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Abstract

Large-scale retrieval is to recall relevant doc-
uments from a huge collection given a query.
It relies on representation learning to embed
documents and queries into a common seman-
tic encoding space. According to the encoding
space, recent retrieval methods based on pre-
trained language models (PLM) can be coarsely
categorized into either dense-vector or lexicon-
based paradigms. These two paradigms unveil
the PLMs’ representation capability in different
granularities, i.e., global sequence-level com-
pression and local word-level contexts, respec-
tively. Inspired by their complementary global-
local contextualization and distinct represent-
ing views, we propose a new learning frame-
work, UnifierR, which unifies dense-vector and
lexicon-based retrieval in one model with a
dual-representing capability. Experiments on
passage retrieval benchmarks verify its effec-
tiveness in both paradigms. A uni-retrieval
scheme is further presented with even better
retrieval quality. We lastly evaluate the model
on BEIR benchmark to verify its transferability.

1 Introduction

Large-scale retrieval aims to efficiently fetch all
relevant documents for a given query from a large-
scale collection with millions or billions of entries'.
It plays indispensable roles as a prerequisite for a
broad spectrum of downstream tasks, e.g., infor-
mation retrieval (Cai et al., 2021), open-domain
question answering (Chen et al., 2017). To make
online large-scale retrieval possible, the common
practice is to represent queries and documents by
an encoder in a Siamese manner (i.e., Bi-Encoder,
BE) (Reimers and Gurevych, 2019). So, its success
depends heavily on a powerful encoder by effective
representation learning.

Advanced by pre-trained language models
(PLM), e.g., BERT (Devlin et al., 2019), recent

'A collection entry could be sentence, passage, document,
etc., and we take document for demonstrations.

works propose to learn PLM-based encoders for
large-scale retrieval, which are coarsely grouped
into two paradigms in light of their encoding spaces
with different focuses of representation granularity
That is, dense-vector encoding methods leverage
sequence-level compressive representations that
embedded into dense semantic space (Xiong et al.,
2021; Zhan et al., 2021; Gao and Callan, 2021b;
Khattab and Zaharia, 2020), whereas lexicon-based
encoding methods make the best of word-level con-
textual representations by considering either high
concurrence (Nogueira et al., 2019) or coordinate
terms (Formal et al., 2021b) in PLMs. To gather the
powers of both worlds, some pioneering works pro-
pose hybrid methods to achieve a sweet point be-
tween dense-vector and lexicon-based methods for
better retrieval quality. They focus on interactions
of predicted scores between the two paradigms.
Nonetheless, such surface interactions — score
aggregations (Kuzi et al., 2020), direct co-
training (Gao et al., 2021b), and logits distillations
(Chen et al., 2021b) — cannot fully exploit the ben-
efits of the two paradigms — regardless of their
complementary contextual features and distinct rep-
resentation views. Specifically, as for contextual
features, the dense-vector models focus more on
sequence-level global embeddings against informa-
tion bottleneck (Lu et al., 2021; Gao and Callan,
2021a,b), whereas the lexicon-based models fo-
cus on word-level local contextual embeddings for
precise lexicon-weighting (Formal et al., 2021a,
2022; Nogueira et al., 2019). Aligning the two re-
trieval paradigms more closely is likely to benefit
each other since global-local contexts are proven
complementary in general representation learning
(Shen et al., 2019; Beltagy et al., 2020). As for
representing views, relying on distinct encoding
spaces, the two retrieval paradigms are proven to
provide different views in terms of query-document
relevance (Kuzi et al., 2020; Gao et al., 2021b,a).
Such a sort of ‘dual views’ has been proven piv-



otal in many previous cooperative learning works
(Han et al., 2018; Chen et al., 2021a; Liang et al.,
2021; Gao et al., 2021c), which provides a great
opportunity to bridge the two retrieval paradigms.
Consequently, without any in-depth interactions,
neither the single (dense/lexicon) nor the hybrid
retrieval model can be optimal.

Motivated by the above, we propose a brand-
new learning framework, Unified Retriever (Uni-
fier), for in-depth mutual benefits of both dense-
vector and lexicon-based retrieval. On the one
hand, we present a neural encoder with dual rep-
resenting modules for UnifieR, which is compati-
ble with both retrieval paradigms. Built upon an
underlying-tied contextualization that empowers
consistent semantics sharing, a local-enhanced se-
quence representation module is presented to learn
a dense-vector representation model. Meantime,
a global-aware lexicon weighting module consid-
ering both the global- and local-context is pro-
posed for a lexicon-based representation. On the
other hand, we propose a new self-learning strategy,
called dual-consistency learning, upon our unified
encoder. Besides a basic contrastive learning objec-
tive, we first exploit the unified dual representing
modules by mining diverse hard negatives for self-
adversarial within the UnifieR. Furthermore, we
present a self-regularization method based on list-
wise agreements from the dual views for better
consistency and generalization.

After being trained, UnifieR performs large-scale
retrieval via either its lexicon representation by effi-
cient inverted index or dense vectors by paralleliz-
able dot-product. Moreover, empowered by our
UnifieR, we present a fast yet effective retrieval
scheme, uni-retrieval, to gather the powers of both
worlds, where the lexicon retrieval is followed by
a candidate-constrained dense scoring. Empiri-
cally, we evaluate UnifieR on not only passage re-
trieval benchmarks to check its effectiveness but the
BEIR benchmark (Thakur et al., 2021) with twelve
datasets (Natural Questions, HotpotQA, etc.) to
verify the transferability of our model.

2 Related Work

PLM-based Retriever. Built upon PLMs, re-
cent works propose to learn encoders for large-
scale retrieval, which are coarsely grouped into
two paradigms in light of their encoding spaces
with different focuses of representation granular-
ity: (i) Dense-vector encoding methods directly

represent a document/query as a low-dimension
sequence-level dense vector © € R® (e is embed-
ding size and usually small, e.g., 768). And the
relevance score between a document and a query
is calculated by dot-product or cosine similarity
(Xiong et al., 2021; Zhan et al., 2021; Gao and
Callan, 2021b; Khattab and Zaharia, 2020). (ii)
Lexicon-based encoding methods make the best of
word-level contextualization by considering either
high concurrence (Nogueira et al., 2019) or coordi-
nate terms (Formal et al., 2021b) in PLMs. It first
weights all vocabulary lexicons for each word of
a document/query based on the contexts, leading
to a high-dimension sparse vector v € RVl (|V|
is the vocabulary size and usually large, e.g., 30k).
The text is then denoted by aggregating over all
the lexicons in a sparse manner. Lastly, the rele-
vance is calculated by lexical-based matching met-
rics (e.g., BM25 (Robertson and Zaragoza, 2009)).
In contrast, we unify the two paradigms into one
carefully-designed encoder for better consistency
within PLMs, leading to complementary informa-
tion and superior performance.

Hybrid Retriever. Some works propose to
bridge the gap between dense and lexicon for a
sweet spot between performance and efficiency. A
direct method is to aggregate scores of the two
paradigms (Kuzi et al., 2020), but resulting in stan-
dalone learning and sub-optimal quality. Similar to
our work, CLEAR (Gao et al., 2021b) uses a dense-
vector model to complement the lexicon-based
BM25 model, but without feature interactions
and sophisticated learning. Sharing inspiration
with our uni-retrieval scheme, COIL (Gao et al.,
2021a) equips a simple lexicon-based retrieval with
dense operations over word-level contextual em-
beddings. UnifieR differs in not only our lexicon
representations jointly learned for in-depth mu-
tual benefits but also sequence-level dense opera-
tions involved for memory-/computation-efficiency.
Lastly, SPARC (Lee et al., 2020) distills ranking
orders from a lexicon model (BM25) into a dense
model as a companion of the original dense vector,
which is distinct to our motivation.

Please see §A for more related works regarding
our encoder structures and learning methods.

3 Methodology

Task Definition.  Given a collection with numer-
ous documents (i.e., D = {d,-}iml) and a textual

query g from users, a retriever aims to fetch a list



of text pieces ]I_Dq to contain all relevant ones. Gen-
erally, this is based on a relevance score between ¢
and every document d; in a Siamese manner, i.e.,
< Enc(q), Enc(d;) >, where Enc is an arbitrary
representation model (e.g., Bag-of-Words and neu-
ral encoders) and < -,- > denotes a lightweight
relevance metric (e.g., BM25 and dot-product).

3.1 General Retriever Learning Framework

To ground a method,
we first introduce a
contrastive learning

Contrastive learning
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. . encoder
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Query Documents

ure 1). For supervi-
sion data in retriever
training, differing from traditional categorical tasks,
only query-document tuples (i.e., (g, d;r)) are given
as positive pairs. Hence, given a ¢, a method needs
to sample a set of negatives Ny, = {d }{/ from
DD, and trains the retriever on tuples of (¢, d;, Ng).
M is the number of negatives. If no confusion
is caused, we omit the subscript ‘g’ for a specific
query in the remaining.

Formally, given q and Vd € {d*} UN, an en-
coder, Enc(+;#), is applied to them individually
to produce their embeddings, i.e., Enc(q; #) and
Enc(d; 0), where the encoder is parameterized by
0 if applicable. It is noteworthy we tie the query
encoder with the document encoder in our work for
simplicity. Then, a relevance metric is applied to
each pair of the embeddings of the query and each
document. Thus, a probability distribution over the
documents {d*}UN can be defined as

Figure 1: Bi-encoder learning.

p:=P(d|q,{d"}UN;0) = (1)
exp(< Enc(q; 0), Enc(d; 6) >)
Zd/e{dﬂuN exp(< Enc(q; 0), Enc(d’; 0) >)’

where Vd € {d*} UN. Lastly, a contrastive learn-
ing loss to optimize the encoder 6 is

Lp=—log P(d=d"[q,{d"}UN;0). (2)

3.2 Neural Encoder in UnifierR

We present an encoder (see Figure 2) for Unifier
for dense-vector and lexicon-based retrieval.

Underlying-tied Contextualization. = We first
propose to share the low-level textual feature ex-
tractor between both representing paradigms. Al-
though the two paradigms are focused on differ-
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Figure 2: The encoder in Unifier.

ent representation granularities, sharing their un-
derlying contextualization module can still facil-
itate semantic knowledge transfer between the
two paradigms. As such, they can learn consis-
tent semantic and syntactic knowledge towards
the same retrieval targets, especially the salient
lexicon-based features transferred to dense vectors.
Formally, we leverage a multi-layer Transformer
(Vaswani et al., 2017) encoder to produce word-
level (token-level) contextualized embeddings, i.e.,

H ™ =Transfm-Enc( [CLS]z[SEP];0(%®)) (3)

where Vo € {q} U {dt} UN, and [CLS] &
[SEP] are special tokens by following PLMs
(Devlin et al., 2019; Liu et al., 2019), H®) =
[h([?LS] AR 1 h([?EP]} are resulting em-
beddings, and n is the number of words in x.

Local-enhanced Sequence Representation. On
top of the embeddings with enhanced local con-
texts, we then present a representing module to
produce sequence-level dense vectors. For this pur-
pose, we apply another multi-layer Transformer
encoder to H (), followed by a pooler to derive a
sequence-level vector. This can be written as

u® = Pool(Transfm-Enc(H®; 9(4™))) (4)
where this module is parameterized by 6(4¢") un-
tied with 6(¢**), Pool(-) gets a sequence-level
dense vector by taking the embedding of special
token [CLS], and the resulting u®) € Re denotes

a global dense representation of the input text x,
which is used for dense-vector retrieval.

Global-aware Lexicon Weighting. Lastly, to
achieve lexicon-based retrieval, we adapt a recent
SParse Lexical AnD Expansion Model (SPLADE)
(Formal et al., 2021a) into our neural encoder.
SPLADE is a lexicon-weighting retrieval model
which learns sparse expansion for each word in
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Figure 3: The two-stage self-learning strategy for UnifieR.

query/document x via the MLM head of PLMs
and sparse regularization. Differing from the origi-
nal SPLADE, our lexicon-based representing mod-
ule not only shares its underlying feature extrac-
tor with a dense model but strengthens its hid-
den states by the global vector u(®) above. The
intuition is that, similar to text decoding with a
bottleneck hidden state, the global context serves
as high-level constraints (e.g., concepts/topics) to
guide word-level operations (Sutskever et al., 2014;
Lu et al., 2021; Gao and Callan, 2021a). In par-
ticular, the word-level contextualization embed-
dings passed into this module are manipulated as
H®) = [y hgx), Cee h([:?Ep] |. Then, a lexicon-
weighting representation for = can be derived by

v®=1og(14Max-Pool(ReLU( (5)
W ® Transfm-Enc(H®)); 9(mm)))),

where, 0(™™) parameterizes a multi-layer Trans-
former encoder, W e RIVI*e denotes the trans-
pose of word embedding matrix as the MLM
head, |V| denotes the vocabulary size, §(¢*) =
{W () gmlm)Y parameterizes this module, and
v e RIVl is a sparse lexicon-based representa-
tion of x. And its sparsity is regularized by FLOPS
(Paria et al., 2020) as in (Formal et al., 2021a).
Here, the saturation function log(1+ Max-Pool(-))
prevents some terms from dominating.

In summary, given a text x, UnifieR produces
two embeddings via its dual representing modules:

u® = Uni-Den(z; ©(4™),
v® = Uni-Lex(z; ©*"), (6)
where @) — [glctz) glden)y apd @QUler) —
{gctz) glden) gllex)1 Hence, u*) € R denotes
a dense vector and v(®) € RIVI denotes a sparse
lexicon-based embedding.
3.3 Dual-Consistency Learning for UnifierR

To maximize our encoder’s representing capac-
ity, we propose a self-learning strategy, called

dual-consistency learning (Figure 3). The ‘dual-
consistency’ denotes learning the dual representing
modules to achieve consistency in a unified model
via negative samples and module predictions.

Basic Training Objective.  To learn the encoder,
a straightforward way is applying the contrastive
learning loss defined in Eq.(1-2) to our dual repre-
senting modules. That is,

LM = —log P(d = d*|q, {dT}UN; ©lden))
—log P(d=d|q, {dT}UN; 0U®))  (7)

where the former is for dense-vector retrieval while
the latter is for lexicon-based retrieval. Towards
the same retrieval target, the model is prone to
learn consistent semantic and syntactic features
via complementing the global-local granularity
of the two retrieval paradigms. Due to the non-
differentiability of lexicon-based metrics, we fol-
low (Formal et al., 2021b) to use dot-product of
lexicon-weighting representation during training
but resort to a lexicon matching system (Yang et al.,
2017) with quantization during indexing&retrieval.
(see Appx. B for details) Note that 8(%") would
not be optimized w.r.t. the losses on top of the
lexicon-based module. As for the query’s neg-
atives N of in Eq.(7), they are initially sampled
by a BM25 retrieval system at the warmup stage
(Zhan et al., 2021; Gao and Callan, 2021b), denoted
as Nm25) = {d|d ~ P(d|q, D (4+}; BM25)},
where D\ 4+ denotes all documents in the col-
lection ID except the positive d™ for the query q.

Negative-bridged Self-Adversarial. However,
it is verified that learning a retriever based solely
on BM25 negatives cannot perform competitively
(Xiong et al., 2021; Zhan et al., 2021). Thereby,
previous works propose to sample hard negatives
by the best-so-far retriever for continual train-
ing (Zhan et al., 2021; Gao and Callan, 2021b),
a.k.a. self-adversarial learning (Sun et al., 2019).
In our pilot experiments, we found the two re-
trieval paradigms can provide distinct hard neg-
atives (> 40% top-retrieved candidates are differ-
ent) to ensure diversity after a combination. This
motivates us to make the best of the hard nega-
tives sampled by our dual representing modules:
hard negatives sampled from one module can be
applied to both itself and its counterpart in one
unified framework. This can be regarded as a sort
of self-distillation as both distilling samples (i.e.,
document mined from the collection) and distilling



Pre-trained Reranker Hard Mul

MS-Marco Dev TREC DL 19

Method model taught negs Repr
MRR@10 R@100 R@1k R@100 nDCG@10

Dense-vector Retriever
ANCE (Xiong et al., 2021) RoBERTapse 33.8 86.2 96.0 445 65.4
ADORE (Zhan et al., 2021) RoBERTapse v 347 87.6 - 47.3 68.3
TAS-B (Hofstitter et al., 2021) DistilBERT v 347 - 97.8 - 71.2
TCT-ColBERT (Lin et al., 2021) BERThase v v 35.9 - 97.0 - 71.9
coCondenser (Gao and Callan, 2021b) coConpase ve 38.2 - 98.4 - -
ColBERTvVI1 (Khattab and Zaharia, 2020) BERTpqse v 36.0 - 96.8 - -
ColBERTV2 (Santhanam et al., 2021) BERThase v v v 39.7 - 98.4 - -
RocketQAv2 (Ren et al., 2021b) ERNIE,ase v v 38.8 - -f - -
AR?2 (Zhang et al., 2022) coConpyse v v 39.5 - -t - -
Lexicon-base or Sparse Retriever
DeepCT (Dai and Callan, 2019) BERThase 243 - 91.3 - 55.1
SPLADE-max (Formal et al., 2021a) DistilBERT 34.0 - 96.5 - 68.4
DistilSPLADE-max (Formal et al., 2021a) DistilBERT v 36.8 - 97.9 - 72.9
SelfDistil (Formal et al., 2022) DistilBERT v v 36.8 - 98.0 - 72.3
EnsembleDistil (Formal et al., 2022) DistilBERT v v 36.9 - 97.9 - 72.1
Co-SelfDistil (Formal et al., 2022) coConpase Ve Ve 37.5 - 98.4 - 73.0
Co-EnsembleDistil (Formal et al., 2022)  coConpase v v 38.0 - 98.2 - 73.2
Hybrid Retriever
CLEAR (Gao et al., 2021b) BERTbase v 33.8 - 96.9 - 69.9
COIL-full (Gao et al., 2021a) BERThpase v 35.5 - 96.3 - 70.4
UnifieRiexicon (warmup) coCOnpgse 37.2 90.1 97.8 50.1 69.7
UnifieRgense (warmup) coConpase 36.1 877 96.6 446 63.9
UnifieRuni-retricval _(warmup) coConpyse v 38.3 90.8 98.0 50.6 70.2
UnifieRjexicon coConpage v 39.7 912 981 532 733
UnifieRgense coConpase ve 38.8 90.3 976 50.2 71.1
UnifieRyni-retrieval coCOnNpgse v v 40.7 92.0 984 53.8 73.8

Table 1: Passage retrieval results on MS-Marco Dev and TREC Deep Learning 2019. {Refer to Table 2. ‘coCon’: coCondenser
that continually pre-trained BERT in unsupervised manner. ‘Reranker taught’: distillation from a reranker (see §A).

labels (i.e., negative label only) are sourced from
one unified model. So, we first sample two sets of
negatives from the dual-representing modules:

N —{dld ~ P(d | g, D) g3 01) }

Ner) = {d|d ~ P(d | ¢, D\(4+); @(lex))} , (8)
where our UnifieR was trained with N(®m25) a
warmup stage. Next, we upgrade N in Eq.(7) from

N®™25) at warmup stage to N(den) U NUer) " and
then perform a continual learning stage.

Agreement-based Self-Regularization. We
lastly present a self-regularization method for Uni-
fier. Its goal is to achieve an agreement from differ-
ent views through our dual representing modules.
Such an agreement-based self-regularization has
been proven effective in both retrieval model train-
ing (via retriever-reranker agreements for consis-
tent results (Ren et al., 2021b; Zhang et al., 2022))
and general representation learning (via agreements
from various perturbation-based views for better
generalization (Chen et al., 2021a; Liang et al.,
2021; Gao et al., 2021c¢)). It is stronger than the
contrastive learning in Eq.(7) as the agreement is

learned by a KL divergence, i.e.,

L'™® = Dy, (P(d|g,{d" }UN; @) 9)
| P(d|g, {dT}UN; ©Ue)y),

Overall Training Pipeline. In line with (Gao and
Callan, 2021b), we lastly follow a simple three-step
pipeline to learn our retriever on the basis of the
proposed training objectives and hard negatives: (i)
Warmup Stage: Initialized by a pre-trained model,
Unifier is updated w.r.t. Eq.(7) + A FLOPS (by
following (Formal et al., 2021a) for sparsity), with
BM25 negatives N(®"2%) _ (ii) Hard Negative Min-
ing: According to the warmup-ed Unifier, static
hard negatives, N(9¢") and N(e?) are sampled by
Eq.(8). (iii) Continual Learning Stage: Continual
with the warmup-ed UnifieR, the model is finally
optimized on N(4en) UN(e?) w rt. a direct addition
of Eq.(7&9)+\ FLOPS.

3.4 Retrieval Schemes

As in Figure 2, our model is fully compatible with
the previous two retrieval paradigms. In addition,
we present a uni-retrieval scheme for fast yet ef-
fective large-scale retrieval. Instead of adding their
scores (Kuzi et al., 2020; Formal et al., 2022) from



Method M@10 R@50 R@IK Method Avg Best/In-Dm

RocketQA (Qu et al., 2021) 37.0 85.5 97.9 Lexicon BM25 (Thakur et al., 2021) 41.1 1 | 22.8

PAIR (Ren et al., 2021a) 37.9 86.4 98.2 “based DocT5Query 424 0 | 33.8
RocketQAv2 38.8 86.2 98.1 UniCOIL (Lin and Ma, 2021) 40.0 0 -

AR2 39.5 87.8 98.6 ColBERT 41.8 2 | 40.8

UnifieRexicon 39.7 87.6 98.2 Dense ANCE (Xiong et al., 2021) 37.7 0 | 38.8

UnifieRgense 38.8 86.3 97.8 GenQ (Thakur et al., 2021) 39.8 1 | 40.8

UnifieRuni-retrieval 407 882 985 "VECOT TASB (Hofstitter et al., 2021) 40.4 0 | 40.8
Contriever (Izacard et al., 2021) 44.3 4 -

Table 2: MS-Marco retrieval on one-positive-enough recall. UnifieRuni-retrieval 44.5 4 | 471

Reranker CoIBERT-v2 47.0N/A| 42.5

taught DistilSPLADE 47.0N/A| 43.3

o . . . oAl Huge GTR-XXL (Ni et al., 2021) 459N/A| 44.2

twice-retrieval with heavy overheads, we pipelinel models SGPT.5.8B (Muennighoff, 2022494 N/A| 39.9

ize the retrieval procedure: given ¢, our lexicon-
based retrieval under an inverted file system is to
retrieve top-K documents from . Then, our dense-
vector retrieval is then applied to the constrained
candidates for dense scores. The final retrieval re-
sults are according to a simple addition of the two
scores. We use ‘addition’ as our combination base-
line for its generality and explore more advanced
methods in §4.4. And, due to fast dense-vector
dot-product calculations on top-K documents, uni-
retrieval’s latency is almost equal to single lexicon-
based retrieval. Please see §B for details about
lexicon-based inference in large-scale retrieval, es-
pecially what’s the difference with the dense one.

4 Experiment

Datasets & Metrics. In line with (Formal et al.,
2021a), we use popular passage retrieval datasets,
MS-Marco (Nguyen et al., 2016), with official
queries (no augmentations (Ren et al., 2021b)),
and report for MS-Marco Dev set and TREC Deep
Learning 2019 set (Craswell et al., 2020). Follow-
ing previous works, we report MRR@10 (M@10)
and Recall @ 1/50/100/1K? for MS-Marco Dev, and
report nDCG@10 and R@100 for TREC Deep
Learning 2019. Besides, we also transfer our
model trained on MS-Marco to the BEIR bench-
mark (Thakur et al., 2021) to evaluate its general-
izability, where nDCG@10 is reported. We take
12 datasets (i.e., TREC-COVID, NFCorpus, NQ,
HotpotQA, FiQA, ArguAna, Téuche-2020, DBPe-
dia, Scidocs, Fever, Climate-FEVER, and SciFact)
in the BEIR benchmark as they are widely-used
across most previous papers. Please refer to §D for
our pre-training and fine-tuning setups.

2We follow official evaluation metrics at https://
github.com/castorini/anserini. But, we found
2 kinds of Recall@N on MS-Marco in recent papers, i.e., offi-
cial all-positive-macro recall and one-positive-enough recall
(see §C for details). Thereby, we report the former by default
but list the latter separately for fair comparisons.

Table 3: Retrieval nDCG@ 10 results on BEIR with 12 out-
of-domain datasets, as well as 1 in-domain dataset. Avg is
mean nDCG over 12 datasets and Best is how many datasets a
method achieves best. DocT5Query (Nogueira et al., 2019),
ColBERT (Khattab and Zaharia, 2020), ColBERT-v2 (San-
thanam et al., 2021), DistilSPLADE (Formal et al., 2021a).

4.1 Main Evaluation

MS-Marco Dev. As in Table 1&2, our frame-
work achieves new state-of-the-art metrics on
most metrics. Our dense-vector retrieval sur-
passes previous methods without distillations from
rerankers, while our lexicon-based retrieval pushes
the best sparse method to a new level, especially
in MRR@10 (+1.4%). Empowered by our uni-
fied structure, the uni-retrieval scheme can achieve
40.7% MRR @10. Although R@1K is approaching
its ceiling across recent works, we notice UnifieR
is less competitive than AR2 (-0.2%) in Table 2, as
the latter involves a costly reranker in training for
better generalization. And please see §4.4 for our
rerank-taught results.

TREC Deep Learning 2019. As listed in Ta-
ble 1, our retrieval method, with either single
(dese/lexicon) or unified representation, achieves a
state-the-of-art or very competitive retrieval qual-
ity. Specifically, compared to the previous best
method, called TAS-B, our model lifts MRR@ 10
and nDCG@10 by 6.9% and 2.6%, respectively.

BEIR Benchmark. Table 3 shows in-domain
evaluation and zero-shot transfer on BEIR (see
§E.1). It is observed that, with outstanding in-
domain inference ability, our model also deliv-
ers comparable transferability among the retrievers
with similar training settings (i.e., comparable mod-
els o/w reranker distillations). But, as shown in the
table, we found our model suffers from inferior
generalization ability compared to the models with
MSE-based reranker distillation (Santhanam et al.,
2021; Formal et al., 2021a). And a small model
with distillation (e.g., DistilSPLADE) even beats


https://github.com/castorini/anserini
https://github.com/castorini/anserini

Method M@10 R@l
UniﬁeRum.,eu-ieval 40.7 26.9
Uni-scheme of Best? 40.3 26.1
Ensemble of Best? 40.4 26.5
Ensemble of SPLADE?  40.0 -
COIL-full (hybrid) 35.5 -

Table 4: Comparison with ensemble and hybrid retrievers.
'We operate on the best SPLADE model (MRR @ 10=38.5)
with the best coCondenser (MRR @ 10=38.2). 2An ensemble
of four SPLADE models.

Lexicon-based Dense-vector

M@10R@100M@10R@100
UnifieR (warmup) 372 90.1 36.1 877
<& wl/o sharing Global  36.1 89.8 352 87.2
< w/o in-depth Interact 36.1 89.3 35.7 89.7

Methods

Table 5: Ablation of the encoder on MS-Marco Dev.

the models with billions of parameters (e.g., GTR-
XXL). The potential reasons are two-fold: 1) dis-
tilling a reranker to the retriever has been proven
to produce more generalizable scores than a bi-
encoder (Menon et al., 2021) and ii) the initializa-
tion of UnifieR, coCondenser, has been pre-trained
on Marco collection, reducing its generalization.

4.2 Further Analysis

Comparison to Ensemble Models. As in Ta-
ble 4, we report the numbers to compare our uni-
retrieval scheme with ensemble models. Even if we
only need once large-scale retrieval followed by a
small amount of dot-product calculation, the model
still surpasses its competitors. Meantime, we
found both uni-retrieval and ensemble are bounded
by the worse participant. For example, even if
we use a SPLADE with MRR@10 of 39.3 for
‘Ensemble/Uni-scheme of Best’, the performance
did not show a remarkable gain. This suggests us to
look for a better aggregation method in the future.

Ablation of Neural Structure. To verify the cor-
rectness of each module design, we conduct an
ablation study on the neural structure of the en-
coder (§3.2) in Table 5. This must be performed at
the warmup step as the second stage is continual
from the warmup. It is observed that, either remov-
ing the global information from the lexicon-based
module or discarding in-depth inter-paradigm in-
teractions (i.e., learning independently) degrades
the model dramatically. Surprisingly, removing
the global also diminishes dense performance. A
potential reason is that, such a change makes the
fine-tuning inconsistent with its initializing pre-
trained model, coCondenser, leading to corrupted

Top-N|QPS M@10 R@100|Remark
BM25|449 193 69.0
ORG | 50 413 923
75 129 408 91.5
50 188 404 91.1
25 343 384  89.0
20 446 375 876
15 537 36.2 86.0
10 693 336 822
8 911 319 79.8
4 954 255 700
2 1144 162 532
1 1376 1.8 22.3

Not sparsified
J Index as Sparse as BM25

J Infer as Faster than BM25

1 Better than BM25

Table 6: UnifieR-lex v.s. QPS by Top-N lexicon sparsifying.
The QPS is calculated on a CPU machine with pre-embedded
queries, and ORG denotes non-sparsified UnifieR.

representing capability. Please refer to §E.2 for
additional ablations about learning and data.

Evaluation of Learning Consistency. To verify
if the dual representing modules depend on con-
sistent semantic/syntactic features for the common
target, we conduct an experiment to train one of
the dual modules but leave the other unchanged at
continual training stage. As in Figure 4, the left-
most one is warmup-ed UnifeR (warmup), whereas
the rightmost one is the full UnifeR (dual-trn) as
an upper bound of performance. Interestingly, op-
timizing for each of the representing modules can
improve both retrieval paradigms (i.e., lexicon and
dense). This confirms that optimizing one module
can benefit the other, attributed to complementary
representations and the consistent learning target.

4.3 Efficiency Analysis

FLOPS analysis. To view sparsity-efficacy trade-
off, we vary the loss weight A for FLOPS sparse
regularization (Paria et al., 2020). As in Figure 5,
with A exponentially increasing, document FLOPS
decreases linearly, improving the efficiency of our
framework. Meantime, the descending of lexicon-
based efficacy is not remarkable when FLOPS >
4 and then becomes notable with the growth of A.
Fortunately, this will not affect the dense represen-
tation in terms of dense-vector retrieval.

Uni-Retrieval Hyperparameter. In uni-retrieval
scheme, a hyperparam K is used to control com-
putation overheads of dense dot-product. As il-
lustrated in Figure 6, ‘K=0" denotes lexicon-only
retrieval in UnifieR. The table shows that UnifieR
reaches an MRR @10 ceiling when K is set to a de
facto number, i.e., 1000. Then, the upper bound of
R@1000 is reached when K=2048. After that, the
two metrics cannot be observed with any changes.
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Figure 4: Verifying consistency of
dual representing modules. ‘trn’ de-

notes ‘training’. performance.

Method M@10 R@100
UnifieR-uni (warmup) 38.3 90.8
+ query-side gating 39.2 91.2

Table 7: Stage 1 of UnifieR with query-side gating.

Latency Analysis. Besides the un-intuitive
FLOPS numbers, we also exhibit the latency (mea-
sured by ‘query-per-second’ — QPS) of UnifieR.
Basically, our UnifieR is bottlenecked by its lexi-
con head in terms of inference speed as aforemen-
tioned, so we would like to dive into the control-
lable sparsity of UnifieR-lex. Note that, to reserve a
large room for further sparsifying, we leverage the
reranker-taught UnifieR-lex as shown in Table 8,
whose MRR@10 is 41.3%. Then, we adopt a sim-
ple but effective sparsifying method — top-N (Yang
et al., 2021) — but in the index-building process
only. As a result, we show the performance of our
UnifieR-lexicon with N decreasing in Table 6. It
is shown that only the Top-4 tokens kept for each
passage can still deliver very competitive results
with faster speed than BM25.

4.4 Exploration of Advanced Architecture

Query-side Gating Mechanism.  As it is too
rough to directly add the scores of the two retrieval
paradigms, we incorporate a recent inspiration of
mix-of-expert (MoE) to enhance the combination
of the two paradigms. As in illustrated in §E.4, we
leveraged a gating mechanism to switch UnifieR
between dense and lexicon, based solely on the
semantics of queries. The reasons for “solely on
queries” are two-fold: i) the analyses in §F show
that the type of queries affects models a lot and
ii) the dependency on queries only will not affect
the indexing procedure for large-scale collections,
leading to zero extra inference overheads. After
this gating mechanism in the warmup stage of Uni-
fieR training where the gate’s optimization is based
on the relevance score of uni-retrieval. As listed
in Table 7, a remarkable improvement is observed

) for FLOPS sparse regularization

Figure 5: Effects of the loss weight A of
FLOPS sparse regularization on the our

K in Uni-retrieval Scheme

Figure 6: Effects of the hyperparam
K in our uni-retrieval scheme on MS-
Marco Deyv.

Dense-vector Lexicon-based Uni/Multi-Vec

M@10R@100M@10R@100M@10R@100

Methods

Previous SoTA 39.5 - 37.5 - 39.7 -
UnifierR 388 90.3 397 912 40.7 920
Unifier (distill) 40.5 91.6 41.3 923 420 93.0

Table 8: Reranker-taught Unifier v.s. previous state-of-the-
art (SoTA) models (i.e., Dense (Zhang et al., 2022), Lexi-
con(Formal et al., 2022), Multi-Vec (Santhanam et al., 2021)).

with such a query-side gating mechanism (+0.9%
MRR@10 and +0.4% R@100).

Reranker-taught UnifieR. Although the UnifieR
in Table 1 & 2 seems significant in terms of per-
formance improvement, it’s noteworthy that the
comparisons are unfair because UnifieR didn’t use
a re-ranker (a strong but heavy cross-encoder) as a
teacher for knowledge distillation (see ‘Reranker
taught’ in Table 1). To make the comparisons fairer,
we first trained a re-ranker based on UnifieR’s hard
negatives and then used a KL loss for distillation
in the Continual Training Stage (as illustrated in
Figure 8 of §E.5). As listed in Table 8, it is shown
that i) our proposed UnifieR is compatible with
‘Reranker taught’ scheme and consistently brings
1%+ improvement, and ii) UnifieR outperforms its
strong competitors by large margins (2.0%+).

5 Conclusion

We present a brand-new learning framework,
dubbed UnifieR, to unify dense-vector and lexicon-
based representing paradigms for large-scale re-
trieval. It improves the two paradigms by a care-
fully designed neural encoder to fully exploit the
representing capability of pre-trained language
models. Its capability is further strengthened by
our proposed dual-consistency learning with self-
adversarial and -regularization. Moreover, the uni-
retrieval scheme and the advanced architectures
upon our encoder are presented to achieve more.
Experiments on several benchmarks verify the ef-
fectiveness and versatility of our framework.
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A  More Related Work

Bottleneck-based Learning. In terms of neural
designs, our encoder is similar to several recent
representation learning works, e.g., SEED-Encoder
(Lu et al., 2021). Condenser (Gao and Callan,
2021a), coCondenser (Gao and Callan, 2021b),
and DiffCSE (Chuang et al., 2022), but they fo-
cus on the bottleneck of sequence-level dense vec-
tors. For example, SEED-Encoder, Condenser, and
CoCondenser enhance their dense capabilities by
emphasizing the sequence-level bottleneck vector
and weakening the word-level language modeling
heads, while DiffCSE makes the learned sentence
embedding sensitive to the difference between the
original sentence and an edited sentence by a word-
level discriminator. With distinct motivations and
targets, we fully exploit both the dense-vector bot-
tleneck and the word-level representation learning
in a PLM for their mutual benefits. These are on
the basis of not only the shared neural modules
but also structure-facilitated self-learning strategies
(see the next section). Nonetheless, as discussed in
our experiments, our model can still benefit from
these prior works via parameter initializations.

Instance-dependent Prompt. Our model also
shares high-level inspiration with recent instance-
dependent prompt learning methods (Jin et al.,
2022; Wu et al., 2022). They introduce a train-
able component to generate prompts based on each
input example. Such generated prompts can pro-
vide complementary features to the original input
for a better prediction quality. Analogously, our
sequence-level dense vector can be seen as a sort
of ‘soft-prompt’ for the sparse lexicon-based repre-
sentation module, resulting in the superiority of our
lexicon-based retrieval, which will be discussed in
experiments. In addition, the ‘soft-prompt’ in our
UnifieR also serves as crucial outputs in a unified
retrieval system.

Reranker-taught Retriever. Distilling the
scores from a reranker into a retriever is proven
promising (Hofstitter et al., 2020; Formal et al.,
2021a; Hofstitter et al., 2021) . In light of this,
recent works propose to jointly optimize a retriever
and a reranker: RocketQAv2 (Ren et al., 2021b)
is proposed to achieve their agreements with
reranker-filtered hard negatives, while AR2 (Zhang
et al., 2022) is to learn them in an adversarial
fashion where the retriever is regarded as a
generator and the reranker as a discriminator. In
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contrast to reranker-retriever co-training, we resort
to in-depth sharing from the bottom (i.e., features)
to the top (i.e., self-learning) merely within a
retriever, with no need for extra overheads of
reranker training. Meantime, our unified structure
also uniquely enables it to learn from more diverse
hard negatives mined by its dual representing
modules.

B Lexicon-based Inference for
Large-Scale Retrieval

During the inference of large-scale retrieval, there
are some differences between dense-vector and
lexicon-based retrieval methods.

As in Eq.(1), we use the dot-product between the
real-valved sparse lexicon-based representations as
a relevance metric, where ‘real-valved’ is a prereq-
uisite of gradient back-propagation and end-to-end
learning. However, it is inefficient and infeasible
to leverage the real-valved sparse representations,
especially for the open-source term-based retrieval
systems, e.g., LUCENE and Anserini (Yang et al.,
2017). Following Formal et al. (2021a), we adopt
‘quantization’ and ‘term-based system’ to complete
our retrieval procedure. That is, to transfer the
high-dimensional sparse vectors back to the cor-
responding lexicons and their virtual frequencies,
the lexicons are first obtained by keeping the non-
zero elements in a high-dim sparse vector, and each
virtual frequency then is derived from a straightfor-
ward quantization (i.e., | 100 x v]).

In summary, the overall procedure of our large-
scale retrieval based on a fine-tuned UnifieR-lex is
i) generating the high-dim sparse vector for each
document and transferring it to lexicons and fre-
quencies, ii) building a term-based inverted index
via Anserini (Yang et al., 2017) for all documents
in a collection, iii) given a test query, generating
the lexicons and frequencies, in the same way, and
iv) querying the built index to get top document
candidates.

C Explanation of Two Recall Metrics

Regarding R@N metric, we found there are two
kinds of calculating ways, and we strictly follow
the official evaluation one at https://github.
com/usnistgov/trec_eval and https:
//github.com/castorini/anserini,


https://github.com/usnistgov/trec_eval
https://github.com/usnistgov/trec_eval
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which is defined as

Ed+€D+ 1d+€]ﬁ)
(N, D)

(10)

1
Marco-Recall@N = — Z
QI =

where there may be multiple positive documents
DT € D, Q denotes the test queries and D de-
notes top-K document candidates by a retrieval
system. We also call this metric all-positive-macro
Recall @N. On the other hand, another recall cal-
culation method following DPR (Karpukhin et al.,
2020) is defined as

1
DPR-Recall @N = — > " 15,5, 4ep+- (1)
< q€Q

which we call one-positive-enough Recall@N.
Therefore, The official (all-positive-macro) Re-
call@N is usually less than DPR (one-positive-
enough) Recall@N, and the smaller N, the more
obvious.

D Experimental Setups

As stated in §3.3, we take a 2-stage learning scheme
(Gao and Callan, 2021b). We use coCondenser-
marco (Gao and Callan, 2021b) (unsupervised con-
tinual pre-training from BERT-base (Devlin et al.,
2019)) as our initialization as it shares a similar
neural structure (see the end of §3.2) and has po-
tential for promising performance (Gao and Callan,
2021b; Formal et al., 2022; Zhang et al., 2022).
G(Ct‘”), g(den) and g(lex) correspond to Transformer
layers of 6, 6, and 2, respectively, where max length
is 128 and warmup ratio is 5%. At warmup stage,
batch size of queries is 16, each with 1 positive doc-
ument and 15 negatives, learning rate is 2 x 1075,
the random seed is fixed to 42. And loss weight of
FLOPS (Paria et al., 2020) is set to 0.0016 since we
want make the model sparser than SPLADE (For-
mal et al., 2021a) (0.0008). At continual learning
stage, batch size is 12 to enable each module with
15 negatives. And learning rate is reduced to 1/3 of
the original, and the random seed is changed to 22
for a new data feeding order. And the loss weight of
FLOPS is lifted to 0.0024. We did not tune the hy-
perparameters. In retrieval phase, we set K=2048
in our uni-retrieval, and also compare other choices
in our analysis. All experiments are run on a single
A100 GPU. Our codes will be open-sourced.
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E More Experimental Analysis

E.1 BEIR Details

Please refer to Table 9 for detailed results on BEIR
benchmark with 12 datasets.

E.2 Ablation of Learning Objectives

Learning of Learning Strategy. Furthermore,
we conduct another ablation study on the learning
strategies (§3.3) in Table 10. This is performed at
the continual training stage. The table shows that,
ablating the negative-bridged self-adversarial (self-
adv) and the agreement-based self-regularization
(self-reg) has a minor effect on lexicon-based re-
trieval but is remarkable on dense-vector one. This
is because the former is already far stronger than
the latter. Thereby, both self-adv and self-reg can
be regarded as a sort of (self-)distillation from lexi-
con knowledge from a well-trained language model
to dense semantic representation. We will dive into
the self-reg in the following to seek for a better
learning strategy, especially for the lexicon-based
retrieval. In addition, we also observed that the pro-
posed self-learning strategies (i.e., self-adversarial
and self-regularization) mainly contribute to dense-
vector retrieval (+0.6% and 0.3% MRR @10, re-
spectively) but only bring limited performance im-
provement for lexicon-based method (+0.1% and
0.1% MRR @10, respectively). The main reasons
are two-fold: 1) Verified in (Formal et al., 2021a;
Hofstitter et al., 2021), lexicon-based methods con-
sistently outperform dense-vector methods in ad-
hoc retrieval as lexicon-overlap serves as an impor-
tant feature in relevance calculations. Therefore,
the improvement mainly falls into the dense-vector
part via knowledge distillation from the lexicon-
based part. ii) Meantime, the common knowledge
distillation schema is from a strong teacher to a
weak student, e.g., cross-encoder reranker v.s. bi-
encoder retriever with a 5~10% performance gap
in ad-hoc retrieval scenarios (Zhang et al., 2022;
Ren et al., 2021b). In contrast, the participants
(Unifier-dense & -lexicon) of our self-learning
have similar performance (gap <1%), making the
improvement limited.

Narrowing Self-regularization Targets. By de-
fault, we apply the self-reg to hard negatives from
both representing modules, which intuitively is a
compromise choice for both. To explore if the
self-reg can push one of them to an extreme, we
conduct exploratory settings for the self-reg in Ta-



Methods Sparse Dense
BM25 DT5Q UniCOIL ColBERT DPR ANCE GenQ TAS-B Contriever Ours
TREC-COVID 65.6 71.3 59.7 67.7 33.2 65.4 61.9 48.1 59.6 71.5
NFCorpus 32.5 32.8 32.5 30.5 18.9 23.7 31.9 31.9 32.8 329
NQ 32.9 39.9 36.2 52.4 474 44.6 35.8 46.3 49.8 51.4
HotpotQA 60.3 58.0 64.0 59.3 39.1 45.6 53.4 58.4 63.8 66.1
FiQA 23.6 29.1 27.0 31.7 11.2 29.5 30.8 30.0 329 31.1
ArguAna 31.5 34.9 35.5 23.3 17.5 41.5 49.3 429 44.6 39.0
Téuche-2020 36.7 34.7 25.9 20.2 13.1 24.0 18.2 16.2 23.0 30.2
DBPedia 31.3 33.1 30.2 39.2 26.3 28.1 32.8 38.4 41.3 40.6
Scidocs 15.8 16.2 13.9 14.5 7.7 12.2 14.3 14.9 16.5 15.0
Fever 75.3 71.4 72.3 77.1 56.2 66.9 66.9 70.0 75.8 69.6
Climate-FEVER 21.3 20.1 15.0 18.4 14.8 19.8 17.5 22.8 23.7 17.5
SciFact 66.5 67.5 67.4 67.1 31.8 50.7 64.4 64.3 67.7 68.6
BEST ON 1 0 0 2 0 0 1 0 4 4
AVERAGE 41.1 424 40.0 41.8 26.4 37.7 39.8 40.4 443 44.5
Table 9: Detailed results (NDCG@ 10) on BEIR benchmark.
Lexicon-based Dense-vector Retriever Reranker M@10
Methods M@10 R@100 M@10 R@100 RepBERT RepBERT 377
- ME-HYBRID ME-HYBRID 394
UnifierR 39.7 912 388 90.3 Rock
ocketQA RocketQA 40.9
< w/o Self-adv 39.6 915 382 903 RocketQAv2 RocketQAv2 41.9
<& wlo Self-adv&-reg 39.5 913 379  90.1 0 - -
urs (retriever-only) 40.7

Table 10: Ablation of our learning strategy at continual
training stage on MS-Marco Dev.

Lexicon-based Dense-vector

Methods

M@10 R@100 M@10 R@100
UnifieR 397 912 388 903
¢ Self-reg on N(%°™ only 39.5 91.0 383  90.0
¢ Self-reg on N*®) only 399 914 385 903

Table 11: Effect of our self-regularization’s targets on MS-
Marco.

ble 11. First, applying self-reg to the negatives
from dense-vector module even makes the whole
framework degenerate. It is likely attributed to the
dense-vector receiving less supervisions from the
lexicon part, which supports the above claim that
the self-reg can be seen as a distillation from lexi-
cons to dense embedding. On the other hand, when
applying self-reg only to the negatives by the lexi-
con part, the lexicon-based model achieves a new
level with 39.9% MRR @10, which is superior to
a single-representing retriever. This supports the
idea of instance-dependent prompt learning (men-
tioned in §3.2), where all modules work together
for better lexicon-weighting representations.

E.3 Comparison to Retrieval&Rerank

Without distillations or co-teaching from a reranker,
our retriever can be competitive with some state-of-
the-art retrieval & rerank methods as in Table 12.
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Table 12: Comparisons with retrieval &rerank pipelines.
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Figure 7: Equipping Unifier with query-side gating.

Note that the reranker is extremely costly as it
is applied to every query-document text concate-
nation, instead of counterpart-agnostic representa-
tions from a bi-encoder.

E.4 Illustration of Query-side Gating

We illustrate the query-side gating mechanism in
Figure 7, which leverages a gating mechanism to
dynamically combine lexicon and dense embed-
dings only at the query side.

E.5 Reranker-taught Pipeline

In contrast to the normal two-stage training pipeline
in Figure 3, we present our reranker-taught pipeline
in Figure 8.
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Figure 8: Reranker-taught Unifier by knowledge distillation.

F Qualitative Analysis
F.1 Case Study

As shown in Table 13, we list two queries cou-
pled with the ranking results from five retrieval
systems. Those are from three groups, i.e., i) previ-
ous state-of-the-art dense-vector and lexicon-based
retrieval models, i1) the dense-vector and lexicon-
based retrieval modules from our UnifieR, and iii)
uni-retrieval scheme by our UnifieR.

As demonstrated in the first query of the ta-
ble, ‘Indep-lex’ achieves a very poor performance,
where the positive passage is ranked as 94. Via
exhibiting its top-1 passage, the error is possibly
caused by the confusion between the ‘weather’ for
a specific day and ‘weather’ for a period (i.e., cli-
mate). This is because the ‘weather’ as a pivot
word in both contexts receives large weights, mak-
ing the distinguishment very hard. Although our
UnifieRex can lift the positive from 94 to 3 by our
carefully designed unified model, it still suffers
from confusion. Meantime, it is observed that both
dense-vector methods perform well since they rely
on latent semantic contextualization, less focusing
on a specific word.

As shown in the second query of the table, the
strange word, ‘idiotsguides’ makes both dense-
vector models less competent. On the contrary,
the lexicon-based method can handle this case per-
fectly. It is still noteworthy that our UnifieRge, can
also outperform the vanilla one, ‘Indep-den’, by
lifting 31 (41—10) ranking position. This is at-
tributed to our consistent feature learning, which
bridges the gap of heterogeneity between dense-
vector and lexicon-based retrieval.

These two cases also support the previous claim
that the two representing ways can provide dis-
tinct views of query-document relevance. Further-
more, despite varying performance across different
paradigms, our uni-retrieval scheme consistently
performs well as it is an aggregation of both.
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F.2 Error Analysis.

As shown in Table 14, we show two representative
cases which our proposed method cannot handle.

1) query hubness: The first case shows a query
that cannot be tackled by our UnifieR in any re-
trieval paradigm. However, it is observed that the
top-1 passage retrieved by our model can also be
considered as a positive passage, which can an-
swer the query ‘what is a dvt’. These negative
passages for the query are false negatives, which
are brought by the limited crowd-sourcing labeling
procedure. Therefore, the poor performance of our
model instead proves that our model is more robust,
whereas the independent learning model is overfit-
ting to its false negatives, resulting in seemingly
good outputs.

i) Insufficient representation ability: The sec-
ond case lists the top-retrieved passages for all five
retrieval systems. It is shown that compared to inde-
pendently learned retrieval models (i.e., ‘Indep-den’
and ‘Indep-lex’), our unified models even perform
worse and retrieve less relevant passages (refer to
UnifieRge,’s 1st). An interesting point is that the
‘Ups’-related passage is retrieved by our UnifieRgey
since ‘upsell’ is tokenized as ‘ups’ and ‘##ell’. This
is highly likely since one single model is required
to serve dual representing modules, compromising
its representation ability.

Meantime, our uni-retrieval can still improve
the ranking performance by combining both of the
representing worlds.

F.3 Limitation

The main limitations of this work are 1)PLM Com-
patibility: due to the special encoder design, Uni-
fieR can only be initialized from a limited number
of pre-trained models, and ii) Additional Infrastruc-
ture: in spite of the almost same retriever latency as
traditional lexicon-based retrieval, UnifieR requires
extra computation infrastructure for indexing and
storing both dense and sparse embeddings of all
documents in the collection.



Query ID:1088347// weather in new york city ny

Passage+ [D:7094280// Title: - Body: New York, NY - Weather forecast from Theweather.com. Weather conditions with
updates on temperature, humidity, wind speed, snow, pressure, etc. for New York, New York Today: Cloudy
skies with light rain, with a maximum temperature of 72C and a minimum temperature of 52C.

Rank Indep-den: 1; Indep-lex: 94; UnifieRgen: 1; UnifieRiex: 3; UnifieRyni: 1

Retrieved Indep-lex’s 1st. ID:65839// Title: New York City - Best Time To Go & When to Go Body: Weather: Spring in
New York City is the best time to be in the city, without doubt. Spring usually means less humidity and temps
between 50-80 degrees, though June occasionally sees a 90 degree day. An occasional humidity soaked heat
wave can strike, but it usually feels nice the first time around.
Indep-lex’s 2nd. ID:4835773// Title: Climate of New York Body: Weather: Unlike the vast majority of the
state, New York City features a humid subtropical climate (Koppen Cfa). New York City is an urban heat island,
with temperatures 5-7 degrees Fahrenheit (3-4 degrees Celsius) warmer overnight than surrounding areas. In an
effort to fight this warming, roofs of buildings are being painted white across the city in an effort to increase the
reflection of solar energy, or albedo.
UnifieRex’s 1st. ID:65839// Title: New York City - Best Time To Go & When to Go Body: Weather: Spring in
New York City is the best time to be in the city, without doubt. Spring usually means less humidity and temps
between 50-80 degrees, though June occasionally sees a 90 degree day. An occasional humidity soaked heat
wave can strike, but it usually feels nice the first time around.
UnifieRiex’s 2nd. ID:8819213// Title: New York City - Best Time To Go & When to Go Body: Weather: Spring
in New York City is the best time to be in the city, without doubt. Spring usually means less humidity and temps
between 50-80 degrees, though June occasionally sees a 90 degree day.

Query ID:391101// idiotsguides tai chi

Passage+ [D:7668258// Title: - Body: Bill is the author of The Complete Idiot’s Guide to Tai Chi & Qigong (4th edition),
and his newest upcoming books, The Tao of Tai Chi, and The Gospel of Science, in which he paints a vision of
vast global benefit as mind-body sciences spread across the planet.

Rank Indep-den: 41; Indep-lex: 1; UnifieRgen: 10; UnifieRiex: 1; UnifieRyni: 1

Retrieved Indep-den’s 1st. ID:1603205// Title: - Body: Tai chi. Tai chi (simplified Chinese: ; traditional Chinese: ; pinyin:
chi, an abbreviation of ;is an internal Chinese martial art (Chinese: ; pinyin: ) practiced for both its defense
training and its health benefits.
Indep-den’s 2nd. ID:3449438// Title: Tai chi: A gentle way to fight stress Body: Tai chi is an ancient Chinese
tradition that, today, is practiced as a graceful form of exercise. It involves a series of movements performed in a
slow, focused manner and accompanied by deep breathing. Tai chi, also called tai chi chuan, is a noncompetitive,
self-paced system of gentle physical exercise and stretching.
UnifieRgen’s 1st. 1D:2294942// Title: WHAT IS TAI CHI? Body: The Chinese characters for Tai Chi Chuan
can be translated as the ‘Supreme Ultimate Force’. The notion of ‘supreme ultimate’ is often associated with
the Chinese concept of yin-yang, the notion that one can see a dynamic duality (male/female, active/passive,
dark/light, forceful/yielding, etc.) in all things.
UnifieRaen’s 2nd. ID:3449442// Title: What is Tai Chi? Body: What is Tai Chi? In China, and increasingly
throughout the rest of the world, tai chi is recognized for its power to instill and maintain good health and
fitness in people of all ages. Tai chi aims to bring balance to body, mind and spirit through specifically designed
movements, natural breathing and a calm state of mind. It is easily recognized by its slow, captivating and
mesmerizing movements. It represents a way of life, helping people meet day to day challenges while remaining
calm and relaxed.

Table 13: Case study on MS-Marco Dev set. ‘Passage+’ denotes positive passage of the corresponding query.
‘Indep-den’ denotes a well-trained state-of-the-art dense-vector retrieval model with static hard negatives (i.e.,
coCondenser (Gao and Callan, 2021b), M@ 10=38.2) while ‘Indep-lex’ denotes a well-trained state-of-the-art
lexicon-based retrieval model with static hard negatives (i.e., SPLADE (Formal et al., 2022), M@ 10=38.5).
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Query

ID:682365// what is a dvt?

Passage+

1D:7544458// Title: Deep vein thrombosis Body: For other uses, see DVT (disambiguation). Deep vein
thrombosis, or deep venous thrombosis (DVT), is the formation of a blood clot (thrombus) within a deep vein,
most commonly the legs. Nonspecific signs may include pain, swelling, redness, warmness, and engorged
superficial veins.

Rank

Indep-den: 3; Indep-lex: 2; UnifieRgen: 12; UnifieRjex: 11;  UnifieRyni: 9

Retrieved UnifieRgen’s 1st. 1D:5404002// Title: Definition of ‘DVT’ Body: Definition of ‘DVT’. DVT is a serious medical

condition caused by blood clots in the legs moving up to the lungs. DVT is an abbreviation for *deep vein
thrombosis’. The results from one of the largest studies yet carried out leave little doubt that DVT is caused by
flying.

UnifieRiex’s 1st. ID:8492523// Title: What Is DVT? Body: What Is DVT? Deep vein thrombosis is a blood clot
that forms inside a vein, usually deep within your leg. About half a million Americans every year get one, and up
to 100,000 die because of it. The danger is that part of the clot can break off and travel through your bloodstream.
UnifieRyni’s 1st. ID:8492523// Title: What Is DVT? Body: What Is DVT? Deep vein thrombosis is a blood clot
that forms inside a vein, usually deep within your leg. About half a million Americans every year get one, and up
to 100,000 die because of it. The danger is that part of the clot can break off and travel through your bloodstream.

Query 1D:1029124// what is upsell

Passage+ [D:7220016// Title: Upselling Body: What is Upselling? Upselling is a sales technique aimed at persuading
customers to purchase a more expensive, upgraded or premium version of the chosen item or other add-ons for
the purpose of making a larger sale. eCommerce businesses often combine upselling and cross-selling techniques
in an attempt to increase order value and maximize profit.

Rank Indep-den: 3; Indep-lex: 1; UnifieRgen: 11; UnifieRiex: 9; UnifieRyni: 8

Retrieved Indep-den’s 1st. /1D:6288350// Title: - Body: If you improve inventory turn but pay more. in freight costs for

multiple shipments or your warehouse has to increase their variable costs. to process the additional shipments,
the net result may be a loss. 4. An upsell feature on the web is a visual reminder of how much money a customer
can. spend before the next shipping & handling threshold is met. King Arthur Flour is an. excellent example of
how to improve upsell and increase items per order. Showing the. amount available, relevant. choices within the
price.

Indep-lex’s 1st. ID:7220016// Title: Upselling Body: What is Upselling? Upselling is a sales technique aimed
at persuading customers to purchase a more expensive, upgraded or premium version of the chosen item or
other add-ons for the purpose of making a larger sale. eCommerce businesses often combine upselling and
cross-selling techniques in an attempt to increase order value and maximize profit.

UnifieRgen’s 1st. 1D:8487388// Title: Acronyms &Abbreviations Body: Ups is an open source source-level
debugger developed in the late 1980s for Unix and Unix-like systems, originally developed at the University of
Kent by Mark Russell. It supports C and C++, and Fortran on some platforms. The last beta release was in 2003.
UnifieRiex’s 1st. ID:4754301// Title: Upselling: 75 Strategies, Ideas and Examples Body: . Upsell Drip
Campaign to upsell B2B/Saas solutions. What is it? The upsell for B2B/Saas solutions email is meant to add
to the services. These emails offer premium services or upgrades for users on paying, free or trial accounts.
When is it sent? Upsell emails for B2B/Saas solutions are meant to extend the usability and functionality of the
software.

UnifieRuni’s 1st. ID:4754301// Title: Upselling: 75 Strategies, Ideas and Examples Body: . Upsell Drip
Campaign to upsell B2B/Saas solutions. What is it? The upsell for B2B/Saas solutions email is meant to add
to the services. These emails offer premium services or upgrades for users on paying, free or trial accounts.
When is it sent? Upsell emails for B2B/Saas solutions are meant to extend the usability and functionality of the
software.

Table 14: Error analysis on MS-Marco Dev set.
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