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Abstract

Deep learning models are known to put the privacy of their training data at risk,
which poses challenges for their safe and ethical release to the public. Differentially
private stochastic gradient descent is the de facto standard for training neural
networks without leaking sensitive information about the training data. However,
applying it to models for graph-structured data poses a novel challenge: unlike
with i.i.d. data, sensitive information about a node in a graph cannot only leak
through its gradients, but also through the gradients of all nodes within a larger
neighborhood. In practice, this limits privacy-preserving deep learning on graphs
to very shallow graph neural networks. We propose to solve this issue by training
graph neural networks on disjoint subgraphs of a given training graph. We develop
three random-walk-based methods for generating such disjoint subgraphs and
perform a careful analysis of the data-generating distributions to provide strong
privacy guarantees. Through extensive experiments, we show that our method
greatly outperforms the state-of-the-art baseline on three large graphs, and matches
or outperforms it on four smaller ones.

1 Introduction

The introduction of Graph Neural Networks (GNNs) has enabled the training of Deep Learning (DL)
models on graph-structured data and for various tasks such as node classification, link prediction or
graph classification. However, similar to DL models trained on image [9] or text data [11, 2], GNNs
leak information about their training data [20, 14, 22], such as the features of a node, or which nodes
are connected by an edge.

In this paper, we analyze the privacy of GNNs under the lens of Differential Privacy (DP)
[8]. In particular, we ensure the privacy of all nodes’ features in a graph. While DP-SGD [1] is the de
facto standard for training DL models with DP, its transfer to GNNs is not straightforward given the
non-i.i.d. nature of the data. Indeed, since an L-layer GNN typically uses the L-hop neighborhood
of a node during the forward pass, the gradient of a node does not depend on that node alone, but
on all nodes in its neighborhood. While some works [7, 16] have attempted to apply DP to GNNs,
most of them focus on edge-level DP. Methods that can be applied to feature-level DP suffer from
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loose privacy guarantees [7], or rely on custom GNN architectures [16]. We propose an adaptation
of DP-SGD to train GNNs with feature-level DP while attenuating the aforementioned problem
and preserving a high model utility. We experimentally demonstrate that our method can offer
significantly stronger privacy guarantees than prior work, particularly on large graphs.

2 Background

2.1 Differential privacy

(ϵ, δ)-DP Differential Privacy (DP) [8] is a notion of privacy that allows data analysts to extract
useful statistics from a dataset, without leaking too much information about the samples in it. More
formally, given two neighboring datasets D and D′ – denoted D ∼ D′ – that differ by one sample
(either by deleting, adding or modifying a sample), a randomized algorithm M with co-domain Y
is (ϵ, δ)-DP if for all O ⊆ Y , and for all D ∼ D′, Pr[M(D) ∈ O] ≤ exp(ϵ)Pr[M(D′) ∈ O] + δ.
The parameters ϵ and δ are the privacy budget parameters: the smaller their values, the better the
privacy guarantees.

(α,γ)-RDP An alternative definition of DP is Rényi Differential Privacy (RDP) [12]. A randomized
algorithm M is said to be γ-RDP of order α – or (α, γ)-RDP – if for any D ∼ D′ it holds that

Dα(M(D),M(D′)) ≤ γ, where Dα = 1
α−1 logEx∼Q

(
P (x)
Q(x)

)α

is the Rényi divergence of order α
which measures the similarity of the distributions P and Q. Note that if M is (α, γ)-RDP, then it is
also (ϵ, δ)-DP for any 0 < δ < 1 where ϵ = fRDP→DP(α, γ, δ) = γ + log(α−1

α )− log δ+logα
α−1 [4]. We

rely on (α, γ)-RDP during our analysis, but report our results in terms of (ϵ, δ)-DP following prior
work.

The Gaussian mechanism Given an algorithm A with real-valued output space A : ND → Rd,
the Gaussian mechanism privatizes the algorithm by adding Gaussian noise to the outputs of A,
i.e. M = Gσ (A (D)) = A(D) + N (0, σ2). Given that the ℓ2 sensitivity of A is ∆2A(D) =

maxD∼D′ ∥A(D) − A(D′)∥2, the mechanism satisfies (α, γ(α))-RDP, with γ(α) = α(∆2A)2

2σ2 .
Intuitively, this indicates that the larger the sensitivity of the function, the more noise needs to be
added to obtain a small privacy budget, and therefore the worse the final performance will be. A
small sensitivity is therefore desirable.

Amplification by sub-sampling A useful property of DP (and RDP) is that, given a mechanism S
that samples a sub-set of the dataset D, applying a private mechanism to S(D) leads to better privacy
guarantees than applying it to the entire dataset D. Intuitively, this is due to the fact that subsampling
introduces a non-zero chance of an added or modified sample to not be processed by the randomized
algorithm. Typically, S is assumed to be a Poisson or uniform sampling over the dataset. Poisson
sampling is typically used when the neighboring datasets differ in size, while uniform sampling is
used otherwise. In this paper, we rely on uniform sampling.

2.2 Differential privacy in deep learning

Differentially Private Stochastic Gradient Descent (DP-SGD) [18, 5, 1] is the foundation of many
works [7, 11, 10] that apply DP to deep learning. It privatizes the weights of a model with respect to
the input dataset at every iteration of training, and then accumulates the privacy budget being spent
over all iterations. One private training iteration consists of batching a set of samples, computing the
gradient on each sample independently, clipping the norm of each gradient vector to a maximum norm
C, calculating the entire gradient by adding calibrated Gaussian noise, and finally performing an
update step. The clipping step is used to bound the sensitivity of the gradients to changes in the input.
Then, assuming that two neighboring datasets D and D′ differ in the features of one sample, the
sensitivity of the total gradient on a batch of i.i.d. samples is bounded by 2C. Through batching (i.e.
sub-sampling the dataset using a sampling mechanism S), amplification by sub-sampling theorems
[3, 19] can be exploited to get better privacy guarantees at every iteration. Finally, assuming each
iteration t is (α, γt)-RDP, the overall training is then (α,

∑T
t=0 γt)-RDP [12] where T is the total

number of iterations.
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2.3 Graph neural networks

Definition In the following, we define a graph as G = {X,A}, where X ∈ RN×d is the feature
matrix in which each row corresponds to one node’s feature vector, and A ∈ {0, 1}N×N is the
adjacency matrix in which Aij is 1 if there exists an edge between nodes i and j and 0 otherwise.
Note that we only consider undirected graphs, therefore A = AT . Graph Neural Networks (GNNs)
are a class of models that learn a mapping f : G → Z ∈ RN×d′

, where Z is an updated feature
matrix of G that can be used for various downstream tasks. Each layer of a GNN typically consists of
two steps: 1) in the aggregation step, information about the neighborhood of every node is gathered;
2) in the update step, the feature vector of every node is updated based on its current feature vector
and the aggregated neighborhood information.

The receptive field The receptive field of a node in a GNN is defined as the region in the input
graph that influences the GNN’s predictions for that specific node. For a GNN with L layers, the
receptive field of a node v is the L-hop neighborhood of v. Thus, for a graph with maximum node
degree K, the largest possible receptive field size of any node v is RF(v) =

∑L
l=0 K

l = KL+1−1
K−1 ,

i.e. the receptive field grows exponentially with the number of layers of the GNN.

2.4 Differential privacy in graph neural networks

Given that graphs contain two types of attributes – node features and edges – multiple levels of DP
[6, 7, 16] can be considered: edge-level DP, where the edges between nodes are private; feature-level
DP, where the features of nodes are private; and node-level DP, where both the features and edges of
nodes are private. In this work, we focus on feature-level DP using DP-SGD. Contrary to traditional
i.i.d. datasets, samples in a graph (i.e. nodes) are not independent: changing the features of one
node affects the gradients of all nodes within the receptive field of the modified node. In fact, the
sensitivity of the total gradient on a graph is bounded by 2KL+1−1

K−1 C (see Appendix A), which
grows exponentially with the number of layers L. Given that the Gaussian mechanism adds noise
proportional to the sensitivity of the total gradient, this can lead to large amounts of noise being
added during training, which in turn leads to poor final model utility.

3 Related work

In [15], a node-level differentially private GNN is trained by perturbing features and edges locally
before sending them to a global server. This setup is called local DP, and differs from our notion of
DP where a central learner is trusted with the real data. The authors in [10] propose to split the graph
into disjoint sub-graphs using uniform node sampling, then treat each sub-graph as an independent
sample. Note that, contrary to our method which considers privacy at the individual node feature
level, their approach treats the entire graph as a datapoint to privatize, rather than providing privacy
for the individual nodes in the graph. The method in [16] privatizes GNNs at both the node-level
and edge-level. However, their approach only applies to the GNN architecture they propose and
not to arbitrary GNNs, unlike our proposed method. Furthermore, it does not resolve the issue of
exponentially growing sensitivity in transductive learning scenarios. For a survey on DP on graph
data, refer to [13]. Finally, the authors of [7] propose to reduce the sensitivity of a GNN’s gradients
by bounding the maximum degree K of the graph. However, this does not resolve the exponential
growth with the number of layers. Therefore, they still obtain loose privacy guarantees (ϵ = 20).
Since this method is the closest to our setup, we compare our approach to theirs in our experiments.

4 Methodology

4.1 Approach

We propose to adapt DP-SGD to the graph domain to ensure that the weights of a GNN are private
with respect to the nodes’ features, while overcoming the problem of requiring exponentially more
noise with a growing network depth. In the following, we define two graphs G and G′ as neighbors if
they share the same structure A and number of nodes N but differ in one row of the feature matrix
X corresponding to the modified node ṽ. We want to train the GNN such that for all G ∼ G′,
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Figure 1: Our general sampling method. Starting with a graph, we generate subgraphs by first
sampling a root node (depicted in red), and then sampling one or more random walks starting from
the root node. Every node appears in exactly one subgraph. Before every iteration, we batch m many
subgraphs, where m = 2 in this case. Root nodes are used as training nodes, while remaining nodes
are used for aggregation in the GNN only.

Dα(M(G),M(G′)) ≤ γ, where M is a randomized algorithm that returns the weights of the GNN.

To adapt DP-SGD to the graph domain, we propose to pre-process the graph into sets of
independent subgraphs that do not affect each others’ gradients, so that the sensitivity of the total
gradient on any batch depends on the gradient of one subgraph only. We summarize our training
procedure in Algorithm 1. More precisely, we pre-process the graph into a set of M disjoint
subgraphs GS = {s1, s2, . . . , sM}, i.e. subgraphs that do not have any nodes in common, using
sampling method S. Each subgraph si consists of two components: 1) one training node vi, and
2) a set of neighbors N (vi) that is used for the aggregation step of the GNN. At training time, for
every iteration t, we create a batch by sampling m subgraphs uniformly at random from the set of
subgraphs GS . We then compute the gradients ∇wtL(vj ,N (vj)) on all training nodes and clip
the norm of each to a value C. We compute the total gradient by summing individual gradients and
adding Gaussian noise. Finally, we update the weights.

Due to the disjointness of subgraphs, changing one node’s features – whether it is a train-
ing node or a neighbor – will affect at most one subgraph (i.e. sample) in the batch, which reduces
the upper bound on the sensitivity of the total gradient to 2C. Since we sample subgraphs uniformly
at random, we can leverage the strong amplification by sub-sampling theorem [19], i.e. account for
the possibility of the gradient not being affected if the modified node ṽ is not part of the batch.

We generate these disjoint subgraphs via random walk sampling, which is an effective way
of training GNNs [21]. We choose random walk sampling, since it ensures that nodes form a
connected subgraph of a training node’s neighborhood, while limiting the number of nodes being
sampled from that neighborhood (i.e. from the receptive field). In the following, we propose three
different random-walk-based sampling methods, which we later compare in our experimental results.
Furthermore, we derive for each sampling method a tight upper bound on the probability of sampling
the modified node ṽ in a batch, which is required for applying the amplification by subsampling
theorem in [19].

4.2 Sampling methods

Our three sampling methods consist of pre-processing the graph into a set of M disjoint subgraphs
GS = {s1, s2, . . . , sM}, and then generating a batch B ⊆ GS by sampling m subgraphs uniformly
at random. An overview of our general approach is depicted in Figure 1. Given a graph with M
generated disjoint subgraphs, the true probability of sampling node ṽ is P [ṽ] = 1

M , since we know
that a node is in exactly one of the M subgraphs. However, to ensure differential privacy, we require
a bound that holds for all possible graphs and any run of the sampling procedure. Thus, we use the
upper bound P [ṽ] = 1

M ≤ 1
Mmin

where Mmin is the minimum number of subgraphs that can be
generated in any graph of N nodes. Then, the probability of sampling ṽ in a batch of m subgraphs
using sampling mechanism S is at most PS [ṽ] ≤ m

Mmin
.
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Algorithm 1 DP-SGD with random walk sampling
Input: Graph G = {V,E}, sampling method S, loss function L, initial model weights w0, noise
standard deviation σ, gradient clipping norm C, number of iterations T , frequency at which to
re-sample subgraphs in DRW-D i
GS = S(G) ▷ Generate subgraphs from graph G using sampling method S
for t in [0, T) do

if t % i == 0 and S == DRW-D then
GS = S(G)

end if
Sample m subgraphs uniformly at random from GS to form batch B
for sj in B do ▷ sj is a subgraph

Compute ∇wtL(vj ,N (vj))
gt(vj) = clip (∇wtL (vj ,N (vj)) , C) ▷ Compute and clip individual gradients in B

end for
gt(B) = 1

|B|

((∑
sj∈B gt(vj)

)
+N (0, σ2)

)
▷ Add noise to the gradients

wt+1 = update(wt, gt(B)) ▷ Update weights based on optimizer being used
end for

Disjoint random walks The first sampling method we propose is called Disjoint Random Walks
(DRW). We pre-process the graph once before training and then generate batches at every iteration
using the same set of subgraphs. Each subgraph consists of one random walk of length L (refer to
Appendix B for a pseudo-code). A random walk of length L contains at most L + 1 nodes, and
generating random walks that all have maximal length would result in the minimum number of
random walks, since a node can only appear in one random walk. Therefore, we get Mmin = ⌈ N

L+1⌉
and P [ṽ] ≤ 1

⌈ N
L+1 ⌉

. Finally, the upper bound probability of sampling a node ṽ is PDRW[ṽ] ≤ m
⌈ N
L+1 ⌉

.

Disjoint random walks with restarts To create better subgraphs that contain more nodes for
aggregation, we also propose Disjoint Random Walks with Restarts (DRW-R). Similary to DRW,
this sampling method generates subgraphs once before training by using random walks, but instead
of sampling one random walk per training node we sample R of them (refer to Appendix B for a
pseudo-code). Given a random walk length of L and R restarts, the minimum number of subgraphs
is Mmin = ⌈ N

1+R×L⌉ where 1 + R × L is the maximum size of one subgraph when all random
walks have length L, and the probability of sampling node u in a batch of size m is therefore
PDRW-R[u] ≤ m

⌈ N
1+R×L ⌉ .

Disjoint random walks with dynamic re-sampling Finally, we propose a third sampling method
in which we pre-process the graph into disjoint subgraphs every ith iteration instead of once before
training, where i is a hyper-parameter that is chosen based on the cost of the sampling procedure
on each dataset. This allows us to increase the diversity of subgraphs used for training, and prevent
overfitting on the subgraphs generated in one run of the sampling procedure. We call this procedure
DRW-D, where D stands for Dynamically re-sampling random walks. The probability of sampling
node ṽ is the same as in DRW, namely PDRW-D[ṽ] = PDRW[ṽ] ≤ m

⌈ N
L+1 ⌉

. Note that this method

consists simply of re-running the subgraph generation process DRW at every ith iteration instead of
once before training, which is reflected in Algorithm 1.

5 Experimental results

Experimental setup We report our results on seven datasets, both in the transductive and the
inductive settings. The dataset sizes in terms of total nodes range from small (Cora [17], Citeseer
[17]) to medium (PPI [21], Pubmed [17]) to large (Flickr [21], Arxiv [21], Reddit [21]), or in number
of training nodes from small (Pubmed, Citeseer, Cora) to medium (PPI) to large (Flickr, Arxiv,
Reddit). We report the exact number of nodes as well as some additional dataset characteristics
in Appendix C. We focus on the node classification task, and report our results in terms of F1
Micro score, a metric equivalent to accuracy except on PPI which is a multi-label classification task.
Following prior work, we report our privacy budget using ϵ and a fixed δ per dataset (see Appendix
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C). Given a target ϵ, we keep training while tracking the (α, γt) privacy budget being spent until we
reach ϵ = fRDP→DP(α,

∑T ′

t=0 γt, δ) at iteration T ′.

We compare our proposed methodology with each sampling method to three baselines: 1) A basic
GCN trained with random walk sampling; 2) A basic MLP trained with uniform node sampling; and
3) The method proposed in [7] which we call FDP for Feature-level DP. Note that while they train
their models up to an ϵ of 20, we only train them until ϵ = 8, since a very large ϵ does not have much
value in terms of privacy.

Table 1: Comparison between the F1 Micro score (%) achieved by a basic GCN and MLP, the FDP
baseline, and our proposed method with multiple sampling methods. All DP methods are trained with
a target budget of ϵ ≤ 8.

Layers Width Dataset
Cora CiteSeer PPI PubMed Flickr Arxiv Reddit

GCN (non-DP)
1 - 69.8 59.5 46.2 68.7 45.6 59.7 92.5

2 256 77.3 63.7 58.9 72.9 51.3 69.1 94.7
512 76.6 62.2 60.7 72.9 51.3 69.5 94.7

MLP (non-DP)
1 - 43.0 37.6 45.2 61.3 45.7 52.3 67.7

2 256 47.3 36.1 52.1 61.5 36.2 52.6 69.8
512 44.8 39.3 53.6 63.3 38.4 52.0 69.7

FDP (DP)
1 - 17.1 17.5 38.4 39.6 33.6 43.8 56.7

2 256 17.6 21.5 40.7 41.4 42.5 31.9 43.7
512 23.2 22.1 40.0 41.2 42.4 30.2 42.3

Ours

DRW (DP)
1 - 19.9 20.6 40.2 41.7 42.1 59.2 81.4

2 256 17.2 20.9 38.7 40.3 48.7 59.6 80.2
512 24.9 21.3 37.9 41.1 47.9 59.2 81.8

DRW-D (DP)
1 - 19.8 20.6 40.1 41.7 42.2 59.2 81.4

2 256 17.2 21.3 38.6 40.2 48.5 59.7 80.2
512 25.0 21.7 37.9 41.2 47.8 59.3 81.5

DRW-R (DP)
1 - 18.3 19.2 40.0 40.3 42.3 59.1 82.0

2 256 17.3 20.7 38.2 40.4 48.3 59.7 81.0
512 24.5 21.3 36.9 40.4 48.5 59.4 82.2

Discussion Table 5 summarizes our results. A GCN trained without DP always outperforms the
ones trained with DP, which is expected since clipping gradients and especially adding Gaussian noise
decreases the utility of the final model. However, in some cases our method can almost match the
utility of the basic GCN, whereas the FDP baseline struggles. For example, DRW sampling on Flickr
can reach up to 48.7% accuracy – which corresponds to 95% of the baseline GCN’s performance
– whereas FDP reaches only 42.5% accuracy – which corresponds to 83% of the baseline GCN’s
performance. Similarly, our method achieves 87% of the GCN’s performance on the challenging
dataset Reddit, while FDP can only reach 60% of the GCN’s performance. This shows that our
sub-sampling approach is effective at solving the exponential growth of the receptive field while
approaching the utility of the non-DP GCN baseline, which makes our method attractive for real
world applications. That being said, our method uses a smaller amount of training nodes than what
is available at every iteration, even when computational complexity is not an issue (i.e. on small
graphs). The effect of this reduction in training training samples is exacerbated on small graphs that
do not require batching in non-DP training, which leads to our method performing on-par with the
FDP baseline on small datasets.

Comparison with variable privacy budget Finally, in Figure 2 we expand on our previous results
by reporting the accuracy at various ϵ checkpoints during training. We report the best results that
our method achieved across all sampling methods and compare to the FDP baseline. On all datasets,
our method largely outperforms FDP across multiple epsilon values. Moreover, FDP cannot achieve
an epsilon lower than 2, whereas our method does while sometimes outperforming FDP at higher
privacy budgets.
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(a) (b) (c)

Figure 2: F1 Micro Score vs. epsilon achieved by FDP and our best sampling method for a) Flickr, b)
Arxiv and c) Reddit datasets.

6 Conclusion

We proposed a novel way of training differentially private graph neural networks. Since graphs
consist of inter-connected nodes that influence each other’s gradients during training, naively adapting
traditional DP methods to graph neural networks can result in unnecessarily large amounts of noise
being added to the model during training, which in turn leads to poor utility of the model. We
proposed an adapted version of DP-SGD that uses random-walk based sub-sampling to overcome
this problem and introduced three sampling methods that generate disjoint subgraphs. For each
sampling method, we derived an upper bound on the probability of sampling a modified node in
a batch to apply the amplification by sub-sampling theorem and obtain tighter privacy guarantees.
Our method achieves a better privacy-utility trade-off compared to the state-of-the-art baseline FDP
across multiple datasets, especially for large datasets. A necessary future work direction in this field
is to attempt to solve the performance issue on small datasets, which is especially exacerbated on
GNNs. For example, pre-training the models on public datasets [11] or using variable signal-to-noise
ratios during training are ways of improving the utility in DP. Moreover, different sampling methods
that do not necessarily focus on random walks can be explored.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages 308–318, 2016.

[2] Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. Large-scale
differentially private bert. arXiv preprint arXiv:2108.01624, 2021.

[3] Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: Tight
analyses via couplings and divergences. Advances in Neural Information Processing Systems,
31, 2018.

[4] Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tetsuya Sato. Hypothesis test-
ing interpretations and renyi differential privacy. In International Conference on Artificial
Intelligence and Statistics, pages 2496–2506. PMLR, 2020.

[5] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In 2014 IEEE 55th annual symposium on foundations
of computer science, pages 464–473. IEEE, 2014.

[6] Ameya Daigavane, Gagan Madan, Aditya Sinha, Abhradeep Guha Thakurta, Gaurav Aggarwal,
and Prateek Jain. Node-level differentially private graph neural networks. arXiv preprint
arXiv:2111.15521, 2021.

[7] Ameya Daigavane, Gagan Madan, Aditya Sinha, Abhradeep Guha Thakurta, Gaurav Aggarwal,
and Prateek Jain. Node-level differentially private graph neural networks. In ICLR 2022
Workshop on PAIR, 2022.

[8] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Founda-
tions and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

7



[9] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit
confidence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security, pages 1322–1333, 2015.

[10] Timour Igamberdiev and Ivan Habernal. Privacy-Preserving Graph Convolutional Networks for
Text Classification. In Proceedings of the 13th Language Resources and Evaluation Conference,
page (to appear), Marseille, France, 2022. European Language Resources Association.

[11] Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language mod-
els can be strong differentially private learners. In International Conference on Learning
Representations, 2021.

[12] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations
symposium (CSF), pages 263–275. IEEE, 2017.

[13] Tamara T Mueller, Dmitrii Usynin, Johannes C Paetzold, Daniel Rueckert, and Georgios Kaissis.
Sok: Differential privacy on graph-structured data. arXiv preprint arXiv:2203.09205, 2022.

[14] Iyiola E Olatunji, Wolfgang Nejdl, and Megha Khosla. Membership inference attack on graph
neural networks. In 2021 Third IEEE International Conference on Trust, Privacy and Security
in Intelligent Systems and Applications (TPS-ISA), pages 11–20. IEEE, 2021.

[15] Sina Sajadmanesh and Daniel Gatica-Perez. Locally private graph neural networks. In Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pages
2130–2145, 2021.

[16] Sina Sajadmanesh, Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-Perez. Gap:
Differentially private graph neural networks with aggregation perturbation. arXiv preprint
arXiv:2203.00949, 2022.

[17] Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina
Eliassi-Rad. Collective classification in network data. AI Magazine, 29(3):93–106, 2008.

[18] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with
differentially private updates. In 2013 IEEE global conference on signal and information
processing, pages 245–248. IEEE, 2013.

[19] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled rényi differential
privacy and analytical moments accountant. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1226–1235. PMLR, 2019.

[20] Fan Wu, Yunhui Long, Ce Zhang, and Bo Li. Linkteller: Recovering private edges from graph
neural networks via influence analysis. arXiv preprint arXiv:2108.06504, 2021.

[21] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
Graphsaint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931,
2019.

[22] Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chengqiang Lu, Chuanren Liu, and Enhong
Chen. Graphmi: Extracting private graph data from graph neural networks. arXiv preprint
arXiv:2106.02820, 2021.

A Upper Bound on Gradient Sensitivity

We show how to derive the upper bound on the sensitivity of the total gradient on a batch, where gt
is the function that takes a batch B as input and returns the gradients at iteration t, B and B′ are
neighboring batches that differ by one sample ṽ, Lv is the loss function on a node v, ∇wLv is the
gradient of the loss on v with respect to the weights of the model, and I[ṽ ∈ B] is the indicator
function which is 1 if ṽ is in the batch and 0 otherwise.
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∆2gt = ∥gt(B)− gt(B
′)∥2

= ∥
∑
v∈B

∇wLv −
∑
v∈B′

∇wLv∥2

= ∥(∇wLṽ +
∑

u∈RF (ṽ)\ṽ

∇wLu)I[ṽ ∈ B]− (∇wLṽ′ +
∑

u∈RF (ṽ′)\ṽ′

∇wLu)I[ṽ′ ∈ B′]∥2

≤ ∥(∇wLṽ +
∑

u∈RF (ṽ)\ṽ

∇wLu)I[ṽ ∈ B]∥2 + ∥(∇wLṽ′ +
∑

u∈RF (ṽ′)\ṽ′

∇wLṽ′)I[ṽ′ ∈ B′]∥2

≤ ∥∇wLṽ +
∑

u∈RF (ṽ)\ṽ

∇wLu∥2 + ∥∇wLṽ′ +
∑

u∈RF (ṽ′)\ṽ′

∇wLu∥2

≤ ∥∇wLṽ∥2 +
∑

u∈RF (ṽ)\ṽ

∥∇wLu∥2 + ∥∇wLṽ′∥2 +
∑

u∈RF (ṽ′)\ṽ′

∥∇wLu∥2

≤ 2|RF (ṽ)|C

≤ 2
KL+1 − 1

K − 1
C

(1)
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B Algorithms

B.1 DRW Sampler

The following algorithm shows how to generate disjoint subgraphs using the Disjoint Random Walks
(DRW) sampling method (see Section 4.2). To generate a subgraph, we first sample a node v from
the set of remaining nodes, then remove it from this set. We then construct the set of valid neighbors
of v, which consists of all nodes that have not been already sampled. We sample the next node v in
the subgraph from the set of valid neighbors, and repeat the process until we get a random walk of
length L. We iterate this process until all nodes are included in one subgraph.

Algorithm 2 DRW Sampler
Input: Graph G = {V,E}, random walk length L.
Output: Set of all disjoint subgraphs = ()
remaining_nodes = {v1, v2, . . . , vN}
while len(remaining_nodes) != 0 do

subgraph = []
v = sample(remaining_nodes, 1) ▷ uniformly sample over non-sampled nodes
subgraph.append(v)
remaining_nodes.remove(v)
l = 0
while l < L do

valid_neighbors = Neighbors(v) ▷ Neighbors returns all neighbors of a node
for u in valid_neighbors do

if u not in remaining_nodes then
valid_neighbors.remove(u)

end if
end for
if len(valid_neighbors) != 0 then

v = sample(valid_neighbors, 1) ▷ uniformly sample a neighbor of v
else

break
end if
random_walk.append(v)
remaining_nodes.remove(v)
l = l + 1

end while
subgraphs.add(subgraph)

end while

B.2 DRW-R Sampler

The following algorithm shows how to generate disjoint subgraphs using the Disjoint Random Walks
with restarts (DRW-R) sampling method (see 4.2). The main difference to the DRW sampler is that,
instead of stopping the subgraph generation after one random walk, we sample multiple random
walks rooted at the same node by re-initializing the starting node of the random walk to the same root
node of the subgraph R times.
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Algorithm 3 DRW-R Sampler
Input: Graph G = {V,E}, random walk length L.
Output: Set of all disjoint subgraphs = ()
remaining_nodes = {v1, v2, . . . , vN}
while len(remaining_nodes) != 0 do

subgraph = []
root = sample(remaining_nodes, 1) ▷ uniformly sample over non-sampled nodes
subgraph.append(root)
remaining_nodes.remove(root)
for r in range(R) do

v = root
l = 0
while l < L do

valid_neighbors = Neighbors(v) ▷ Neighbors returns all neighbors of a node
for u in valid_neighbors do

if u not in remaining_nodes then
valid_neighbors.remove(u)

end if
end for
if len(valid_neighbors) != 0 then

v = sample(valid_neighbors, 1) ▷ uniformly sample a neighbor of v
else

break
end if
subgraph.append(v)
remaining_nodes.remove(v)
l = l + 1

end while
subgraphs.add(subgraph)

end for
end while

11



C Training Hyperparameters

We run all experiments with three different seeds, Adam optimizer and ReLU activation. We
summarize the number of roots used for different sampling scenarios in Table 4. For the non-DP
trainings, we fix the learning rate to 0.01. We perform a grid hyper-parameter search for the trainings
on all datasets. We experiment with the following hyper-parameters for both DP and non-DP trainings:

• Number of layers in {1, 2}
• Width of hidden layers in {256, 512}
• Maximum graph degree in {2 , 4} for the FDP baseline

We use the follow hyper-parameters for the DP specific trainings:

• Learning rate in {0.01, 0.1, 0.2}
• Clip norm percentage C% in {0.001, 0.01, 0.1}.
• Noise multiplier λ in {1, 2, 4, 8}. The noise multiplier is the ratio of the standard deviation
σ of the Gaussian noise added to the gradients to the sensitivity ∆2f of the function f .
Instead of tuning σ, we tune λ, then fix σ = λ×∆2f .

• Delta value δ: we summarize the values used in Table 3

Nodes Feature Size Classes Training Nodes Type

Cora 2,708 1,433 7 (s) 140 Transductive

Citeseer 3,327 3,703 6 (s) 120 Transductive

PPI 14,755 50 121 (m) 9,716 Inductive

Pubmed 19,717 500 3 (s) 60 Transductive

Flickr 89,250 500 7 (s) 44,625 Inductive

Arxiv 169,343 128 40 (s) 90,941 Inductive

Reddit 232,965 602 41 (s) 153,932 Inductive
Table 2: Characteristics of the datasets that we use in our experiments. (s) indicates a single-label
classification problem, and (m) a multi-label one.

Dataset
Cora Citeseer PPI Pubmed Flickr Arxiv Reddit

δ 1e-5 1e-5 1e-5 1e-6 1e-6 1e-7 1e-7
Table 3: δ value used for each dataset.

Sampler Depth Dataset
Cora CiteSeer PPI PubMed Flickr Arxiv Reddit

RW, uniform, PreDRW, 1 70 60 2,000 30 10,000 20,000 30,000
PreDRW-D, DynDRW 2 46 40 2,000 20 10,000 20,000 30,000

PreDRW-R 1 46 40 2,000 20 10,000 20,000 30,000
2 28 24 1,800 12 8,000 18,000 30,000

Table 4: Batch sizes used for training based on the sampler, depth of the model, and dataset. Note
that as a general rule, we used around 20% of total number of training nodes for the large datasets,
and 50% for the small datasets.
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