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Abstract—Patients with inflammatory bowel disease (IBD) are
at high risk for developing dysplasia and colorectal cancer. The
early and accurate detection and treatment of dysplasia forms the
main strategy to reduce mortality from colorectal cancer in IBD
patients. Detecting such dysplasia is challenging because of the
subtle, unconventional, multi-focal nature of the lesions. In this
work, we develop an approach for accurate classification of dys-
plasia in IBD patients using Bayesian deep learning. We modify
existing deep learning models to perform Bayesian approximation
for achieving higher classification accuracy than a deterministic
deep learning model. Specifically, we propose to insert one or
more densely connected layers before the final densely connected
layer of a model that performs classification. Each newly inserted
layer is followed by a dropout layer. These inserted dropout layers
are enabled during training and inference. Instead of obtaining a
single prediction by a deterministic model for a given test input,
we obtain a distribution of predictions and then compute the
most probable prediction. We evaluated our approach using 60+
digital slides of histopathology tissue sections containing three
different types of dysplasia in IBD patients. Our best Bayesian
deep learning model achieved an accuracy of 97.37%, 93.23%,
and 98.16%, respectively for the three dysplasia types using
patch-wise classification.

Index Terms—Dysplasia classification, inflammatory bowel
disease, deep learning, whole slide imaging

I. INTRODUCTION

INFLAMMATORY bowel disease (IBD) encompasses
chronic inflammatory states of the gastrointestinal tract.

Every year, 70,000 new IBD cases are diagnosed in the
United States [1]. The healthcare financial burden of IBD
is $31 billion annually [1]. Patients with IBD are at high
risk for developing dysplasia, which indicates the presence of
abnormal cells [1]. It is reported that about 18% of the IBD
patients may develop colorectal cancer by the time they have
had IBD for 30 years [2]. It is also known that about 10-15%
of IBD patients die of colorectal cancer annually [3]. Hence,

accurate assessment and treatment of IBD patients is crucial
for prevention of colorectal cancer in these patients.

The process of cancer formation in IBD is more of a non-
polypoid mucosal dysplasia, which leads to invasive cancer
at an exaggerated rate. For a pathologist, detecting dysplasia
is challenging because of the subtle, unconventional, multi-
focal nature of the lesions that are located among inflamma-
tory pseudopolyps or scarred post-inflammatory background
mucosa [4]. (Even personal communications with expert gas-
trointestinal pathologists confirmed this situation.) However,
with the identification of new types of nonconventional dys-
plasia [4], [5], the detection of IBD-associated dysplasia has
become significantly more challenging for pathologists. If
dysplasia is missed or incorrectly graded, it can eventually
lead to colorectal cancer in IBD patients. Therefore, there is a
clear need for early and accurate detection of IBD-associated
dysplasia by pathologists. This is regarded as the standard of
care to minimize mortality due to colorectal cancer in IBD
patients.

Deep learning (DL), a subfield of artificial intelligence (AI),
has received much attention in biomedical image analysis [6]–
[8] and in diagnostic fields such as pathology [9]–[12]. For
pattern recognition in images, a deep neural network learns
multiple representations of the input images at different levels
of abstractions [13]. It can learn complex, non-linear deci-
sion boundaries for achieving high accuracy in classification
tasks. In addition, it avoids the tedious process of hand-
engineered feature selection required by conventional machine
learning techniques. Open-source frameworks such as Ten-
sorFlow/Keras12 and PyTorch3 have commoditized DL. They
support a variety of models based on convolutional neural

1 https://www.tensorflow.org 2 https://keras.io 3 https://pytorch.org



networks (CNNs) [13] for image classification. These include
ResNet [14], DenseNet [15], and EfficientNet [16]. More
recently, these frameworks also support Vision Transformer
(ViT) [17] that employs the groundbreaking Transformer ar-
chitecture [18], which has revolutionized the field of natural
language processing (NLP).

In this work, we investigate how popular DL models (e.g.,
DenseNet, EfficientNet, ViT) can be employed for dysplasia
classification in IBD patients using whole slide images (WSIs)
of histopathology tissue slides. Specifically, we explore if
Bayesian DL [19], which uses a Bayesian approach for model
training and inference, can provide improved classification
performance than a deterministic DL model while capturing
the model uncertainty. The key contributions of this paper are
as follows:

• We develop a DL-based approach for accurate classifica-
tion of dysplasia in IBD patients. We specifically focus
on three types of dysplasia of interest to a pathologist
diagnosing the tissue sections of IBD patients. Given an
input patch of a WSI, our approach predicts the type of
dysplasia in the patch.

• We employ Bayesian DL to achieve higher classification
accuracy and capture the model uncertainty using the
idea of dropout for Bayesian approximation [20]. Given
a DL model, we insert one or more densely connected
layers before the final densely connected layer of the
model that performs classification. Each newly inserted
densely connected layer is immediately followed by a
dropout layer. These inserted dropout layers are enabled
during training and inference. As a result, we obtain
a distribution of predictions for a test input and then
compute the most probable class label for it.

• We evaluated our approach on popular DL models,
namely, DenseNet, EfficientNet, and ViT using 60+ WSIs
of histopathology tissue slides. We observed that the
Bayesian DL models achieved better performance than
their deterministic counterparts. Our best Bayesian DL
model (based on EfficientNet) achieved 97.37%, 93.23%,
and 98.16% accuracy for the three classes using patch-
wise classification of dysplasia in these slides.

The rest of the paper is organized as follows: Section II pro-
vides the background and motivation for our work. Section III
presents our approach of dysplasia classification in IBD pa-
tients. We report the performance evaluation in Section IV. We
provide a discussion in Section V and conclude in Section VI.

II. BACKGROUND AND MOTIVATION

A. DL for IBD

IBD clinically presents in two forms: ulcerative colitis and
Crohn’s disease. In recent years, DL has been explored for
IBD diagnosis. Takenaka et al. [21] validated the effective-
ness of a deep neural network for evaluation of endoscopic
images of patients with ulcerative colitis. They achieved over
90% accuracy for identification of endoscopic remission and
histologic remission. Stidham et al. [22] trained a CNN on

endoscopic images for endoscopic severity grading of ulcera-
tive colitis. They showed that the CNN model could achieve
similar performance to experienced human reviewers. Maeda
et al. [23] developed a computed-aided diagnosis system to
grade ulcerative colitis-related mucosal inflammation using
endoscopy images. Their system used texture analysis of
the images and machine learning to distinguish whether the
histologic inflammatory status was healing or active. Kohli et
al. [24] suggested that AI can be of great value for IBD due
to subjectivity in the diagnosis using endoscopic evaluation.

Recently, Ho et al. [25] developed a DL approach for
screening colorectal biospies for dysplasia, inflammation, and
malignancy to diagnose colorectal cancer. They used WSIs and
performed segmentation on the slides. Specifically, they used
the Faster Region Based CNN architecture [26] for instance
segmentation and ResNet [14] for feature extraction. The
slide classification was performed using traditional machine
learning to classify high-risk/low-risk slides.

Yamamoto et al. [27] developed a DL approach for clas-
sification of neoplasias in IBD patients using endoscopy
images. They used EfficientNet [16] as the underlying CNN
and showed that their model could achieve higher diagnostic
accuracy than human experts. Similarly, Abdelrahim et al. [28]
developed a DL model for neoplasia detection in IBD patients
using endoscopic images and videos. They used the RetinaNet
architecture [29] with ResNet for deep feature extraction.

Most of the prior efforts have employed DL on endoscopic
images and videos of IBD patients.

B. Bayesian DL

A Bayesian neural network is a neural network trained
using Bayesian inference [19], [30]. Such a network enables
the quantification of uncertainty in the predictions compared
to traditional DL models that are typically considered black
boxes and provide only point estimates. Furthermore, Bayesian
DL is valuable in domains where limited data are available
for training DL models [19]. A recent benchmarking study in-
vestigated the impact of different Bayesian DL techniques for
diabetic retinopathy detection [31]. Significant improvement in
classification accuracy and area under the curve (AUC) was
achieved using different Bayesian DL techniques.

While there are different Bayesian DL techniques [19], [31],
we are inspired by the work of Gal and Ghahramani [20],
which introduced Monte Carlo dropout for Bayesian approxi-
mation. Their work showed that by adding dropout after every
weight layer, approximately corresponds to variational infer-
ence (an approach for approximate inference) in a Bayesian
neural network. Monte Carlo dropout is also easy to introduce
in a deterministic DL model. During prediction/inference,
dropout is enabled in a Bayesian DL model. As a result,
the model is run several times (i.e., forward pass) to output
a distribution of predictions on a test input. The mode (or
mean) of the predictions can be used as the final prediction for
classification (or regression). In contrast, a deterministic DL
model produces only one prediction for the test input. Hence,
a Bayesian DL model is typically slower for prediction.



C. Motivation

Our work is motivated by two reasons: Firstly, most of
the prior work focused on using endoscopic images/video for
assessing the severity of IBD. Some of the approaches focused
on neoplasia instead of dysplasia in IBD patients or dysplasia
in colorectal cancer patients. Although, dysplasia is common
to both IBD and non-IBD associated colorectal cancer, the
dysplasia associated with IBD is more challenging to identify
for a pathologist compared to non-IBD associated dysplasia.
This is because the intensity of background inflammation in
IBD associated dysplasia is higher and can be morphologically
complex, thus posing significant challenge in identifying it.
On the other hand, non-IBD associated dysplasia is easy to
identify and characterize. Secondly, Bayesian DL can enable
higher classification accuracy when data are limited. Recall
that if dysplasia is missed or incorrectly graded, it can even-
tually lead to colorectal cancer in IBD patients. Thus, the
benefit of Bayesian DL may outweigh the slower prediction
time in a non-real time diagnostic application such as dysplasia
classification of IBD patients.

III. OUR APPROACH

In this section, we introduce the different types of dysplasia
of interest to a pathologist and then present our approach for
dysplasia classification using Bayesian DL. (Our idea was first
reported in a patent application [32].)

A. Dysplasia Types for Classification

The three different types of dysplasia that we aim to
accurately classify in WSIs of IBD patients are: (a) high-grade
dysplasia (HGD), (b) low-grade dysplasia (LGD), and (c) no
dysplasia (NEG). Figure 1 shows examples of HGD, LGD,
and NEG patches extracted from WSIs.

(a) An HGD patch (b) An LGD patch (c) A NEG patch

Fig. 1. Examples of different types of dysplasia

HGD involves severe dysplasia and may become cancer. The
colonic crypts are proliferative, crowded, and hypercellular,
exhibiting cribriforming, solid nests, and intraluminal necrosis.
Histologically, HGD shows significant pleomorphism with
cytologically malignant cells, rounded and heaped-up cells,
and an increased nuclear-to-cytoplasmic ratio. Architectural
complexity is evident with irregular, back-to-back tubules.
Mitoses are increased and atypical.

On the other hand, LGD is characterized by mild to mod-
erate epithelial dysplasia. The colonic crypts are prolifera-
tive, crowded, hypercellular, and arranged in parallel with-
out architectural complexity. Histologically, LGD displays a

picket fence appearance with elongated, hyperchromatic, cigar-
shaped, pseudostratified nuclei. There is varying maturation
and mucin production with the presence of dystrophic goblet
cells. The nuclei maintain a basal orientation, occupying the
bottom half of the cell. Importantly, LGD does not exhibit
atypical mitoses, loss of polarity, pleomorphism, or features
such as back-to-back, cribriform, or budding tubules.

Finally, NEG shows a well-organized and orderly structure
composed of a single layer of columnar epithelial cells with
interspersed goblet cells. The crypts are lined with uniform,
basally oriented nuclei, which occupy the basal third of the
cell, and the cells exhibit a high degree of maturation as they
migrate towards the luminal surface. The overall architecture
lacks any evidence of dysplasia, pleomorphism, or abnormal
mitotic activity.

In essence, classifying dysplasia is a challenging task and
requires an expert pathologist with several years of training.
Not all surgical pathologists have training in gastrointestinal
pathology and therefore, may miss subtle dysplasia patterns. In
this work, we investigate the potential of DL for classification
of dysplasia in tissue sections of IBD patients. As a result, a
pathologist can be assisted during diagnosis to avoid missing
or misclassifying dysplasia.

B. Dysplasia Classification Using Bayesian DL

Next, we present our approach for dysplasia classification in
IBD patients. The overall steps in our approach are illustrated
in Figure 2.

An expert pathologist identified IBD patients in the Uni-
versity of Missouri (MU) hospital (IRB No. 2070142) using
NLP searches of pathology records for ulcerative colitis and
dysplasia. The glass slides of these patients were first reviewed
by the pathologist. A subset of these slides were selected
and digitized using a WSI scanner. Next, the pathologist used
Aperio ImageScope4 to annotate rectangular regions in these
slides for HGD, LGD, and NEG. The annotations were saved
as XML files along with the original WSIs. The second expert
pathologist reviewed only the annotations of the first expert
pathologist to either confirm or reject the type of dysplasia
that was identified. Only annotations that both pathologists
agreed were retained for further processing.

As the annotations (i.e., rectangular regions) can be of
different sizes and contain tens of thousands of pixels, they
cannot be directly fed to a DL model that typically requires
fixed-size images/image patches. Therefore, for each rectan-
gular region, patches of a specific size (e.g., 256×256 pixels)
were randomly extracted from inside of the region to create a
dataset containing the three types of dysplasia. The OpenSlide5

library was used to read the WSIs and extract the patches. The
patches were then randomly split into training/validation set
(80%) and testing set (20%).

Our next step is to introduce Bayesian DL into well-known
DL models for image classification. The authors of Monte
Carlo dropout [20] suggested adding dropout after every

4 www.leicabiosystems.com/us/digital-pathology/manage/aperio-imagescope
5 https://openslide.org



Fig. 2. Overall steps for dysplasia classification

weight layer in a neural network for Bayesian approximation.
However, to avoid significantly increasing the number of
parameters of a DL model that can have 100+ layers, we
propose to insert one or more densely connected layers before
the final densely connected layer of a model that performs
classification. Each newly inserted densely connected layer is
immediately followed by a dropout layer. These newly inserted
dropout layers are enabled during training and inference.
As a representative case, Figure 3 shows how we modified
the DenseNet model to perform Bayesian DL using Keras.
Specifically, the add_layers() function inserts the densely
connected and dropout layers. Different dropout values can be
used. Also, the number of neurons in the densely connected
layers can be changed along with the activation function. (Sim-
ilar modifications can be done with other popular frameworks
such as PyTorch.) In our evaluation, we demonstrate that this
modification to enable Bayesian DL is effective in improving
the model performance for dysplasia classification, wherein
very high accuracy is desired.

Fig. 3. Modified DenseNet implementation in Keras for Bayesian DL

In Keras, when training=False in Dropout(), the

TABLE I
# OF PATCHES USED FOR TRAINING/VALIDATION AND TESTING

# of patches for # of patches for
training/validation (80%) testing (20%)

Total HGD LGD NEG Total HGD LGD NEG
29,548 6,852 8,284 14,412 7,385 1,712 2,070 3,603

dropout layer is enabled only during training. This introduces
regularization to prevent a model from overfitting [33] and per-
form better on the test set. However, when training=True
as shown in Figure 3, the dropout layer is enabled during both
training and testing. Hence, during inference, the modified
model executes in forward pass for some number of iterations
producing a distribution of predictions for a test input. The
final predicted class label is the most frequent class label
output by the model. The variance of the predictions can be
used to understand the model’s uncertainty. Thus, we aim
to obtain more robust predictions for classifying dysplasia
using the modified model rather than using its deterministic
counterpart. While Bayesian DL increases the prediction time,
the improvement in classification accuracy may outweigh the
increased prediction cost due to the non-real time nature of
the diagnosis.

IV. PERFORMANCE EVALUATION

In this section, we report the evaluation of our approach
for dysplasia classification using Bayesian DL on WSIs of
histopathology tissue slides of IBD patients.

A. Implementation and Setup

We implemented our software using Python (v3.8), Keras
(v2.4.3), TensorFlow (GPU) (v2.4.1), and OpenSlide (v4.0.0).
We ran all experiments on a server with Intel Xeon processor
W-2245, 128 GB RAM, 1 TB solid state drive, and two Nvidia
RTX A4000 (16 GB) GPUs.

We used three well-known DL models: DenseNet121, Ef-
ficientNetB0, and ViT. For DenseNet121 and EfficientNetB0,
we used the default learning rate of 1e-3, the Adam optimizer,
and the sparse categorical cross entropy loss function. For
ViT, we used a learning rate of 1e-4, 64 transformer blocks,
patch size of 32×32, and multihead attention with 4 attention
heads. The AdamW optimizer was used with weight decay
of 1e-4. As before, the sparse categorical cross entropy loss
function was also used for ViT. Data augmentation was kept
simple; random left/right flip was applied to improve the model
performance. All models were trained using batch size of 32
for 1,000 epochs with early stopping. (The model weights were
initialized with random values.) Note that we tried different
hyperparameters; however, the above values gave the best
results for the tested models.

For Bayesian DL, we used b_neurons=1024,
b_levels=1, and b_dropout=0.3 for all the models.
Hereinafter, we will refer to the modified models as
DenseNet121⋆, EfficientNetB0⋆, and ViT⋆. During training,
the model that achieved the best validation accuracy was saved



TABLE II
CLASSIFICATION PERFORMANCE ON 7,385 PATCHES (256×256 PIXELS); BEST VALUE IS SHOWN IN BOLD

Total # of Total # of Accuracy (%) Sensitivity (%) Specificity (%)
Model parameters correct

predictions HGD LGD NEG HGD LGD NEG HGD LGD NEG
DenseNet121 7,040,579 7,073 96.787 89.661 98.806 96.787 96.016 95.187 99.030 96.339 98.820

DenseNet121⋆ 8,090,179 7,103 97.371 91.884 98.084 97.828 94.862 96.137 99.208 96.858 98.139
EfficientNetB0 4,053,414 7,124 97.371 91.207 99.056 97.257 96.721 95.966 99.206 96.917 99.072

EfficientNetB0⋆ 5,364,390 7,134 97.371 93.236 98.168 98.174 95.027 96.745 99.208 97.239 98.230
ViT 16,017,603 6,865 96.261 84.830 96.058 90.499 92.323 94.511 98.849 94.273 96.185

ViT⋆ 17,067,203 6,905 94.334 86.715 97.002 93.460 92.716 93.926 98.285 94.953 97.052

and used for evaluationg the test set. The modified/Bayesian
DL models were run for 11 iterations during inference on
the test set. The final prediction for a test input in a modified
model was the class that was the most frequent among the 11
predictions. Note that the deterministic counterparts provided
only one prediction per test input.

B. Dataset

We used 61 de-identified WSIs of IBD patients (48 cases)
for the evaluation. From each rectangular region/annotation,
we extracted 10 random patches of size 256×256 pixels.
Table I shows the number of patches in each class (and the
total) for training/validation and testing.

C. Classification Results

Next, we report the performance of the Bayesian DL models
and their deterministic counterparts on the test set shown in
Table I. Table II reports the classification accuracy, sensitivity,
and specificity for the three classes. The total number of
correct predictions for each model is also reported. Among
the different models, EfficientNetB0⋆ performed the best fol-
lowed by EfficientNetB0. Across all the models, we observed
an improvement in the total number of correct predictions
when Bayesian DL was used. This demonstrates the value
of Bayesian DL for dysplasia classification in IBD patients,
wherein high level of accuracy is desired.

D. Training and Inference Time

Table II shows the number of parameters for each model. As
observed, the modified models had an increase in the number
of parameters (about 1M). As expected, the modified models
were slightly slower to train compared to the original models.
For example, DenseNet121⋆ was 3 minutes slower to train
than DenseNet121. The inference time increased based on
the number of iterations used for the modified models. For
example, EfficientNetB0 required 1 min 13 sec to predict all
the 7,385 patches in the test set. However, EfficientNetB0⋆

required 6 min 24 sec for the same test set using 11 iterations.
We assert that the improvement in accuracy due to Bayesian
DL outweighs the increased cost of prediction for diagnostic
applications that are not real-time in nature.

E. Impact of Image Patch Size

We tested the models on a dataset created with a smaller
patch size of 128×128 pixels. However, this deteriorated
the LGD classification accuracy significantly and was below
80% for all the models. After consultation with an expert
pathologist, it became evident that LGD detection pattern is
complex and requires the observation of colonic crypts rather
than a few cells for accurate detection. Hence, a larger patch
size of to 256×256 pixels was more effective for dysplasia
classification on the tested WSIs.

V. DISCUSSION

IBD-associated dysplasia is harder to identify and char-
acterize compared to other types of dysplasia. If incorrectly
classified, it could lead to colorectal cancer in IBD patients. To
the best of our knowledge, our work is the first to show how
Bayesian deep learning can be applied for accurate dysplasia
classification in IBD patients using whole slide images. Hence,
we cannot directly compare with prior work on dysplasia
classification. However, we use well-known deep learning
models to test the generality of our solution.

We introduced Monte Carlo dropout [20] so that it is
active during training and inference to enable Bayesian DL.
Rather than changing the dropout layers of existing models,
we inserted densely connected layers with dropout to even-
tually feed into the final fully connected layer. This way we
did not change the core architecture of well-known models
but introduced the required randomness via dropout during
training and inference. Our approach is simple yet effective
in achieving good performance. Although our approach does
not always improve the classification accuracy of individual
classes, it does improve the overall classification accuracy of
all the three well-known models (see Table II). For exam-
ple, while EfficientNetB0 correctly classified 7,124 patches,
EfficientNetB0⋆ correctly classified 7,134 patches.

We tested the original models (e.g., EfficientNetB0) and the
modified ones (i.e., EfficientNetB0⋆). This can be considered
as an ablation study wherein we tested the impact of adding the
densely connected and dropout layers to the original models
(i.e., removing them).



VI. CONCLUSION

We proposed a Bayesian DL approach for accurate clas-
sification of dysplasia in IBD patients using WSIs as IBD-
associated dysplasia is challenging to detect compared to
other types of dysplasia. We modified well-known DL models
for image classification by inserting one or more densely
connected layers before the final densely connected layer of a
model that performs classification. Each newly inserted layer
is followed by a dropout layer. These inserted dropout layers
are enabled during training and inference. As a result, the core
architecture of a chosen model is not changed. During infer-
ence, a distribution of predictions is obtained, and the most
probable class label is computed for a test input. Using 60+
WSIs, we achieved the best patch-wise classification accuracy
using EfficientNetB0⋆, which achieved an overall accuracy
of 96.6% (considering all classes). In general, LGD was more
challenging to classify for all the models due to its complex
nature. We also observed that Bayesian DL models achieved
better performance than their deterministic counterparts albeit
increase in prediction time. In the future, we plan to obtain
independent annotations from multiple pathologists to evaluate
our model to assess the interobserver agreement. We also plan
to leverage parallelism to reduce the inference time using
Bayesian DL.

ACKNOWLEDGMENTS

This work was funded by a grant awarded to Deepthi Rao
and Praveen Rao by the MU Coulter Biomedical Accelerator
Program. We thank the anonymous reviewers for their insight-
ful comments and suggestions.

REFERENCES

[1] “The Facts About Inflammatory Bowel Diseases,” https:
//www.crohnscolitisfoundation.org/sites/default/files/2019-02/Updated%
20IBD%20Factbook.pdf, 2019.

[2] J. Eaden, K. Abrams, and J. Mayberry, “The Risk of Colorectal Cancer
in Ulcerative Colitis: A Meta-Analysis,” Gut, vol. 48, no. 4, pp. 526–
535, 2001.

[3] D. Keller, A. Windsor, R. Cohen, and M. Chand, “Colorectal Cancer in
Inflammatory Bowel Disease: Review of the Evidence,” Techniques in
Coloproctology, vol. 23, pp. 3–13, 2019.

[4] W.-T. Choi, M. Yozu, G. C. Miller, A. R. Shih, P. Kumarasinghe,
J. Misdraji, N. Harpaz, and G. Y. Lauwers, “Nonconventional Dysplasia
in Patients with Inflammatory Bowel Disease and Colorectal Carcinoma:
A Multicenter Clinicopathologic Study,” Modern Pathology, vol. 33,
no. 5, pp. 933–943, 2020.

[5] H. Lee, P. S. Rabinovitch, A. N. Mattis, G. Y. Lauwers, and W.-T. Choi,
“Non-conventional Dysplasia in Inflammatory Bowel Disease is More
Frequently Associated with Advanced Neoplasia and Aneuploidy than
Conventional Dysplasia,” Histopathology, vol. 78, no. 6, pp. 814–830,
2021.

[6] D. Shen, G. Wu, and H.-I. Suk, “Deep Learning in Medical Image
Analysis,” Annual Review of Biomedical Engineering, vol. 19, pp. 221–
248, 2017.

[7] X. Chen, X. Wang, K. Zhang, K.-M. Fung, T. C. Thai, K. Moore, R. S.
Mannel, H. Liu, B. Zheng, and Y. Qiu, “Recent Advances and Clinical
Applications of Deep Learning in Medical Image Analysis,” Medical
Image Analysis, vol. 79, p. 102444, 2022.

[8] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez,
“A Survey on Deep Learning in Medical Image Analysis,” Medical
Image Analysis, vol. 42, pp. 60–88, 2017.

[9] A. Janowczyk and A. Madabhushi, “Deep Learning for Digital Pathol-
ogy Image Analysis: A Comprehensive Tutorial with Selected Use
Cases,” Journal of Pathology Informatics, vol. 7, no. 1, p. 29, 2016.

[10] D. F. Steiner, R. MacDonald, Y. Liu, P. Truszkowski, J. D. Hipp,
C. Gammage, F. Thng, L. Peng, and M. C. Stumpe, “Impact of Deep
Learning Assistance on the Histopathologic Review of Lymph Nodes for
Metastatic Breast Cancer,” The American Journal of Surgical Pathology,
vol. 42, no. 12, pp. 1636–1646, 2018.

[11] Y. Liu, T. Kohlberger, M. Norouzi, G. E. Dahl, J. L. Smith, A. Mo-
htashamian, N. Olson, L. H. Peng, J. D. Hipp, and M. C. Stumpe,
“Artificial Intelligence-Based Breast Cancer Nodal Metastasis Detection:
Insights into the Black Box for Pathologists,” Archives of Pathology &
Laboratory Medicine, vol. 143, no. 7, pp. 859–868, 2019.

[12] A. Echle, N. T. Rindtorff, T. J. Brinker, T. Luedde, A. T. Pearson, and
J. N. Kather, “Deep Learning in Cancer Pathology: A New Generation
of Clinical Biomarkers,” British Journal of Cancer, vol. 124, no. 4, pp.
686–696, 2021.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770–778.

[15] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
Connected Convolutional Networks,” in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[16] M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for Con-
volutional Neural Networks,” in Proc. of International Conference on
Machine Learning, 2019, pp. 6105–6114.

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale,” arXiv preprint arXiv:2010.11929, 2020.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is All You Need,” Proc. of
Advances in Neural Information Processing Systems, vol. 30, 2017.

[19] T. Papamarkou, M. Skoularidou, K. Palla, L. Aitchison, J. Arbel,
D. Dunson, M. Filippone, V. Fortuin, P. Hennig, J. M. Hernández-Lobato
et al., “Position: Bayesian Deep Learning is Needed in the Age of Large-
Scale AI,” in Proc. of Forty-first International Conference on Machine
Learning, 2024.

[20] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning,” in Proc. of The
33rd International Conference on Machine Learning, vol. 48, New York,
New York, USA, 2016, pp. 1050–1059.

[21] K. Takenaka, K. Ohtsuka, T. Fujii, M. Negi, K. Suzuki, H. Shimizu,
S. Oshima, S. Akiyama, M. Motobayashi, M. Nagahori et al., “De-
velopment and Validation of a Deep Neural Network for Accurate
Evaluation of Endoscopic Images from Patients with Ulcerative Colitis,”
Gastroenterology, vol. 158, no. 8, pp. 2150–2157, 2020.

[22] R. W. Stidham, W. Liu, S. Bishu, M. D. Rice, P. D. Higgins, J. Zhu,
B. K. Nallamothu, and A. K. Waljee, “Performance of a Deep Learning
Model vs Human Reviewers in Grading Endoscopic Disease Severity
of Patients with Ulcerative Colitis,” JAMA Network Open, vol. 2, no. 5,
pp. e193 963–e193 963, 2019.

[23] Y. Maeda, S.-e. Kudo, Y. Mori, M. Misawa, N. Ogata, S. Sasanuma,
K. Wakamura, M. Oda, K. Mori, and K. Ohtsuka, “Fully Automated
Diagnostic System with Artificial Intelligence Using Endocytoscopy
to Identify the Presence of Histologic Inflammation Associated with
Ulcerative Colitis (with video),” Gastrointestinal Endoscopy, vol. 89,
no. 2, pp. 408–415, 2019.

[24] A. Kohli, E. A. Holzwanger, and A. N. Levy, “Emerging Use of
Artificial Intelligence in Inflammatory Bowel Disease,” World Journal
of Gastroenterology, vol. 26, no. 44, p. 6923, 2020.

[25] C. Ho, Z. Zhao, X. F. Chen, J. Sauer, S. A. Saraf, R. Jialdasani,
K. Taghipour, A. Sathe, L.-Y. Khor, K.-H. Lim, and W.-Q. Leow,
“A Promising Deep Learning-Assistive Algorithm for Histopathological
Screening of Colorectal Cancer,” Scientific Reports, vol. 12, no. 1, p.
2222, 2022.

[26] R. Girshick, “Fast R-CNN,” in Proc. of the IEEE International Confer-
ence on Computer Vision, 2015, pp. 1440–1448.

[27] S. Yamamoto, H. Kinugasa, K. Hamada, M. Tomiya, T. Tanimoto,
A. Ohto, A. Toda, D. Takei, M. Matsubara, S. Suzuki, K. Inoue,
T. Tanaka, S. Hiraoka, H. Okada, and Y. Kawahara, “The Diagnostic
Ability to Classify Neoplasias Occurring in Inflammatory Bowel Disease
by Artificial Intelligence and Endoscopists: A Pilot Study,” Journal of
Gastroenterology and Hepatology, vol. 37, no. 8, pp. 1610–1616, 2022.



[28] M. Abdelrahim, K. Siggens, Y. Iwadate, N. Maeda, H. Htet, and P. Bhan-
dari, “New AI Model for Neoplasia Detection and Characterisation in
Inflammatory Bowel Disease,” Gut, vol. 73, no. 5, pp. 725–728, 2024.

[29] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for
Dense Object Detection,” in Proc. of the IEEE International Conference
on Computer Vision, 2017, pp. 2980–2988.

[30] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun,
“Hands-on Bayesian Neural Networks—A Tutorial for Deep Learning
Users,” IEEE Computational Intelligence Magazine, vol. 17, no. 2, pp.
29–48, 2022.

[31] N. Band, T. G. J. Rudner, Q. Feng, A. Filos, Z. Nado, M. W. Dusenberry,

G. Jerfel, D. Tran, and Y. Gal, “Benchmarking Bayesian Deep Learning
on Diabetic Retinopathy Detection Tasks,” in Bayesian Deep Learning
Workshop at NeurIPS 2021, 2021, pp. 1–38.

[32] D. Rao and P. Rao, “Deep Learning-Assisted Approach for Accurate
Histologic Grading and Early Detection of Dysplasia,” 2023, US Patent
App. 18/176,939.

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, no. 56,
pp. 1929–1958, 2014.


