
UnifieR: A Unified Retriever for Large-Scale Retrieval

Anonymous ACL submission

Abstract

Large-scale retrieval is to recall relevant doc-001
uments from a huge collection given a query.002
It relies on representation learning to embed003
documents and queries into a common seman-004
tic encoding space. According to the encoding005
space, recent retrieval methods based on pre-006
trained language models (PLM) can be coarsely007
categorized into either dense-vector or lexicon-008
based paradigms. These two paradigms unveil009
the PLMs’ representation capability in different010
granularities, i.e., global sequence-level com-011
pression and local word-level contexts, respec-012
tively. Inspired by their complementary global-013
local contextualization and distinct represent-014
ing views, we propose a new learning frame-015
work, UnifieR, which unifies dense-vector and016
lexicon-based retrieval in one model with a017
dual-representing capability. Experiments on018
passage retrieval benchmarks verify its effec-019
tiveness in both paradigms. A uni-retrieval020
scheme is further presented with even better021
retrieval quality. We lastly evaluate the model022
on BEIR benchmark to verify its transferability.023

1 Introduction024

Large-scale retrieval aims to efficiently fetch all025

relevant documents for a given query from a large-026

scale collection with millions or billions of entries1.027

It plays indispensable roles as a prerequisite for a028

broad spectrum of downstream tasks, e.g., infor-029

mation retrieval (Cai et al., 2021), open-domain030

question answering (Chen et al., 2017). To make031

online large-scale retrieval possible, the common032

practice is to represent queries and documents by033

an encoder in a Siamese manner (i.e., Bi-Encoder,034

BE) (Reimers and Gurevych, 2019). So, its success035

depends heavily on a powerful encoder by effective036

representation learning.037

Advanced by pre-trained language models038

(PLM), e.g., BERT (Devlin et al., 2019), recent039

1A collection entry could be sentence, passage, document,
etc., and we take document for demonstrations.

works propose to learn PLM-based encoders for 040

large-scale retrieval, which are coarsely grouped 041

into two paradigms in light of their encoding spaces 042

with different focuses of representation granularity 043

That is, dense-vector encoding methods leverage 044

sequence-level compressive representations that 045

embedded into dense semantic space (Xiong et al., 046

2021; Zhan et al., 2021; Gao and Callan, 2021b; 047

Khattab and Zaharia, 2020), whereas lexicon-based 048

encoding methods make the best of word-level con- 049

textual representations by considering either high 050

concurrence (Nogueira et al., 2019) or coordinate 051

terms (Formal et al., 2021b) in PLMs. To gather the 052

powers of both worlds, some pioneering works pro- 053

pose hybrid methods to achieve a sweet point be- 054

tween dense-vector and lexicon-based methods for 055

better retrieval quality. They focus on interactions 056

of predicted scores between the two paradigms. 057

Nonetheless, such surface interactions – score 058

aggregations (Kuzi et al., 2020), direct co- 059

training (Gao et al., 2021b), and logits distillations 060

(Chen et al., 2021b) – cannot fully exploit the ben- 061

efits of the two paradigms – regardless of their 062

complementary contextual features and distinct rep- 063

resentation views. Specifically, as for contextual 064

features, the dense-vector models focus more on 065

sequence-level global embeddings against informa- 066

tion bottleneck (Lu et al., 2021; Gao and Callan, 067

2021a,b), whereas the lexicon-based models fo- 068

cus on word-level local contextual embeddings for 069

precise lexicon-weighting (Formal et al., 2021a, 070

2022; Nogueira et al., 2019). Aligning the two re- 071

trieval paradigms more closely is likely to benefit 072

each other since global-local contexts are proven 073

complementary in general representation learning 074

(Shen et al., 2019; Beltagy et al., 2020). As for 075

representing views, relying on distinct encoding 076

spaces, the two retrieval paradigms are proven to 077

provide different views in terms of query-document 078

relevance (Kuzi et al., 2020; Gao et al., 2021b,a). 079

Such a sort of ‘dual views’ has been proven piv- 080
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otal in many previous cooperative learning works081

(Han et al., 2018; Chen et al., 2021a; Liang et al.,082

2021; Gao et al., 2021c), which provides a great083

opportunity to bridge the two retrieval paradigms.084

Consequently, without any in-depth interactions,085

neither the single (dense/lexicon) nor the hybrid086

retrieval model can be optimal.087

Motivated by the above, we propose a brand-088

new learning framework, Unified Retriever (Uni-089

fieR), for in-depth mutual benefits of both dense-090

vector and lexicon-based retrieval. On the one091

hand, we present a neural encoder with dual rep-092

resenting modules for UnifieR, which is compati-093

ble with both retrieval paradigms. Built upon an094

underlying-tied contextualization that empowers095

consistent semantics sharing, a local-enhanced se-096

quence representation module is presented to learn097

a dense-vector representation model. Meantime,098

a global-aware lexicon weighting module consid-099

ering both the global- and local-context is pro-100

posed for a lexicon-based representation. On the101

other hand, we propose a new self-learning strategy,102

called dual-consistency learning, upon our unified103

encoder. Besides a basic contrastive learning objec-104

tive, we first exploit the unified dual representing105

modules by mining diverse hard negatives for self-106

adversarial within the UnifieR. Furthermore, we107

present a self-regularization method based on list-108

wise agreements from the dual views for better109

consistency and generalization.110

After being trained, UnifieR performs large-scale111

retrieval via either its lexicon representation by effi-112

cient inverted index or dense vectors by paralleliz-113

able dot-product. Moreover, empowered by our114

UnifieR, we present a fast yet effective retrieval115

scheme, uni-retrieval, to gather the powers of both116

worlds, where the lexicon retrieval is followed by117

a candidate-constrained dense scoring. Empiri-118

cally, we evaluate UnifieR on not only passage re-119

trieval benchmarks to check its effectiveness but the120

BEIR benchmark (Thakur et al., 2021) with twelve121

datasets (Natural Questions, HotpotQA, etc.) to122

verify the transferability of our model.123

2 Related Work124

PLM-based Retriever. Built upon PLMs, re-125

cent works propose to learn encoders for large-126

scale retrieval, which are coarsely grouped into127

two paradigms in light of their encoding spaces128

with different focuses of representation granular-129

ity: (i) Dense-vector encoding methods directly130

represent a document/query as a low-dimension 131

sequence-level dense vector u ∈ Re (e is embed- 132

ding size and usually small, e.g., 768). And the 133

relevance score between a document and a query 134

is calculated by dot-product or cosine similarity 135

(Xiong et al., 2021; Zhan et al., 2021; Gao and 136

Callan, 2021b; Khattab and Zaharia, 2020). (ii) 137

Lexicon-based encoding methods make the best of 138

word-level contextualization by considering either 139

high concurrence (Nogueira et al., 2019) or coordi- 140

nate terms (Formal et al., 2021b) in PLMs. It first 141

weights all vocabulary lexicons for each word of 142

a document/query based on the contexts, leading 143

to a high-dimension sparse vector v ∈ R|V| (|V| 144

is the vocabulary size and usually large, e.g., 30k). 145

The text is then denoted by aggregating over all 146

the lexicons in a sparse manner. Lastly, the rele- 147

vance is calculated by lexical-based matching met- 148

rics (e.g., BM25 (Robertson and Zaragoza, 2009)). 149

In contrast, we unify the two paradigms into one 150

carefully-designed encoder for better consistency 151

within PLMs, leading to complementary informa- 152

tion and superior performance. 153

Hybrid Retriever. Some works propose to 154

bridge the gap between dense and lexicon for a 155

sweet spot between performance and efficiency. A 156

direct method is to aggregate scores of the two 157

paradigms (Kuzi et al., 2020), but resulting in stan- 158

dalone learning and sub-optimal quality. Similar to 159

our work, CLEAR (Gao et al., 2021b) uses a dense- 160

vector model to complement the lexicon-based 161

BM25 model, but without feature interactions 162

and sophisticated learning. Sharing inspiration 163

with our uni-retrieval scheme, COIL (Gao et al., 164

2021a) equips a simple lexicon-based retrieval with 165

dense operations over word-level contextual em- 166

beddings. UnifieR differs in not only our lexicon 167

representations jointly learned for in-depth mu- 168

tual benefits but also sequence-level dense opera- 169

tions involved for memory-/computation-efficiency. 170

Lastly, SPARC (Lee et al., 2020) distills ranking 171

orders from a lexicon model (BM25) into a dense 172

model as a companion of the original dense vector, 173

which is distinct to our motivation. 174

Please see §A for more related works regarding 175

our encoder structures and learning methods. 176

3 Methodology 177

Task Definition. Given a collection with numer- 178

ous documents (i.e., D = {di}|D|i=1) and a textual 179

query q from users, a retriever aims to fetch a list 180
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of text pieces D̄q to contain all relevant ones. Gen-181

erally, this is based on a relevance score between q182

and every document di in a Siamese manner, i.e.,183

< Enc(q),Enc(di) >, where Enc is an arbitrary184

representation model (e.g., Bag-of-Words and neu-185

ral encoders) and < ·, · > denotes a lightweight186

relevance metric (e.g., BM25 and dot-product).187

3.1 General Retriever Learning Framework188

Figure 1: Bi-encoder learning.

To ground a method,189

we first introduce a190

contrastive learning191

framework to train a192

retrieval model (Fig-193

ure 1). For supervi-194

sion data in retriever195

training, differing from traditional categorical tasks,196

only query-document tuples (i.e., (q, d+q )) are given197

as positive pairs. Hence, given a q, a method needs198

to sample a set of negatives Nq = {d−q }M1 from199

D, and trains the retriever on tuples of (q, d+q ,Nq).200

M is the number of negatives. If no confusion201

is caused, we omit the subscript ‘q’ for a specific202

query in the remaining.203

Formally, given q and ∀d ∈ {d+} ∪ N, an en-204

coder, Enc(·; θ), is applied to them individually205

to produce their embeddings, i.e., Enc(q; θ) and206

Enc(d; θ), where the encoder is parameterized by207

θ if applicable. It is noteworthy we tie the query208

encoder with the document encoder in our work for209

simplicity. Then, a relevance metric is applied to210

each pair of the embeddings of the query and each211

document. Thus, a probability distribution over the212

documents {d+}∪N can be defined as213

p := P (d | q, {d+}∪N; θ) = (1)214

exp(< Enc(q; θ),Enc(d; θ) >)∑
d′∈{d+}∪N exp(< Enc(q; θ),Enc(d′; θ) >)

,215

where ∀d ∈ {d+} ∪ N. Lastly, a contrastive learn-216

ing loss to optimize the encoder θ is217

Lθ = − logP (d = d+ | q, {d+}∪N; θ). (2)218

3.2 Neural Encoder in UnifieR219

We present an encoder (see Figure 2) for UnifieR220

for dense-vector and lexicon-based retrieval.221

Underlying-tied Contextualization. We first222

propose to share the low-level textual feature ex-223

tractor between both representing paradigms. Al-224

though the two paradigms are focused on differ-225

Figure 2: The encoder in UnifieR.

ent representation granularities, sharing their un- 226

derlying contextualization module can still facil- 227

itate semantic knowledge transfer between the 228

two paradigms. As such, they can learn consis- 229

tent semantic and syntactic knowledge towards 230

the same retrieval targets, especially the salient 231

lexicon-based features transferred to dense vectors. 232

Formally, we leverage a multi-layer Transformer 233

(Vaswani et al., 2017) encoder to produce word- 234

level (token-level) contextualized embeddings, i.e., 235

H(x)=Transfm-Enc([CLS]x[SEP];θ(ctx)) (3) 236

where ∀x ∈ {q} ∪ {d+} ∪ N, and [CLS] & 237

[SEP] are special tokens by following PLMs 238

(Devlin et al., 2019; Liu et al., 2019), H(x) = 239

[h
(x)
[CLS],h

(x)
1 , . . . ,h

(x)
n ,h

(x)
[SEP]] are resulting em- 240

beddings, and n is the number of words in x. 241

Local-enhanced Sequence Representation. On 242

top of the embeddings with enhanced local con- 243

texts, we then present a representing module to 244

produce sequence-level dense vectors. For this pur- 245

pose, we apply another multi-layer Transformer 246

encoder to H(x), followed by a pooler to derive a 247

sequence-level vector. This can be written as 248

u(x) = Pool(Transfm-Enc(H(x); θ(den))), (4) 249

where this module is parameterized by θ(den) un- 250

tied with θ(ctx), Pool(·) gets a sequence-level 251

dense vector by taking the embedding of special 252

token [CLS], and the resulting u(x) ∈ Re denotes 253

a global dense representation of the input text x, 254

which is used for dense-vector retrieval. 255

Global-aware Lexicon Weighting. Lastly, to 256

achieve lexicon-based retrieval, we adapt a recent 257

SParse Lexical AnD Expansion Model (SPLADE) 258

(Formal et al., 2021a) into our neural encoder. 259

SPLADE is a lexicon-weighting retrieval model 260

which learns sparse expansion for each word in 261
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Figure 3: The two-stage self-learning strategy for UnifieR.

query/document x via the MLM head of PLMs262

and sparse regularization. Differing from the origi-263

nal SPLADE, our lexicon-based representing mod-264

ule not only shares its underlying feature extrac-265

tor with a dense model but strengthens its hid-266

den states by the global vector u(x) above. The267

intuition is that, similar to text decoding with a268

bottleneck hidden state, the global context serves269

as high-level constraints (e.g., concepts/topics) to270

guide word-level operations (Sutskever et al., 2014;271

Lu et al., 2021; Gao and Callan, 2021a). In par-272

ticular, the word-level contextualization embed-273

dings passed into this module are manipulated as274

Ĥ(x) = [u(x),h
(x)
1 , . . . ,h

(x)
[SEP]]. Then, a lexicon-275

weighting representation for x can be derived by276

v(x)=log(1+Max-Pool(ReLU( (5)277

W (e)Transfm-Enc(Ĥ(x)); θ(mlm)))),278

where, θ(mlm) parameterizes a multi-layer Trans-279

former encoder, W (e) ∈ R|V|×e denotes the trans-280

pose of word embedding matrix as the MLM281

head, |V| denotes the vocabulary size, θ(lex) =282

{W (e), θ(mlm)} parameterizes this module, and283

v(x) ∈ R|V| is a sparse lexicon-based representa-284

tion of x. And its sparsity is regularized by FLOPS285

(Paria et al., 2020) as in (Formal et al., 2021a).286

Here, the saturation function log(1+Max-Pool(·))287

prevents some terms from dominating.288

In summary, given a text x, UnifieR produces289

two embeddings via its dual representing modules:290

u(x) := Uni-Den(x; Θ(den)),291

v(x) := Uni-Lex(x; Θ(lex)), (6)292

where Θ(den) = {θ(ctx),θ(den)} and Θ(lex) =293

{θ(ctx),θ(den),θ(lex)}. Hence, u(x) ∈ Re denotes294

a dense vector and v(x) ∈ R|V| denotes a sparse295

lexicon-based embedding.296

3.3 Dual-Consistency Learning for UnifieR297

To maximize our encoder’s representing capac-298

ity, we propose a self-learning strategy, called299

dual-consistency learning (Figure 3). The ‘dual- 300

consistency’ denotes learning the dual representing 301

modules to achieve consistency in a unified model 302

via negative samples and module predictions. 303

Basic Training Objective. To learn the encoder, 304

a straightforward way is applying the contrastive 305

learning loss defined in Eq.(1-2) to our dual repre- 306

senting modules. That is, 307

L(con) = − logP (d = d+|q, {d+}∪N; Θ(den)) 308

− logP (d=d+|q, {d+}∪N; Θ(lex)), (7) 309

where the former is for dense-vector retrieval while 310

the latter is for lexicon-based retrieval. Towards 311

the same retrieval target, the model is prone to 312

learn consistent semantic and syntactic features 313

via complementing the global-local granularity 314

of the two retrieval paradigms. Due to the non- 315

differentiability of lexicon-based metrics, we fol- 316

low (Formal et al., 2021b) to use dot-product of 317

lexicon-weighting representation during training 318

but resort to a lexicon matching system (Yang et al., 319

2017) with quantization during indexing&retrieval. 320

(see Appx. B for details) Note that θ(den) would 321

not be optimized w.r.t. the losses on top of the 322

lexicon-based module. As for the query’s neg- 323

atives N of in Eq.(7), they are initially sampled 324

by a BM25 retrieval system at the warmup stage 325

(Zhan et al., 2021; Gao and Callan, 2021b), denoted 326

as N(bm25) =
{
d|d ∼ P (d | q,D\{d+};BM25)

}
, 327

where D\{d+} denotes all documents in the col- 328

lection D except the positive d+ for the query q. 329

Negative-bridged Self-Adversarial. However, 330

it is verified that learning a retriever based solely 331

on BM25 negatives cannot perform competitively 332

(Xiong et al., 2021; Zhan et al., 2021). Thereby, 333

previous works propose to sample hard negatives 334

by the best-so-far retriever for continual train- 335

ing (Zhan et al., 2021; Gao and Callan, 2021b), 336

a.k.a. self-adversarial learning (Sun et al., 2019). 337

In our pilot experiments, we found the two re- 338

trieval paradigms can provide distinct hard neg- 339

atives (> 40% top-retrieved candidates are differ- 340

ent) to ensure diversity after a combination. This 341

motivates us to make the best of the hard nega- 342

tives sampled by our dual representing modules: 343

hard negatives sampled from one module can be 344

applied to both itself and its counterpart in one 345

unified framework. This can be regarded as a sort 346

of self-distillation as both distilling samples (i.e., 347

document mined from the collection) and distilling 348
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Method Pre-trained
model

Reranker
taught

Hard
negs

Mul
Repr

MS-Marco Dev TREC DL 19

MRR@10 R@100 R@1k R@100 nDCG@10
Dense-vector Retriever
ANCE (Xiong et al., 2021) RoBERTabase 33.8 86.2 96.0 44.5 65.4
ADORE (Zhan et al., 2021) RoBERTabase ✓ 34.7 87.6 - 47.3 68.3
TAS-B (Hofstätter et al., 2021) DistilBERT ✓ 34.7 - 97.8 - 71.2
TCT-ColBERT (Lin et al., 2021) BERTbase ✓ ✓ 35.9 - 97.0 - 71.9
coCondenser (Gao and Callan, 2021b) coConbase ✓ 38.2 - 98.4 - -
ColBERTv1 (Khattab and Zaharia, 2020) BERTbase ✓ 36.0 - 96.8 - -
ColBERTv2 (Santhanam et al., 2021) BERTbase ✓ ✓ ✓ 39.7 - 98.4 - -
RocketQAv2 (Ren et al., 2021b) ERNIEbase ✓ ✓ 38.8 - -† - -
AR2 (Zhang et al., 2022) coConbase ✓ ✓ 39.5 - -† - -
Lexicon-base or Sparse Retriever
DeepCT (Dai and Callan, 2019) BERTbase 24.3 - 91.3 - 55.1
SPLADE-max (Formal et al., 2021a) DistilBERT 34.0 - 96.5 - 68.4
DistilSPLADE-max (Formal et al., 2021a) DistilBERT ✓ 36.8 - 97.9 - 72.9
SelfDistil (Formal et al., 2022) DistilBERT ✓ ✓ 36.8 - 98.0 - 72.3
EnsembleDistil (Formal et al., 2022) DistilBERT ✓ ✓ 36.9 - 97.9 - 72.1
Co-SelfDistil (Formal et al., 2022) coConbase ✓ ✓ 37.5 - 98.4 - 73.0
Co-EnsembleDistil (Formal et al., 2022) coConbase ✓ ✓ ✓ 38.0 - 98.2 - 73.2
Hybrid Retriever
CLEAR (Gao et al., 2021b) BERTbase ✓ 33.8 - 96.9 - 69.9
COIL-full (Gao et al., 2021a) BERTbase ✓ 35.5 - 96.3 - 70.4
UnifieRlexicon (warmup) coConbase 37.2 90.1 97.8 50.1 69.7
UnifieRdense (warmup) coConbase 36.1 87.7 96.6 44.6 63.9
UnifieRuni-retrieval (warmup) coConbase ✓ 38.3 90.8 98.0 50.6 70.2
UnifieRlexicon coConbase ✓ 39.7 91.2 98.1 53.2 73.3
UnifieRdense coConbase ✓ 38.8 90.3 97.6 50.2 71.1
UnifieRuni-retrieval coConbase ✓ ✓ 40.7 92.0 98.4 53.8 73.8

Table 1: Passage retrieval results on MS-Marco Dev and TREC Deep Learning 2019. †Refer to Table 2. ‘coCon’: coCondenser
that continually pre-trained BERT in unsupervised manner. ‘Reranker taught’: distillation from a reranker (see §A).

labels (i.e., negative label only) are sourced from349

one unified model. So, we first sample two sets of350

negatives from the dual-representing modules:351

N(den)=
{
d|d ∼ P (d | q,D\{d+}; Θ

(den))
}
,352

N(lex)=
{
d|d ∼ P (d | q,D\{d+}; Θ

(lex))
}
, (8)353

where our UnifieR was trained with N(bm25) at354

warmup stage. Next, we upgrade N in Eq.(7) from355

N(bm25) at warmup stage to N(den) ∪ N(lex), and356

then perform a continual learning stage.357

Agreement-based Self-Regularization. We358

lastly present a self-regularization method for Uni-359

fieR. Its goal is to achieve an agreement from differ-360

ent views through our dual representing modules.361

Such an agreement-based self-regularization has362

been proven effective in both retrieval model train-363

ing (via retriever-reranker agreements for consis-364

tent results (Ren et al., 2021b; Zhang et al., 2022))365

and general representation learning (via agreements366

from various perturbation-based views for better367

generalization (Chen et al., 2021a; Liang et al.,368

2021; Gao et al., 2021c)). It is stronger than the369

contrastive learning in Eq.(7) as the agreement is370

learned by a KL divergence, i.e., 371

L(reg)=DKL(P (d|q,{d+}∪N; Θ(den)) (9) 372

∥P (d|q, {d+}∪N; Θ(lex))). 373

Overall Training Pipeline. In line with (Gao and 374

Callan, 2021b), we lastly follow a simple three-step 375

pipeline to learn our retriever on the basis of the 376

proposed training objectives and hard negatives: (i) 377

Warmup Stage: Initialized by a pre-trained model, 378

UnifieR is updated w.r.t. Eq.(7) + λ FLOPS (by 379

following (Formal et al., 2021a) for sparsity), with 380

BM25 negatives N(bm25). (ii) Hard Negative Min- 381

ing: According to the warmup-ed UnifieR, static 382

hard negatives, N(den) and N(lex), are sampled by 383

Eq.(8). (iii) Continual Learning Stage: Continual 384

with the warmup-ed UnifieR, the model is finally 385

optimized on N(den)∪N(lex) w.r.t. a direct addition 386

of Eq.(7&9)+λ FLOPS. 387

3.4 Retrieval Schemes 388

As in Figure 2, our model is fully compatible with 389

the previous two retrieval paradigms. In addition, 390

we present a uni-retrieval scheme for fast yet ef- 391

fective large-scale retrieval. Instead of adding their 392

scores (Kuzi et al., 2020; Formal et al., 2022) from 393

5



Method M@10 R@50 R@1K
RocketQA (Qu et al., 2021) 37.0 85.5 97.9
PAIR (Ren et al., 2021a) 37.9 86.4 98.2
RocketQAv2 38.8 86.2 98.1
AR2 39.5 87.8 98.6
UnifieRlexicon 39.7 87.6 98.2
UnifieRdense 38.8 86.3 97.8
UnifieRuni-retrieval 40.7 88.2 98.5

Table 2: MS-Marco retrieval on one-positive-enough recall.

twice-retrieval with heavy overheads, we pipelinel-394

ize the retrieval procedure: given q, our lexicon-395

based retrieval under an inverted file system is to396

retrieve top-K documents from D. Then, our dense-397

vector retrieval is then applied to the constrained398

candidates for dense scores. The final retrieval re-399

sults are according to a simple addition of the two400

scores. We use ‘addition’ as our combination base-401

line for its generality and explore more advanced402

methods in §4.4. And, due to fast dense-vector403

dot-product calculations on top-K documents, uni-404

retrieval’s latency is almost equal to single lexicon-405

based retrieval. Please see §B for details about406

lexicon-based inference in large-scale retrieval, es-407

pecially what’s the difference with the dense one.408

4 Experiment409

Datasets & Metrics. In line with (Formal et al.,410

2021a), we use popular passage retrieval datasets,411

MS-Marco (Nguyen et al., 2016), with official412

queries (no augmentations (Ren et al., 2021b)),413

and report for MS-Marco Dev set and TREC Deep414

Learning 2019 set (Craswell et al., 2020). Follow-415

ing previous works, we report MRR@10 (M@10)416

and Recall@1/50/100/1K2 for MS-Marco Dev, and417

report nDCG@10 and R@100 for TREC Deep418

Learning 2019. Besides, we also transfer our419

model trained on MS-Marco to the BEIR bench-420

mark (Thakur et al., 2021) to evaluate its general-421

izability, where nDCG@10 is reported. We take422

12 datasets (i.e., TREC-COVID, NFCorpus, NQ,423

HotpotQA, FiQA, ArguAna, Tóuche-2020, DBPe-424

dia, Scidocs, Fever, Climate-FEVER, and SciFact)425

in the BEIR benchmark as they are widely-used426

across most previous papers. Please refer to §D for427

our pre-training and fine-tuning setups.428

2We follow official evaluation metrics at https://
github.com/castorini/anserini. But, we found
2 kinds of Recall@N on MS-Marco in recent papers, i.e., offi-
cial all-positive-macro recall and one-positive-enough recall
(see §C for details). Thereby, we report the former by default
but list the latter separately for fair comparisons.

Method Avg Best In-Dm

Lexicon
-based

BM25 (Thakur et al., 2021) 41.1 1 22.8
DocT5Query 42.4 0 33.8
UniCOIL (Lin and Ma, 2021) 40.0 0 -

Dense
-vector

ColBERT 41.8 2 40.8
ANCE (Xiong et al., 2021) 37.7 0 38.8
GenQ (Thakur et al., 2021) 39.8 1 40.8
TAS-B (Hofstätter et al., 2021) 40.4 0 40.8
Contriever (Izacard et al., 2021) 44.3 4 -
UnifieRuni-retrieval 44.5 4 47.1

Reranker
taught

ColBERT-v2 47.0 N/A 42.5
DistilSPLADE 47.0 N/A 43.3

Huge
models

GTR-XXL (Ni et al., 2021) 45.9 N/A 44.2
SGPT-5.8B (Muennighoff, 2022)49.4 N/A 39.9

Table 3: Retrieval nDCG@10 results on BEIR with 12 out-
of-domain datasets, as well as 1 in-domain dataset. Avg is
mean nDCG over 12 datasets and Best is how many datasets a
method achieves best. DocT5Query (Nogueira et al., 2019),
ColBERT (Khattab and Zaharia, 2020), ColBERT-v2 (San-
thanam et al., 2021), DistilSPLADE (Formal et al., 2021a).

4.1 Main Evaluation 429

MS-Marco Dev. As in Table 1&2, our frame- 430

work achieves new state-of-the-art metrics on 431

most metrics. Our dense-vector retrieval sur- 432

passes previous methods without distillations from 433

rerankers, while our lexicon-based retrieval pushes 434

the best sparse method to a new level, especially 435

in MRR@10 (+1.4%). Empowered by our uni- 436

fied structure, the uni-retrieval scheme can achieve 437

40.7% MRR@10. Although R@1K is approaching 438

its ceiling across recent works, we notice UnifieR 439

is less competitive than AR2 (-0.2%) in Table 2, as 440

the latter involves a costly reranker in training for 441

better generalization. And please see §4.4 for our 442

rerank-taught results. 443

TREC Deep Learning 2019. As listed in Ta- 444

ble 1, our retrieval method, with either single 445

(dese/lexicon) or unified representation, achieves a 446

state-the-of-art or very competitive retrieval qual- 447

ity. Specifically, compared to the previous best 448

method, called TAS-B, our model lifts MRR@10 449

and nDCG@10 by 6.9% and 2.6%, respectively. 450

BEIR Benchmark. Table 3 shows in-domain 451

evaluation and zero-shot transfer on BEIR (see 452

§E.1). It is observed that, with outstanding in- 453

domain inference ability, our model also deliv- 454

ers comparable transferability among the retrievers 455

with similar training settings (i.e., comparable mod- 456

els o/w reranker distillations). But, as shown in the 457

table, we found our model suffers from inferior 458

generalization ability compared to the models with 459

MSE-based reranker distillation (Santhanam et al., 460

2021; Formal et al., 2021a). And a small model 461

with distillation (e.g., DistilSPLADE) even beats 462
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Method M@10 R@1
UnifieRuni-retrieval 40.7 26.9
Uni-scheme of Best1 40.3 26.1
Ensemble of Best1 40.4 26.5
Ensemble of SPLADE2 40.0 -
COIL-full (hybrid) 35.5 -

Table 4: Comparison with ensemble and hybrid retrievers.
1We operate on the best SPLADE model (MRR@10=38.5)
with the best coCondenser (MRR@10=38.2). 2An ensemble
of four SPLADE models.

Methods Lexicon-based Dense-vector

M@10 R@100 M@10 R@100
UnifieR (warmup) 37.2 90.1 36.1 87.7
3 w/o sharing Global 36.1 89.8 35.2 87.2
3 w/o in-depth Interact 36.1 89.3 35.7 89.7

Table 5: Ablation of the encoder on MS-Marco Dev.

the models with billions of parameters (e.g., GTR-463

XXL). The potential reasons are two-fold: i) dis-464

tilling a reranker to the retriever has been proven465

to produce more generalizable scores than a bi-466

encoder (Menon et al., 2021) and ii) the initializa-467

tion of UnifieR, coCondenser, has been pre-trained468

on Marco collection, reducing its generalization.469

4.2 Further Analysis470

Comparison to Ensemble Models. As in Ta-471

ble 4, we report the numbers to compare our uni-472

retrieval scheme with ensemble models. Even if we473

only need once large-scale retrieval followed by a474

small amount of dot-product calculation, the model475

still surpasses its competitors. Meantime, we476

found both uni-retrieval and ensemble are bounded477

by the worse participant. For example, even if478

we use a SPLADE with MRR@10 of 39.3 for479

‘Ensemble/Uni-scheme of Best’, the performance480

did not show a remarkable gain. This suggests us to481

look for a better aggregation method in the future.482

Ablation of Neural Structure. To verify the cor-483

rectness of each module design, we conduct an484

ablation study on the neural structure of the en-485

coder (§3.2) in Table 5. This must be performed at486

the warmup step as the second stage is continual487

from the warmup. It is observed that, either remov-488

ing the global information from the lexicon-based489

module or discarding in-depth inter-paradigm in-490

teractions (i.e., learning independently) degrades491

the model dramatically. Surprisingly, removing492

the global also diminishes dense performance. A493

potential reason is that, such a change makes the494

fine-tuning inconsistent with its initializing pre-495

trained model, coCondenser, leading to corrupted496

Top-N QPS M@10 R@100 Remark
BM25 449 19.3 69.0
ORG 50 41.3 92.3 Not sparsified
75 129 40.8 91.5 ↓ Index as Sparse as BM25
50 188 40.4 91.1
25 343 38.4 89.0
20 446 37.5 87.6 ↓ Infer as Faster than BM25
15 537 36.2 86.0
10 693 33.6 82.2
8 911 31.9 79.8
4 954 25.5 70.0 ↑ Better than BM25
2 1144 16.2 53.2
1 1376 1.8 22.3

Table 6: UnifieR-lex v.s. QPS by Top-N lexicon sparsifying.
The QPS is calculated on a CPU machine with pre-embedded
queries, and ORG denotes non-sparsified UnifieR.

representing capability. Please refer to §E.2 for 497

additional ablations about learning and data. 498

Evaluation of Learning Consistency. To verify 499

if the dual representing modules depend on con- 500

sistent semantic/syntactic features for the common 501

target, we conduct an experiment to train one of 502

the dual modules but leave the other unchanged at 503

continual training stage. As in Figure 4, the left- 504

most one is warmup-ed UnifeR (warmup), whereas 505

the rightmost one is the full UnifeR (dual-trn) as 506

an upper bound of performance. Interestingly, op- 507

timizing for each of the representing modules can 508

improve both retrieval paradigms (i.e., lexicon and 509

dense). This confirms that optimizing one module 510

can benefit the other, attributed to complementary 511

representations and the consistent learning target. 512

4.3 Efficiency Analysis 513

FLOPS analysis. To view sparsity-efficacy trade- 514

off, we vary the loss weight λ for FLOPS sparse 515

regularization (Paria et al., 2020). As in Figure 5, 516

with λ exponentially increasing, document FLOPS 517

decreases linearly, improving the efficiency of our 518

framework. Meantime, the descending of lexicon- 519

based efficacy is not remarkable when FLOPS > 520

4 and then becomes notable with the growth of λ. 521

Fortunately, this will not affect the dense represen- 522

tation in terms of dense-vector retrieval. 523

Uni-Retrieval Hyperparameter. In uni-retrieval 524

scheme, a hyperparam K is used to control com- 525

putation overheads of dense dot-product. As il- 526

lustrated in Figure 6, ‘K=0’ denotes lexicon-only 527

retrieval in UnifieR. The table shows that UnifieR 528

reaches an MRR@10 ceiling when K is set to a de 529

facto number, i.e., 1000. Then, the upper bound of 530

R@1000 is reached when K=2048. After that, the 531

two metrics cannot be observed with any changes. 532
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Figure 4: Verifying consistency of
dual representing modules. ‘trn’ de-
notes ‘training’.

Figure 5: Effects of the loss weight λ of
FLOPS sparse regularization on the our
performance.

Figure 6: Effects of the hyperparam
K in our uni-retrieval scheme on MS-
Marco Dev.

Method M@10 R@100
UnifieR-uni (warmup) 38.3 90.8

+ query-side gating 39.2 91.2

Table 7: Stage 1 of UnifieR with query-side gating.

Latency Analysis. Besides the un-intuitive533

FLOPS numbers, we also exhibit the latency (mea-534

sured by ‘query-per-second’ – QPS) of UnifieR.535

Basically, our UnifieR is bottlenecked by its lexi-536

con head in terms of inference speed as aforemen-537

tioned, so we would like to dive into the control-538

lable sparsity of UnifieR-lex. Note that, to reserve a539

large room for further sparsifying, we leverage the540

reranker-taught UnifieR-lex as shown in Table 8,541

whose MRR@10 is 41.3%. Then, we adopt a sim-542

ple but effective sparsifying method – top-N (Yang543

et al., 2021) – but in the index-building process544

only. As a result, we show the performance of our545

UnifieR-lexicon with N decreasing in Table 6. It546

is shown that only the Top-4 tokens kept for each547

passage can still deliver very competitive results548

with faster speed than BM25.549

4.4 Exploration of Advanced Architecture550

Query-side Gating Mechanism. As it is too551

rough to directly add the scores of the two retrieval552

paradigms, we incorporate a recent inspiration of553

mix-of-expert (MoE) to enhance the combination554

of the two paradigms. As in illustrated in §E.4, we555

leveraged a gating mechanism to switch UnifieR556

between dense and lexicon, based solely on the557

semantics of queries. The reasons for “solely on558

queries” are two-fold: i) the analyses in §F show559

that the type of queries affects models a lot and560

ii) the dependency on queries only will not affect561

the indexing procedure for large-scale collections,562

leading to zero extra inference overheads. After563

this gating mechanism in the warmup stage of Uni-564

fieR training where the gate’s optimization is based565

on the relevance score of uni-retrieval. As listed566

in Table 7, a remarkable improvement is observed567

Methods Dense-vector Lexicon-based Uni/Multi-Vec

M@10R@100M@10R@100M@10R@100
Previous SoTA 39.5 - 37.5 - 39.7 -
UnifieR 38.8 90.3 39.7 91.2 40.7 92.0
UnifieR (distill) 40.5 91.6 41.3 92.3 42.0 93.0

Table 8: Reranker-taught UnifieR v.s. previous state-of-the-
art (SoTA) models (i.e., Dense (Zhang et al., 2022), Lexi-
con(Formal et al., 2022), Multi-Vec (Santhanam et al., 2021)).

with such a query-side gating mechanism (+0.9% 568

MRR@10 and +0.4% R@100). 569

Reranker-taught UnifieR. Although the UnifieR 570

in Table 1 & 2 seems significant in terms of per- 571

formance improvement, it’s noteworthy that the 572

comparisons are unfair because UnifieR didn’t use 573

a re-ranker (a strong but heavy cross-encoder) as a 574

teacher for knowledge distillation (see ‘Reranker 575

taught’ in Table 1). To make the comparisons fairer, 576

we first trained a re-ranker based on UnifieR’s hard 577

negatives and then used a KL loss for distillation 578

in the Continual Training Stage (as illustrated in 579

Figure 8 of §E.5). As listed in Table 8, it is shown 580

that i) our proposed UnifieR is compatible with 581

‘Reranker taught’ scheme and consistently brings 582

1%+ improvement, and ii) UnifieR outperforms its 583

strong competitors by large margins (2.0%+). 584

5 Conclusion 585

We present a brand-new learning framework, 586

dubbed UnifieR, to unify dense-vector and lexicon- 587

based representing paradigms for large-scale re- 588

trieval. It improves the two paradigms by a care- 589

fully designed neural encoder to fully exploit the 590

representing capability of pre-trained language 591

models. Its capability is further strengthened by 592

our proposed dual-consistency learning with self- 593

adversarial and -regularization. Moreover, the uni- 594

retrieval scheme and the advanced architectures 595

upon our encoder are presented to achieve more. 596

Experiments on several benchmarks verify the ef- 597

fectiveness and versatility of our framework. 598
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A More Related Work923

Bottleneck-based Learning. In terms of neural924

designs, our encoder is similar to several recent925

representation learning works, e.g., SEED-Encoder926

(Lu et al., 2021). Condenser (Gao and Callan,927

2021a), coCondenser (Gao and Callan, 2021b),928

and DiffCSE (Chuang et al., 2022), but they fo-929

cus on the bottleneck of sequence-level dense vec-930

tors. For example, SEED-Encoder, Condenser, and931

CoCondenser enhance their dense capabilities by932

emphasizing the sequence-level bottleneck vector933

and weakening the word-level language modeling934

heads, while DiffCSE makes the learned sentence935

embedding sensitive to the difference between the936

original sentence and an edited sentence by a word-937

level discriminator. With distinct motivations and938

targets, we fully exploit both the dense-vector bot-939

tleneck and the word-level representation learning940

in a PLM for their mutual benefits. These are on941

the basis of not only the shared neural modules942

but also structure-facilitated self-learning strategies943

(see the next section). Nonetheless, as discussed in944

our experiments, our model can still benefit from945

these prior works via parameter initializations.946

Instance-dependent Prompt. Our model also947

shares high-level inspiration with recent instance-948

dependent prompt learning methods (Jin et al.,949

2022; Wu et al., 2022). They introduce a train-950

able component to generate prompts based on each951

input example. Such generated prompts can pro-952

vide complementary features to the original input953

for a better prediction quality. Analogously, our954

sequence-level dense vector can be seen as a sort955

of ‘soft-prompt’ for the sparse lexicon-based repre-956

sentation module, resulting in the superiority of our957

lexicon-based retrieval, which will be discussed in958

experiments. In addition, the ‘soft-prompt’ in our959

UnifieR also serves as crucial outputs in a unified960

retrieval system.961

Reranker-taught Retriever. Distilling the962

scores from a reranker into a retriever is proven963

promising (Hofstätter et al., 2020; Formal et al.,964

2021a; Hofstätter et al., 2021) . In light of this,965

recent works propose to jointly optimize a retriever966

and a reranker: RocketQAv2 (Ren et al., 2021b)967

is proposed to achieve their agreements with968

reranker-filtered hard negatives, while AR2 (Zhang969

et al., 2022) is to learn them in an adversarial970

fashion where the retriever is regarded as a971

generator and the reranker as a discriminator. In972

contrast to reranker-retriever co-training, we resort 973

to in-depth sharing from the bottom (i.e., features) 974

to the top (i.e., self-learning) merely within a 975

retriever, with no need for extra overheads of 976

reranker training. Meantime, our unified structure 977

also uniquely enables it to learn from more diverse 978

hard negatives mined by its dual representing 979

modules. 980

B Lexicon-based Inference for 981

Large-Scale Retrieval 982

During the inference of large-scale retrieval, there 983

are some differences between dense-vector and 984

lexicon-based retrieval methods. 985

As in Eq.(1), we use the dot-product between the 986

real-valved sparse lexicon-based representations as 987

a relevance metric, where ‘real-valved’ is a prereq- 988

uisite of gradient back-propagation and end-to-end 989

learning. However, it is inefficient and infeasible 990

to leverage the real-valved sparse representations, 991

especially for the open-source term-based retrieval 992

systems, e.g., LUCENE and Anserini (Yang et al., 993

2017). Following Formal et al. (2021a), we adopt 994

‘quantization’ and ‘term-based system’ to complete 995

our retrieval procedure. That is, to transfer the 996

high-dimensional sparse vectors back to the cor- 997

responding lexicons and their virtual frequencies, 998

the lexicons are first obtained by keeping the non- 999

zero elements in a high-dim sparse vector, and each 1000

virtual frequency then is derived from a straightfor- 1001

ward quantization (i.e., ⌊100× v⌋). 1002

In summary, the overall procedure of our large- 1003

scale retrieval based on a fine-tuned UnifieR-lex is 1004

i) generating the high-dim sparse vector for each 1005

document and transferring it to lexicons and fre- 1006

quencies, ii) building a term-based inverted index 1007

via Anserini (Yang et al., 2017) for all documents 1008

in a collection, iii) given a test query, generating 1009

the lexicons and frequencies, in the same way, and 1010

iv) querying the built index to get top document 1011

candidates. 1012

C Explanation of Two Recall Metrics 1013

Regarding R@N metric, we found there are two 1014

kinds of calculating ways, and we strictly follow 1015

the official evaluation one at https://github. 1016

com/usnistgov/trec_eval and https: 1017

//github.com/castorini/anserini, 1018
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which is defined as1019

Marco-Recall@N =
1

|Q|
∑
q∈Q

∑
d+∈D+

1d+∈D̄

min(N, |D+|)
,

(10)

1020

where there may be multiple positive documents1021

D+ ∈ D, Q denotes the test queries and D̄ de-1022

notes top-K document candidates by a retrieval1023

system. We also call this metric all-positive-macro1024

Recall@N. On the other hand, another recall cal-1025

culation method following DPR (Karpukhin et al.,1026

2020) is defined as1027

DPR-Recall@N =
1

|Q|
∑
q∈Q

1∃d∈D̄∧d∈D+ . (11)1028

which we call one-positive-enough Recall@N.1029

Therefore, The official (all-positive-macro) Re-1030

call@N is usually less than DPR (one-positive-1031

enough) Recall@N, and the smaller N, the more1032

obvious.1033

D Experimental Setups1034

As stated in §3.3, we take a 2-stage learning scheme1035

(Gao and Callan, 2021b). We use coCondenser-1036

marco (Gao and Callan, 2021b) (unsupervised con-1037

tinual pre-training from BERT-base (Devlin et al.,1038

2019)) as our initialization as it shares a similar1039

neural structure (see the end of §3.2) and has po-1040

tential for promising performance (Gao and Callan,1041

2021b; Formal et al., 2022; Zhang et al., 2022).1042

θ(ctx), θ(den), and θ(lex) correspond to Transformer1043

layers of 6, 6, and 2, respectively, where max length1044

is 128 and warmup ratio is 5%. At warmup stage,1045

batch size of queries is 16, each with 1 positive doc-1046

ument and 15 negatives, learning rate is 2×10−5,1047

the random seed is fixed to 42. And loss weight of1048

FLOPS (Paria et al., 2020) is set to 0.0016 since we1049

want make the model sparser than SPLADE (For-1050

mal et al., 2021a) (0.0008). At continual learning1051

stage, batch size is 12 to enable each module with1052

15 negatives. And learning rate is reduced to 1/3 of1053

the original, and the random seed is changed to 221054

for a new data feeding order. And the loss weight of1055

FLOPS is lifted to 0.0024. We did not tune the hy-1056

perparameters. In retrieval phase, we set K=20481057

in our uni-retrieval, and also compare other choices1058

in our analysis. All experiments are run on a single1059

A100 GPU. Our codes will be open-sourced.1060

E More Experimental Analysis 1061

E.1 BEIR Details 1062

Please refer to Table 9 for detailed results on BEIR 1063

benchmark with 12 datasets. 1064

E.2 Ablation of Learning Objectives 1065

Learning of Learning Strategy. Furthermore, 1066

we conduct another ablation study on the learning 1067

strategies (§3.3) in Table 10. This is performed at 1068

the continual training stage. The table shows that, 1069

ablating the negative-bridged self-adversarial (self- 1070

adv) and the agreement-based self-regularization 1071

(self-reg) has a minor effect on lexicon-based re- 1072

trieval but is remarkable on dense-vector one. This 1073

is because the former is already far stronger than 1074

the latter. Thereby, both self-adv and self-reg can 1075

be regarded as a sort of (self-)distillation from lexi- 1076

con knowledge from a well-trained language model 1077

to dense semantic representation. We will dive into 1078

the self-reg in the following to seek for a better 1079

learning strategy, especially for the lexicon-based 1080

retrieval. In addition, we also observed that the pro- 1081

posed self-learning strategies (i.e., self-adversarial 1082

and self-regularization) mainly contribute to dense- 1083

vector retrieval (+0.6% and 0.3% MRR@10, re- 1084

spectively) but only bring limited performance im- 1085

provement for lexicon-based method (+0.1% and 1086

0.1% MRR@10, respectively). The main reasons 1087

are two-fold: i) Verified in (Formal et al., 2021a; 1088

Hofstätter et al., 2021), lexicon-based methods con- 1089

sistently outperform dense-vector methods in ad- 1090

hoc retrieval as lexicon-overlap serves as an impor- 1091

tant feature in relevance calculations. Therefore, 1092

the improvement mainly falls into the dense-vector 1093

part via knowledge distillation from the lexicon- 1094

based part. ii) Meantime, the common knowledge 1095

distillation schema is from a strong teacher to a 1096

weak student, e.g., cross-encoder reranker v.s. bi- 1097

encoder retriever with a 5∼10% performance gap 1098

in ad-hoc retrieval scenarios (Zhang et al., 2022; 1099

Ren et al., 2021b). In contrast, the participants 1100

(UnifieR-dense & -lexicon) of our self-learning 1101

have similar performance (gap <1%), making the 1102

improvement limited. 1103

Narrowing Self-regularization Targets. By de- 1104

fault, we apply the self-reg to hard negatives from 1105

both representing modules, which intuitively is a 1106

compromise choice for both. To explore if the 1107

self-reg can push one of them to an extreme, we 1108

conduct exploratory settings for the self-reg in Ta- 1109

13



Methods Sparse Dense

BM25 DT5Q UniCOIL ColBERT DPR ANCE GenQ TAS-B Contriever Ours

TREC-COVID 65.6 71.3 59.7 67.7 33.2 65.4 61.9 48.1 59.6 71.5
NFCorpus 32.5 32.8 32.5 30.5 18.9 23.7 31.9 31.9 32.8 32.9
NQ 32.9 39.9 36.2 52.4 47.4 44.6 35.8 46.3 49.8 51.4
HotpotQA 60.3 58.0 64.0 59.3 39.1 45.6 53.4 58.4 63.8 66.1
FiQA 23.6 29.1 27.0 31.7 11.2 29.5 30.8 30.0 32.9 31.1
ArguAna 31.5 34.9 35.5 23.3 17.5 41.5 49.3 42.9 44.6 39.0
Tóuche-2020 36.7 34.7 25.9 20.2 13.1 24.0 18.2 16.2 23.0 30.2
DBPedia 31.3 33.1 30.2 39.2 26.3 28.1 32.8 38.4 41.3 40.6
Scidocs 15.8 16.2 13.9 14.5 7.7 12.2 14.3 14.9 16.5 15.0
Fever 75.3 71.4 72.3 77.1 56.2 66.9 66.9 70.0 75.8 69.6
Climate-FEVER 21.3 20.1 15.0 18.4 14.8 19.8 17.5 22.8 23.7 17.5
SciFact 66.5 67.5 67.4 67.1 31.8 50.7 64.4 64.3 67.7 68.6

BEST ON 1 0 0 2 0 0 1 0 4 4
AVERAGE 41.1 42.4 40.0 41.8 26.4 37.7 39.8 40.4 44.3 44.5

Table 9: Detailed results (NDCG@10) on BEIR benchmark.

Methods Lexicon-based Dense-vector

M@10 R@100 M@10 R@100
UnifieR 39.7 91.2 38.8 90.3
3 w/o Self-adv 39.6 91.5 38.2 90.3
3 w/o Self-adv&-reg 39.5 91.3 37.9 90.1

Table 10: Ablation of our learning strategy at continual
training stage on MS-Marco Dev.

Methods Lexicon-based Dense-vector

M@10 R@100 M@10 R@100
UnifieR 39.7 91.2 38.8 90.3
3 Self-reg on N(den) only 39.5 91.0 38.3 90.0
3 Self-reg on N(lex) only 39.9 91.4 38.5 90.3

Table 11: Effect of our self-regularization’s targets on MS-
Marco.

ble 11. First, applying self-reg to the negatives1110

from dense-vector module even makes the whole1111

framework degenerate. It is likely attributed to the1112

dense-vector receiving less supervisions from the1113

lexicon part, which supports the above claim that1114

the self-reg can be seen as a distillation from lexi-1115

cons to dense embedding. On the other hand, when1116

applying self-reg only to the negatives by the lexi-1117

con part, the lexicon-based model achieves a new1118

level with 39.9% MRR@10, which is superior to1119

a single-representing retriever. This supports the1120

idea of instance-dependent prompt learning (men-1121

tioned in §3.2), where all modules work together1122

for better lexicon-weighting representations.1123

E.3 Comparison to Retrieval&Rerank1124

Without distillations or co-teaching from a reranker,1125

our retriever can be competitive with some state-of-1126

the-art retrieval & rerank methods as in Table 12.1127

Retriever Reranker M@10
RepBERT RepBERT 37.7
ME-HYBRID ME-HYBRID 39.4
RocketQA RocketQA 40.9
RocketQAv2 RocketQAv2 41.9
Ours (retriever-only) 40.7

Table 12: Comparisons with retrieval&rerank pipelines.

Figure 7: Equipping UnifieR with query-side gating.

Note that the reranker is extremely costly as it 1128

is applied to every query-document text concate- 1129

nation, instead of counterpart-agnostic representa- 1130

tions from a bi-encoder. 1131

E.4 Illustration of Query-side Gating 1132

We illustrate the query-side gating mechanism in 1133

Figure 7, which leverages a gating mechanism to 1134

dynamically combine lexicon and dense embed- 1135

dings only at the query side. 1136

E.5 Reranker-taught Pipeline 1137

In contrast to the normal two-stage training pipeline 1138

in Figure 3, we present our reranker-taught pipeline 1139

in Figure 8. 1140
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Figure 8: Reranker-taught UnifieR by knowledge distillation.

F Qualitative Analysis1141

F.1 Case Study1142

As shown in Table 13, we list two queries cou-1143

pled with the ranking results from five retrieval1144

systems. Those are from three groups, i.e., i) previ-1145

ous state-of-the-art dense-vector and lexicon-based1146

retrieval models, ii) the dense-vector and lexicon-1147

based retrieval modules from our UnifieR, and iii)1148

uni-retrieval scheme by our UnifieR.1149

As demonstrated in the first query of the ta-1150

ble, ‘Indep-lex’ achieves a very poor performance,1151

where the positive passage is ranked as 94. Via1152

exhibiting its top-1 passage, the error is possibly1153

caused by the confusion between the ‘weather’ for1154

a specific day and ‘weather’ for a period (i.e., cli-1155

mate). This is because the ‘weather’ as a pivot1156

word in both contexts receives large weights, mak-1157

ing the distinguishment very hard. Although our1158

UnifieRlex can lift the positive from 94 to 3 by our1159

carefully designed unified model, it still suffers1160

from confusion. Meantime, it is observed that both1161

dense-vector methods perform well since they rely1162

on latent semantic contextualization, less focusing1163

on a specific word.1164

As shown in the second query of the table, the1165

strange word, ‘idiotsguides’ makes both dense-1166

vector models less competent. On the contrary,1167

the lexicon-based method can handle this case per-1168

fectly. It is still noteworthy that our UnifieRden can1169

also outperform the vanilla one, ‘Indep-den’, by1170

lifting 31 (41→10) ranking position. This is at-1171

tributed to our consistent feature learning, which1172

bridges the gap of heterogeneity between dense-1173

vector and lexicon-based retrieval.1174

These two cases also support the previous claim1175

that the two representing ways can provide dis-1176

tinct views of query-document relevance. Further-1177

more, despite varying performance across different1178

paradigms, our uni-retrieval scheme consistently1179

performs well as it is an aggregation of both.1180

F.2 Error Analysis. 1181

As shown in Table 14, we show two representative 1182

cases which our proposed method cannot handle. 1183

i) query hubness: The first case shows a query 1184

that cannot be tackled by our UnifieR in any re- 1185

trieval paradigm. However, it is observed that the 1186

top-1 passage retrieved by our model can also be 1187

considered as a positive passage, which can an- 1188

swer the query ‘what is a dvt’. These negative 1189

passages for the query are false negatives, which 1190

are brought by the limited crowd-sourcing labeling 1191

procedure. Therefore, the poor performance of our 1192

model instead proves that our model is more robust, 1193

whereas the independent learning model is overfit- 1194

ting to its false negatives, resulting in seemingly 1195

good outputs. 1196

ii) Insufficient representation ability: The sec- 1197

ond case lists the top-retrieved passages for all five 1198

retrieval systems. It is shown that compared to inde- 1199

pendently learned retrieval models (i.e., ‘Indep-den’ 1200

and ‘Indep-lex’), our unified models even perform 1201

worse and retrieve less relevant passages (refer to 1202

UnifieRden’s 1st). An interesting point is that the 1203

‘Ups’-related passage is retrieved by our UnifieRden 1204

since ‘upsell’ is tokenized as ‘ups’ and ‘##ell’. This 1205

is highly likely since one single model is required 1206

to serve dual representing modules, compromising 1207

its representation ability. 1208

Meantime, our uni-retrieval can still improve 1209

the ranking performance by combining both of the 1210

representing worlds. 1211

F.3 Limitation 1212

The main limitations of this work are i)PLM Com- 1213

patibility: due to the special encoder design, Uni- 1214

fieR can only be initialized from a limited number 1215

of pre-trained models, and ii) Additional Infrastruc- 1216

ture: in spite of the almost same retriever latency as 1217

traditional lexicon-based retrieval, UnifieR requires 1218

extra computation infrastructure for indexing and 1219

storing both dense and sparse embeddings of all 1220

documents in the collection. 1221
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Query ID:1088347// weather in new york city ny
Passage+ ID:7094280// Title: - Body: New York, NY - Weather forecast from Theweather.com. Weather conditions with

updates on temperature, humidity, wind speed, snow, pressure, etc. for New York, New York Today: Cloudy
skies with light rain, with a maximum temperature of 72C and a minimum temperature of 52C.

Rank Indep-den: 1; Indep-lex: 94; UnifieRden: 1; UnifieRlex: 3; UnifieRuni: 1
Retrieved Indep-lex’s 1st. ID:65839// Title: New York City - Best Time To Go & When to Go Body: Weather: Spring in

New York City is the best time to be in the city, without doubt. Spring usually means less humidity and temps
between 50-80 degrees, though June occasionally sees a 90 degree day. An occasional humidity soaked heat
wave can strike, but it usually feels nice the first time around.
Indep-lex’s 2nd. ID:4835773// Title: Climate of New York Body: Weather: Unlike the vast majority of the
state, New York City features a humid subtropical climate (Koppen Cfa). New York City is an urban heat island,
with temperatures 5-7 degrees Fahrenheit (3-4 degrees Celsius) warmer overnight than surrounding areas. In an
effort to fight this warming, roofs of buildings are being painted white across the city in an effort to increase the
reflection of solar energy, or albedo.
UnifieRlex’s 1st. ID:65839// Title: New York City - Best Time To Go & When to Go Body: Weather: Spring in
New York City is the best time to be in the city, without doubt. Spring usually means less humidity and temps
between 50-80 degrees, though June occasionally sees a 90 degree day. An occasional humidity soaked heat
wave can strike, but it usually feels nice the first time around.
UnifieRlex’s 2nd. ID:8819213// Title: New York City - Best Time To Go & When to Go Body: Weather: Spring
in New York City is the best time to be in the city, without doubt. Spring usually means less humidity and temps
between 50-80 degrees, though June occasionally sees a 90 degree day.

Query ID:391101// idiotsguides tai chi
Passage+ ID:7668258// Title: - Body: Bill is the author of The Complete Idiot’s Guide to T’ai Chi & Qigong (4th edition),

and his newest upcoming books, The Tao of Tai Chi, and The Gospel of Science, in which he paints a vision of
vast global benefit as mind-body sciences spread across the planet.

Rank Indep-den: 41; Indep-lex: 1; UnifieRden: 10; UnifieRlex: 1; UnifieRuni: 1
Retrieved Indep-den’s 1st. ID:1603205// Title: - Body: Tai chi. Tai chi (simplified Chinese: ; traditional Chinese: ; pinyin:

chi, an abbreviation of ;is an internal Chinese martial art (Chinese: ; pinyin: ) practiced for both its defense
training and its health benefits.
Indep-den’s 2nd. ID:3449438// Title: Tai chi: A gentle way to fight stress Body: Tai chi is an ancient Chinese
tradition that, today, is practiced as a graceful form of exercise. It involves a series of movements performed in a
slow, focused manner and accompanied by deep breathing. Tai chi, also called tai chi chuan, is a noncompetitive,
self-paced system of gentle physical exercise and stretching.
UnifieRden’s 1st. ID:2294942// Title: WHAT IS TAI CHI? Body: The Chinese characters for Tai Chi Chuan
can be translated as the ‘Supreme Ultimate Force’. The notion of ‘supreme ultimate’ is often associated with
the Chinese concept of yin-yang, the notion that one can see a dynamic duality (male/female, active/passive,
dark/light, forceful/yielding, etc.) in all things.
UnifieRden’s 2nd. ID:3449442// Title: What is Tai Chi? Body: What is Tai Chi? In China, and increasingly
throughout the rest of the world, tai chi is recognized for its power to instill and maintain good health and
fitness in people of all ages. Tai chi aims to bring balance to body, mind and spirit through specifically designed
movements, natural breathing and a calm state of mind. It is easily recognized by its slow, captivating and
mesmerizing movements. It represents a way of life, helping people meet day to day challenges while remaining
calm and relaxed.

Table 13: Case study on MS-Marco Dev set. ‘Passage+’ denotes positive passage of the corresponding query.
‘Indep-den’ denotes a well-trained state-of-the-art dense-vector retrieval model with static hard negatives (i.e.,
coCondenser (Gao and Callan, 2021b), M@10=38.2) while ‘Indep-lex’ denotes a well-trained state-of-the-art
lexicon-based retrieval model with static hard negatives (i.e., SPLADE (Formal et al., 2022), M@10=38.5).
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Query ID:682365// what is a dvt?
Passage+ ID:7544458// Title: Deep vein thrombosis Body: For other uses, see DVT (disambiguation). Deep vein

thrombosis, or deep venous thrombosis (DVT), is the formation of a blood clot (thrombus) within a deep vein,
most commonly the legs. Nonspecific signs may include pain, swelling, redness, warmness, and engorged
superficial veins.

Rank Indep-den: 3; Indep-lex: 2; UnifieRden: 12; UnifieRlex: 11; UnifieRuni: 9
Retrieved UnifieRden’s 1st. ID:5404002// Title: Definition of ‘DVT’ Body: Definition of ‘DVT’. DVT is a serious medical

condition caused by blood clots in the legs moving up to the lungs. DVT is an abbreviation for ’deep vein
thrombosis’. The results from one of the largest studies yet carried out leave little doubt that DVT is caused by
flying.
UnifieRlex’s 1st. ID:8492523// Title: What Is DVT? Body: What Is DVT? Deep vein thrombosis is a blood clot
that forms inside a vein, usually deep within your leg. About half a million Americans every year get one, and up
to 100,000 die because of it. The danger is that part of the clot can break off and travel through your bloodstream.
UnifieRuni’s 1st. ID:8492523// Title: What Is DVT? Body: What Is DVT? Deep vein thrombosis is a blood clot
that forms inside a vein, usually deep within your leg. About half a million Americans every year get one, and up
to 100,000 die because of it. The danger is that part of the clot can break off and travel through your bloodstream.

Query ID:1029124// what is upsell
Passage+ ID:7220016// Title: Upselling Body: What is Upselling? Upselling is a sales technique aimed at persuading

customers to purchase a more expensive, upgraded or premium version of the chosen item or other add-ons for
the purpose of making a larger sale. eCommerce businesses often combine upselling and cross-selling techniques
in an attempt to increase order value and maximize profit.

Rank Indep-den: 3; Indep-lex: 1; UnifieRden: 11; UnifieRlex: 9; UnifieRuni: 8
Retrieved Indep-den’s 1st. ID:6288350// Title: - Body: If you improve inventory turn but pay more. in freight costs for

multiple shipments or your warehouse has to increase their variable costs. to process the additional shipments,
the net result may be a loss. 4. An upsell feature on the web is a visual reminder of how much money a customer
can. spend before the next shipping & handling threshold is met. King Arthur Flour is an. excellent example of
how to improve upsell and increase items per order. Showing the. amount available, relevant. choices within the
price.
Indep-lex’s 1st. ID:7220016// Title: Upselling Body: What is Upselling? Upselling is a sales technique aimed
at persuading customers to purchase a more expensive, upgraded or premium version of the chosen item or
other add-ons for the purpose of making a larger sale. eCommerce businesses often combine upselling and
cross-selling techniques in an attempt to increase order value and maximize profit.
UnifieRden’s 1st. ID:8487388// Title: Acronyms &Abbreviations Body: Ups is an open source source-level
debugger developed in the late 1980s for Unix and Unix-like systems, originally developed at the University of
Kent by Mark Russell. It supports C and C++, and Fortran on some platforms. The last beta release was in 2003.
UnifieRlex’s 1st. ID:4754301// Title: Upselling: 75 Strategies, Ideas and Examples Body: . Upsell Drip
Campaign to upsell B2B/Saas solutions. What is it? The upsell for B2B/Saas solutions email is meant to add
to the services. These emails offer premium services or upgrades for users on paying, free or trial accounts.
When is it sent? Upsell emails for B2B/Saas solutions are meant to extend the usability and functionality of the
software.
UnifieRuni’s 1st. ID:4754301// Title: Upselling: 75 Strategies, Ideas and Examples Body: . Upsell Drip
Campaign to upsell B2B/Saas solutions. What is it? The upsell for B2B/Saas solutions email is meant to add
to the services. These emails offer premium services or upgrades for users on paying, free or trial accounts.
When is it sent? Upsell emails for B2B/Saas solutions are meant to extend the usability and functionality of the
software.

Table 14: Error analysis on MS-Marco Dev set.
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