cost of RandNets,
which can be embedded within Parareal with virtually no overhead, irrespective of the implementation
or solvers, leading to notable speed gains over Parareal (x8.6-21.2 for viscous Burgers’, x3-5 for
Diffusion-Reaction, x1.3-3.6 for SWE, and x3.4-4.4 for Brusselator). Moreover, training RandNets is
easily conducted with established linear algebra routines, and requires no ad-hoc parameter tuning.

Despite its excellent performance, RandNet-Parareal has limitations common to all Parareal algo-
rithms, as its rate of convergence relies on the accuracy of the coarse solver G . Although neural net-
works can help mitigate the impact of suboptimal choices of G (as observed for GPs in (nn)GParareal),
if the solver is mismatched for the system — for example, an unstable solver for a stiff ODE —
RandNet-Parareal, similar to Parareal and (nn)GParareal, is likely to exhibit non-convergent behavior.
It would then be of interest to investigate RandNet-Parareal’s performance when using customized
solvers tailored to specific systems, such as those outlined in Section 1 for the shallow water equation
and the viscous Burgers’ equation, which we defer to future research.
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A Pseudocodes

This section provides pseudocodes for the implementation of Parareal (Algorithm 1), and the training
procedure for learning the discrepancy F−G via nnGPs in nnGParareal (Algorithm 2), and RandNets
in RandNet-Parareal (Algorithm 3).

Algorithm 1: Parareal (generic)

Input: Initial condition u0 at time t0, number of intervals N
Output: Converged initial conditions {UK

i }N−1
i=1 , with K the number of iterations to

convergence

Initialization
Rescale the ODE/PDE system such that each coordinate takes values in [−1, 1]
L← 1

U0
0 = u0

for i← 1 to N − 1 do
U0

i ← G (U0
i−1)

end

for k ← 1 to N do
Compute F (Uk−1

i−1 ), i = 1, . . . , N in parallel
for i← L+ 1 to N − 1 do

Uk
i ← G (Uk

i−1) + f̂(Uk
i−1) /* Update the initial conditions */

end

Convergence checks
for i← L+ 1 to N − 1 do

if ∥Uk
i −Uk−1

i ∥∞ < ϵ then
L← L+ 1 /* Update converged interval counter */

else
break

end
end

if L == N then
break /* All intervals have converged */

end
end
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Algorithm 2: nnGP training procedure within nnGParareal

Input: Input Uk
i−1, dataset Dk, number of nearest neighbors mnnGP, number of random restarts

for loss maximization nstart

Output: Prediction f̂nn(U
k
i−1) of (F − G )(Uk

i−1)

Initialization
/* Find the mnnGP nns to Uk

i−1, and compute the reduced dataset (10) */
Di−1,k ← {(U (l-nn)

Uk
i−1

,Y
(l-nn)
Uk

i−1

), l = 1, . . . ,mnnGP} ⊂ Dk

/* Both loops can be massively parallelized */
for s← 1 to N do

/* Training */
for j ← 1 to nstart do

/* Random restarts to avoid local minima when maximizing (12) */
Sample θ0

j at random
Maximize (12) numerically using θ0

j as initial value; obtain θ∗
j

end
Find θ∗ such that

log p(Ỹ(·,s)|Ũ ,θ∗) ≥ log p(Ỹ(·,s)|Ũ ,θ∗
j ), j = 1, . . . , nstart

/* Predicting */
Compute µ

(s)
Di−1,k

(Uk
i−1) with (11) using θ∗

end
Set f̂nn(Uk

i−1)← (µ
(1)
Di−1,k

(Uk
i−1), . . . , µ

(d)
Di−1,k

(Uk
i−1))

⊤

Algorithm 3: RandNets training procedure within RandNet-Parareal

Input: Input Uk
i−1, dataset Dk, number of neurons M , number of nearest neighbors mRandNet

Output: Prediction f̂RandNet(U
k
i−1) of (F − G )(Uk

i−1)

Initialization
Ensure each ODE/PDE coordinate takes values in [−1, 1]
/* Find the mRandNet nns to Uk

i−1, and compute the reduced dataset (10) */
Di−1,k ← {(U (l-nn)

Uk
i−1

,Y
(l-nn)
Uk

i−1

), l = 1, . . . ,mRandNet} ⊂ Dk

Sample Aw,j ∼ Uniform(−1, 1), w = 1, . . . ,M , j = 1, . . . , d
Sample ζw ∼ Uniform(−1, 1), w = 1, . . . ,M

Let X̃ ∈ Rm×M

Training
X̃⊤ ← σ(AŨ⊤ + ζ) /* Using broadcasting on ζ */
if rank(X̃⊤X̃) == M ≤ m then

ŴDi−1,k ← (X̃⊤X̃)−1X̃⊤Ỹ /* Least-squares estimator */
else

ŴDi−1,k ← (X̃⊤X̃)†X̃⊤Ỹ
/* Ridgeless interpolator */

end

Predicting
f̂RandNet(U

k
i−1)← (ŴDi−1,k)⊤σ(AUk

i−1 + ζ)
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B Additional details on the nnGParareal correction function

In this section, we provide more details on the nearest neighbors (nns) Gaussian process modeling,
the mathematical expressions of the nnGParareal correction function f̂nnGPara, and the reduced
dataset Di−1,k. These are not explicitly presented in the main text as they require additional notation,
which we believe does not enrich the explanation. While the description of GPs presented here is for
nnGParareal (and the corresponding nnGPs), it immediately generalizes to GParareal by replacing
the reduced dataset Di−1,k with the full dataset Dk. The interested reader can find more details in the
original papers, [21] and [57].

Let the set of inputs U j
i−1 ∈ Rd and outputs (F −G )(U j

i−1) ∈ Rd, i = 1, . . . , N , j = 0, . . . , k−1,
collected by iteration k, be denoted by Uk and Yk, respectively. Now, define Di−1,k as the restriction
of Dk to the m nns of Uk

i−1 in Uk, namely

Di−1,k := {(U (l-nn)
Uk

i−1

,Y
(l-nn)
Uk

i−1

), l = 1, . . . ,m} ⊂ Dk,

where Y(l-nn)
Uk

i−1

= (F −G )(U
(l-nn)
Uk

i−1

) ∈ Yk, and U
(l-nn)
Uk

i−1

is the lth nn of Uk
i−1 inDk, i.e. the lth ordered

statistics of the set formed out of Euclidean distances ∥U j
i−1−U ′∥ between U j

i−1 and any U ′ ∈ Uk.

That is, there exists U1, . . . ,U l = U
(l-nn)
Uk

i−1

∈ Uk such that, for any U ′ ∈ Uk,U ′ ̸= U r, r = 1, . . . , l,
we have

∥U j
i−1 −U1∥ ≤ . . . ≤ ∥U j

i−1 −U l−1∥ ≤ ∥U j
i−1 −U l∥ ≤ ∥U j

i−1 −U ′∥. (10)

Finally, let Ũ , Ỹ ∈ Rm×d be the matrices of input nns and outputs collected in Di−1,k, respectively.

In nnGParareal, following the Bayesian framework, a GP prior is placed over the correction function
F − G for each of the d coordinates as

(F − G )s ∼ GP (µ
(s)
GP,KGP), s = 1, . . . , d,

where µ
(s)
GP : Rd → R is the prior mean function, taken to be zero for all s = 1, . . . , d, and

KGP : Rd × Rd → R is the exponential prior variance kernel function

KGP(U ,U ′) = σ2
o exp(−∥U −U ′∥2/σ2

in),

with σ2
in and σ2

o denoting the input and output length scales, respectively. Differently from the prior
mean, the prior variance is the same across the d components. Then, each nnGParareal prediction
f̂
(s)
nnGPara(U

k
i−1) ∈ R, s = 1, . . . , d, is obtained from the GP posterior mean µ

(s)
Di−1,k

(Uk
i−1) ∈ R,

computed on the reduced dataset Di−1,k, given by

f̂
(s)
nnGPara(U

k
i−1) = µ

(s)
Di−1,k

(Uk
i−1) := K(Ũ ,Uk

i−1)
⊤(K(Ũ , Ũ) + σ2

regIm)−1Ỹ(·,s), (11)

where K(Ũ ,Uk
i−1) ∈ Rm is a vector of covariances between every input collected in Ũ and Uk

i−1

defined as (K(Ũ ,Uk
i−1))r = KGP((Ũ(r,·))

⊤,Uk
i−1), r = 1, . . . ,m, and K(Ũ , Ũ) ∈ Rm×m is the

covariance matrix, with (K(Ũ , Ũ))q,r = KGP((Ũ(q,·))
⊤, (Ũ(r,·))

⊤), r, q = 1, . . . ,m. Here, σ2
reg

denotes a regularization term, also known as nugget, jitter, or regularization strength, which is added
to improve the numerical stability when computing the inverse matrix, see [21] for further details. The
hyperparameters θ := (σ2

in, σ
2
o , σ

2
reg) entering into the posterior mean and prediction (11) control the

performance of the GP, and are optimized by numerically maximizing the marginal log-likelihood:

log p(Ỹ(·,s)|Ũ ,θ) ∝ −Ỹ ⊤
(·,s)(K(Ũ , Ũ) + σ2

regIm)−1Ỹ(·,s) − log det(K(Ũ , Ũ)), (12)

where K(·, ·) depends on θ through the kernel KGP, and det(A) denotes the determinant of a square
matrix A. For a thorough treatment of Gaussian processes, including derivation of the likelihood and
of the posterior distribution (which is Gaussian with mean as in (11), see [80].

C Computational complexity analysis

Consider the d-dimensional initial value problem (1) for some (O/P)DE. Let N be the number
of subintervals (data points) at each kth iteration of the PinT algorithm. For any kth iteration of
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the scheme, a total of Nk data points, each d-dimensional, are available. Here, we provide the
computational cost of RandNet-Parareal, and compare it to that of nnGParareal, the state-of-the-art
Parareal algorithm proposed in [21]. Both RandNet-Parareal and nnGParareal use only the reduced
data set of m nns to a given point to construct its image-prediction via (2). Note that the m nns (in
Euclidean distance) to some point U ∈ Rd among Nk available points are found at a cost which
is at most linear in the sample size, that is O(mNk) (for moderate dimensions d, one can get an
improved cost O(m log(Nk)), logarithmic in the sample size) [21]. Since our goal is to compare the
computational complexities of nnGParareal and RandNet-Parareal as a function of d, we consider the
worst-case complexity of the nns search.

Given an input Uk
i−1 ∈ Rd, i = 1, . . . , N at iteration k, the computational model cost of a prediction

Uk
i−1 produced by all d models of mnnGP-nnGPs at iteration k via the predictor-corrector rule (2)

with nnGParareal correction (11) and mnnGP nns is given in [21] as

TnnGP(k) ≤ CnnGPNk(nstartnreg
d

N
∨ 1)×

( mnnGPd︸ ︷︷ ︸
B:=K(U,Uk−1

i−1 )⊤

+ m2
nnGPd︸ ︷︷ ︸

C:=K(U,U)

+ m3
nnGP︸ ︷︷ ︸

D:=(B+σ2
regImnnGP

)−1

+m2
nnGP︸ ︷︷ ︸

B · D

+mnnGPd︸ ︷︷ ︸
BD·Y

+ mnnGPNk︸ ︷︷ ︸
nearest neighbors

)

= CnnGPNk(nregnstart
d

N
∨ 1)(m3

nnGP +m2
nnGP + d(m2

nnGP + 2mnnGP) +mnnGPNk),

with CnnGP being some constant that in general does depend on k, mnnGP, and d. Also, nreg

and nstart correspond to the number of random restarts and the number of explored values of
the regularization penalty in the kernel regression (associated to the hyperparameter optimization
(see [21, Section 4.5]), respectively. Furthermore, ∨ is the maximum operator, and the factor
(nstartnregd/N ∨ 1) ≥ 1 follows from the fact that d independent nnGPs and hyperparameter
optimization are parallelized over the N cores.

In RandNet-Parareal, the correction term f̂RandNet-Para is modeled by the random weights neural
network and evaluated as (8). Again, only mRandNet nns (in Euclidean distance) to Uk

i−1 are used to
construct the prediction, leading to the following computational model cost at iteration k:

TRandNet(k) ≤ CRandNetNk
1

N
(MdmRandNet︸ ︷︷ ︸
X:=σ(A·U+ζ)

+M2mRandNet︸ ︷︷ ︸
Σ:=X·X⊤

+Mr2︸︷︷︸
Σ†

+MmRandNetd︸ ︷︷ ︸
Σ†·X

+ M2d︸︷︷︸
W :=Σ†X·Y

+MdmRandNet︸ ︷︷ ︸
W⊤·X

+mRandNetNk︸ ︷︷ ︸
nearest neighbors

)

= CRandNetk(Mr2 +M2mRandNet + d(M2 + 3MmRandNet) +mRandNetNk),

where M is the number of hidden neurons, r is the rank of the covariance of activated neurons Σ
(mind that the pseudoinverse of Σ would contribute cubically in m only if Σ is of full rank numerically,
which is not observed empirically) and CRandNet is a constant independent on N , k, M , d, mRandNet.
The factor 1/N in the first inequality corresponds to parallelization over N processors.

We note the following differences in costs between these two algorithms according to realistic
situations:

• d≫ N in most relevant applications, especially for PDEs. Hence, (nstartnregd/N∨1)≫ 1,
limiting the benefits from parallelization for nnGParareal. In the considered experiments,
we had access to a maximum of approximately N = 500 processors, while we considered
up to d ≈ 105. It is easy to see that TnnGP is quadratic in dimension d, while TRandNet is
only linear. This difference is mainly due to the factor (nstartnregd/N ∨ 1) ≥ 1 in TnnGP

as opposed to 1/N in TRandNet.
• Although M > mnnGP, M = 100 is sufficient for consistent performance across a range of

systems, as shown in our numerical experiments.
• nnGParareal incurs additional cost due to hyperparameter optimization [21], necessary for

tuning the kernel input and output scales and the regularization strength for each of the
d dimensions, which is performed by maximizing the loglikelihood. First, to explore the
parameter space and allow for multiple starting points given the nonconvex optimization
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Figure 3: Theoretical model cost (panel A) and theoretical total cost (panel B), as functions of the
dimension d (and the corresponding N ). The results are reported in terms of log10(hours).

problems, both nreg and nstart should be set large. Second, each loglikelihood maximization
conducted per dimension of the system requires a large number of iterations performed
sequentially. Hence, CnnGP ≫ CRandNet, with CnnGP depending, in general, on k, mnnGP,
d, as opposed to CRandNet. Indeed, RandNet requires no tuning (a significant advantage
with respect to GPs and nnGPs, making it more user-friendly), neither for the distribution of
the random weights nor for the regularization parameter λ, due to the use of the ridgeless
estimator. Empirically, we observed CnnGP/CRandNet to be up to 1000 (this can be seen in
Figure 1).

• We emphasize that since the ReLu function is chosen as activation in RandNet, the matrix X
of activated neurons is sparse with sparsity degree γ. Hence, the computational complexity
TRandNet could be further improved, as the computational complexity of sparse operations
is proportional to the number of nonzero elements in the matrix. We intentionally left these
arguments out of the complexity analysis, since we do not use sparse operations in our code
implementation.

• The upper bound of TRandNet could potentially be improved further, as additional paral-
lelization may occur during standard matrix operations, depending on the specific computing
environment.

Figure 3 illustrates the theoretical model costs TnnGP and TRandNet (Panel A) and theoretical total
costs obtained by adding the coarse and fine solver costs (Panel B), as functions of the dimension
d (and the corresponding N ). The results are reported in terms of log10(hours). To calibrate the
constants in both complexity bounds, we used the total empirical computational cost in Figure 1,
together with its breakdown described in Table 8. Panel A shows that RandNet-Parareal displays
significant improvement in scalability with respect to the state-of-the-art Parareal algorithm nnG-
Parareal, while Panel B demonstrates that whenever the cost of the fine solver is added, our results
are in full coherence with the empirical results.

D Robustness study

In this section, we study the robustness of RandNet-Parareal to changes in the number of nns
mRandNet, the number of neurons M , and the randomly sampled values of neural network weights
A, ζ. Our empirical findings (for two of the three considered PDEs) demonstrate that the iterations
KRandNet-Para to convergence for RandNet-Parareal remain largely consistent despite variations in
these factors. This ensures robust performance across a broad spectrum of parameter values, reducing
users’ need for extensive tuning. For computational tractability, we limit the robustness analysis
to relatively small systems, such as Burgers’ equation with d = 128, and the Diffusion-Reaction
equation with d = 722, conducting 100 weight samplings for each system. For every set of weights,
we iterate RandNet-Parareal across mRandNet values ranging from 2 to 20, and M values ranging
from 20 to 500 in increments of 10. The proportions of iterations needed to converge across 100
runs for different values of mRandNet and M for the Burger’s and diffusion-Reaction equations are
reported in Figures 4 and 5, respectively. Although we observe some minor differences between the
two systems, the main trend is clear: as long as reasonable values of mRandNet and M are chosen, the
iterations to convergence for RandNet-Parareal vary at most by a few units when changing the values
of mRandNet, M or a particular sampling seed of weights. Nevertheless, larger M might improve
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the performance, since, in this case, RandNets operate in the interpolation regime, as discussed in
Section 4.
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Figure 4: Histogram of the iterations to convergence KRandNet-Para of RandNet-Parareal for d = 128
for Burgers’ equation. We sample the network weights A, ζ 100 times. For each set of weights, we
run RandNet-Parareal for mRandNet ∈ {2, 3, . . . , 20} and M ∈ {20, 30, 40, . . . , 500}. The left and
right panels show the aggregated histograms of KRandNet-Para versus mRandNet and M , respectively.
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Figure 5: Histogram of the iterations to convergence KRandNet-Para of RandNet-Parareal for d = 722
for Diffusion-Reaction equation. We sample the network weights A, ζ 100 times. For each set of
weights, we run RandNet-Parareal for mRandNet ∈ {2, 3, . . . , 20} and M ∈ {20, 30, 40, . . . , 500}.
The left and right panels show the aggregated histograms of KRandNet-Para versus mRandNet and M ,
respectively.

E Additional numerical experiments: 2D and 3D Brusselator PDE

Here, we carry out an additional scalability study for the 2 and 3 spatial dimensional Brusselator
PDE. This model is a two-component reaction system that exhibits complex behavior, including
oscillations, spatial patterns, and chaos. It is described by

∂tu = D0∇2u+ a− (1 + b)u+ vu2,

and
∂tv = D1∇2v + bu− vu2.

In chemistry, the components u, v refer to the concentration of two substances, whereas the constants
D0, D1 are the respective diffusivity of each component, indicating the rate at which the substances
spread out in space. Moreover, the parameters a and b are related to reaction rates. In our experiments,
we used D0 = 0.1, D1 = 0.1D0, a = 1, and b = 3. We take t ∈ [0, 35], (u, v) ∈ (−1, 1)2×(−1, 1)2
for the 2D Brusselator, and (u, v) ∈ (−1, 1)3 × (−1, 1)3 for the three spatial dimension case.
We initialize the u values at time t = 0 by setting them equal to a, and the v values by taking
them normally distributed over the spatial grid. Further details regarding the number of spatial
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Table 3: Simulation setup for the 2D and 3D Brusselator
Domain Nu = Nv d G G∆t F F∆t N

(u, v, t) ∈ (−1, 1)2 × (−1, 1)2 × [0, 35] 32 2048 RK1 0.034 RK4 1e−7 512
(u, v, t) ∈ (−1, 1)2 × (−1, 1)2 × [0, 35] 64 8192 RK1 0.033 RK4 1e−7 512
(u, v, t) ∈ (−1, 1)3 × (−1, 1)3 × [0, 35] 20 16000 RK1 0.052 RK4 1e−7 512
(u, v, t) ∈ (−1, 1)3 × (−1, 1)3 × [0, 35] 25 31250 RK1 0.057 RK4 1e−7 512

Nu and Nv are the number of spatial discretization points for u and v along each spatial dimension,
yielding a d = 2N2

x - or d = 3N3
x -dimensional ODE, depending on the considered system. G and

F denote the coarse and fine solvers, respectively, while the ∆t subscript refers to the timestep.
The number of nns used for Di−1,k in nnGParareal and RandNet-Parareal are mnnGP = 20 and
mRandNet = 4, respectively. N is the total number of intervals.

discretizations, the number of intervals N and the order of the solvers F and G is given in Table
3. Figure 6 highlights the strong scaling advantages of RandNet-Parareal compared to nnGParareal,
setting N = 512 and restricting the runtime budget to a maximum of 48 hours, as done in the other
test cases.
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Figure 6: Scalability study for the 2 and 3 spatial dimensional Brusselator PDE. We used N = 512
and 48 hours runtime budget. nnGParareal for log10(d) = 3.9 is estimated, as the algorithm does not
converge within the 48 hours runtime budget.

F Accuracy and runtimes across models and algorithms

In Table 4 below, we report the accuracies and runtimes (shown in parentheses) for RandNet-Parareal,
Parareal, and nnGParareal. The accuracy is measured with maximum absolute error (mean across
intervals) with respect to the true solution obtained by running F sequentially. Interestingly, all
accuracies are far below the pre-defined accuracy level ϵ, with RandNet-Parareal achieving the lowest
one in all but one experiment, with much smaller runtimes across all case studies.

G Simulation setups

This section summarizes the simulation setups used for producing the results discussed in Section 5
in the main text. The tables below report the space and time domain of the considered PDEs, the
number of spatial discretization points Nx (and Ny, in case of two-dimensional spatial systems),
the numerical solvers used for G and F , their corresponding numbers of time steps per interval,
the number of intervals N , and the number of nns used for nnGParareal (mnnGP) and RandNet-
Parareal (mRandNet). In particular, Table 5 refers to the viscous Burgers’ equation, Table 6 to the
Diffusion-Reaction equation, and Table 7 to the shallow water equations (SWEs).
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Table 4: Accuracy and computational cost of the three considered algorithms
PDE RandNet-Parareal Parareal nnGParareal

Burgers’ d = 128 1.06e−8 (1h 2m) 1.85e−8 (8h 54m) 1.32e−7 (1h 39m)
Diffusion-Reaction d = 7.2e2 3.56e−8 (23m) 1.83e−8 (1h 40m) 5.71e−7 (1h 11m)
Diffusion-Reaction d = 3.3e3 8.56e−10 (33m) 2.45e−8 (7h 52m) not converged
Diffusion-Reaction d = 2.5e4 8.09e−11 (1h 57m) 7.43e−9 (9h 50m) not converged
SWE d = 3.1e4 6.75e−8 (4h 9m) 5.15e−8 (15h 43m) not converged
SWE d = 6.1e4 8.54e−9 (12h 34m) 2.84e−8 (19h 30m) not converged
Brusselator 2D d = 2e3 2.09e−8 (2m) 3.16e−8 (7m) 3.38e−7 (7h 31m)

Accuracy and computational cost comparison of RandNet-Parareal, Parareal, and nnGParareal for
different PDEs, with runtimes reported in parentheses. The accuracy is measured as maximum
absolute error (mean across intervals) with respect to F run sequentially.

Table 5: Simulation setup for the viscous Burgers’ equation
Domain Nx d G NG F NF N mnnGP mRandNet

(x, t) ∈ [−1, 1]× [0, 5.9] 128 128 RK1 4 RK8 4e4 128 18 3
(x, t) ∈ [−1, 1]× [0, 5.9] 1128 1128 RK1 293 RK8 6e5 128 18 3

Nx is the number of space discretizations, the same as d here. G and F denote the chosen coarse
and fine solvers, with corresponding time discretization steps per interval NG and NF , respectively.
Here N is the number of intervals, while mnnGP and mRandNet are the numbers of nns used to create
Di−1,k for nnGParareal and RandNet-Parareal, respectively.

G.1 Simulation setup for the SWEs

Here, we give more details on the radial dam break simulation of Section 5.3. Our domain consists of
a rectangular box defined as (x, y) ∈ [−5, 5]× [0, 5], which we evolve temporally over t ∈ [0, 20].
Following [75], as an initial condition, we place a Gaussian-shaped column of water centered at

(x, y) = (−2.5, 1.5), with covariance matrix Σ =

(
0.25 0
0 0.25

)
. We use Neumann boundary

conditions, and evolve the system using N = 235 intervals over four increasingly finer spatial meshes,
as described in Table 7. We used the ParareaML [8] Python package to implement the SWEs and
corresponding numerical solvers.

23



Table 6: Simulation setup for the Diffusion-Reaction equation
Domain Nx Ny d G NG F NF N

(x, y, t) ∈ [−1, 1]2 × [0, 20] 19 19 722 RK1 1 RK4 NA 64
(x, y, t) ∈ [−1, 1]2 × [0, 20] 28 28 1568 RK1 1 RK4 NA 128
(x, y, t) ∈ [−1, 1]2 × [0, 20] 41 41 3362 RK1 1 RK4 NA 256
(x, y, t) ∈ [−1, 1]2 × [0, 20] 77 77 11858 RK4 1 RK8 NA 512
(x, y, t) ∈ [−1, 1]2 × [0, 20] 113 113 25538 RK4 2 RK8 NA 512
(x, y, t) ∈ [−1, 1]2 × [0, 20] 164 164 53792 RK4 4 RK8 NA 512
(x, y, t) ∈ [−1, 1]2 × [0, 20] 235 235 110450 RK4 8 RK8 NA 512

Nx and Ny are the number of spatial discretization points for x and y, respectively, yielding a
d = 2NxNy-dimensional ODE. G and F denote the coarse and fine solvers, respectively. The number
of nns used for Di−1,k in nnGParareal and RandNet-Parareal are mnnGP = 20 and mRandNet = 3,
respectively. NG is the time discretization steps of G per interval. NF = NA since F ’s step size is
chosen by scipy Runge-Kutta method [77].

Table 7: Simulation setup for the SWEs
Domain Nx Ny d G NG F NF N

(x, y, t) ∈ [−5, 5]× [0, 5]× [0, 20] 101 51 15453 RK1 7 RK4 1e5 235
(x, y, t) ∈ [−5, 5]× [0, 5]× [0, 20] 144 72 31104 RK1 8 RK4 2e5 235
(x, y, t) ∈ [−5, 5]× [0, 5]× [0, 20] 201 101 60903 RK1 14 RK4 4e5 235
(x, y, t) ∈ [−5, 5]× [0, 5]× [0, 20] 264 133 105336 RK1 24 RK4 5e5 235

Nx and Ny are the number of spatial discretization points for x and y, respectively, leading to an
ODE of dimension d = 3NxNy. G and F denote the chosen numerical coarse and fine solvers,
respectively, with NG and NF being their corresponding time discretization steps per interval. In
all cases, we set the number of nns used to create Di−1,k to mnnGP = 20 for nnGParareal, and
mRandNet = 3 for RandNet-Parareal.
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H Illustration of some PDE solutions
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Figure 7: Numerical solution of viscous Burgers’ equation over (x, t) ∈ [−1, 1] × [0, 5.9] with
d = 1128 and initial conditions and additional settings as described in Section 5.1.
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Figure 8: Numerical solution of the Diffusion-Reaction equation over (x, y) ∈ [−1, 1]2 with Nx =
Ny = 235 for a range of system times t. Only the activator u(t, x, y) is plotted. The initial conditions
and additional settings are as described in Section 5.2.

I Additional simulation results for the Diffusion-Reaction equation

Here, we complement the results of the speed-ups and wallclock times reported in Figure 1 in the
main text, with a detailed breakdown of the number of iterations to convergence, the runtimes of
the coarse and fine solvers, the overall cost of training the model (up to convergence), and the total
runtime, reported in Table 8.
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Table 8: Speed-up analysis for the Diffusion-Reaction equation

d = 722, N = 64

Algorithm K NTG TF Tmodel Talg Salg

Fine − − − − 2h 2m 1
Parareal 53 0s 2m 0s 1h 40m 1.22
nnGParareal 16 0s 2m 40m 1h 11m 1.72
RandNet-Parareal 12 0s 2m 1s 23m 5.36

d = 1568, N = 128

Algorithm K NTG TF Tmodel Talg Salg

Fine − − − − 4h 21m 1
Parareal 93 0s 2m 0s 3h 3m 1.42
nnGParareal 20 0s 2m 10h 32m 11h 12m 0.39
RandNet-Parareal 12 0s 2m 4s 25m 10.26

d = 3362, N = 256

Algorithm K NTG TF Tmodel Talg Salg

Fine − − − − 10h 58m 1
Parareal 195 0s 2m 0s 7h 52m 1.40
RandNet-Parareal 12 0s 3m 20s 33m 19.87

d = 11858, N = 512

Algorithm K NTG TF Tmodel Talg Salg

Fine* − − − − 2d 16h 1
Parareal 58 1s 7m 0s 6h 59m 9.23
RandNet-Parareal 6 2s 8m 1m 49m 78.44

d = 25538, N = 512

Algorithm K NTG TF Tmodel Talg Salg

Fine* − − − − 7d 16h 1
Parareal 27 8s 22m 0s 9h 50m 19.25
RandNet-Parareal 5 9s 23m 2m 1h 57m 97.40

d = 53792, N = 512

Algorithm K NTG TF Tmodel Talg Salg

Fine* − − − − 21d 7h 1
Parareal 19 36s 1h 0m 0s 19h 13m 26.60
RandNet-Parareal 4 42s 60m 4m 4h 6m 124.87

d = 110450, N = 512

Algorithm K NTG TF Tmodel Talg Salg

Fine* − − − − 56d 2h 1
Parareal 14 3m 2h 38m 1s 1d 14h 35.84
RandNet-Parareal 4 3m 2h 37m 7m 10h 48m 124.52

Simulation study on the empirical scalability and speed-up of Parareal, nnGParareal (with mnnGP =
20), and RandNet-Parareal (with mRandNet = 4 and M = 100) for the Diffusion-Reaction equation.
TF and TG refer to the runtimes per interval of the fine and coarse solvers, respectively, while
NTG is the runtime of the coarse solver over N intervals. Tmodel corresponds to the overall time
to evaluate f̂ , including training and predicting, until convergence at iteration K. Talg is the total
algorithm runtime, while Salg is the parallel speed-up. “Fine*” indicates that the total runtime has
been estimated extrapolating data from the other algorithms. Missing nnGParareal rows for d ≥ 3362
are due to convergence failure within a 48-hour time budget.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims, including but not limited to time gains, model training times,
numbers of iterations to convergence, speed-ups, and scalability are backed up by empirical
results reported in Tables 1, 2 and Figure 1 in the main text, and Figure 6 and Table 8 in
Supplementary Material I. A comparison between theoretical and empirical results is also
provided. These claims are stated in the abstract, introduction, and in the final section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: relevant limitations are discussed in Section 6, second paragraph. The robust-
ness of the proposed algorithm to several factors, such as the number of neural networks M ,
the number of nearest neighbors m and the sampled random weights A, ζ is introduced at
the end of Section 4, and investigated in details in Supplementary Material D. The scaling
performance of the algorithm with respect to the number of cores N and model dimensions
d is extensively discussed in Section 5. Finally, a rescaling of the system is proposed if the
data do not meet the condition ||U || ≤ Q in Theorem 1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Proposition 1 is clearly stated with all the required assumptions. The proof
is not given, as we cite this result from [25], adjusting their notation to match our, as we
clearly mention. The derivation of the computational complexity analysis is provided with
all relevant details in Supplementary Material C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have taken care of ensuring the reproducibility of all results through a
precise use of notation, and by detailing pseudocodes for the algorithms in Supplementary
Material A. Additionally, we comprehensively describe the simulation setups both in the
main text and in Supplementary Material G. Moreover, a link to a GitHub repository with
a step-by-step Jupyter notebook outlining RandNet-Parareal, and the necessary code to
reproduced the results has been provided in Section 1 in the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All experimental results are fully reproducible, with code provided via a
GitHub repository, with a link shared in Section 1 in the main text. Each simulation and its
corresponding analysis are clearly labeled, and a step-by-step Jupyter notebook is provided
to aid the reader in becoming familiar with the API’s usage. The repository follows the best
practices of the most common ML repositories.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the experimental setups, training details, and simulation parameters are
described in the text, mainly in Sections 4 and 5. Moreover, they are also summarized in
Supplementary Material G.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We acknowledge that error quantification for the speed-up might be of interest
in some situations. However, given the runtime of our experiments, this would be too
computationally expensive to obtain. Nevertheless, we reported two robustness studies for
two different, smaller systems among the ones considered (Figures 4 and 5), where the
performance of the algorithm is averaged across multiple runs. There, we display the more
informative empirical distribution instead of just the error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96%
• For asymmetric distributions, the authors should be careful not to show in tables or

figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All results report the execution runtime. Details on the hardware used are
provided in Section 1 in the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics and found no particular area of concern
regarding our research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential positive impacts are implicitly mentioned in Section 1, and in
Section 6 (when referring to having chosen systems of real-world significance, with the
necessary prerequisites for using the proposed algorithm in practical scenarios). By enabling
faster convergence times with minimal overhead, RandNet-Parareal can be applied to a
wide range of applications, such as plasma physics simulation, weather forecasting (both
mentioned in the introduction), leading to positive societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We relied on publicly available models, simulating the relevant data as de-
scribed in the main text and in Supplementary Material.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All creators have been properly credited both in terms of published scientific
papers, and publicly available code and libraries (e.g. for some specific Python libraries).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code, simulations and associated analyses are publicly released with
permissive licence.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper involves neither crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper involves neither crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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