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Abstract

In discriminative settings such as regression and classification there are two random vari-
ables at play, the inputs X and the targets Y . Here, we demonstrate that the Variational
Information Bottleneck can be viewed as a compromise between fully empirical and fully
Bayesian objectives, attempting to minimize the risks due to finite sampling of Y only. We
argue that this approach provides some of the benefits of Bayes while requiring only some
of the work.

1. Introduction

Big models, big data, and maximum likelihood training are a proven recipe for learning
powerful and generalizable neural network models. But training such large models on small
data results in overfitting and poor performance. How can we achieve good performance
from limited data?

Bayesian inference presents one such mechanism. Bayesian inference can be seen as
minimizing a PAC-style upper bound on generalization performance from finite data (Morn-
ingstar et al., 2020; Masegosa, 2020; Germain et al., 2016). However, exactly performing
Bayesian inference is costly, requiring careful tuning of MCMC methods or expressive vari-
ational distributions to match the posterior (Betancourt, 2018; Zhang et al., 2018).

Here, we show that training on multiple outputs Y for each input X can be beneficial,
and derive a training objective which provides these benefits without actually having to
collect multiple outputs for each input. The resulting objective matches the Variational
Information Bottleneck (VIB) (Alemi et al., 2016), and provides a tractable alternative to
Bayesian inference that loses some of the guarantees but retains much of the qualitative
and quantitative performance.

2. Preliminaries

Consider training a neural network with parameters θ to output a stochastic representation
z ∼ q(Z|x, θ) for each input x ∈ X. From the representation, we can predict the target y
with a fixed (parameter-free) classifier or regressor p(y|z). At test time, we will form the
predictive distribution q(y|x, θ) =

∫
dz q(z|x, θ)p(y|z).

Assuming the true data comes from some joint distribution ν(X,Y ), we aim to learn
a predictive distribution that is as close as possible to the true conditional distribution
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ν(Y |X), as measured by the expected conditional KL divergence:1

Eν(X) [KL[ν(Y |X), q(Y |X, θ)]] =

∫
dx dy ν(x, y) log

ν(y|x)

q(y|x, θ)
def
= P(θ)− H[ν(Y |X)], (1)

where H[ν(Y |X)] is the true conditional entropy and we call P(θ) the true predictive risk :

P(θ)
def
= Eν(X,Y ) log

(
−Eq(Z|X,θ)[p(Y |Z)]

)
. (2)

Invoking Jensen’s inequality, we can upper bound P(θ) with the true classification risk :

P(θ) ≤ C(θ) def
= Eν(X,Y ) Eq(Z|X,θ)[− log p(Y |Z)]. (3)

C(θ) measures how well we can predict the targets given a sample from our representation
z of each input x ∈ X. Unlike P(θ) which contains a log of an expectation, we can compute
unbiased estimates of C using Monte-Carlo.

While we don’t know the true distribution, we have access to n paired samples from this
distribution, a dataset Dn = {(xi, yi)}ni . We need ways to approximate the true classification
risk (eq. (3)) while only using a finite number of samples.

Maximum Likelihood (ML) tries to minimize the empirical classification risk :

Ĉ(θ;Dn)
def
= Eν̂n(X,Y ) Eq(Z|X,θ)[− log p(Y |Z)], (4)

approximating the expectation with respect to the true distribution with an average over the
observed samples. From the perspective of variational optimization, ML can concentrate on
the deterministic representation q(Z|x, θ) = δ(z − fθ(x)) which best predicts the observed
target y for each input x. Unfortunately, ML with finite samples provides no guaranteed
relationship to the true classification risk. In other words, eq. (4) is neither an upper nor a
lower bound on eq. (3).

As an illustration, in fig. 1(a) we show what happens if we try to minimize eq. (4)
using a neural network with a two dimensional representation z = (µ, σ2). This is used
to parameterize the mean and standard deviation of a conditional normal distribution
y ∼ Normal(µ(x), σ2(x)). The true model in this case consists of x values uniformly
distributed from -5 to 5, and ys that are cubic in the xs with fixed standard deviation:
y ∼ Normal(x3/100, 0.32). This true distribution is shown in orange. The 10 sampled (x, y)
pairs the model was trained on are shown as the blue dots. The neural network quickly
learns to set its predictive standard deviation to a small value and overfits to the samples.

By approximating the true distribution in eq. (3) with the average over the empirical
samples, instead of concentrating on the true distribution ν(X,Y ), we’ve had our network
attempt to model the empirical distribution ν̂n(x, y) = 1

n

∑n
i δ(X−xi)δ(Y −yi). The neural

network did well at the task it was asked to do, but not at the task we wanted.
The traditional way to improve the situation is to try to fit a Bayesian neural network.

Instead of assuming that the parameters of the neural network take on particular values,

1. Since much of the paper is concerned with the differences between taking expectations with respect to
the true distribution versus the empirical distribution, we’re using a blue E to denote expectations with
respect to the true data distribution and red E to denote expectations with respect to the empirical
distribution to increase the visibility of this distinction.
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(a) Maximum Likelihood (b) Bayesian neural network
(HMC)

(c) ML with Multiple Target
Samples

Figure 1: A simple demonstration of (a) a neural network overfitting, (b) its corresponding
Bayesian neural network doing much better, and (c) the neural network trained
with multiple target samples also doing very well. The true distribution is shown
in orange, the network’s predictive distribution in blue. All three models were fit
using the same 10 x ∈ X samples shown as the blue dots. The first two models
were trained with a single y for each x ∈ X. ML with Multiple Target Samples
is trained with many Y samples for each x ∈ X .

we treat the parameters θ as a random variable themselves and compute the posterior over
the parameters. This noticeably improves the predictive distribution, as can be seen in
fig. 1(b), but this improvement comes at great computational cost. In this example, doing
Hamiltonian Monte Carlo to generate samples from the posterior for the 2178 parameters
of the neural network took 8 times longer than training the maximum likelihood model.

3. Multiple Target Samples

In the typical setup of a discriminative task, we have a finite sample of pairs (x, y) from
the true joint distribution ν(X,Y ). This amounts to a single sample for the target for each
input, a single draw from each of the conditional distributions ν(Y |x). Hypothetically, what
would happen if we kept the same 10 X samples we used above in figs. 1(a) and 1(b) but
collected many Y samples for each? In fig. 1(c) we show the result of training precisely the
same neural network as in fig. 1(a) in this new setup.

With access to many Y samples, the network learns to match the true predictive distri-
bution nearly exactly at those sampled points. At the same time, the neural network does
a reasonable job of interpolating between the sampled points while maintaining a good de-
gree of predictive uncertainty. When asked to extrapolate outside of the data, the quality
of the predictive distribution diminishes noticeably. Overall, asking the neural network to
match a half-empirical distribution ν(Y |X)ν̂n(X) = ν(Y |X) 1

n

∑n
i δ(X − xi) has produced

reasonably good results. This multiple target setup is similar to problem settings that use
soft targets, such as teacher-student learning setups (Hinton et al., 2014), which have proven
effective. Similarly, for image classification tasks, using multiple label samples can lead to
improved fits (Peterson et al., 2019).
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Is there some way to provide the sorts of guarantees Bayesian inference provides, but
only with respect to the finite number of Y samples for each X? Is there some kind of
compromise position we could adopt that achieves performance similar to that in fig. 1(c)
without requiring actually collecting additional target samples for each input?

4. VIB as PAC-Bayes

One way to view the source of the Bayesian guarantees is that Bayesian inference optimizes
a PAC style upper bound on the true risk (Masegosa, 2020; Morningstar et al., 2020). By
penalizing the posterior from being too distinct from the prior, Bayesian inference probably
won’t overfit (PAC stands for Probably Approximately Correct, and the bound that Bayesian
inference optimizes holds with high probability even with a finite training sample).

We can invoke the same PAC-Bayes bound as in the Bayesian case, but only on the
inner expectation over targets demonstrating that, for any positive effective temperature τ ,
with probability at least 1− ξX (see appendix A for proofs):

C(θ) ≤ Eν(X)

[
Eq(Z|X,θ)

[
Eν̂n(Y |X)[− log p(Y |Z)]

]
+ τ KL [q(Z|X, θ), r(Z)]

+ τ log Er(Z) Eν(Y |X)

[
e

1
τ ((Eν(Y |X)[− log p(Y |Z)])−(Eν̂n(Y |X)[− log p(Y |Z)]))

]
− log ξX

]
. (5)

While this is a lot to unpack, notice that all of the terms on the second line are constants
with respect to the neural network’s representation q(Z|X, θ), and so can be dropped in its
objective. Equation (5) (nearly always) provides an upper bound on the true classification
risk, However, it is still intractable as it includes an expectation over ν(X).

With this observation, we could instead adopt a mixed approach. Why not take the
Bayesian strategy of minimizing an upper bound with respect to the conditional expectation
of targets ν(Y |X) while using the bold Maximum Likelihood strategy of a drop-in Monte
Carlo estimate for the expectation over inputs X? Doing so gives us:

VIB(θ)
def
= Eν̂n(X) Eq(Z|X,θ)

[
Eν̂n(Y |X) [− log p(Y |Z)] + τ log

q(Z|X, θ)
r(Z)

]
. (6)

This objective is equivalent to the Variational Information Bottleneck (VIB) objective
of Alemi et al. (2016). The VIB objective was originally motivated as being a variatonal
upper bound on the Information Bottleneck objective (Tishby et al., 1999):

max I(Z;Y )− τI(Z;X). (7)

I(X;Y )
def
= Ep(X,Y )

[
log p(X,Y )

p(X)p(Y )

]
is the mutual information between X and Y . The Infor-

mation Bottleneck aims to find a representation Z that is as maximally informative about
the target Y as possible (I(Z;Y )), subject to a constraint on how expensive that represen-
tation is, measured by how many bits about the input it retains (I(Z;X)). The effective
temperature τ controls the tradeoff between the two.
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Here we have stumbled upon an alternative motivation of the same objective, showing
that the VIB objective can be seen as half Bayesian. VIB attempts to protect against over-
fitting on a finite number of sampled targets for each input without addressing potentially
overfitting to the finite number of sampled inputs themselves. It tries to concentrate on
the half-empirical distribution of fig. 1(c). The VIB objective does not itself provide any
bound on the true classification risk, just as Maximum Likelihood does not. Yet, VIB style
objectives have been shown to improve model’s generalization and robustness (Fischer and
Alemi, 2020).

Where building a traditional Bayesian neural network requires a distribution over all of
the parameters of the network, solving eq. (6) only requires a distribution over the output
activations of the network. This is a much lower dimensional space and much easier to
deal with computationally. In the VIB setup, the output of the neural network is made an
explicit distribution on the representation space, often chosen to be a Gaussian distribution
for simplicity.

Notice that in this interpretation, we are not allowed to learn either the classifier dis-
tribution p(Y |Z) or the prior or marginal r(Z) using eq. (5), as both of those distributions
appear in the second line but are dropped in the objective (eq. (6)). In this way this half-
Bayesian interpretation differs from the existing VIB literature, where both p(Y |Z) and
r(Z) are thought to be variational approximations that are free to be fit simultaneously
with the representation q(Z|X, θ). If the data were split, or there were additional holdout
data, these could be used to refine either p(Y |Z) or r(Z) similar to the setup in Dziugaite
et al. (2020).

If we wanted to generate a fully valid bound on the true classification risk, we could
continue the road we are on and simple apply another PAC-Bound to eq. (5), this time with
respect to the parameters of the encoding distribution q(Z|X, θ). See appendix A for the
full details, but dropping the constant terms with regards to the objective we obtain a fully
Bayesian variational information bottleneck, now with an added parameter prior r(Θ) and
new effective temperature γ:

BVIB[q(Θ)]
def
= Eν̂n(X) Eq(Θ) Eq(Z|X,Θ)

[
Eν̂n(Y |X) [− log p(Y |Z)] + τ log

q(Z|X,Θ)

r(Z)
+
γ

n
log

q(Θ)

r(Θ)

]
(8)

Realizing eq. (8) could be as simple as adding weight decay to the parameters of the rep-
resentation in eq. (6). Objectives of this sort also appeared in Alemi and Fischer (2018),
where again they were motivated from an alternative, information theoretical perspective.

5. Demonstration

To illustrate that this can work, in fig. 2 we show the result of fitting the VIB objective
(eq. (6)) to the same 10 data points (with only a single target sample for each point) as in
figs. 1 and 1(c), using the same random network initialization. We emphasize that the VIB
objective only requires a single sample of each target The results are sensitive to the choice
of τ , so we show several values near the best performing models. Full experimental details
can be found in appendix B. Figure 2(b) in particular has a similar predictive distribution
to fig. 1(c), while only having access to a single target sample for each of the 10 input
samples shown.

5



VIB is Half Bayes

(a) VIB τ = 103 (b) VIB τ = 104 (c) VIB τ = 105

Figure 2: A simple demonstration that VIB can learn to capture uncertainty in much the
same way that we could if we trained with multiple target samples as in fig. 1(c).
The three figures show different values for τ . All three models have the same
failure as seen in fig. 1(a) and fig. 1(c) because they were all initialized with the
same random seed. This highlights the inherent risk of training with the empirical
sample – the model can make arbitrary errors away from the observed data.

This qualitative sense that the VIB methods are doing well can be verified quantitatively.
In table 1 we show the computed KL divergences between the true conditional distribution
ν(Y |X) and the predictive distributions q(Y |X, θ) =

∫
dz q(z|X, θ)p(Y |z) for each method.

This conditional KL can then be computed in expectation both with respect to the empirical
X distribution ν̂(X) (simply the average on the 10 samples), or in expectation with respect
to the true ν(X), marginalizing from x = −5 to x = 5 uniformly. This assesses how well
the methods did at learning the predictive distribution both on the values they were given
(KL) as well as on all values (KL). The VIB approaches are competitive with the fully
Bayesian model, while being significantly cheaper to optimize. The VIB models did not
take noticeably longer to train than the ML model. We give additional experimental results
on MNIST classification in appendix C.

Determ MultiY Bayes VIB 103 VIB 104 VIB 105

KL 3850 0.0993 0.195 1130 1.08 1.38

KL 1090 4.39× 10−4 0.330 1.85 0.763 1.22

Table 1: True and Empirical KL divergences for the predictive distribution from each
method on the toy problem. All KLs are measured in bits. The large value for KL
for Determ is due to the fact that we know the true σ2 for ν – even interpolating
the sampled points doesn’t protect against a large empirical risk.

6. Conclusion

We’ve demonstrated that on a simple problem we can provide most of the benefits of
Bayesian inference for signficantly less work. The Variational Information Bottleneck method
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of Alemi et al. (2016) can be thought of as a half-Bayesian approach that offers some assur-
ance that it won’t too severely overfit, but only with regards to the finite sampling of the
targets in a discriminative modeling task.
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Appendix A. Theory

In this appendix we prove the claims in the paper.
Suppose (X,Y )n

iid∼ ν(Y |X)ν(X); write their empirical distributions as,

ν̂n(Y,X) =
1

n

n∑
i

δ(yi − Y )δ(xi −X) (9)

ν̂n(X) =

∫
Y

dµ(y) ν̂n(y,X) =
1

n

n∑
i

δ(xi −X) (10)

ν̂n(Y |X) =
ν̂n(Y,X)

ν̂n(X)
=

∑n
i δ(yi − Y )δ(xi −X)∑n

i δ(xi −X)
. (11)

For notational simplicity, we regard ν̂n(Y |X) as 0 (for all y) for X 6∈ {xi}ni . Depending on
its context, the symbol δ denotes either the Dirac or Kronecker delta function. (These two
caveats are our only notational abuses in the paper.)

Theorem 1 For all q(Θ) absolutely continuous with respect to r(Θ), q(Z|X,Θ) absolutely
continuous with respect to r(Z) for all {Θ ∈ T : q(Θ) > 0} and {X ∈ X : ν(X) > 0},
(X,Y )n

iid∼ ν(Y |X)ν(X), βX , β ∈ R+, n ∈ N, and ξX , ξ ∈ (0, 1], then with probability at
least 1−max(ξX , ξ):

−Eν(X)ν(Y |X) log Eq(Θ)q(Z|X,Θ) [p(Y |Z)] (12)

≤ − 1

n

n∑
i

Eq(Θ)q(Z|xi,Θ) [log p(yi|Z)] (13)

+
1

βX

1

n

n∑
i

Eq(Θ) KL [q(Z|xi,Θ), r(Z)] (14)

+
1

β

1

n
KL [q(Θ), r(Θ)] (15)

+ Eν(X) [ψX (ν(Y |X), r(Z), p(Y |Z), βX , ξX)] (16)

+ ψ (ν(X)ν(ν̂n(Y |X)|X), r(Θ)r(Z), q(Z|X,Θ)p(Y |Z), n, βX , β, ξ) (17)
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where,

ψX(ν(Y |X),r(Z), p(Y |Z), βX , ξX) =

=
1

βX
log Er(Z) Eν(Y |X)

[
eβX∆X

]
− log ξX

βX

ψ(ν(X)ν(ν̂n(Y |X)), r(Θ)r(Z), q(Z|X,Θ)p(Y |Z), n, βX , β, ξ) =

=
1

βn
log Er(Θ) Eν(X) Eν(ν̂n(Y |X))

[
eβn∆

]
− log ξ

βn

and where ∆X ,∆ are defined by Equations 21 and 22 and ν(ν̂n(Y |X)) is the true prob-
ability of the empirical conditional measure.

Note that neither ψX nor ψ are a function of q(Θ) and that quantities 13, 14, and 15
are not a function of the unknowable true data generating distribution, ν(Y |X)ν(X).
Proof

First, with probability at least 1− ξX we have:

−Eν(X)ν(Y |X) log Eq(Θ) Eq(Z|X,Θ) [p(Y |Z)] (18)

≤ −Eq(Θ) Eν(X) Eq(Z|X,Θ) Eν(Y |X) log [p(Y |Z)] (19)

.
ξX

Eq(Θ) Eν(X)

[
− Eq(Z|X,Θ) Eν̂n(Y |X) log [p(Y |Z)]

+
1

βX
KL [q(Z|X,Θ), r(Z)]

+ ψX (ν(Y |X), βX , r(Z), ξX)

]
(20)

Inequality 19 follows from Jensen’s inequality and inequality 20 holds with probability at
least 1− ξX and follows from applying Lemmas 2 and 3 to:

∆X = Eν(Y |X) [− log p(Y |Z)]− Eν̂n(Y |X) [− log p(Y |X)] . (21)

Again applying Lemmas 2 and 3 to:

∆ = Eν(X)ν̂n(Y |X)

[
−Eq(Z|X,Θ) log [p(Y |Z)] +

1

βX
KL [q(Z|X,Θ), r(Z)]

]
−

Eν̂n(X)ν̂n(Y |X)

[
−Eq(Z|X,Θ) log [p(Y |Z)] +

1

βX
KL [q(Z|X,Θ), r(Z)]

]
. (22)
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we conclude that with probability at least 1−max(ξX , ξ):

[Equation 20]

.
ξX , ξ

−Eq(Θ) Eν̂n(X,Y ) Eq(Z|X,Θ) log [p(Y |Z)]

+
1

βX
Eq(Θ) Eν̂n(X) [KL [q(Z|X,Θ), r(Z)]]

+
1

βn
KL [q(Θ), r(Θ)]

+ Eν(X) [ψX (ν(Y |X), r(Z), p(Y |Z), βX , ξX)]

+ ψ (ν(X)ν(ν̂n(Y |X)), r(Θ)r(Z), q(Z|X,Θ)p(Y |Z), n, βX , β, ξ) .

The proof is completed by expanding occurrences of Eν̂n as a summation.

The proof of Theorem 1 is similar to twice applying the technique of Morningstar et al.
(2020) (with m = 1). The Morningstar et al. (2020) proof followed arguments similar to
Masegosa (2020) which itself followed arguments similar to Germain et al. (2016).

Note that in the text body we used τ = 1
βX

and γ = 1
β .

We also note that one can use Lemma 5 to rewrite Eν̂n expectations as conditional
averages (e.g., this could be done to eq. (5)).

A.1. Lemmas

In this section we present several Lemmas used to simplify this paper’s proofs. The Lemmas
are well-known and are given here for the reader’s convenience.

Lemma 2 (Compression) If p(Θ) is absolutely semicontinuous wrt r(Θ) and Er(Θ)[e
f(Θ)] <

∞, then Ep(Θ)[f(Θ)] ≤ KL [p(Θ), r(Θ)] + log Er(Θ)[e
f(Θ)].

Proof Write q(Θ)
def
= r(Θ)ef(Θ)

Er(Θ)[e
f(Θ)]

and note that Lemma 4 implies, 0 ≤ KL [p(Θ), q(Θ)] =

KL [p(Θ), r(Θ)]− Ep(Θ)[f(Θ)] + log Er(Θ)[e
f(Θ)].

Proof due to Banerjee (2006); Zhang (2006).

Lemma 3 (Log Markov Inequality) For any ξ ∈ (0, 1] and random variable Z ∼ p
with p(Z ≤ 0) = 0 then p(logZ ≤ log Ep[Z]− log ξ) ≥ 1− ξ.
Proof Markov’s inequality states that p(Z > t) ≤ Ep[Z]

t for non-negative random variable

Z ∼ p and t > 0. Substituting t =
Ep[Z]
ξ implies p(Z >

Ep[Z]
ξ ) ≤ ξ. Combining this with the

fact that log is a non-decreasing bijection implies p(logZ > log Ep[Z]−log ξ) ≤ ξ. Examining
the complement interval completes the proof.

Lemma 4 (Gibb’s Inequality) If p(Θ) is absolutely semicontinuous wrt r(Θ), then KL[p, q] ≥
0.
Proof KL[p, q] = −Ep(x)

[
log q(x)

p(x)

]
≥ − log Ep(x)

[
q(x)
p(x)

]
= − log 1 = 0 where the inequality

is Jensen’s.
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Lemma 5 (Conditional Empirical Expectation) Assuming X ∈ {xi}ni , then:

Eν̂n(Y |X)[f(Y,X)] =
1∑n

i δ(xi −X)

n∑
i

δ(xi −X)f(yi, xi). (23)

Proof Eν̂n(Y |X)[f(Y,X)] =
∫
Y dµ(y) ν̂n(y|X)f(y,X) =

∫
Y dµ(y)

∑n
i
δ(yi−y)δ(xi−X)∑n

j δ(xj−X)
f(y,X) =∑n

i δ(xi −X)
∫
Y dµ(y) δ(yi−y)f(y,X)∑n

j δ(xj−X)
= 1∑n

i δ(xi−X)

∑n
i δ(xi −X)f(yi, xi). The δ function is ei-

ther the Dirac or Kronecker delta function, depending on whether measure µ is continuous
or discrete.

Appendix B. Experimental Details

For figs. 1(a) to 1(c) and 2(a) to 2(c) all experiments were done with JAX (Bradbury et al.,
2018).

The true data distribution was taken to be

X ∼ Uniform(−5, 5)

Y |X ∼ Normal

(
x3

100
, 0.32

)
.

Ten samples were taken for the data distribution. The predictive network consisted of
two fully connected layers with 32 hidden units followed by an elu activation. The final
layer was a linear layer with 2 outputs, the first of which was taken as the mean, and the
second generated the standard deviation of the predictive model with a softplus activation
and a minimum value of 0.01: (σ2 = 0.01 + softplus(x)).

A standard Lecun style truncated normal initialization scheme was used for the kernels,
and the biases were initialized to be zero. The initial parameter variance was increased
by a factor of 5, which was found to be important to get the one dimensional networks
to converge well on the range and domain of the toy problem. All problems used the
same initial parameters and the same adabelief optimizer with a cosine decay schedule on
the learning rate starting at 10−3 and ending at 0 after 100k steps, the length of each
optimization run.

To sample from the Bayesian neural network, tensorflow probability’s JAX backend Hamil-
tonian Monte Carlo sampler was used (Dillon et al., 2017; Lao et al., 2020). In particular
1000 results were generated from the chain with 10k burn-in steps, dual averaging step
size adaptation with a step size of 10−3 and 100 leapfrog steps, 9000 adaptation steps and
a target acceptance probability of 0.7. The initialization distribution used for the neural
network experiments was taken to be the prior distribution, both for the kernel and bias
parameters.

For the VIB experiments, the same neural network as above was used to form the
representation q(Z|X). The classifier network p(Y |Z) was taken to be a Normal distribution
with a small fixed variance: Normal(z, 0.012). The marginal r(Z) was set to be a fixed unit
Normal: Normal(0, 1).

All KL divergences were computed using 100k samples of data points and 10k samples
from the any intermediate distributions as required.
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Appendix C. MNIST Experiments

In the main paper, we demonstrate that VIB learns a model which retains uncertainty
about the targets Y , even if it provides no guarantees about generalization in X. For an
additional illustrative comparison, we train models on the MNIST dataset. Specifically,
we compare the predictive models of a deterministic deep neural network and a VIB model
having the same architecture. We use a parameter free decoder, with a categorical likelihood,
multivariate normal prior, and multivariate normal posterior. For the prior, we assume zero
mean and identity covariance, while we predict the full covariance matrix for the posterior.
The deterministic model replicates this setup, but simply predicts the categorical likelihood
rather than the posterior, and it has no prior. We train models for 50 epochs with a learning
rate of 0.001, which is decayed by half every 5000 steps. We further use a batch size of 128.
For the VIB model, we evaluate the objective using 4 samples from the posterior and use
τ = 0.005 as a weighting for the KL penalty.

Figure 3: A selection of images from the MNIST dataset which are misclassified, either
by a deterministic model or by a VIB model. The lower panel shows the class
probabilities predicted by the model for a VIB and a deterministic model. We
find that the deterministic model tends to assign high probability to a single class,
while a VIB model tends to incorporate uncertainty between multiple classes.

We evaluate models using the classification accuracy as well as the log-likelihood of the
test set. To compute the log-likelihood of VIB models, we marginalize over 1000 samples
from the posterior. Both models produce similar final test set accuracies (99.2% for the
deterministic model, and 99.4% for the VIB model). We further find that the test set
log-likelihood for the VIB model is higher (-508 versus -786 for the deterministic model).
However, this later finding is heavily dependent on the τ used in training: We find that the
VIB model can measure a lower log-likelihood if the τ multiplier is larger. Note that the
accuracy is more robust to this hyperparameter, and we find that the VIB model consistently
observes higher accuracy than the deterministic model over the range of τ we explored.

In addition to showing that VIB leads to models which have a higher test log-likelihood
and accuracy, we also examined if the resulting predictive models learned by VIB incorporate
more uncertainty into the labels than do those which are trained with a deterministic
network. For this, in fig. 3 we show 10 images from the test set, each of which is classified
incorrectly by either the VIB model or by the deterministic model. Below each image, we
show the class probabilities predicted by the deterministic and VIB models, and indicate
the true class with a vertical line. Our main observation is that many of the deterministic
models overpredict the probability of a label, with 7 out of 10 images being assigned a class
probability greater than 95%. We also find that in these same situations, VIB often folds
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additional probability into other classes one of which is typically the correct class. This,
when combined with the higher test set log-likelihood agrees with our findings that VIB
facilitate generalization over the label distribution.
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