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Abstract

Safe offline reinforcement learning aims to de-
velop policies that maximize cumulative rewards
while satisfying safety constraints without the
need for risky online interaction. However, ex-
isting methods often struggle with the out-of-
distribution (OOD) problem, leading to poten-
tially unsafe and suboptimal policies. To address
this issue, we first propose Constrained Implicit
Q-learning (CIQL), a novel algorithm designed
to avoid the OOD problem. In particular, CIQL
expands the implicit update of reward value func-
tions to constrained settings and then estimates
cost value functions under the same implicit pol-
icy. Despite its advantages, the further perfor-
mance improvement of CIQL is still hindered
by the inaccurate discounted approximations of
constraints. Thus, we further propose Constraint-
Conditioned Implicit Q-learning (C2IQL). Build-
ing upon CIQL, C2IQL employs a cost reconstruc-
tion model to derive non-discounted cumulative
costs from discounted values and incorporates
a flexible, constraint-conditioned mechanism to
accommodate dynamic safety constraints. Experi-
ment results on DSRL benchmarks demonstrate
the superiority of C2IQL compared to baseline
methods in achieving higher rewards while guar-
anteeing safety constraints under different thresh-
old conditions.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 2018) has
emerged as a robust framework to solve decision-making
problems through constant interactions with environments.
However, this “trial and error” approach may not be appli-
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cable when such interactions are costly, risky, or impracti-
cal, such as in autonomous driving (Fang et al., 2022) and
robotics (Weerakoon et al., 2024). To address this chal-
lenge, offline RL (Fujimoto et al., 2019) has been proposed,
focusing on learning policies from pre-existing datasets
without further environmental interaction. A significant
challenge that arises in this offline setting is the out-of-
distribution (OOD) problem, where an agent may inaccu-
rately estimate the value of state-action pairs not found in
the dataset. Various methods have been developed to tackle
this challenge, such as regularization (Fujimoto et al., 2019)
and constrained bootstrapping (Wu et al., 2020).

While showing impressive achievements in reward-only
tasks, offline RL may lose its effectiveness in safety-critical
scenarios. For example, unsafe operations could harm pa-
tients in healthcare (Den Hengst et al., 2022), unsafe driv-
ing styles may lead to accidents (Fang et al., 2022), and
unsafe decisions may incur additional costs in financial in-
vestments (Froot et al., 1993). In these situations, safety is
categorized into the safe exploration process that prevents
agents from exploring risky states or actions, and safe op-
timal criterion that ensures constraint satisfaction of target
policies (Garcıa & Fernández, 2015). Although offline RL
naturally addresses the safe exploration process by avoid-
ing online interaction, it is challenging to satisfy the safe
optimal criterion in offline settings due to the OOD problem
(Zheng et al., 2024). Thus, safe offline RL (SORL) (Le et al.,
2019), which incorporates safety constraints into the learn-
ing process, has been proposed by combining safe online
RL algorithms and offline RL algorithms. While existing
SORL methods (Xu et al., 2022; Lee et al., 2022) have made
progress in mitigating the OOD problem and improving the
constraint satisfaction ability, further improvement is im-
peded by two key drawbacks: (1) the inability to avoid the
OOD problem in offline RL completely, and (2) the lack
of accurate and flexible constraint handling in safe RL. We
will elaborate on these in the following:

From the perspective of offline RL, existing SORL methods
that leverage OOD detection or regularization can only miti-
gate the OOD problem but not avoid it. Specially, the agent
remains susceptible to encountering unseen state-action
pairs during model updates, which can lead to unsafe poli-
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cies. For instance, some approaches (Fujimoto et al., 2019)
train a model for OOD detection but the detection models
themselves also introduce errors. Other methods (Kostrikov
et al., 2021; Xu et al., 2022), which restrict the learned pol-
icy to be close to the behavior policy, can result in constraint
violation or suboptimal policy since the behavior policy for
collecting data is usually unknown. Implicit Q-learning
(IQL) (Kostrikov et al., 2022) offers a potential solution
to effectively avoiding the OOD problem. Nonetheless, it
is challenging to explicitly achieve both reward maximiza-
tion and constraint satisfaction since the policy is implicitly
hidden in the value function.

From the perspective of safe RL, we identify two key short-
comings that arise from the previous constraint formation:
(1) inaccurate discounted formulation of constraints and (2)
fixed constraint thresholds that fail to adapt to the dynamic
requirements imposed by the environments as well as the
long-horizon task nature. These problems can hinder the
agent’s performance, preventing it from constraint satisfac-
tion or reward maximization. While some methods, such as
average-constrained policy optimization (Agnihotri et al.,
2024), attempt to address the first problem by solving the
constrained Markov decision process on average settings
rather than discounted settings, they are mainly suitable
for on-policy methods, where the behavior policy and the
target policy are the same, making them less applicable to
offline RL. Furthermore, most RL-based methods have not
adequately addressed the challenge of adapting to dynamic
constraint thresholds, which is crucial for long-horizon tasks
and varying environmental requirements.

To address the above challenges, this paper proposes
Constraint-Conditioned Implicit Q-learning (C2IQL), which
is trained within the pre-collected dataset distribution. In
particular, C2IQL contains a cost reconstruction model and
is equipped with constraint-conditioned ability for better
constraint satisfaction and reward maximization. The key
contributions are summarized as follows:

(1) From the offline perspective, we first propose Con-
strained IQL (CIQL) to address the OOD problem in con-
strained settings. Specifically, we leverage the constraint-
penalized update to expand the reward value function in
IQL and re-derive cost value functions by generalizing IQL
so that both value functions can be updated under the same
implicit policy without explicitly extracting it.

(2) From the safety perspective, we improve CIQL and
propose C2IQL by addressing the following two key issues
regarding the inaccurate constraint thresholds:

• To obtain accurate constraint estimations, we propose
to train a cost reconstruction model to reconstruct non-
discounted cumulative costs from the corresponding
discounted values.

• To handle flexible threshold requirement, we draw in-
spiration from the goal-conditioned RL method and
incorporate constraint-conditioned ability into CIQL.
This allows C2IQL to allocate the cost budgets more
effectively throughout the task horizon and cope with
a wider range of threshold requirements for a better
balance between reward maximization and constraint
satisfaction.

(3) We evaluate the proposed C2IQL on Bullet-Safety-Gym
(Gronauer, 2022) and SafetyGymnasium (Ji et al., 2023)
with DSRL datasets under different threshold conditions.
Our empirical results and comprehensive ablation studies
demonstrate C2IQL’s superiority in both constraint satisfac-
tion and reward maximization.

2. Background
In this section, we briefly introduce the constrained opti-
mization problem in safe RL and provide essential back-
ground on the constraint-penalized method of CPQ, which
will be adopted to update the constrained value function,
and the principle of IQL to avoid the OOD problem in of-
fline RL, which we generalize to constrained settings in our
method. At last, we provide an overview of related works
of safe RL, offline RL, and SORL respectively.

2.1. Problem Settings

Constrained Markov Decision Process (CMDP): CMDP
(Altman, 1998) is a typical formulation of safe RL defined
by M = (S,A,P, r, c, γ), where S is the state space, A is
the action space, P(s′|s, a) is the transition function, r(s, a)
and c(s, a) are the reward and cost functions, and γ is the dis-
count factor. In safe RL, we aim to find a policy π(a|s) that
maximizes the performance measure while satisfying the
safety constraints. In episodic tasks, where the trajectory is
denoted as τ = {(s0, a0, r0, c0), ..., (sT , aT , rT , cT )|rt =
r(st, at), ct = c(st, at), st+1 ∼ P(st+1|st, at)}, with T
being the trajectory length, the optimization problem of safe
RL can be written as:

max
π

Eτ∼π[R(τ)],

s.t. Eτ∼π[C(τ)] ≤ L,
(1)

where R(τ) =
∑T

t=0 rt is the cumulative reward, C(τ) =∑T
t=0 ct is the cumulative cost, and L is the constraint

threshold.

However, not all environments have explicit termination
signals and the estimate of the cumulative reward/cost via
the Bellman equation can easily lead to maximizing an
infinite value. To ensure convergence and improve stability,
discounting is introduced for a general notation for episodic
and continuing tasks, which can be proven to have instance
dependent sample complexity bound (Jiang & Ye, 2024)
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with a discount factor. In this case, the objective can be
rewritten as:

max
π

V π
r (τ),

s.t. V π
c (τ) ≤ L̃,

(2)

where V π
r (τ) = Eτ∼π[

∑∞
t=0 γ

trt] denotes the (reward)
value function, V π

c (τ) = Eτ∼π[
∑∞

t=0 γ
tct] denotes the

cost value function and L̃ = L
T · 1−γT

1−γ is an average approx-
imation version for L. In SORL, the agent is trained with a
fixed and pre-collected dataset D = {(s, a, r, c, s′)} under
unknown behavior policies.

2.2. Constraints Penalized Q-learning (CPQ)

CPQ is a kind of SORL method updated in a shielding way.
The update of CPQ (Xu et al., 2022) consists of three steps.
First, CPQ trains a Conditional Variational AutoEncoder
(CVAE) (Sohn et al., 2015) to detect OOD state-action pairs
and manually train their cost Q-values (Qπ

c ) to be larger than
the constraint threshold. Second, CPQ proposes constraints
penalized update of the reward Q-values (Qπ

r ), which is:

Qπ
r (st, at) =rt + γEat+1∼π[

1(Qπ
c (st+1, at+1) ≤ L̃) Qπ

r (st+1, at+1)],
(3)

where 1(·) is the indicator function. Finally, the policy is
optimized under the constraint, which is:

π∗ = argmax
π

Ea∼π[1(Q
π
c (s, a) ≤ L̃) Qπ

r (s, a)]. (4)

However, CPQ fails to satisfy the constraint as the CVAE
model may fail to detect OOD pairs in some cases.

2.3. Implicit Q-learning (IQL)

Implicit Q-learning (IQL) (Kostrikov et al., 2022). IQL
addresses the fundamental OOD challenge in offline Q-
learning by restricting the maximization operation within
the dataset support. This OOD problem arises during value
bootstrapping when standard Q-learning attempts to maxi-
mize over actions that may not exist in the offline dataset:

Qπ
r (st, at) = rt + γmax

a
Qπ

r (st+1, a). (5)

Directly taking the maximum within the dataset is sensi-
tive to outliers (lucky samples) in the dataset and can lead
to overestimation. Thus, IQL introduces a value function
based on expectile regression that estimates a conservative
expectile of the Q-value distribution:

Lκ
V = E(s,a)∼D[Lκ

2 (Q
π
r (s, a)− V π

r (s)], (6)

where Lκ
2 (u) = |κ− 1(u < 0)|u2 and κ ∈ (0, 1).

Then the reward Q-value function is updated as:

Qπ
r (st, at) = rt + γV π

r (st+1). (7)

Since the policy is implicitly hidden in the reward value
and Q-value functions, IQL utilizes Advantage Weighted
Regression (AWR) to extract the policy:

Lπ = E(s,a)∼D[exp(α(Qπ
r (s, a)− V π

r (s))) log π(a|s)],
(8)

where α ∈ (0,∞) is a temperature parameter to balance
Q-learning optimization and behavior cloning.

Implicit Diffusion Q-learning (IDQL) (Hansen-Estruch
et al., 2023). IDQL generalizes the expectile regression in
IQL to any arbitrary convex function f with f ′(0) = 0 and
re-derives IQL as a standard actor-critic algorithm, in which
the optimal value function is given by

V ∗
r (s) = arg min

V
πimp
r

Ea∼µ(a|s)[f(Q
πimp
r (s, a)− V

πimp
r (s))],

(9)
where µ(a|s) is the behavior policy and the expectile regres-
sion in IQL emerges as a special case when f(·) = Lκ

2 (·).

While policy extraction through AWR in IQL is empirically
effective, IDQL shows that this process can be derived from
first principles. Based on Equation (9), IDQL proves that
the learned implicit policy follows:

π∗
imp ∝ µ(a|s)|f ′(Q

πimp
r (s, a)− V ∗

r (s))|
|Qπimp

r (s, a)− V ∗
r (s)|

, (10)

where f ′ = ∂f

∂V
πimp
r

, and AWR in IQL is another special case
of f , called exponential regression.

Since the policy is implicitly hidden in the value function, it
is difficult to update the cost value function under the same
policy for IQL-based methods without extracting it when
extending to constrained settings.

2.4. Related Work

Offline RL: Offline RL aims to optimize a policy on a
pre-collected dataset to avoid costly interaction with the
environment. A fundamental challenge in offline RL is the
OOD problem. Many methods have been proposed to mit-
igate it by regularizing the optimized policy close to the
behavior policy. For example, BCQ (Fujimoto et al., 2019)
achieves this by training a generative model as the behavior
policy; BEAR (Wu et al., 2020) proposes a constrained boot-
strapping operation to reduce the accumulated OOD error;
CQL (Kumar et al., 2020) forces the values of OOD state-
action pairs to be conservative. Instead of mitigating the
OOD problem, IQL (Kostrikov et al., 2022) tries to avoid it
by employing expectile regression to learn Q-values within
the dataset. More recently, some works formulate offline
RL as a return-conditioned generation problem and address
it using generative models, such as Decision Transformer
(DT) (Chen et al., 2021; Zheng et al., 2022; Wu et al., 2024),
and Decision Convformer (DC) (Kim et al., 2024).
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Safe RL: Safe RL aims to maximize future rewards while
satisfying safety constraints (Garcıa & Fernández, 2015).
Primal-Dual Optimization (PDO) and Constrained Policy
Optimization (CPO) are two common approaches in safe
RL. PDO (Chow et al., 2018; Ding et al., 2020) leverages
Lagrangian multiplier methods to update the primal and
dual objectives respectively. Stooke et al. (2020) propose
to incorporate the PID control to address the instability is-
sue of PDO. CPO (Achiam et al., 2017; Yang et al., 2020)
takes a different route by transforming the constraint into
a surrogate objective and updating with it through second-
order approximation. To reduce the computation cost of
CPO, CUP (Yang et al., 2022) was proposed to optimize the
surrogate function with first-order approximation directly.
Although PDO and CPO show great promise in online set-
tings, it is challenging for them to handle the OOD problem
in offline settings due to their reliance on sampling actions
under current policies.

Safe Offline RL: Safe offline RL (SORL) integrates safety
constraints into offline learning settings, addressing both
safety requirements and limited online interaction with the
environment. This emerging field has spawned two main ap-
proaches: RL-based methods and generative methods. CPQ
(Xu et al., 2022) is a representative RL-based method that
trains a CVAE model to mitigate the OOD problem based
on the constraint-penalized method. COptiDICE (Lee et al.,
2022) utilizes stationary distribution correction to mitigate
the distributional shift problem. OASIS (Yao et al., 2024) in-
vestigates the influence of the unknown behavior policy and
provides a dataset distribution shaping method to address
this problem. The alternative generative approaches (Liu
et al., 2023b) transform SORL into a goal-conditioned gen-
erative problem, where expected reward and cost returns
are set as the input of the generative models. Neverthe-
less, these methods struggle to balance the reward and cost
conditions, making it hard to maximize the reward while
satisfying the constraint. Different from the above two lines
of research, our proposed method C2IQL is an RL-based
method equipped with the IQL-style update to avoid the
OOD problem and can achieve both constraint satisfaction
and reward maximization.

3. Method
In this section, we introduce a novel algorithm CIQL that
re-derives IQL within constrained settings to address the
OOD problem and propose an improved version, named
C2IQL, by further addressing the inaccurate and inflexible
estimation of constraints.

In particular, we will illustrate (1) how to obtain an SORL
algorithm based on the constraint-penalized method that
avoids the OOD problem by extending IQL to CIQL; (2)
Why discounted formulation on the costs is inaccurate and
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Figure 1. Relationship between the discounted costs C̃, recon-
structed costs Ĉ and the cumulative cost C of randomly generated
cost trajectories.

what consequences will they lead to; (3) How to address
(2) with a cost reconstruction model and incorporate it into
CIQL; (4) How to integrate the constraint-conditioned abil-
ity into CIQL to improve flexibility; and (5) Practical imple-
mentation of our proposed C2IQL algorithm.

3.1. Constrained Implicit Q-learning (CIQL)

To derive a concrete CIQL algorithm, we need to answer
three questions: First, how to update the constrained re-
ward value function following the IQL style? To address
this problem, CIQL formulates a constraint-penalized re-
ward Q-value function following CPQ and utilizes a value
function with expectile regression to approximate the maxi-
mized Q-value function in the Bellman backup procedure.
Second, how to update the cost value function under the
same implicit policy since it is hidden in the reward value
function? To address this problem, we rederive CIQL and
obtain the formulation of the implicit policy in Theorem
1 following IDQL, and then derive the formulation of the
cost value function with this implicit policy. Third, How
to extract the policy? We extract the policy in an expectile
way following Equation (18).

Value Function Estimation. To address the safety require-
ments in offline RL, we first propose CIQL, which extends
IQL to handle safety constraints while maintaining its OOD-
avoidance property. We start by considering how to incor-
porate the safety constraints in the value function. Among
existing safe RL approaches, we adopt the shielding mecha-
nism from CPQ, as it naturally enables value updates with-
out explicit policy representation. By injecting the shielding
update to IQL, we obtain the constraint-penalized Q-value
function as

Qπ
r (st, at) = rt + γmax

a
Qπ

r|c(st+1, a), (11)

where Qπ
r|c(s, a) = 1(Qπ

c (s, a) ≤ L̃) ·Qπ
r (s, a).
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Similar to IQL, we use a value function to approximate an
expectile of the constraint-penalized Q-value and the loss
function of the value function is given as

Lκ
Vr

= E(s,a)∼D[Lκ
2 (Q

π
r|c(s, a)− V π

r (s)], (12)

where Lκ
2 (u) = |κ− 1(u < 0)|u2 and κ ∈ (0, 1).

More generally, the expectile regression loss Lκ
2 (u) can

be replaced by any arbitrary convex function f(u) with
f ′(0) = 0 (Hansen-Estruch et al., 2023). In this case, Equa-
tion (12) is generalized to

V π
r (s) = arg min

V π
r (s)

E(s,a)∼D[f(Qπ
r|c(s, a)− V π

r (s))].

(13)

By now, we have obtained the formulation and loss function
of the constraint-penalized reward value function given the
cost Q-value function Qπ

c (s, a). The key issue is how to
update Qπ

c (s, a) in Qπ
r|c(s, a), where the policy π is implic-

itly hidden in V π
r (s) and Qπ

r (s, a). One straightforward
solution is to extract the policy and then use it to update
the cost Q-value function. However, it will result in the
OOD problem since the update based on the extracted pol-
icy may fall out of the dataset distribution. To maintain
the OOD-avoiding property, we need to derive an update
method implicitly following the policy in the reward (Q-)
value function. By extending the results in IDQL, we have:

Theorem 1. For every state s and any convex loss function
f with f ′(0) = 0, the solution to Equation (13) is also a
solution to the optimization problem in Equation (14) where
the implicit policy is a reweight of the behavior policy.

V π
r (s) = arg min

V π
r (s)

Ea∼πimp(a|s)[(Q
π
r|c(s, a)− V π

r (s))2],

(14)
where πimp(a|s) ∝

µ(a|s)|f ′(Qπ
r|c(s,a)−V π

r (s))|
|Qπ

r|c(s,a)−V π
r (s)| .

The detailed proof is shown in Appendix A.1.

Theorem 1 provides us with a relationship between the
constraint-penalized reward function and the corresponding
formulation of the implicit policy. When the implicit policy
formulation follows Equation (14), the update of the value
function under implicit policy is equivalent to the update
formulation of the value function in Equation (13) under
behavior policy (the policy for collecting the dataset). Thus,
we can utilize the formulation of the implicit policy obtained
in Theorem 1 to derive how to update the cost value function
based on its definition in Theorem 2.

Theorem 2. Based on Theorem 1, the cost (Q-) value
functions are specified as Equation (15) and Equation (16).

V π
c (s) = Ea∼πimp(a|s)[Q

π
c (s, a)]

= Ea∼µ(a|s)[M ·Qπ
c (s, a)].

(15)

Algorithm 1 Cost Reconstruction Model
1: Network: Initialize the cost reconstruction model Rc.
2: Parameter: Set discount factors as {γ1, γ2, ..., γm}.
3: Calculate the cumulative cost CD and discounted

cumulative cost under different discount factors
CD,γ1 , ..., CD,γm for each trajectory in D.

4: for iteration= 0, ..., N do
5: Update with data from D:
6: Sample {(CD,γ1 , ..., CD,γm , CD)} ∼ D.
7: LRc = MSE(Rc(CD,γ1 , ..., CD,γm), CD).
8: Update with randomly generated data:
9: Randomly generate {(c0, ..., cT )}.

10: for all trajectories ∈ {(c0, ..., cT )} do
11: CR =

∑T
t=0 ct.

12: CR,γi =
∑T

t=0 γi
tct for i = 1, ...,m.

13: end for
14: LRc = MSE(Rc(CR,γ1 , ..., CR,γm), CR).
15: end for

where M =
|f ′(Qπ

r|c(s,a)−V π
r (s))|

|Qπ
r|c(s,a)−V π

r (s)| .

Qπ
c (s, a) = c(s, a) + γV π

c (s). (16)

The detailed proof is shown in Appendix A.2. Accordingly,
the loss to update the cost value function is given as:

LVc
= Ea∼πimp(a|s)[(Q

π
c (s, a)− V π

c (s))2]

= Ea∼µ(a|s)[M · (Qπ
c (s, a)− V π

c (s))2],
(17)

In the special case of f(u) = Lκ
2 (u), we have M = |κ −

1(Qπ
r|c(s, a)− V π

r (s) < 0)|.

Policy Extraction. We follow Theorem 1 and extract the
policy in an expectile way with the loss function:

Lπ = Ea∼µ(a|s)[M · log π(a|s)], (18)

where M = |κ− 1(Qπ
r|c(s, a)− V π

r (s) < 0)|.

3.2. Motivation for Non-discounted Cost Reconstruction

While introducing discount factors enhances convergence
and stability, it causes a mismatch between the original non-
discounted constraint in Equation (1) and their discounted
approximations in Equation (2). Such mismatch becomes
a pronounced problem in safe offline RL because the dis-
counted cumulative cost depends not only on the accumu-
lated cost but also crucially on the temporal distribution of
costs within a trajectory.

To demonstrate this problem, we randomly generate various
cost trajectories {τi = (ci0, ..., c

i
300)|i = 1, ..., 10000; cit ∈

{0, 1};C(τ i) ≤ 100} and calculate the cumulative cost C
and discounted cumulative cost C̃ for each trajectory, as
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Algorithm 2 C2IQL

1: Network: Initialize value function V π
r (s, L̂), cost value

function V π
c (s, L̂), Q-value function Qπ

r (s, a, L̂), cost
Q-value function Qπ

c (s, a, L̂), policy π(a|s, L̂), cost
reconstruction model Rc.

2: Parameter: Initialize discount factors γ for reward and
γ̂ = {γ1, γ2, ..., γm} for cost, expectile parameter κ1

and κ2, threshold set L.
3: for iteration= 0, ..., N do
4: Sample transitions {(s, a, r, c, s′)} ∼ D.
5: Randomly sample a threshold L̂ ∈ L.
6: Cost Reconstruction: Obtain discounted cost val-

ues and reconstruct the non-discounted value in Sec-
tion 3.3.

7: Qπ
c (s, a, L̂) = Qπ,γ1

c (s, a, L̂), ..., Qπ,γm
c (s, a, L̂).

8: Q̂π
c (s, a, L̂) = Rc(Qπ

c (s, a, L̂)).
9: Costraint Penalization: Obtain the constraint-

penalized Q-value function with Equation (11).
10: Qπ

r|c(s, a, L̂) = 1(Q̂π
c (s, a, L̂) ≤ L̂)Qπ

r (s, a, L̂).
11: Update value function: Update value function with

Equation (12).
12: Lκ1

Vr
= E(s,a)∼D[Lκ1

2 (Qπ
r|c(s, a, L̂)− V π

r (s, L̂)].
13: Update cost value function: Update cost value func-

tion with Equation (17).
14: LVc

= E(s,a)∼D[|κ1 − 1(Qπ
r|c(s, a, L̂)−

V π
r (s, L̂) < 0)| · (Qπ

c (s, a, L̂)− V π
c (s, L̂))2].

15: Update Q-value function.
16: LQr = E(s,a)∼D[(r + γV π

r (s′, L̂)−Qπ
r (s, a, L̂))

2].
17: Update cost Q-value function for each γi ∈ γ̂.
18: LQc

= E(s,a)∼D[(c+ γ̂V π
c (s′, L̂)−Qπ

c (s, a, L̂))
2].

19: Policy Extraction.
20: Lπ = −E(s,a)∼D[|κ2 − 1(Qπ

r|c(s, a, L̂) −
V π
r (s, L̂) < 0)| · log π(a|s, L̂)].

21: end for

shown in the top figure of Figure 1. The results reveal that
the mapping from cumulative costs to discounted values is
many-to-one, creating two types of problematic cases when
approximating a constraint C(τ i) ≤ L with C̃(τ i) ≤ L̃.
(1) False Positives: Trajectories with early-concentrated
costs may satisfy the original constraint C(τ i) ≤ L but
violate the discounted approximation C̃(τ i) ≤ L̃, leading
to overly conservative policies that reject safe trajectories.
(2) False Negatives: Trajectories with delayed costs may
satisfy the discounted constraint while violating the original
one, potentially leading to unsafe policies.

3.3. Cost Reconstruction Model

Following the definition of Equation (2), the cost value func-
tion (Qπ,γ

c (s, a)) is a linear summation of cost functions
c(s, a) weighted by γt < 1. Similarly, the non-discounted

cost value (Q̂π
c (s, a)) is a linear summation of cost func-

tions c(s, a). To address the discounting-induced mismatch
described in Section 3.2, the objective is solving a linear
equation system:

obtain{c(.,.)} Q̂π
c (st, at) =

T∑
j=0

c(st+j , at+j ∼ π),

s.t. Qπ,γ
c (st, at) =

T∑
j=0

γjc(st+j , at+j ∼ π),

(19)

where Qπ,γ
c (st, at) are known values estimated by dis-

counted Q-value functions.

However, solving Equation (19) exactly is challenging due
to the massive number of variables. To address this problem,
we relax the objective function and constrict the constraint
to:

min
Q̂π

c (st,at)
[Q̂π

c (st, at)−
T∑

j=0

c(st+j , at+j ∼ π)]2

s.t. Qπ,γi
c (st, at) =

T∑
j=0

γj
i c(st+j , at+j ∼ π), ∀i = 1, ...,m

(20)
Then the goal becomes training an accurate cost reconstruc-
tion model, denoted as Rc, to estimate the reconstructed
cost Q̂π

c from discounted cost values with different discount
factors {γ1, γ2, ..., γm}:

Q̂π
c (s, a) = Rc(Qπ,γ1

c (s, a), ..., Qπ,γm
c (s, a)). (21)

Algorithm 1 demonstrates the training process of the recon-
struction model. Specifically, we use the MSE loss to update
the cost reconstruction model Rc and augment the original
dataset with some randomly generated data to improve the
generalizability of the model.

The bottom figure of Figure 1 demonstrates the recon-
structed value of the generated trajectories in Section 3.2.
Compared with the discounted value shown at the top, the
false positive and negative trajectories with reconstructed
cumulative cost are significantly reduced. Constraint satis-
faction with the reconstructed cumulative cost provides a
more accurate estimation of the cumulative cost compared
to using the discounted value.

3.4. Constraint-Conditioned Ability

CIQL employs a fixed threshold criterion 1(Q̂π
c (st+1, a) ≤

L) that fails to account for the dynamic nature of accumu-
lated costs. This limitation prevents the agent from adapting
its behavior based on the historical cost accumulation and
remaining cost budget. For instance, when past costs are
low, the agent should be able to pursue more aggressive,
reward-maximizing policies within the remaining cost bud-
get. Conversely, when significant costs have already been
incurred, the agent should adopt more conservative poli-
cies to ensure overall constraint satisfaction. To address
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Table 1. Normalized evaluation results. The normalized cost threshold is set to 1. Values in (.) represent the standard deviation. Each
value represents the average performance over 10 evaluation episodes with 5 seeds and 3 thresholds. Black indicates safe results; gray
indicates unsafe results; and blue indicates safe and best-performing results. ↑ (↓) incidates that higher (lower) values are better.

Algorithm Metric
Tasks

Run Circle
Ant Ball Car Drone Ant Ball Car Drone Avg

BCQ-Lag reward ↑ 0.56(0.06) 0.27(0.07) 0.92(0.01) 0.76(0.06) 0.76(0.05) 0.64(0.04) 0.67(0.04) 0.96(0.01) 0.69
cost ↓ 0.28(0.12) 0.39(0.25) 0.10(0.30) 1.62(0.23) 1.73(0.21) 0.98(0.09) 1.23(0.23) 2.09(0.04) 1.05

BEAR-Lag reward ↑ 0.14(0.02) 0.22(0.5) 0.80(0.16) 0.02(0.15) 0.41(0.19) 0.75(0.03) 0.73(0.03) 0.85(0.03) 0.49
cost ↓ 0.02(0.03) 1.97(0.31) 3.71(2.53) 0.89(0.59) 1.10(0.43) 1.18(0.10) 1.50(0.15) 1.59(0.20) 1.49

COptiDICE reward ↑ 0.57(0.01) 0.47(0.09) 0.90(0.02) 0.63(0.01) 0.19(0.05) 0.62(0.03) 0.43(0.02) 0.40(0.01) 0.53
cost ↓ 0.22(0.11) 1.25(0.23) 0.00(0.00) 1.40(0.03) 0.91(0.29) 0.99(0.11) 1.20(0.19) 0.42(0.10) 0.80

CPQ reward ↑ 0.05(0.00) 0.63(0.11) 0.94(0.03) 0.33(0.15) 0.02(0.02) 0.63(0.05) 0.59(0.13) 0.13(0.01) 0.41
cost ↓ 0.00(0.00) 1.41(0.41) 1.42(1.14) 1.62(0.41) 0.06(0.09) 0.87(0.13) 1.03(0.38) 0.24(0.19) 0.83

FISOR reward ↑ 0.18(0.03) 0.24(0.01) 0.80(0.01) 0.20(0.05) 0.11(0.03) 0.25(0.02) 0.23(0.05) 0.46(0.03) 0.31
cost ↓ 0.00(0.00) 0.00(0.00) 0.01(0.03) 0.41(0.17) 0.00(0.00) 0.03(0.03) 0.00(0.01) 0.00(0.00) 0.06

VOCE reward ↑ 0.32(0.03) 0.79(0.01) 0.43(0.54) 0.48(0.19) 0.00(0.00) 0.85(0.01) 0.39(0.22) 0.12(0.01) 0.42
cost ↓ 0.86(0.24) 1.04(0.00) 6.58(0.01) 1.58(0.39) 1.01(0.46) 1.34(0.04) 1.43(0.87) 0.57(0.41) 1.80

WSAC reward ↑ 0.25(0.04) 0.80(0.30) 0.86(0.09) 0.66(0.12) 0.40(0.08) 0.69(0.08) 0.61(0.14) 0.02(0.01) 0.54
cost ↓ 0.18(0.08) 1.98(0.33) 0.40(0.08) 2.52(0.20) 0.98(0.12) 0.78(0.15) 0.51(0.14) 0.45(0.28) 0.97

CDT reward ↑ 0.72(0.03) 0.56(0.01) 0.95(0.00) 0.66(0.02) 0.54(0.06) 0.78(0.01) 0.72(0.02) 0.75(0.01) 0.71
cost ↓ 1.00(0.08) 0.97(0.02) 0.80(0.21) 0.73(0.13) 0.96(0.13) 0.96(0.03) 0.95(0.10) 0.97(0.04) 0.91

C2IQL reward ↑ 0.74(0.01) 0.59(0.05) 0.95(0.01) 0.71(0.02) 0.66(0.06) 0.72(0.03) 0.74(0.01) 0.78(0.02) 0.74
cost ↓ 0.94(0.05) 0.95(0.07) 0.08(0.17) 0.73(0.16) 0.76(0.13) 0.85(0.07) 0.93(0.07) 0.85(0.11) 0.76

this problem, we include possible threshold conditions L̂
in the input of policy and value functions in CIQL, such as
V π
r (s, L̂) and V π

c (s, L̂). By incorporating the threshold as
an input, the agent can dynamically adjust its policy based
on the remaining budget, enabling it to adapt to the evolving
cost requirement.

3.5. Practical Implementation

To sum up, Algorithm 2 demonstrates the overall training
procedure of C2IQL. Notably, we use reconstructed costs in
line 10 for Q-values with more accurate constraint penalty.
In practice, we update the value function and cost value
function with the same expectile parameter κ1 and update
the policy function with another expectile parameter κ2.
This design maintains a balance between IQL and IDQL
approaches, with κ2 serving as a temperature parameter to
balance between behavior cloning and maximization of the
value function. To reduce the computational complexity,
instead of updating all constraint conditions, we predefine a
threshold set L and sample thresholds randomly from it dur-
ing training. More details of the implementation and hyper-
parameters used in Section 4 are available in Appendix B.2.

4. Experiments
Environments and Datasets. We evaluate C2IQL in Bullet-
Safety-Gym (Gronauer, 2022), which includes various con-
tinuous robot locomotion control tasks commonly used in
previous works. We select four types of robots: Ant, Ball,

Car, and Drone; and two kinds of tasks: Run and Circle. We
use the DSRL (Liu et al., 2023a) dataset, which follows the
D4RL (Fu et al., 2020) benchmark format. The details of the
environments and more experiments on SafetyGymnasium
are described in Appendices B.1 and B.3.

Baselines. We compare proposed C2IQL with the following
baseline methods: (1) Primal-dual optimization (Stooke
et al., 2020): BCQ-Lag and BEAR-Lag; (2) Constraint
penalized method: CPQ (Xu et al., 2022); (3) Distribution
correction estimation: COptiDICE (Lee et al., 2022); (4)
Sequential modeling algorithms: CDT (Liu et al., 2023b)
and FISOR (Zheng et al., 2024); (5) Variational optimization
with conservative estimation: VOCE (Guan et al., 2023); (6)
Weighted safe actor-critic: WSAC (Wei et al., 2024).

Metrics. We evaluate performance using normalized reward
and cost returns. The normalized reward return is defined by
Rnorm = Rπ−Rmin

Rmax−Rmin
, where Rπ is the reward return under

policy π, Rmin and Rmax are the minimum and maximum
reward returns in dataset. The normalized cost return is
defined by Cnorm = Cπ

L , where Cπ is the cost return un-
der policy π and L is the selected threshold. To provide a
comprehensive evaluation, we assess the performance of the
algorithms across three cost thresholds: “small”, “middle”,
and “large”, calibrated to each environment’s cost range.
This evaluation scheme allows us to analyze both constraint
satisfaction and reward maximization capabilities of algo-
rithms across varying degrees of constraints. Detailed values
are provided in Appendix B.2.
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Figure 2. Normalized evaluation results comparison between C2IQL and CDT with varying constraint thresholds.

4.1. Main Results

Table 1 presents the evaluation results. C2IQL achieves
the best and safe performance in most tasks, demonstrating
its superiority in reward maximization and constraint satis-
faction. Most baselines except FISOR and CDT generally
suffer from constraint violations. Even when they show safe
behaviors, the performance is inferior compared to C2IQL.
FISOR, on the other hand, achieves safe results across all
environments but exhibits overly conservative behavior due
to its hard constraints property, which limits its ability to
achieve high rewards.

Although CDT achieves similar results to C2IQL in Table 1,
a closer examination of their performance under different
safety thresholds in Figure 2 reveals that C2IQL can flexibly
adjust its policy when dealing with different safety thresh-
olds, while CDT does not. CDT fails to ensure safety in
certain environments for small thresholds, whereas C2IQL
consistently achieves safe results. In contrast, CDT cannot
maximize rewards as effectively as C2IQL for large thresh-
olds, even though both methods ensure safety. Notably, as
the threshold increases, C2IQL progressively improves its
performance, while CDT encounters limitations in specific
environments such as DroneCircle.

4.2. Ablation Study

To evaluate how much the cost reconstruction model and
constraint-conditioned method contribute to the perfor-
mance gain, we conduct an ablation study with the following
variants of C2IQL:

• C2IQL w/o CR: C2IQL without Cost Reconstruction
module introduced in Section 3.3. The discounted
threshold follows the average approximation version,
which is L̃ = L

T · 1−γT

1−γ .

• C2IQL w/o CC: C2IQL without Constraint-
Conditioned formulation introduced in Section 3.4.

• CIQL: The algorithm proposed in Section 3.1, where
both the cost reconstruction model and constraint-
conditioned ability are not included.

As shown in Figure 3, C2IQL w/o CR demonstrates inferior
reward performance compared with C2IQL even though
C2IQL w/o CR reaches the cumulative costs close to the
threshold due to the constraint-conditioned ability. This in-
dicates that the cost reconstruction model helps to improve
reward maximization. On the other hand, C2IQL w/o CC ex-
hibits conservative behavior in terms of costs compared with
C2IQL, which indicates that the constraint-conditioned for-
mulation helps to improve the constraint satisfication ability.
CIQL, which lacks both the cost reconstruction model and
constraint-conditioned ability, converges to a safe but over-
conservative policy for all thresholds. While the safety of
CIQL benefits from avoiding the OOD problem and the over-
conservative policy is caused by the inaccurate discounted
constraint and the absence of constraint-conditioned ability.
As a result, CIQL can only achieve very low performance
with nearly zero cost, regardless of the scenario. Among
all the variants, only C2IQL is able to achieve the high-
est rewards with the closest costs to the thresholds, which
demonstrates the combination of the cost reconstruction
model and constraint-conditioned ability enables C2IQL to
strike a balance between maximizing rewards and satisfying
constraints effectively.

4.3. Hyper-parameter Analysis

We conduct analysis of two hyperparameters: the expectile
parameter on the value function and the cost value func-
tion κ1 and the expectile parameter on policy extraction κ2,
shown in Figure 4. κ1 primarily affects constraint satisfac-
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Figure 3. Ablation study on CarCircle with varying constraint thresholds. The three plots
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= 70. The dashed lines in each plot indicate the corresponding threshold value for that case.
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Table 2. Evaluation results of C2IQL, whose CRM is trained on different noise levels, on task CarCircle. The constraint threshold is
selected as 50. MSE indicates the training loss of CRM.

Noise 0.0 0.1 0.2 0.3 0.5 1.0 2.0 4.0

MSE 0.025 1.10 1.77 2.25 3.35 4.41 5.76 7.84

reward ↑ 434.01 435.07 442.08 435.67 435.60 421.82 408.77 401.89
cost ↓ 46.60 47.20 48.30 47.30 47.89 42.10 34.90 36.20

tion where a smaller κ1 leads to smaller costs. Excessive
κ1 values, such as 0.9, can cause the value function to be
affected by some “luckily safe” transitions, also known as
“lucky samples” in IQL, and thus result in an unsafe policy.
κ2 primarily affects reward maximization where a larger κ2

leads to higher performance with little effect on safety. The
main reason is that smaller κ2 can make the policy closer to
behavior cloning, degrading the performance. These find-
ings suggest that selecting a smaller κ1 value and a larger
κ2 value are often a good choice for achieving both safety
and high performance.

4.4. Robustness of the Cost Reconstruction Model

To validate how the accuracy of CRM influences the perfor-
mance of C2IQL, we introduce the noise sampled from a
normal distribution, N(0, noise), to the input of CRM and
train C2IQL on task CarCircle. As shown in Table 2, the
performance slightly improves with constraint satisfaction
as the noise level increases when the added noise is small.
This occurs because small amounts of noise act similarly
to data augmentation, which enhances the generalization
capability of the cost reconstruction model. This is anal-
ogous to adding noise to input data in image processing
to improve robustness. As noise increases from 1.0 to 4.0,
the performance becomes progressively more conservative.

Despite this, the reward and cost metrics degrade gracefully,
indicating the robustness of C2IQL.

5. Conclusion
In this paper, we introduce C2IQL, a novel approach to
SORL that effectively addresses the OOD challenge in
constrained settings by leveraging constraint-penalized im-
plicit updates. Our findings also highlight the critical is-
sues associated with inaccurate discounted approximations
of constraints and the rigidity of fixed constraint thresh-
olds. By implementing a cost reconstruction model, C2IQL
adeptly reconstructs non-discounted cumulative costs from
discounted values across varying discount factors. Addi-
tionally, the constraint-conditioned mechanism allows for
dynamic adjustment of constraint thresholds, significantly
enhancing the algorithm’s adaptability. These innovations
make C2IQL a promising approach for SORL, offering both
improved OOD handling, and accurate and dynamic con-
straint satisfaction abilities, paving the way for more robust
and reliable SORL algorithms in the future.
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A. Proof
A.1. Proof of Theorem 1.

V ∗
r (s) = arg min

V π
r (s)

E(s,a)∼D[f(Qπ
r|c(s, a)− V π

r (s))]

= arg min
V π
r (s)

Ea∼µ(a|s)[f(Q
π
r|c(s, a)− V π

r (s))]

For convex function f , the optimality is achieved when:

0 =
∂

∂V π
r (s)

Ea∼µ(a|s)[f(Q
π
r|c(s, a)− V π

r (s))]|V π
r (s)=V ∗

r (s)

= −Ea∼µ(a|s)[f
′(Qπ

r|c(s, a)− V ∗
r (s))]

Due to convexity of f and the assumption f ′(0) = 0, we have f ′(x) = |f ′(x)| x
|x| .

= −Ea∼µ(a|s)[|f ′(Qπ
r|c(s, a)− V ∗

r (s))| ·
Qπ

r|c(s, a)− V ∗
r (s)

|Qπ
r|c(s, a)− V ∗

r (s)|
]

= −
∫
a

µ(a|s)|f ′(Qπ
r|c(s, a)− V ∗

r (s))| ·
Qπ

r|c(s, a)− V ∗
r (s)

|Qπ
r|c(s, a)− V ∗

r (s)|

We then define the implicit policy to be πimp(a|s) = µ(a|s) |f
′(Qπ

r|c(s,a)−V ∗
r (s))|

Zimp|Qπ
r|c(s,a)−V ∗

r (s)| , where Zimp is a normalization factor to

keep the sum of the probability as 1.

= −Zimp ·
∫
a

πimp(a|s)(Qπ
r|c(s, a)− V ∗

r (s))

= −Zimp · Eπimp(a|s)[Q
π
r|c(s, a)− V ∗

r (s)]

=
Zimp

2
· ∂

∂V π
r (s)

Eπimp(a|s)[(Q
π
r|c(s, a)− V ∗

r (s))
2]

= 0

This means that V ∗
r (s) is also a solution for the optimization problem:

arg min
V π
r (s)

Ea∼πimp(a|s)[(Q
π
r|c(s, a)− V π

r (s))2]

A.2. Proof of Theorem 2.

V π
c (s) = Ea∼πimp(a|s)[Q

π
c (s, a)]

0 = Ea∼πimp(a|s)[Q
π
c (s, a)− V π

c (s)]|V π
c (s)=V ∗

c (s)

= Ea∼πimp(a|s)[Q
π
c (s, a)− V ∗

c (s)]

=

∫
a

πimp(a|s)(Qπ
c (s, a)− V ∗

c (s))

= −
∫
a

πimp(a|s)(Qπ
c (s, a)− V ∗

c (s))

Following the definition of the implicit policy in Theorem 1: πimp(a|s) = µ(a|s) |f
′(Qπ

r|c(s,a)−V ∗
r (s))|

Zimp|Qπ
r|c(s,a)−V ∗

r (s)| , where Zimp is a

normalization factor to keep the sum of the probability as 1.

= − 1

Zimp

∫
a

µ(a|s)
|f ′(Qπ

r|c(s, a)− V ∗
r (s))|

|Qπ
r|c(s, a)− V ∗

r (s)|
(Qπ

c (s, a)− V ∗
c (s))

= − 1

Zimp
Ea∼µ(a|s)[

|f ′(Qπ
r|c(s, a)− V ∗

r (s))|
|Qπ

r|c(s, a)− V ∗
r (s)|

(Qπ
c (s, a)− V ∗

c (s))]

=
1

2Zimp

∂

∂V π
c (s)

Ea∼µ(a|s)[
|f ′(Qπ

r|c(s, a)− V ∗
r (s))|

|Qπ
r|c(s, a)− V ∗

r (s)|
(Qπ

c (s, a)− V π
c (s))2]
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This means that V ∗
c (s) is a solution for the optimization problem

arg min
V π
c (s)

Ea∼µ(a|s)[
|f ′(Qπ

r|c(s, a)− V ∗
r (s))|

|Qπ
r|c(s, a)− V ∗

r (s)|
(Qπ

c (s, a)− V π
c (s))2]

If we take f as Lκ
2 , the loss function should be

LVc
= E(s,a)∼D[|κ− 1(Qπ

r|c(s, a)− V π
r (s) < 0)| · (Qπ

c (s, a)− V π
c (s))2]

B. Experiment Details

Figure 5. Run task. Figure 6. Circle task.

B.1. Environment Details

Bullet-Safety-Gym (Gronauer, 2022) consists of two types of tasks: Run and Circle. In Run tasks shown in Figure 5, the
rewards of the agent come from running between two safety boundaries with high speed and the costs come from either
reaching the boundaries or exceeding specific velocity related to different robots. In Circle tasks shown in Figure 6, the
rewards of the agent come from moving circularly within the circle area and the costs come from when the robot leaves the
safety zone of the yellow boundaries. Besides two tasks, there are also four kinds of robots: Ant, Ball, Car, and Drone with
different parameters, shown in Table 3.

Table 3. Environment parameters.

Parameter
Tasks

Run Circle
Ant Ball Car Drone Ant Ball Car Drone

Episode length (T) 200 100 200 200 500 200 300 300
Action space 8 2 2 4 8 2 2 4
State space 33 7 7 17 34 8 8 18
Cost range 150 80 40 140 200 80 100 100

B.2. Implementation Details on C2IQL

For C2IQL, the structure and most hyperparameters follow IQL (Kostrikov et al., 2022). Table 4 shows the hyperparameters
of our algorithms. The discount factor of the reward is fixed at 0.99 and the number of discount factors for the cost is 3.
Table 5 demonstrates the discount factors for cost reconstruction and different thresholds for comprehensive comparison.
For most environments, the selection of discount factors are based on the episode length, where γT

1 ≈ 0.05, γT
2 ≈ 0.1, and

γT
3 ≈ 0.2, except for BallRun and AntCircle. We select smaller discount factors for better stability and convergence for

these two environments. Besides, we select three thresholds considering the cost range of each environment. In particular,
we select a “small” value, which is less than 50%; a “middle” value, which is approximately 50%; and a “high” value, which
is more than 50%.

For the cost reconstruction model, we use a 5-layer MLP with hidden dimensions of 512 for each layer. We pre-train the
cost reconstruction model for each environment with the offline dataset and randomly generated data. Besides, to maintain
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computational efficiency while computing multiple discounted estimates, we employ parameter sharing across different
discount factors by extending the cost value and Q-value functions to produce multiple outputs:

Qπ
c (s, a) = Qπ,γ1

c (s, a), ..., Qπ,γm
c (s, a). (22)

To prevent overfitting and improve robustness, we add the noise sampled from a normal distribution N(0, 0.1) to the input.
We pre-train the reconstruction model for 1e6 epochs for each environment.

For the threshold set L of each environment, we set L = {small,middle, high,∞} as the constraint condition of C2IQL
for the training procedure. In the testing procedure, we scale the cost budget linearly based on horizon T , as shown in
Equation (23), and then choose the closest value in L as the constraint condition.

L̂t = Cb
t ∗ T/(T − t), (23)

where Cb
t = L−

∑t−1
i=0 ci is the cost budget at time step t.

Table 4. Hyperparameters
Hyperparameters Value

κ1 0.7
κ2 0.9

γ (reward) 0.99
m 3

Batch size 512
Learning rate of V 1e-3
Learning rate of Q 1e-3
Learning rate of π 3e-4

Training steps 4e5
Testing frequency 5e3

Table 5. Discount factors for cost reconstruction and constraint thresholds for experiments.

Hyperparameters
Tasks

Run Circle
Ant Ball Car Drone Ant Ball Car Drone

Episode length (T) 200 100 200 200 500 200 300 300
γ1 0.985 0.95 0.985 0.985 0.99 0.985 0.99 0.99
γ2 0.99 0.96 0.99 0.99 0.993 0.99 0.993 0.993
γ3 0.993 0.97 0.993 0.993 0.995 0.993 0.995 0.995

Cost range 150 80 40 140 200 80 100 100
Thresholds

Small 30 30 10 30 40 30 30 30
Middle 70 50 20 70 100 50 50 50
High 110 70 40 110 160 70 70 70

B.3. Additional Experiments

To further validate the superiority of our proposed method, we incorporate seven additional complex tasks on SafetyGymna-
sium (Ji et al., 2023). Specifically, we select the four “Point” and three “Velocity” tasks as additional benchmarks different
from Bullet-Safety-Gym. We compare C2IQL with two well-performed baselines in Table 1: FISOR and CDT. As shown in
Table 6, C2IQL achieves the best performance while satisfying constraints on all tasks. Among most tasks, C2IQL achieves
nearly 10% improvement compared with other safe performance.

To further demonstrate the contributions of the cost reconstruction model and constraint-conditioned method to C2IQL,
we include training curves for task DroneCircle as an additional ablation study in Section 4.2. As shown in Figure 7, only
C2IQL achieves the highest rewards while satisfying the constraint. C2IQL w/o CC and C2IQL w/o CR fail to satisfy the
constraint for small or large constraints, and are more conservative in other cases compared with C2IQL. CIQL is overly
conservative in all cases even though it is much safer.
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Table 6. Normalized evaluation results on more complex tasks. The normalized cost threshold is set to 1. Values in (.) represent the
standard deviation. Each value represents the average performance over 10 evaluation episodes with 5 seeds and 3 thresholds. Black
indicates safe results; gray indicates unsafe results; and blue indicates safe and best-performing results. ↑ (↓) incidates that higher (lower)
values are better.

Algorithm Metric
Task

Point Velocity
Circle1 Goal1 Push1 Button1 HalfCheetah Hopper Ant Avg

FISOR reward ↑ 0.65(0.04) 0.61(0.01) 0.24(0.02) 0.06(0.01) 0.86(0.01) 0.15(0.02) 0.83(0.00) 0.49
cost ↓ 1.23(0.44) 0.48(0.03) 0.11(0.08) 0.02(0.02) 0.00(0.00) 0.03(0.02) 0.00(0.00) 0.27

CDT reward ↑ 0.56(0.04) 0.69(0.01) 0.25(0.02) 0.52(0.02) 0.98(0.02) 0.72(0.02) 0.99(0.00) 0.67
cost ↓ 0.63(0.23) 1.03(0.26) 0.45(0.12) 1.63(0.87) 0.06(0.04) 0.42(0.24) 0.46(0.12) 0.67

C2IQL reward ↑ 0.67(0.09) 0.75(0.01) 0.34(0.02) 0.34(0.02) 0.99(0.02) 0.79(0.04) 1.00(0.01) 0.56
cost ↓ 0.77(0.11) 0.92(0.05) 0.46(0.05) 0.91(0.33) 0.51(0.11) 0.34(0.08) 0.58(0.18) 0.64
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Figure 7. Ablation study on DroneCircle with varying constraint thresholds. The three plots from left to right represent different threshold
levels: small = 30, middle = 50, and high = 70. The dashed lines in each plot indicate the corresponding threshold value for that case.

B.4. Infrastructure and Runtime Analysis

Experiments are carried out on NVIDIA GeForce RTX 3080 GPUs. We have done the runtime analysis about C2IQL and
corresponding baselines, as shown in Table 7. We follow the same iteration times, which is 400,000, for most algorithms.
As for VOCE and WSAC, we follow the same setting with the corresponding works and make sure of their convergence.
Overall, the training cost of C2IQL is reasonable when compared to other methods. While it takes slightly more time than
methods like FISOR and VOCE, it is still significantly faster than CDT, which has the highest training time. Notably, C2IQL
achieves a remarkable balance between computational efficiency and performance. The additional training time is justified
by the significant performance gains provided by C2IQL, making it a practical and effective solution.

Table 7. Runtime analysis of C2IQL and corresponding baselines on task AntCircle.

Algorithm BCQ-Lag Bear-Lag COptiDICE CPQ FISOR VOCE CDT WSAC C2IQL

Training Iterations 400,000 400,000 400,000 400,000 400,000 40,000 400,000 30,000 400,000

Training Time 4h23min 5h08min 2h57min 3h46min 2h05min 2h33min 11h32min 3h42min 5h41min
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