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ABSTRACT

We introduce Baleen, a family of state space models that unifies stochastic selec-
tion with information bottleneck to build interpretable and robust long-context
learners. Unlike Mamba/Mamba2’s deterministic gates, Baleen treats selection as
a random variable and regularizes it with a closed-form KL to a sparsity prior: (i)
Baleen-B samples Bernoulli state-transition gates; (ii) Baleen-E samples Exponen-
tial time-intervals. This yields an explicit trade-off between retention and compres-
sion and exposes token-level selection heatmaps at inference for self-interpretation.
On language benchmarks, Baleen improves average accuracy over Mamba2 by
+0.95 at 370M pretraining and +1.38 at 7B finetuning. Baleen delivers stronger
robustness to localized perturbations and adversarial attacks: under CIFAR-10
sequence perturbation, prefix damage falls to 0.6% vs 26.5% for Mamba2 (average
under attacks 0.542 vs 0.385). Finally, Baleen’s self-interpretations outperform
IG/Grad-CAM on average fidelity across four text classification tasks. We will
release our Baleen-7B models on Hugging Face with code, checkpoints, and an
interactive selection-heatmap demo.

1 INTRODUCTION

As competitive successors to transformers (Vaswani et al., 2017), State Space Models (SSMs)
have emerged as a powerful neural architecture for sequence-to-sequence modeling, demonstrating
impressive efficiency in processing long sequential data (Gu et al., 2021a; Gu & Dao, 2023; Dao &
Gu, 2024). SSMs are derived from discretizing a linear time-invariant dynamical system (Gu et al.,
2020; 2021b; 2022b). Each step t corresponds to a token and involves two key components: i) a fixed-
dimension hidden memory state matrix Ht−1, which maintains a running summarization of past token
embeddings X1:t−1 for prediction, and ii) a parameterized recurrence, which applies a state transition
matrix At to transform memory states while sequentially integrating per-token representations into
the memory. Recent innovations in SSMs sought to refine the recurrence mechanism to effectively
compress context of varying length into a fixed-size memory (Yang et al., 2023; 2024b; Sun et al.,
2023; Liu et al., 2024; Sun et al., 2024).

Linear time-variant SSMs (Gu et al., 2021a) have exhibited less satisfactory performance in natural
language modeling. The seminal work Mamba (Gu & Dao, 2023) introduces a selection mechanism
that conditions recurrence parameters on the input sequence with non-linearity. This selection
mechanism is designed to enable more flexible context filtering and dynamic selection of important
tokens by leveraging the state transition matrix as an input-adaptive gating function, where the
parametrization of At involves the input token embedding Xt.

However, since Mamba is trained solely to minimize the prediction error at the population level,
there is no explicit constraint enforcing it to retain only the useful context in the memory state. As
a result, the memory may capture spuriously correlated information from the context, reducing its
capacity to accommodate new, relevant information during recurrence, and deteriorating vulnerability
to noisy perturbations (Wang et al., 2024; Poli et al., 2024; Park et al., 2024). Meanwhile, although
Mamba is intended to be selective, extracting interpretable patterns to indicate what tokens matter
remains challenging. Recent works (Ali et al., 2024; Jafari et al., 2024) attempt to explain Mamba
by recovering token-wise importance weights. However, it seems these methods struggle to provide
reliable interpretation in language tasks, as Mamba overwhelmingly prioritizes local tokens (Wang
et al., 2024).
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To address these limitations, we introduce Baleen, a family of information-bottleneck SSM archi-
tectures that explicitly optimizes for the context compression rate through an stochastic selection
mechanism, thereby enabling better generalization, robustness to noisy perturbations, and intrinsic
interpretability via stochastic selection gates. Grounded in the information bottleneck principle
(Tishby et al., 2000), we conceptualize the hidden memory states in SSMs as an information bottle-
neck, requiring them to achieve a minimal representation of past context while retaining sufficient
information for accurate predictions. From this formulation, we derive two novel SSM architectures
equipped with stochastic selection mechanisms and an associated training objective, instantiated
through two alternative strategies for randomness modeling.

• Principled framework of IB-gated SSM with stochastic selection: We introduce Baleen
model family, based on a novel state space information bottleneck formulation that converts
Mamba’s deterministic selection into stochastic selection with a tractable variational objec-
tive. We implement two efficient, plug-in variants: Bernoulli gating of state-transition entries
and Exponential timestep sampling, each with a closed-form KL regularizer, preserving the
linear-time Mamba kernel.

• Self-interpretation by design, not post-hoc: Treating selection as a random variable yields
token-level selection heatmaps from expected gates, requiring no extra forward/backward
passes and enabling faithful top-k rationales. We also provide an information-theoretic
critique of Mamba: its MLE objective maximizes I(Y ;H) without penalizing I(H;X),
while Baleen explicitly trades off these terms.

• Strong prediction accuracy, higher fidelity of interpretation, and robustness to ad-
versarial attack: across 11 language tasks, Baleen outperforms Mamba2 at both 370M
(+0.95 avg ) and 7B (+1.38 avg) and surpass all other baselines. Baleen’s self-interpretations
surpass IG/Grad-CAM/Grad×Input in average fidelity on SNLI/IMDb/SST2/RT. Under
pixel-sequence perturbations and adversarial prompt attacks ranging from the character
level to the sentence level, Baleen demonstrates markedly greater robustness (e.g., prefix
[0:32] drop 0.57% vs 26.51% for Mamba2; attack-averaged accuracy 0.542 vs 0.385 on
CIFAR-10).

2 PRELIMINARIES

Mamba. In this work, we focus on discrete-time SSMs with real-valued diagonal state transition
matrices and zero-order hold discretization rule, a design that underpins the recent success of SSM-
based LLMs(Gupta et al., 2022; Gu et al., 2022a; Gu & Dao, 2023).

Let X := [x⊤
1 , · · · ,x⊤

T ]
⊤ ∈ RT×D be an input sequence, where T is the sequence length and

D is the token embedding dimension. A general SSM layer introduces a group of parameters
{(At,Bt,Ct,∆t)}t∈[T ] to process the sequence according to the following equations:

Ht = At ⊙Ht−1 +Bt ⊙ (1Nx⊤
t ), ŷt = C⊤

t Ht (1)

where ⊙ denotes element-wise multiplication, At = exp(Åt diag(∆t)), Bt = B̊t∆
⊤
t , ∆t ∈ RD

+ ,
At ∈ RN×D

− Bt ∈ RN , Ct ∈ RN×D for all t ∈ [T ]. Note that ∆t is strictly positive plus Åt is
strictly negative, ensuring At ∈ (0, 1)N×D. Define H := [Ht ∈ RN×D]t∈[T ] as a T × N × D

tensor to represent the intermediate memory states, and Ŷ := [ŷ⊤
1 , · · · , ŷ⊤

T ]
⊤ ∈ RT×D denotes the

output sequence. Next, the operation Bt ⊙ (1Nx⊤
t ) encodes the input tokens into the hidden state

space. And finally, C⊤
t Ht decodes the memory state to generate the prediction ŷt for the t-th token.

In S4 (Gu et al., 2021a), the parameters {(Åt, B̊t,Ct,∆t)}t∈[T ] are directly learned and remain
constant across different token positions. While this approach is effective for certain long-sequence
tasks (Gu et al., 2020; 2022b), the time-invariant linearity limits its ability to capture more complex
and dynamic signals within the context. Subsequently, Mamba (Gu & Dao, 2023) conditions
the parameters on the input sequence itself. To be specific, Mamba takes the following form of
parameterization:

Åt = A, B̊t = WBxt, Ct = (WCxt)1
⊤
D, ∆t = softplus(W∆xt), (2a)
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Figure 1: Overview of Baleen compared with previous SSMs such as Mamba. The information bottleneck
injects random noise and enhances the selection of the state transition matrix by adapting the deterministic At

or ∆t to the randomly sampled variable. For simplicity, we omit deterministic Bt and Ct.

where the learnable parameters in an SSM layer includes A ∈ RN×D
− being invariant across tokens,

WB ∈ RN×D, WC ∈ RN×D, and W∆ ∈ RD×D. In Mamba2, Dao & Gu (2024) proposes to
impose additional structures on the parameter space. Specifically, A is simplified to 1Nα⊤ for some
α ∈ RD and W∆ becomes a row-block matrix.

Information Bottleneck. The information bottleneck principle (Tishby et al., 2000) offers a
principled approach to balancing the trade-off between representation compactness and predictive
capability. It relies on the concept of minimal sufficient statistics to encode information about a target
variable Y ∈ Y into a representation Z = Φ(X) ∈ Z derived from input X ∈ X . The principle
enforces a regularization on Z by minimizing the mutual information I(X;Z) between the input and
the representation, while maximizing the mutual information I(Y ;Z) between the representation
and the target. Formally, the objective is given by:

min
Θ,Φ

−I(Y ;Z) + βI(Z;X) (3)

where β is a hyperparameter to control the balance, Z follows conditional distribution PΦ(Z|X)
parametrized by an encoder Φ and Y follows conditional distribution PΘ(Y |H) parametrized by a
decoder Θ.

Directly estimating the loss function in Eq. 3 can be computationally infeasible. Previous work
Tishby et al. (2000); Alemi et al. (2016); Wu et al. (2020) have dereived a tractable variation upper
bound (up to a constant) as below:

min
Θ,Φ

− E
[
logPΘ(Y |Z)

]
+ β E

[
DKL(PΦ(Z|X)∥Q(Z))

]
(4)

3 BALEEN: STOCHASTIC SELECTION VIA INFORMATION BOTTLENECK

In this section, we present our approach to improving SSMs via information bottleneck. In Sec. 3.1,
we introduce the state space information bottleneck framework, designed to enhance the context
compression capability, generalization, and interpretability of SSMs. In Sec. 3.2, we propose
two novel SSM architectures that incorporates principled randomness modeling within the SSIB
framework. Finally, in Sec. 3.3, we demonstrate how our architectures is equipped with inherent
interpretability for understanding the behavior of SSM-based LLMs.

3.1 STATE SPACE INFORMATION BOTTLENECK

We focus on sequence-to-sequence modeling tasks using the SSM architecture. Let X ,Y ⊆ RT×D

represent the domains of input and target sequences, respectively. The training set consists of
IID samples from the unknown joint distribution P(X,Y ) = P(Y |X)P(X)1, which is supported

1When referring to a probability density or mass function (PDF or PMF), we will omit the subscripts
specifying the random variables it is defined over, as long as they are clear from the context according to the
PDF or PMF’s arguments or parameters.

3
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on X and Y . In the case of causal language modeling (Radford et al., 2018; 2019; Brown et al.,
2020), P(Y |X) = δX∗(Y ), where X∗ = [x⊤

2 , · · · ,x⊤
T ,EOS]

⊤ is a shifted version of X with EOS
(special token) padding.

We aim to train a sequence-to-sequence SSM following Eq. 1: SSMΘ,Φ = gΘ ◦ hΦ : X → Y ,
where contextual encoder hΦ transforms subsequences of inputs X into the memory states H with
parameters Φ = {A,WB ,W∆}, and predictor gΘ decodes the memory states H into the predicted
sequence Ŷ ∈ Y with Θ = {WC} (see Eq. 1)2. An intrinsic property of SSMs is that Ht depends
on X exclusively through its preceding tokens X≤t = [x⊤

1 , · · · ,x⊤
t ]

⊤. And the prediction ŷt is
conditionally independent of other variables given Ht.

Naively applying the information bottleneck to SSMs presents unique challenges, as sequential data
exhibit complex long-range dependencies that go beyond the IID assumptions (Alemi et al., 2016;
Poole et al., 2019) or the local-dependence hypothesis (Wu et al., 2020; Miao et al., 2022). Based on
the Markov property, a surrogate objective that upper-bounds the original objective can be derived as
follows:

min
Θ,Φ

−EH,Y

[
T∑

t=1

logPΘ(yt|Ht)

]
︸ ︷︷ ︸

LCE

+β EX

[
T∑

t=1

DKL(PΦ(Ht|Ht−1,X≤t)∥Q(Ht|Ht−1))

]
︸ ︷︷ ︸

LKL

(5)

Detailed derivations are deferred to Appendix A.2. We refer to the framework with learning objective
in Eq. 5 as State Space Information Bottleneck (SSIB).

Information-Theoretic Pitfalls of Mamba. Now we can revisit the training process of Mamba,
revealing its equivalence to state space information bottleneck with β = 0, thus limited in compact
selection. The training objective of Mamba is typically Maximum Likelihood Estimation (MLE):
maxΘ,Φ EX,Y [

∑T−1
t=1 logPΘ,Φ(yt|X≤t)]. We argue that simply maximizing the mutual information

between yt and Ht only ensures Ht retains sufficient information for predicting yt. However, this
does not guarantee that Ht achieves the maximal compression of X≤t and only focuses on tokens
useful for prediction, potentially leading to information loss as the context length grows larger.
Moreover, Ht may capture spurious correlations between X≤t and yt, making the predictions highly
susceptible to noise (Chen et al., 2018; Wang et al., 2024). Instead, our approach explicitly models
the stochastic relationship between X and H , enabling the denoising of spurious patterns in H—a
key factor for effective context compression, generalization, and interpretability.

3.2 BALEEN ARCHITECTURE AND LEARNING OBJECTIVE

In this subsection, we introduce the Baleen model family, which differs in how random variables are
modeled under the SSIB framework. We begin by revisiting Eq. 1: the first term governs the transition
of past memory, while the second term encodes the new token into the hidden memory state space.
Since the state transition (i.e., At) is the key component to randomize, whether randomness should
also be incorporated into the new token encoding (i.e., Bt) remains an open question. To investigate
this, we first inject randomness solely into the state transition matrix, and then extend it to both the
state transition and the new token encoding via the timestep variable ∆t. The overall architectural
design of SSIB is illustrated in Fig. 1.

Bernoulli-Distributed Transition. As mentioned before, each element in the memory state Ht

represents a distinct component of past context (Gu et al., 2020), where a state transition value of one
or zero determines whether the component is kept or removed from memory. It is naturally to model
At as a variable follows Bernoulli distribution. In this case, Ht is an affine transformation of At

and also follows a Bernoulli distribution. Moreover, each outcome of Ht corresponds to a unique
outcome of At with the same probability. Therefore, the KL divergence is preserved under this affine
transformation, i.e., the following equation holds:

DKL(P(Ht|Ht−1,X≤t)∥Q(H|Ht−1)) = DKL(P(At)||Q(At)) (6)

2Without loss of generality, we only consider SSMs with a single layer, without channel-mixing layer (Fu
et al., 2022). We omit parameters for the embedding layer and the output head.
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where Q(H|Ht−1)) is the corresponding affine transformation of Q(At).

Because variational bound Eq. 5 holds true for any prior distribution Q, we can simply define the
prior distribution of At as Bern(pt1N1⊤

D) where pt ∈ [0, 1] is a hyper-parameter. In training process,
we implement the sampling process using the gumbel-softmax technique to ensure differentiability
(Bengio et al., 2013; Jang et al., 2016; Maddison et al., 2016). Then the KL loss in Eq. 5 is simplified
as follows:

LKL = E

∑
t,n,d

A
(n,d)
t log

A
(n,d)
t

pt
+ (1−A

(n,d)
t ) log

1−A
(n,d)
t

1− pt

 (7)

where the summation is taken over t ∈ [T ], n ∈ [N ], d ∈ [D]. Detailed derivations can be found in
Appendix A.3.

Exponential-Distributed Timestep. To simultaneously inject randomness into both At and Bt

is challenging, especially A and Bt should conform to different distributions even discrete and
continous are not the same. Based on our observation on both A and Bt are parameterized with
∆t, we may assume ∆t a random variable to implicitly affect both terms. In SSMs, ∆t is often
interpreted as the discretization timestep from the perspective of a dynamic system (Gu & Dao,
2023), while the exponential distribution is classically used to model the time interval. Motivated by
this connection, we propose to redefine ∆t in Eq. 2a as a random variable following Exponential
distribution. In this case, Ht has an explicit expression form:

Ht = Ht−1 exp(Åt diag(∆t)) + 1NxtB̊t∆t (8)
where the first term follows Pareto distribution and the second term still follows Exponentil distri-
bution. their sum does not belong to any well-known class of distributions. Since Ht as a function
of ∆t is not invertible, the KL divergence in Eq. 5 cannot be directly reduced to that between ∆t

and its prior like Eq. 6 shows. Nevertheless, we can show that this KL divergence serves as an upper
bound of the original one, which allows us to directly optimize with respect to ∆t. Further details
are provided in Appendix A.3.

We then choose the prior distribution Q(∆t) as an Exponential distribution, Exp(λt1D), which
yields an upper bound on the KL divergence in Eq. 5, as shown below:

LKL = E

∑
t,d

log
∆

(d)
t

λt
− (∆

(d)
t − λt)

1

∆
(d)
t

 , (9)

where the summation is taken over t ∈ [T ], d ∈ [D].

We name the two novel architectures with stochastic selection Baleen-B (Bernoulli) and Baleen-E
(Exponential). While Baleen-B polarizes the state transition values to ensure a compact representation,
Baleen-E implements a trade-off between incorporating more past memory and more new encoded
token information. This behavior can be explained as follows: when ∆t tends to infinity, the first
term in Eq. 8 vanishes due to the negative Åt, and Ht depends solely on the new token embeddings.
Conversely, when ∆t tends to zero the second term vanishes, and Ht is entirely inherited from past
memory. Therefore, ∆t effectively selects information from the new input token while simultaneously
clearing past memory to make room for it. Note that our framework not only supports pre-training but
also enables fine-tuning from a pre-trained SSM. This is achieved without introducing any additional
modules—only by converting the deterministic gates into stochastic ones in a plug-and-play manner.

3.3 INHERENT INTERPRETABILITY

As previously discussed, each element in the state transition matrix At governs whether a specific
component of the historical context is retained or discarded in memory (Gu et al., 2020). Preserving
a larger subset of components enables the current input token to dynamically interact with and
update the states of these retained components, thereby encoding critical information into the model’s
memory. This mechanism provides inherent interpretability to the Baleen architecture.

Importance(t) =
1

ND

D∑
d=1

N∑
n=1

A
(n,d)
t , t ∈ [T ] (10)
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Table 1: Accuracy comparison on benchmark datasets. Best results are in bold, second best underlined.
Method ARC-C ARC-E BoolQ GPQA Hella. MMLU OBQA PIQA SIQA TruthfulQA Wino. Avg.

Pretrained 370M models
Baleen-B 18.94 36.20 59.39 24.33 28.02 22.97 14.80 59.14 32.91 23.38 51.22 33.75
Baleen-E 17.58 39.35 60.52 24.11 28.18 23.01 14.20 60.45 33.11 23.62 48.38 33.86
Gated DeltaNet 23.29 32.45 51.25 24.11 26.99 23.29 15.00 56.96 35.11 25.21 51.85 33.23
Mamba2 17.83 37.54 49.66 24.33 27.84 22.92 14.40 59.96 33.01 23.87 50.67 32.91
Mamba 22.01 29.25 45.69 25.89 25.91 24.98 13.20 54.62 32.70 25.21 49.49 31.72
RetNet 21.67 30.85 57.13 24.33 26.50 23.60 14.20 55.93 33.93 24.11 48.78 32.82
RWKV6 21.76 31.06 46.21 25.67 26.92 24.10 15.80 55.82 33.01 26.56 49.96 32.44
GLA 21.93 30.26 44.56 24.78 26.52 23.76 15.60 56.42 33.62 25.09 49.41 32.00

Finetuned 7B models
Baleen-B 7B 31.23 61.99 73.06 27.23 39.37 34.76 21.80 67.57 32.91 27.66 58.01 43.24
Baleen-E 7B 31.40 60.94 71.74 20.54 40.26 33.70 22.40 68.28 32.96 27.54 56.99 42.43
Mamba2 7B 33.19 62.08 62.63 27.01 38.06 32.84 19.80 67.63 32.91 27.17 57.14 41.86

To operationalize interpretation during inference, we first compute the expectation of the stochastic
transition matrices At and use it as state transition matrix in Eq. 1. We then derive token-level
importance scores by averaging the magnitudes of the transition matrices across different components
(i.e., averaging over embedding dimension D and state dimension N as Eq. 10 shows). These
scores enable the identification of salient tokens through a top-k ranking strategy, offering transparent
insights into the model’s decision-making process during prediction.

4 EXPERIMENTS

In this section, we will validate our effectiveness in common language benchmarks, providing faithful
inherent interpretation, and ensuring robustness under perturbations.

Settings. We pre-trained 370M Baleen-B and Baleen-E models based on Mamba2 (Dao & Gu,
2024) on 20B tokens from SlimPajama dataset (Soboleva et al., 2023), and fine-tuned 7B Baleen-B
and Baleen-E models from a pre-trained Mamba2 model (Codestral (AI@Mistral, 2024)) on 0.5B
instruction-following formatted tokens from Crystal dataset (Liu et al., 2023). We mainly compare
our method with the vallina Mamba2 model, and add other state space or linear attention models as
baselines including RetNet (Sun et al., 2023), RWKV6 (Peng et al., 2023), GLA (Yang et al., 2023)
Mamba (Gu & Dao, 2023), and recently proposed Gated DeltaNet (Yang et al., 2024a).

4.1 LANGUAGE BENCHMARKS

Pre-trained 370M Models. Baleen-B (Baleen-B) and Baleen-E (Baleen-E) achieve the best overall
performance, with average accuracies of 33.75% and 33.86%, both surpassing all baselines out-
performing all baselines including the strong Gated-DeltaNet (33.23%), which is the architecture
behind the popular industry model Qwen3-Next (Qwen-Team, 2025). On commonsense reasoning
tasks, Baleen-E leads ARC-Easy (39.35%, +1.81 over Mamba2) and PIQA (60.45%, +0.49), while
Baleen-B ranks first on Winogrande (51.22%, +0.55). For language understanding, their MMLU
(22.97% and 23.01%) scores slightly exceed Mamba2 (22.92%). Overall, both Baleen variants
show consistent gains over Mamba2, confirming the benefit of our design on top of the Mamba2
architecture.

Fine-tuned 7B Models. After instruction tuning, Baleen-B attains the highest average accuracy
of 43.24%, followed by Baleen-E (42.43%), both ahead of Mamba2 (41.86%). In commonsense
reasoning, Baleen-B excels on BoolQ (73.06%, +10.43), while Baleen-E leads PIQA (68.28%,
+1.65). Both outperform Mamba2 on Winogrande (58.01% and 56.99% vs. 57.14%). For language
understanding, Baleen-B reaches 34.76% on MMLU (+1.92), while Baleen-E achieves the highest
HellaSwag (40.26%, +2.2) and competitive MMLU (33.70%) scores. On TruthfulQA, Baleen-B
achieves 27.66% (+0.49), slightly above Mamba2, while Baleen-E performs slightly below Mamba2.
Overall, Baleen-B and Baleen-E consistently outperform the Mamba2 baseline, delivering stronger
commonsense reasoning and steady gains in language understanding and truthfulness.
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The sentence is positive.

Together the movies establish Mr.
Cantet as France's foremost 

cinematic poet of the workplace

The sentence is positive.

Together the movies establish Mr. Cantet as France's foremost
cinematic poet of the workplace

Together the movies establish Mr.
Cantet as France's foremost 

cinematic poet of the workplace

Let's think step by step... So,
both of them eat a total of 20

cookies together.

Cody eats three times as many
cookies as Amir eats. If Amir eats 5

cookies, how many cookies
do both of them eat together?

In 10 years, Melanie will be 18 years old. In how
many years will her age be thrice her present age?

Cody eats three times as many
cookies as Amir eats. If Amir eats 5

cookies, how many cookies
do both of them eat together?

In 10 years, Melanie will be 18 years old. To find out
how many years it will take for her age to be thrice her
present age, we need to divide her current age by 3.

18 years (present age) / 3 = 6 years
So, it will take Melanie 6 years.

In 10 years, Melanie will be 18 years old. In how
many years will her age be thrice her present age?

Let's break this down step by step:
1. Melanie is 18 years old.

2. In 10 years, Melanie will be 18 + 10 = 28 years old.
3. To find out how many years it will take, we need to

divide her current age by 3.
4. 18 / 3 = 6 years.

So, it will take 6 years。
Cody eats three times as many cookies as Amir eats. If Amir eats
5 cookies, how many cookies do both of them eat together?

In 10 years, Melanie will be 18 years old. In how
many years will her age be thrice her present age?

Let's break this down step by
step... So, both Cody and Amir
eat 20 cookies together.

(a)  Right answer interpretation. All important tokens are captured.

✔✔

✔ ✔

✘

✘

(b)  Wrong answer interpretation. 18 and thrice are not captured.

Figure 2: Interpretation Examples on SST and GSM8K. Human annotated important tokens in
questions are highlighted in red background, and model interpretation after top-k ranking (k = 4/8 for
SST/GSM8K) are highlighted in red font. The blue avatar refers to Baleen-E 7B and yellow avatar
refers to Baleen-B 7B.

4.2 INHERENT INTERPRETATION

Qualitative Example We test fine-tuned 7B model in SST and GSM8K to yield inherent inter-
pretation when generating answer. We visualize three samples with human annotated ground truth
interpretation from previous literature (Wu et al., 2023) in Fig. 2.

As Fig. 2 (a) shows, both Baleen-E (blue) and Baleen-B (yellow) are able to provide accurate
interpretation aligned with human annotations well when generating correct answers. For sentiment
analysis, three out of the four most important tokens indicating positive emotion are identified. For
the math problem, key elements including objects, numbers, and the word “together” are selected.

In contrast, Fig. 2 (b) illustrates how the model makes a wrong answer in a math problem: It fails to
properly attend to the tokens “18” and “thrice” in the input. Consequently, the model incorrectly treats
Melanie’s current age as “18” instead of “8”, and divides the age by 3 rather than multiplying it by 3.
These two mistakes are directly attributable to the model’s inattention to “18” and “thrice”, which
clearly explains why the output is wrong. Such analysis is useful for monitoring the model’s long-form
text generation, enabling early identification of errors and preventing wasted computation. Moreover,
it reveals potential weaknesses in the model and provides guidance for further improvement.

Table 2: Explanation performance on two base mod-
els trained with Baleen-E and Baleen-B respectively.
“RT.” refers to Rotten Tomatoes.

Method SNLI IMDb SST2 RT.
Baleen-B
IG 44.00 40.21 39.94 40.50
GradX 48.85 42.98 47.96 40.94
GradCAM 54.98 49.59 42.57 42.00
Self (Ours) 55.81 45.24 57.65 51.49
Baleen-E
IG 24.23 2.45 38.47 2.27
GradX 48.88 43.69 47.79 41.63
GradCAM 54.73 52.69 39.19 48.65
Self (Ours) 54.31 51.66 62.50 62.17

Quantitative Evaluation. We conduct quantita-
tive evaluation regarding model interpretations and
report results in Tab. 2. Fidelity AUC (Zhu et al.,
2024; Jafari et al., 2024) is often adopted to re-
duce the evaluation bias of single sparsity value
(i.e., Fidelity@k) which cannot provide consis-
tent evaluations. We use four well-established text
classification tasks SNLI (Bowman et al., 2015),
IMDb (Maas et al., 2011), SST2 (Socher et al.,
2013) and Rottent Tomatoes (Pang & Lee, 2005),
and fine-tuned pretrained 370M model on them.
We compare our methods (self-interpretation) with
commonly used gradient-based post-hoc methods
including Gradient × Input (Shrikumar et al., 2017), Integrated Gradients (IG) (Sundararajan et al.,
2017) and GradCAM (Selvaraju et al., 2017). For the fair comparison, we ensure that the interpreted
model remains the same; thus, Baleen-B 370M and Baleen-E 370M serve as the base models. Notably,
our method is self-interpretable and can generate interpretations without additional compute budget.

As demonstrated in Tab. 2, both Baleen-B and Baleen-E consistently generate highly faithful inter-
pretations compared to existing methods, with their average performance significantly surpassing
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Table 3: Adversarial attack results of CIFAR-10 image classification on sequences of pixels.
Perturbation region (seq. length = 1024)

Models [0:0] [0:32] [0:96] [928:1024] [992:1024] Avg.

RWKV 0.474 0.150 (↓ 68.35%) 0.466 (↓ 1.58%) 0.138 (↓ 70.88%) 0.460 (↓ 2.91%) 0.338±0.177
GLA 0.631 0.623 (↓ 1.42%) 0.597 (↓ 5.41%) 0.332 (↓ 47.36%) 0.496 (↓ 21.42%) 0.536±0.126
Mamba 0.672 0.655 (↓ 2.54%) 0.631 (↓ 6.19%) 0.102 (↓ 84.77%) 0.152 (↓ 77.35%) 0.442±0.289
Mamba2 0.673 0.495 (↓ 26.51%) 0.470 (↓ 30.17%) 0.106 (↓ 84.17%) 0.183 (↓ 72.74%) 0.385±0.235

Baleen-B 0.659 0.634 (↓ 3.82%) 0.603 (↓ 8.58%) 0.314 (↓ 52.37%) 0.453 (↓ 31.23%) 0.532±0.146
Baleen-E 0.643 0.639 (↓ 0.57%) 0.628 (↓ 2.33%) 0.365 (↓ 43.16%) 0.433 (↓ 32.63%) 0.542±0.132

baseline approaches. This inherent self-interpretability enables real-time monitoring of model behav-
ior, allowing practitioners to promptly detect errors during inference rather than relying on post hoc
analysis.

4.3 ADVERSARIAL ROBUSTNESS

Position Bias Attack. SSMs exhibit position bias, which can be utilized to compromise their
performance (Wang et al., 2024). To assess whether our method mitigates this bias, we evaluate
model robustness against corrupted inputs through image classification on sequences of pixels (Tay
et al., 2020). For this task, each W ×H image is flattened into a sequence of WH RGB pixel tokens,
which are then embedded into the hidden state dimension and processed by sequence modeling
blocks. Following ViT (Dosovitskiy et al., 2021), we append a learnable class token at the end of the
sequence. This token is subsequently mapped to logits via a classifier head for image classification.
This design introduces a vulnerability: since predictions rely on the class token, position bias implies
that tokens closer to it exert a greater influence on the output. Consequently, SSMs with weaker
robustness are particularly vulnerable to perturbations in trailing tokens near the class token. To
highlight this bias, we generate corrupted inputs by perturbing both leading and trailing tokens.

In our image classification experiments on CIFAR-10 (Tab. 3), we find both our variants demonstrate
balanced sensitivity to perturbations at leading and trailing positions. Under leading-token corruption
([0:32]), Baleen-B and Baleen-E retain 0.634 accuracy (3.8% drop) and 0.639 (0.6% drop),
respectively, maintaining moderate performance degradation comparable to the original Mamba while
outperforming the base model Mamba2. However, trailing-token corruption ([992:1024]) leads to
catastrophic accuracy losses for both Mamba and Mamba2 (>70%). In contrast, SSIBs demonstrate
significantly improved robustness, limiting accuracy drops to approximately 30% under the same
conditions. Notably, Baleen-B achieves the highest average accuracy across all compared methods.

Prompt Attack. To further evaluate the robustness improvement by our method, we conduct prompt
attack experiments on our fine-tuned 7B language models using WNLI and SST2 dataset (Wang et al.,
2018). Following the setup in PromptBench (Zhu et al., 2023a), we apply four different types of
perturbation: DeepWordBug, TextBugger, CheckList, and StressTest (Zhu et al., 2023b) varing from
character-level attack to sentence-level attack. Robustness is assessed by measuring the performance
drop ratio (PDR) in prediction accuracy between normal and perturbed prompts.

Tab. 4 compares the performance degradation of our fine-tuned 7B Baleen-E and Baleen-B models
against 7B Mamba2. As shown, both Baleen-E and Baleen-B consistently achieve lower drop
ratios across most adversarial settings, indicating stronger robustness to perturbations. In particular,
Baleen-B demonstrates superior resilience on SST2 under Checklist and StressTest, with performance
drop ratios that are 44.66% and 18.55% lower than those of Mamba2, respectively. Meanwhile,
Baleen-E shows competitive robustness under DeepWordBug and TextBugger, achieving drop ratios
that are 32.14% and 18.16% lower than Mamba2. On WNLI, Baleen-E substantially outperforms
the other models on Checklist and TextBugger, achieving drop ratios as low as 17.65 and 0.00
respectively. These results highlight that our fine-tuned Baleen models not only mitigate performance
degradation more effectively than Mamba2 but also complement each other in handling different
types of adversarial attacks.

5 RELATED WORK

Linear State Space Modeling as Online Learning. Previous works (Sun et al., 2024; Liu et al.,
2024; Behrouz et al., 2024) have proposed to unify the computational structure of linear SSMs from
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Table 4: Performance drop ratio (lower is better) results after adversarial attack on PromptBench.

Model SST2 WNLI

Checklist DeepWordBug StressTest TextBugger Checklist DeepWordBug StressTest TextBugger

Baleen-B 32.26 43.16 43.48 71.58 61.76 6.67 94.74 9.38
Baleen-E 39.08 38.37 71.26 70.45 17.65 14.71 87.50 0.00
Mamba2 76.92 70.51 62.03 88.61 80.00 13.33 100.00 10.00

an online learning perspective. The update rule of SSMs can be generally understood as doing a
single step of online stochastic gradient descent, with respect to the state spaces Ht, for optimizing an
objective L(Ht) = ||Ht − αtHt−1|| at the time stamp t to control the magnitude of the state update.
These online learning objectives often introduce additional regularization terms for better modeling
the key-value associations, resulting in different variants of state updates consisting of gating (Sun
et al., 2023; Gu & Dao, 2023; Yang et al., 2023; Peng et al., 2023; De et al., 2024; Goldstein et al.,
2024), delta rule (Schlag et al., 2021; Yang et al., 2024b;a) and momentum (Behrouz et al., 2024).
Our approach is loosely connected to this perspective, in the sense that we regard the hidden states as
an information bottleneck between the input and the target sequences, and the KL term functions as a
regularizer of the hidden state Ht with respect to a prior distribution Q. Since Linear Attention (Qin
et al., 2022; Sun et al., 2023) can be viewed as SSMs with linear recurrent updates of two-dimensional
associative memories, our approach can be applied to a broader spectrum of architectures (MiniMax
et al., 2025; Ren et al., 2023; 2024; Lieber et al., 2024; Ma et al., 2022; 2024) consisting of linear
recurrent models.

Interpretation Methods. Previous interpretation methods can form into two categories (Arrieta
et al., 2020; Rudin, 2019). The first category, known as post-hoc methods, operates on already-
trained models. For instance, Gradient × Input (Shrikumar et al., 2017) compute the product
of the input and the gradients w.r.t. the input as the importance scores. GradCAM (Selvaraju
et al., 2017) generalize the operations to intermediate embeddings and the corresponding gradients.
The second category comprises self-interpretable models. These models integrate interpretable
modules into model architectures, rooted in principled mechanism such as causality (Wu et al.,
2022), information bottleneck (Jiang et al., 2020) or and even attention mechanism (Smilkov et al.,
2017). These models are specifically designed to extract and utilize minimal significant information
during model training. For instance, vanilla attention score used to be treat as self-interpretation,
but are proved to be not faithful (Jain & Wallace, 2019), and then improved via modified attention
mechanism (Chrysostomou & Aletras, 2021) and interpretation deduction (Liu et al., 2022). Our
method belongs to self-interpretable methods with theoretical principle.

Adversarial Robustness. As large language models (LLMs) increasingly dominate natural lan-
guage processing and permeate daily life through their conversational capabilities, concerns about
their reliability and alignment with human values have grown. Robustness is a key factor, requiring
models to remain reliable even under adversarial or challenging conditions. Existing approaches
mostly rely on post-hoc defenses such as detectors or input/output filters (Dong et al., 2024), but
more subtle attacks (e.g., noisy data injection during training) highlight the need for inherently robust
architectures. Prior studies explore robustness enhancements through mutual information regulariza-
tion (Wang et al.), information bottleneck methods (Zhang et al., 2022), or selective fine-tuning (Kim
et al., 2023), though these works mainly target smaller models like BERT or RoBERTa. To the best
of our knowledge, we are the first to demonstrate robustness at the scale of modern LLMs (e.g., 7B
parameters) using a scalable SSM-based architecture.

6 CONCLUSION

In this work, we introduce Baleen, a family of SSM architectures that explicitly maximizes context
compression with reliable interpretation based on State Space Information Bottleneck framework. It
is realized by stochastic modeling of the selection mechanism, enforces memory states to be minimal
and sufficient representation of the past context. Extensive experiments show Baleen addresses the
limitations of existing SSMs in selectivity, robustness, and interpretability.
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A DEFERRED THEORY

In this section, we provide detailed derivations for SSIB framework with two types of stochasticity.

A.1 BACKGROUND

In this section, we provide readers with basic concepts in information theory. Below our introduction
focuses on two random variables A,B. Extending the below definitions to random vectors/matrices
is straightforward. Interested readers are referred to Cover (1999).
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Entropy. The entropy of a random variable A quantifies how much information it carries in its
distribution, often characterized by how many “bits” are needed to represent the random variable. It
is defined as below:

H(A) = −EA [logP(A)] . (11)

Higher entropy indicates greater uncertainty in the possible values of A.

Mutual Information. The mutual information between two random variables A and B measures
the amount of information A provides about B:

I(A;B) = I(B;A) = EA,B

[
log

P(A,B)

P(A)P(B)

]
. (12)

It captures the reduction in uncertainty of one variable given knowledge of the other.

KL Divergence. The Kullback-Leibler (KL) divergence measures how different a probability
distribution P(A) is from a reference distribution Q(A):

DKL(P(A)∥Q(A)) = EA∼P

[
log

P(A)

Q(A)

]
. (13)

KL divergence is always non-negative and equals zero if and only if P(A) = Q(A) almost every-
where.

As seen in Sec. 3, these information-theoretic metrics play a fundamental role in the information
bottleneck framework. We assume all above quantities are well-defined throughout this paper. They
are also closely related to each other. Below are some useful equalities among entropy, mutual
information, and KL divergence:

H(A|B) = H(A,B)−H(B) (14)
I(A;B) = H(A)−H(A|B) = H(B)−H(B|A) = H(A) +H(B)−H(A,B), (15)
I(A;B) = DKL(P(A,B)∥P(A)P(B)). (16)

A.2 SSIB TRAINING OBJECTIVE

In this section, we derive the main results in Sec. 3.1. We begin by specifying the PDFs for inputs
X , memory states H , and ground-truth sequence Y . First of all, P(X) or PX is an unknown
distribution where input sequences are sampled from. The conditional distribution P(Y |X) or PY |X
is another unknown data distribution describing how ground-truth sequences are generated from X .
We use contextual encoder hΦ to extract information from X , characterizing by another conditional
distribution PΦ(H|X) or PΦ

H|X . The predictor gΘ yields a conditional probability PΘ(Y |H) or
PΘ
Y |H , describing the likelihood estimation of groundtruth Y under memory H and parameter Θ.

A Tractable Objective. We begin with restating the objective of the SSIB framework in Sec. 5:

min
Θ,Φ

−I(Y ;H) + βI(H;X), s.t. H ∼ PΦ(H|X). (17)

The mutual information terms in Eq. 17 is not computationally tractable. Hence, we seek to obtain an
upper bound for it following the approaches in Alemi et al. (2016); Poole et al. (2019).

First, we aim to lower bound I(Y ;H). Note that P(Y |H) is not tractable, so we introduce a
variational approximation PΘ(Y |H) for it, leading to:

I(H;Y ) = EH,Y

[
log

PΘ(Y |H)

P(Y )

]
+ EH

[
DKL(P(Y |H)∥PΘ(Y |H))

]
(18)

≥ EH,Y

[
log

PΘ(Y |H)

P(Y )

]
(19)

= EH,Y

[
logPΘ(Y |H)

]
+H(Y ). (20)

The first inequality is according to the non-negativity of KL divergence. Thus, I(H;Y ) is lower
bounded by the expected log-likelihood plus the entropy of Y . The log-likelihood term of Eq. 20
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corresponds to the prediction step in SSMs (gΘ and Eq. 1). The entropy term is independent of Θ
and will be ignored in our final objective. Moreover, note that the predicted variable is independent
of other variables given Ht: PΘ(Y |H) =

∏
t PΘ(Yt|Ht). Therefore, we are able to further expand

Eq. 20 as:

I(H;Y ) ≥ EH,Y

[
T∑

t=1

logPΘ(yt|Ht)

]
+H(Y ). (21)

Second, we upper bound for I(H;X). By definition, the mutual information can be written as:

I(H;X) = EH,X

[
log

PΦ(H|X)

PΦ(H)

]
, (22)

where P(H) = EX [PΦ(H|X)] is again intractable. We borrow the technique of Kingma (2013) and
introduce a variational approximation Q(H), resulting in:

I(H;X) = EH,X

[
log

PΦ(H|X)

Q(H)

]
−DKL(P(H)∥Q(H)) (23)

≤ EX

[
DKL(PΦ(H|X)∥Q(H))

]
, (24)

which implies I(H;X) is upper bounded by the expected KL divergence between the variational
approximation and the marginalized distribution. The inequality becomes tighter if Q(H) approxi-
mates PΦ(H) closely. PΦ(H|X) in the RHS of Eq. 24 functions as the encoding step in SSMs (hΦ

and Eq. 1).

Combining both Eq. 24 and 20, we can recover Eq. 5:

min
Θ,Φ

− EH,Y

[
T∑

t=1

logPΘ(yt|Ht)

]
+ β EX

[
DKL(PΦ(H|X)∥Q(H))

]
, (25)

Derivation of KL Divergence Constraints. In this section, we simplify the KL divergence under
the setting of Baleen-B. The main idea is to utilize the Markov property and factorize H along the
sequence.

Last, let us fix X and simplify the KL divergence term:

DKL(PΦ(H|X)∥Q(H)) = EH

[
log

PΦ(H|X)

Q(H)

]
(26)

= EH

[
log

PΦ(H0)
∏T

t=1 PΦ(Ht|Ht−1,X≤t)

Q(H0)
∏T

t=1 Q(Ht|Ht−1)

]
(27)

= EH

[
log

PΦ(H0)

Q(H0)
+

T∑
t=1

log
PΦ(Ht|Ht−1,X≤t)

Q(Ht|Ht−1)

]
(28)

= EH0

[
log

PΦ(H0)

Q(H0)

]
+

T∑
t=1

EH

[
log

PΦ(Ht|Ht−1,X≤t)

Q(Ht|Ht−1)

]
(29)

=

T∑
t=1

EH

[
log

PΦ(Ht|Ht−1,X≤t)

Q(Ht|Ht−1)

]
+ const., (30)

where the last equality holds because PΦ(H0) is independent of model parameters.

A.3 SIMPLIFIED KL LOSS IN BALEEN

Baleen-E Given prior Q(At) and P(At), and equation Ht = Ht−1 exp(Åtdiag(∆t)) + Btxt∆t.
We can introduce the conditional distribution ∆t|Ht and use the KL divergence chain rule:
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DKL(P(∆t)∥Q(∆t) = E∆t

[
log

P(∆t||Ht)P(Ht|Ht−1)

Q(∆t||Ht)Q(Ht)

]
(31)

= E∆t|Ht
EHt

[
log

P(Ht|Ht−1)

Q(Ht)

]
+ EHt

E∆t|Ht

[
log

P(∆t||Ht)

Q(∆t||Ht)

]
(32)

= DKL(P(Ht|Ht−1)∥Q(Ht) +DKL(P(∆t|Ht)∥Q(∆t|Ht) (33)
≥ DKL(P(Ht|Ht−1)∥Q(Ht) (34)

Baleen-B Given prior Q(At) and P(At), and equation Ht = Ht−1At + Btxt, we obtain the
following relation, analogous to the derivation in Baleen-B:

DKL(P(A)∥Q(At)) = DKL(P(Ht|Ht−1)∥Q(Ht)) +DKL(P(At|Ht)∥Q(At|Ht)) (35)
= DKL(P(Ht|Ht−1)∥Q(Ht)) (36)

In this case, the inequality becomes equality because DKL(P(At|Ht)∥Q(At|Ht) = 0 which follows
directly from the one-to-one mapping between At and Ht given Ht−1.

B EXPERIMENT DETAILS

B.1 ADVERSARIAL ROBUSTNESS.

Position Bias Attack. In this experiment, we train all the compared models using the framework
from (Arora et al., 2023). Each model consists of three layers, with a hidden state dimension of 32
per layer. Training is conducted for 100 epochs on the CIFAR-10 dataset. For our Baleen-B model,
we set β = 0.01, while for the Baleen-E model, β = 0.5.

Prompt Attack. The following text prompt is used to query the language models in this experiment,
where the placeholder ‘{content}’ will be replaced with two sentences. The second sentence provides
an explanation of the pronoun used in the first sentence. The language model is then tasked with
predicting whether the pronoun resolution is ”correct” or ”incorrect.”

In the following sentence, does the hypothesis correctly resolve the ambigu-
ous pronoun? Answer ‘correct’ or ‘incorrect’. Please classify:
Question: {content}
Answer:

Below is a negative sample of the two sentences:

Sentence 1: The drain is clogged with hair. It has to be cleaned.
Sentence 2: The hair has to be cleaned.
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