
Under review as submission to TMLR

Additive Poisson Process: Learning Intensity of Higher-
Order Interaction in Poisson Processes

Anonymous authors
Paper under double-blind review

Abstract

We present the Additive Poisson Process (APP), a novel framework that can model the
higher-order interaction effects of the intensity functions in Poisson processes using projec-
tions into lower-dimensional space. Our model combines the techniques from information
geometry to model higher-order interactions on a statistical manifold and in generalized
additive models to use lower-dimensional projections to overcome the effects of the curse
of dimensionality. Our approach solves a convex optimization problem by minimizing the
KL divergence from a sample distribution in lower-dimensional projections to the distribu-
tion modeled by an intensity function in the Poisson process. Our empirical results show
that our model effectively uses samples observed in lower dimensional space to estimate a
higher-order intensity function with sparse observations.

1 Introduction

The Poisson process is a counting process used in a wide range of disciplines such as spatial-temporal
sequential data in transportation (Zhou et al., 2018; 2021), finance (Ilalan, 2016) and ecology (Thompson,
1955) to model the arrival rate by learning an intensity function. For a given time interval, the integral
of the intensity function represents the average number of events occurring in that interval. The intensity
function can be generalized to multiple dimensions. However, for most practical applications, learning the
multi-dimensional intensity function is a challenge due to the sparsity of observations. Despite the recent
advances in Poisson processes, current Poisson process models are unable to learn the intensity function of
a multi-dimensional Poisson process. Our research question is, “Are there any good ways of approximating
the high dimensional intensity function?” Our proposal, the Additive Poisson Process (APP), provides a
novel solution to this problem.

Throughout this paper, we use a running example in a spatial-temporal setting. Say we want to learn the
intensity function for a taxi to pick up customers at a given time and location. For this setting, each event
is multi-dimensional; that is, (x, y,W), where a pair of x and y represents two spatial coordinates and W
represents the day of the week. In addition, observation time t is associated with this event. Figure 2b
visualizes this problem. In this problem setup, if we would like to learn the intensity function at a given
location (x, y) and day of the week W , the naïve approach would be to learn the intensity at (x, y,W) directly
from observations. However, this is difficult because observations are usually sparse; that is, there could be
only a few events for a given location and day, or in extreme cases, no direct observation of the event at
all, which makes it difficult for any model to learn the low-valued intensity function. The research question
that we are trying to solve is, “are there good ways of estimating a high dimensional intensity function with
sparse observations?”.

To address this problem, we exploit information in lower-dimensional space; for example, the marginalized
observations at the location (x, y) across all days of the week, or on the day W at all locations. This
information can be included in the model to improve the estimation of the joint intensity function. Using
the information in lower-dimensional space provides a structured approach to include prior information based
on the location or day of the week to improve the estimation of the joint intensity function. For example, a
given location could be a shopping center or a hotel, where it is common for taxis to pick up passengers, and

1

Under review as submission to TMLR

τ = 1
τ = 2

O
rd

er
 o

f i
nt

er
ac

tio
n

be
tw

ee
n

pr
oc

es
se

s
Time

(Ω, ≺)

τ = 0

τ = M

{1} {2} {3}

{1,2} {1,3}{2,3}

{1,2,3}

{1} {2} {3}

{1,2} {1,3}{2,3}

{1,2,3}

⊥
Figure 1: Partial order structured sample space (Ω,⪯) with |D| = 3. Each node represents a state and the
directed edge represents the direction of the partial ordering.

therefore we expect more passengers at this location. There could also be additional patterns that could be
uncovered based on the day of the week. We can then use the observations of events to update our knowledge
of the intensity function.

In this paper, we propose a novel framework to learn the higher-order interaction effects of intensity functions
in Poisson processes. Our model combines the techniques introduced by Luo & Sugiyama (2019) to model
higher-order interactions between Poisson processes and by Friedman & Stuetzle (1981) in generalized additive
models to learn the joint intensity function using samples in a lower dimensional space. Our proposed
approach decomposes a multi-dimensional Poisson process into lower-dimensional representations, and use
data in the lower-dimensional space to improve the estimation of the joint intensity function. This is different
from the traditional approaches where only the joint occurrence of events is used to learn the joint intensity.

We first show the connection between generalized additive models and Poisson processes, and then provide
the connection between generalized additive models and the log-linear model (Agresti, 2012), which has a
well-established theoretical background in information geometry (Amari, 2016). We draw parallels between
the formulation of the generalized additive models and the binary log-linear model on a partially ordered set
(poset) (Sugiyama et al., 2017). The learning process in our model is formulated as a convex optimization
problem to arrive at a unique optimal solution using natural gradient, which minimizes the Kullback-Leibler
(KL) divergence from the sample distribution in a lower-dimensional space to the distribution modeled by
the learned intensity function. This connection provides remarkable properties to our model: the ability to
learn higher-order intensity functions using lower-dimensional projections, thanks to the Kolmogorov-Arnold
representation theorem. This property makes it advantageous to use our proposed approach for cases where
there are no observations, missing samples, or low event rates. Our model is flexible because it can capture
the interaction effects between events in a Poisson process as a partial order structure in the log-linear model
and the parameters of the model are fully customizable to meet the requirements of the application. Our
empirical results show that our model effectively uses samples projected onto a lower dimensional space to
estimate the higher-order intensity function. More importantly, our model is also robust to various sample
sizes.

2 Related Work

We discuss related work of our task of estimating intensity functions in Poisson processes, which can be
roughly divided into three approaches: density based, Bayesian inference based, and factorization based
estimation. We review existing approaches for each of the three categories and discuss the relationship to
our approach in the following.

2.1 Density Estimation

Density estimation techniques such as Kernel density estimation (KDE) (Rosenblatt, 1956) learn the joint
intensity function by using kernels as weights. KDE learns the joint intensity function by using information

2

Under review as submission to TMLR

Example for k = 2

θ = 0

η = η

{1} {2} {3} {4}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

{1} {2} {3} {4}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

∅

(a)
x

y

(b)

Figure 2: (a) A visualization of the truncated parameter space to approximate the joint intensity function
with |D| = 4 and k = 2. θ and η are model parameters described in Section 3.3 and η̂ is the input to the
model. (b) A visualization of the input datasets, where the blue points represent events with two spatial
dimensions and one-time dimension.

from lower dimensions. However, KDE is unable to scale to learn dimensions because it suffers from the
curse of dimensionality, which means that it requires a large size of samples to build an accurate model.
In addition, the complexity of the model expands exponentially with respect to the number of dimensions,
which makes it infeasible to compute. Our approach applies similar concepts to density estimation techniques
by learning from low dimensional projections to approximate the joint intensity function.

2.2 Bayesian Inference for Poisson Process

Learning an intensity function from sparse high-dimensional datasets is a challenging problem. It often
comes with a trade-off between computational complexity and numerical accuracy. For applications that
are sparse with higher dimensionality, numerical accuracy is often sacrificed to approximate the intensity
function.

Bayesian approaches, such as using a mixture of beta distributions with a Dirichlet prior (Kottas, 2006;
Kottas & Sansó, 2007) and Reproducing Kernel Hilbert Space (RKHS) (Flaxman et al., 2017), have been
proposed to quantify the uncertainty for the intensity function. However, these approaches are often non-
convex, making it difficult to obtain the globally optimal solution. Besides, if observations are sparse, it is
hard for these approaches to learn a reasonable intensity function.

In addition, the naïve approach using MCMC has cubic complexity O(n3) for each dimension and increases
exponentially with respect to additional input dimension, that is, O((n3)d), where n refers to the number of
observations and d is the number of dimensions. One example of this approach is using a Dirichlet process
mixture of Beta distribution as a prior for the intensity function of the Poisson process (Kottas, 2006; Kottas
& Sansó, 2007). The solution from MCMC is often accurate and asymptotically converges to the true
posterior intensity function. However, due to its computational complexity, it is infeasible to estimate any
high-dimensional intensity function.

More recent techniques have attempted to scale up these approaches by using Gaussian processes as a
functional prior to the intensity function (Samo & Roberts, 2015). However, the model complexity is O(n2k)
for each dimension and is exponential with respect to the number of input dimensions, which is still infeasible
to estimate any high-dimensional intensity function.

Variational inference (Lloyd et al., 2015) approaches that can be used to make Bayesian inference of Poisson
process much more efficient scaling it up to the linear complexity O(n) for each dimension. One of the most
notable works in this area is using Fourier Features in the Cox Process (John & Hensman, 2018). However
variational inference is not guaranteed to asymptotically converge to the true posterior distribution. Because
variational inference does not have any theoretical guarantees, it is likely to fail in extremely high dimensions
and sparse observations.

3

Under review as submission to TMLR

Our approach uses the discretization approach to scale up the model to higher dimensions. We use a
graph (partial order) structure to allow the flexibility for domain expertise to specify how each dimension
is treated and which interaction effects should be included in the model. Unlike variational inference-based
approaches, our estimation procedure of the intensity function has theoretical convergence which is based
on the Kolmogorov-Arnold theorem.

2.3 Poisson Factorization

Our work is closely related to Poisson Factorization (Chi & Kolda, 2012), where random variables in a
tensor are represented with a Poisson distributed or Poisson process likelihood. The tensor is usually used to
represent some high-dimensional datasets such as contingency tables or other collections of counting datasets,
which are often large and sparse. The objective of Poison Factorization is to decompose the high-dimensional
sparse matrices into lower-dimensional space, where we can find some meaningful latent structure.

The effectiveness of Poisson factorization for high dimensional datasets makes it ideal to analyze spatial-
temporal problems consisting of sparse count data. One example of this work is Bayesian Poisson Tucker
decomposition (BPTD) (Schein et al., 2016), where a dataset of interaction events is represented as a set of
N events, each of which consists of a pair of a token ei that encodes certain features and time, that is, (ei,
ti). BPTD uses an MCMC inference algorithm to learn the latent structure, which is based on an extension
of stochastic block models (SBM) (Nowicki & Snijders, 2001) with a Poisson likelihood.

Our approach provides a generalization of this idea of Poisson Factorization by using Legendre tensor de-
composition (Sugiyama et al., 2018) and demonstrating its ability on a spatial-temporal problem. Our
optimization is much more efficient as it is guided by gradients to minimize the KL divergence. Our ap-
proach also contains a graph structure that allows domain experts to encode certain properties into the
model.

3 Formulation

We start this section by introducing the technical background of the Poisson process and its extension to
a multi-dimensional Poisson process. We then introduce the Generalized Additive Model (GAM) and its
connection to the Poisson process. This is followed by presenting our novel framework, called Additive
Poisson Process (APP), which is our main technical contribution and has a tight link to the Poisson process
modeled by GAMs. We show that the learning of APP can be achieved via convex optimization using natural
gradient.

The Poisson process is characterized by an intensity function λ : R→ R. An inhomogeneous Poisson process
is an extension of a homogeneous Poisson process, where the arrival rate changes with time. The process
with time-changing intensity λ(t) is defined as a counting process N(t), which has an independent increment
property. For any t ≥ 0 and infinitesimal interval δ ≥ 0, probability of events count is p(N(t + δ) − N(t) =
0) = 1 − δλ(t) + o(δ), p(N(t + δ) − N(t) = 1) = δλ(t) + o(δ), and p(N(t + δ) − N(t) ≥ 2) = o(δ), where o(·)
denotes little-o notation (Daley & Vere-Jones, 2007). To take (inhomogeneous) multi-dimensional attributes
into account, we consider multiple intensity functions, each of which is given as λJ : R→ R associated with
a subset J of the domain of possible states D, which is always assumed to be finite throughout the paper.
Each J ⊆ D determines the condition of the occurrence of the event. To flexibly consider any combination
of possible states, D is composed of possible states across all dimensions. For example, in the taxi pick up
example in Introduction, if Dx, Dy, and DW are (discretized) disjoint domains for x, y, and W , respectively,
they are gathered as a single set D = Dx ∪ Dy ∪ DW . For each J ⊆ D, the likelihood of this model is given
by

p
(
{ti}N

i=1 | λJ (t)
)

= exp
(
−

∫
λJ(t)dt

) N∏
i=1

λJ (ti) , (1)

where t1, t2, . . . , tN ∈ R are realization of timestamps. We define the functional prior on λJ(t) as

λJ(t) := g (fJ(t)) = exp (fJ(t)) . (2)

4

Under review as submission to TMLR

The function g(·) is a positive function to guarantee the non-negativity of the intensity which we choose
to be the exponential function, and our objective is to learn the function fJ(·). The log-likelihood of the
multi-dimensional Poisson process with the functional prior is described as

log p
(
{ti}N

i=1 |λJ (t)
)

=
N∑

i=1
fJ(ti)−

∫
exp (fJ (t)) dt. (3)

In the following sections, we introduce the generalized additive models and propose to model it by the
log-linear model to learn fJ(t) and the normalizing term

∫
exp (fJ (t)) dt.

3.1 Generalized Additive Model

We present the connection between Poisson processes and the Generalized Additive Model (GAM) proposed
by Friedman & Stuetzle (1981). The GAM projects higher-dimensional features into lower-dimensional space
to apply smoothing functions to build a restricted class of non-parametric regression models. GAM is less
affected by the curse of dimensionality compared to directly using smoothing in a higher-dimensional space.
For a given set of processes J ⊆ D, the traditional GAM using one-dimensional projections is defined as

log λJ(t) =
∑
j∈J

fj(t)− βJ ,

with some smoothing function fj .

In this paper, we extend it to include higher-order interactions between features in GAM by introducing
terms that represent the interaction effects between events. The k-th order GAM is defined as

log λJ(t) =
∑
j∈J

f{j}(t) +
∑

j1,j2∈J

f{j1,j2}(t) + · · ·+
∑

j1,...,jk∈J

f{j1,...,jk}(t)− βJ =
∑

I⊆J, |I|≤k

fI(t)− βJ , (4)

The function fI : R→ R is a smoothing function to fit the data, and the normalization constant βJ for the
intensity function is obtained as βJ =

∫
λJ(t)dt =

∫
exp(

∑
I⊆J, |I|≤k fI(t))dt. The definition of the additive

model is in the same form as Equation 3. In particular, if we compare Equation 3 and Equation 4, we can see
that the smoothing function f in Equation 3 is realized as the summation over lower-dimensional projections
in Equation 4.

Learning of a continuous function using lower-dimensional projections is well known because of the
Kolmogorov-Arnold representation theorem, which states that:
Theorem 3.1 (Kolmogorov–Arnold Representation Theorem (Braun & Griebel, 2009; Kolmogorov, 1957)).
Any multivariate continuous function can be represented as a superposition of one–dimensional functions;
that is,

f (t1, . . . , tn) =
2n+1∑
q=1

fq

[
n∑

p=1
gq,p (tp)

]
.

Braun (2009) showed that the GAM is an approximation to the general form presented in Kolmogorov-
Arnold representation theorem by replacing the range q ∈ {1, . . . , 2n+ 1} with I ⊆ J and the inner function
gq,p by the identity if q = p and zero otherwise, yielding fJ(t) =

∑
I⊆J fI(t).

Interestingly, the canonical form for additive models in Equation 4 can be rearranged to be in the same form
as Kolmogorov-Arnold representation theorem. By letting f(t) =

∑
I⊆J fI(t) = g−1(λJ(t)) and g(·) = exp(·),

λJ(t) = 1
exp (βJ) exp

(∑
I⊆J

fI (t)
)
∝ exp

(∑
I⊆J

fI (t)
)
, (5)

where we assume fI(t) = 0 if |I| > k for the k-th order model and 1/ exp(βJ) is the normalization term
for the intensity function. Based on the Kolmogorov-Arnold representation theorem, generalized additive

5

Under review as submission to TMLR

models are able to learn the intensity of the higher-order interaction between Poisson processes by using
projections into lower dimensional spaces. The log-likelihood function for a kth-order model is obtained by

log p
(
{ti}N

i=1|λJ (t)
)

=
N∑

i=1

∑
I⊆J, |I|≤k

fI (ti)− β′, (6)

where β′ is a constant given by β′ =
∫
λJ(t)dt+

∑
I⊆J βI . In the following subsection, we introduce a log-

linear formulation equipped with partially ordered sample space, which aligns with the GAM formulation in
Equation 5.

3.2 Additive Poisson Process

We introduce our key technical contribution in this section, a log-linear formulation called the additive
Poisson process to estimate the parameters for the higher-order interactions in Equation 6. We begin by
discretizing the time window [0, T] for the input of λ into M bins and treat each bin as a natural number
τ ∈ [M] = {1, 2, . . . ,M} for each process. The discretization avoids the need to compute the intractable
integral of β′ in the likelihood function in Equation 6. The discretization approach tends to perform better
in high-dimension compared to the alternative approaches such as variational inference. We assume that M
is predetermined by the user. First, we introduce a structured space for the Poisson process to incorporate
interactions between processes. Let Ω = { (J, τ) | J ⊆ D, τ ∈ [M] } ∪ {(⊥, 0)}, where the symbol ⊥ denotes
the least element in our partial order structure, which is required to normalize probabilities in the resulting
log-linear model. We define the partial order ⪯ (Davey & Priestley, 2002) on Ω as

ω = (J, τ) ⪯ ω′ = (J ′, τ ′) ⇐⇒ J ⊆ J ′ and τ ≤ τ ′, for each ω, ω′ ∈ Ω, (7)

and (⊥, 0) ⪯ ω for all ω ∈ Ω, which is illustrated in Figure 1. The relation J ⊆ J ′ is used to model any-order
interactions (Amari, 2016, Section 6.8.4) between Poisson processes and each τ in (J, τ) represents the auto-
regressive component (“time”) in our model. Each node ω in the partially ordered set (poset) 1 represents
the state of the sample space and the arrows in Figure 1 represent the partial order relationship between
two nodes2; that is, if ω → ω′, then ω ⪯ ω′.

Intuitively, the greatest node for each τ ∈ [M], which is ({1, 2, 3}, τ) in Figure 1, represents the multi-
dimensional Poisson process. Other nodes represent projections onto lower-dimensional space that correspond
to the marginalized observations; for example, {{1}, {2}, {3}} and {{1, 2}, {1, 3}, {2, 3}} represent the first-
and second-order processes. Using our example in Introduction, where we wanted to estimate the intensity
function of a pick-up event of a taxi, {1} and {2} correspond to spatial coordinates x and y, respectively, and
{3} to the day of the week W , and τ represents the (discretized) observation time. We can then update our
belief to model the second-order intensity function using observations of the second order events. For example,
{1, 2}, {1, 3}, {2, 3} represents an event occurring at {x, y}, {x,W}, and {y,W}. We can then continue this
process to an arbitrary order of interactions. Later on, in this section, we introduce the mathematics to
estimate the higher-order function using a restricted number of lower-dimensional projections.

On any set equipped with a partial order, we can introduce a log-linear model (Sugiyama et al., 2017). Let
us assume that a parameter domain S ⊆ Ω is given. For a partially ordered set (Ω,⪯), the log-linear model
with parameters (θs)s∈S is introduced as

log p(ω; θ) =
∑

s∈S
1[s⪯ω]θs − ψ(θ) (8)

for each ω ∈ Ω, where 1[·] = 1 if the statement in [·] is true and 0 otherwise, and ψ(θ) ∈ R is the partition
function uniquely obtained as

ψ(θ) = log
∑

ω∈Ω
exp

(∑
s∈S

1[s⪯ω]θs

)
= −θ(⊥,0).

1In information geometry, this corresponds to hypergraphs which have simplicial complex structure Ay et al. (2018, Section
2.9).

2This graph structure should not be confused with the graph structure studied in graphical models, where the nodes typically
represent a random variable and the arrows represent the relationship between the two random variables.

6

Under review as submission to TMLR

Algorithm 1 Additive Poisson Process (APP)
1: Function APP({ti}N

i=1, S, M , h):
2: Initialize Ω with the number M of bins
3: Apply Gaussian Kernel with bandwidth h on {ti}N

i=1 to compute p̂
4: Compute η̂ = (η̂s)s∈S from p̂
5: Initialize θ = (θs)s∈S (randomly or θs = 0)
6: repeat
7: Compute p using the current θ = (θs)s∈S
8: Compute η = (ηs)s∈S from p
9: ∆η ← η − η̂

10: Compute the Fisher information matrix G using Equation 11
11: θ ← θ −G−1∆η
12: until convergence of θ = (θs)s∈S
13: End Function

A special case of this formulation coincides with the density function of the Boltzmann machines (Sugiyama
et al., 2018; Luo & Sugiyama, 2019).

Here there is a clear correspondence between the log-linear formulation and that in the form of Kolmogorov-
Arnold representation theorem in Equation 5 if we rewrite Equation 8 as

p(ω; θ) = 1
expψ(θ) exp

(∑
s∈S

1[s⪯ω]θs

)
∝ exp

(∑
s∈S

1[s⪯ω]θs

)
. (9)

We call this model with (Ω,⪯) defined in Equation 7 the additive Poisson process, which represents the
intensity λ as the joint distribution across all possible states. The intensity λ of the multi-dimensional
Poisson process given via the GAM in Equation 5 is fully modeled (parameterized) by Equation 8 and each
intensity fI(·) is obtained as θ(I,·). To consider the k-th order model, we consistently use the parameter
domain S, given as S = { (J, τ) ∈ Ω | |J | ≤ k }, where k is an input parameter to the model that specifies
the upper bound of the order of interactions. This means that θs = 0 for all s /∈ S. Note that our model is
well-defined for any subset S ⊆ Ω and the user can use an arbitrary domain in applications. A visualization
of the truncated parameter space is shown in Figure 2a.

For a given J ⊆ D and each bin τ with ω = (J, τ), the empirical probability p̂(ω) of input observations is
given as

p̂(ω) = 1
Z

∑
I⊆J

σI(τ), Z =
∑
ω∈Ω

p̂(ω), σI(τ) := 1
NhI

N∑
i=1

K

(
τ − ti
hI

)
. (10)

for each discretized state ω = (J, τ). The function σI performs smoothing on time stamps t1, . . . , tN , which
is the kernel smoother proposed by Buja et al. (1989). The function K is a kernel and hI is the bandwidth
for each projection I ⊆ D. We use the Gaussian kernel as K to ensure that probability is always nonzero,
meaning that the definition of the kernel smoother coincides with the kernel estimator of the intensity
function proposed by Schäbe (1993). The normalization constant for the intensity function can be computed
by βJ =

∑
I⊆J K(τ−ti

hI
).

3.3 Optimization

Given an empirical distribution p̂ defined in Equation 10, the task is to learn the parameter (θs)s∈S such
that the distribution via the log-linear model in Equation 8 is as close to p̂ as much as possible. Let us define
SS = {p | θs = 0 if s ̸∈ S}, which is the set of distributions that can be represented by the log-linear model
using the parameter domain S. Then the objective function is given as

min
p∈SS

DKL(p̂, p),

7

Under review as submission to TMLR

where DKL(p̂, p) =
∑

ω∈Ω p̂ log(p̂/p) is the KL divergence from p̂ to p. In this optimization, let p∗ be the
learned distribution from the sample with an infinitely large sample size and let p be the learned distribution
for each sample. Then we can lower bound the uncertainty (variance) E[DKL(p∗, p)] by |S|/2N (Barron &
Hengartner, 1998).

Thanks to the well-developed theory of information geometry (Amari, 2016) for the log-linear model (Amari,
2001), it is known that this problem can be solved by e-projection, which coincides with the maximum
likelihood estimation and is always convex optimization (Amari, 2016, Chapter 2.8.3). The gradient with
respect to each parameter θs is obtained by

∂

∂θs
DKL(p̂, p) = ηs − η̂s, where ηs =

∑
ω∈Ω

1[ω⪰s]p(ω).

The value ηs is known as the expectation parameter (Sugiyama et al., 2017) and η̂s is obtained by replacing
p with p̂ in the above equation. If η̂s = 0 for some s ∈ S, we remove s from S to ensure that the model is
well-defined.

Let S = {s1, . . . , s|S|} and θ = [θs1 , . . . , θs|S|]T , η = [ηs1 , . . . , ηs|S|]T . We can always use the natural gradi-
ent (Amari, 1998) as the closed-form solution of the Fisher information matrix is always available (Sugiyama
et al., 2017). The update step is

θnext = θ −G−1(η − η̂),

where the Fisher information matrix G is obtained as

gij = ∂

∂θsi∂θsj

DKL(p̂, p) =
∑
ω∈Ω

1[ω⪰si]1[ω⪰sj]p(ω)− ηsiηsj . (11)

Theoretically, the Fisher information matrix is numerically stable to perform a matrix inversion. However,
computationally, floating point errors may cause the matrix to become indefinite. To overcome this issue, a
small positive value is added along the main diagonal of the matrix. This technique is known as jitter and
it is used in areas like Gaussian processes to ensure that the covariance matrix is computationally positive
semi-definite (Neal, 1999).

The pseudocode for APP is shown in Algorithm 1. The time complexity of computing line 7 is O(|Ω||S|).
This means when implementing the model using gradient descent, the time complexity of the model is
O(|Ω||S|2) to update the parameters in S for each iteration. For natural gradient, the cost of inverting the
Fisher information matrix G is O(|S|3); therefore, the time complexity to update the parameters in S is
O(|S|3 + |Ω||S|) for each iteration. The time complexity for natural gradient is significantly higher because
of the requirement to invert the fisher information matrix; if the number of parameters is small, it is more
efficient to use natural gradient because it requires significantly fewer iterations. However, if the number of
parameters is large, it is more efficient to use gradient descent.

4 Experiments

We perform experiments using two-dimensional synthetic data, higher-dimensional synthetic data, and real-
world data to evaluate the performance of our proposed approach. Our code is implemented in Python 3.7.5
with NumPy version 1.8.2 and the experiments are run on Ubuntu 18.04 LTS with an Intel i7-8700 6c/12t
with 16GB of memory 3. In experiments with synthetic data, we simulate random events using Equation 1.
We generate an intensity function using a mixture of Gaussians, where the mean is drawn from a uniform
distribution and the covariance is drawn from an inverted Wishart distribution. The intensity function is
then the density function multiplied by the sample size. The synthetic data is generated by directly drawing
a sample from the probability density function . An arbitrary number of samples is drawn from the mixture
of Gaussians. We then run our models and compare with Kernel Density Estimation (KDE) (Rosenblatt,
1956), an inhomogeneous Poisson process whose intensity is estimated by a reproducing kernel Hilbert space

3The code is available in the supplementary material and will be publicly available online.

8

Under review as submission to TMLR

(a) Dense observations N = 100, 000.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Kernel Bandwid h

10−3KL
 D

iv
er

ge
nc

e

Process: [1]

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Kernel Bandwid h

10−3

10−2

KL
 D

iv
er

ge
nc

e

Process: [2]

Order: 1 Order: 2 KDE

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Kernel Bandwid h

10−2

10−1

KL
 D

iv
er

ge
nc

e

Process: [1, 2]

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Kernel Bandwid h

10−2

10−1

KL
 D

iv
er

ge
nc

e

To al KL Divergence

(b) Sparse observations, N = 1, 000.

Figure 3: KL Divergence for second-order Poisson process. The order of the model (color of the line)
represents the k-th order model, i.e., k = 1 (blue) and k = 2 (orange).

0 2 4 6 8 10
Time

0

500

1000

1500

In
te
ns
it
y

Process: [1]

0 2 4 6 8 10
Time

0

500

1000

1500

In
te
ns
it
y

Process: [2]

Ground Truth Order: 1 Order: 2 KDE RKHS DP-beta

0 2 4 6 8 10
Time

0

5

10

15

20

25

30

In
te
ns
it
y

Process: [1, 2]

(a) Dense observations, N = 100, 000, h = 0.4.

0 2 4 6 8 10
Time

0

5

10

15

20

In
te

ns
it

y

Process: [1]

0 2 4 6 8 10
Time

0

5

10

15

20

In
te

ns
it

y

Process: [2]

Ground Truth Order: 1 Order: 2 KDE RKHS DP-beta

0 2 4 6 8 10
Time

0.0

0.1

0.2

0.3

0.4
In

te
ns

it
y

Process: [1, 2]

(b) Sparse observations, N = 1, 000, h = 0.2.

Figure 4: Intensity function of two dimensional processes. Dots represent observations. Left: Represents
marginalized observation of the first dimension. Middle: Represents marginalized observation of the second
dimension. Right: The joint observation of dimensions 1 and 2. The order of the model (color of the line)
represents the k-th order model, i.e., k = 1 (blue) and k = 2 (orange).

formulation (RKHS) (Flaxman et al., 2017), and a Dirichlet process mixture of Beta distributions (DP-
beta) (Kottas, 2006; Kottas & Sansó, 2007). The hyper-parameters M and h in our proposed model are
selected using grid search and cross-validation. For situations where a validation set is not available, then h
could be selected using a rule of thumb approach such as Scott’s Rule (Scott, 2015), and M could be selected
empirically from the input data by computing the time interval of the joint observation.

4.1 Experiments on Two-Dimensional Processes

For our experiment, we use 20 Gaussian components and simulate a dense case with 100,000 observations
and a sparse case with 1,000 observations within the time frame of 10 seconds. We consider that a joint event
occurs if the two events occur 0.1 seconds apart. Figure 3a and Figure 3b compare the KL divergence between
the first- and second-order models and plots in Figure 4 are the corresponding intensity functions. In the first-
order processes, both first- and second-order models have the same performance. This is expected, as both
of the models can treat first-order interactions and are able to learn the empirical intensity function exactly,

9

Under review as submission to TMLR

0.0 0.5 1.0 1.5 2.0
Kernel Bandwidth

102

103

104

105

KL
 D
iv
er
ge

nc
e

Process: [1]

0.0 0.5 1.0 1.5 2.0
Kernel Bandwidth

102

103

104

KL
 D
iv
er
ge

nc
e

Process: [1, 2]

0.0 0.5 1.0 1.5 2.0
Kernel Bandwidth

102

103

KL
 D
iv
er
ge

nc
e

Process: [1, 2, 3]

0.0 0.5 1.0 1.5 2.0
Kernel Bandwidth

101

102

KL
 D
iv
er
ge

nc
e

Process: [1, 2, 3, 4]

0.0 0.5 1.0 1.5 2.0
Kernel Bandwidth

103

104

105

KL
 D
iv
er
ge

nc
e

Total KL Divergence

Order: 1
Order: 2

Order: 3
Order: 4

(a) Dense observations, N = 107.

0.0 0.5 1.0 1.5 2.0
Kernel Bandwidth

102

103

KL
 D
iv
er
ge

nc
e

Process: [1]

0.0 0.5 1.0 1.5 2.0
Kernel Bandwidth

101

102

KL
 D
iv
er
ge

nc
e

Process: [1, 2]

0.0 0.5 1.0 1.5 2.0
Kernel Bandwidth

100

101

KL
 D
iv
er
ge

nc
e

Process: [1, 2, 3]

0.0 0.5 1.0 1.5 2.0
Kernel Bandwidth

100

101

KL
 D
iv
er
ge

nc
e

Process: [1, 2, 3, 4]

0.0 0.5 1.0 1.5 2.0
Kernel Bandwidth

102

103

KL
 D
iv
er
ge

nc
e

Total KL Divergence

Order: 1
Order: 2

Order: 3
Order: 4

(b) Sparse observations, N = 105.

Figure 5: KL Divergence for fourth-order Poisson process. We selected four representative examples for our
experimental results, full results are available in the supplementary material. The line color signifies the
order of the model, i.e., k = 1 (blue), k = 2 (orange), k = 3 (green), and k = 4 (red).

0 2 4 6 8 10
Time

0

50000

100000

150000

In
te
ns

it
y

Process: [1]

0 2 4 6 8 10
Time

0

1000

2000

3000

In
te
ns

it
y

Process: [1, 2]

0 2 4 6 8 10
Time

0

20

40

60

80

100
In
te
ns

it
y

Process: [1, 2, 3]

Order: 1
Order: 2

Order: 3
Order: 4

Ground Truth

0 2 4 6 8 10
Time

0

1

2

3

4

5

In
te
ns

it
y

Process: [1, 2, 3, 4]

(a) Dense observations, N = 107.

0 2 4 6 8 10
Time

0

500

1000

1500

In
te
ns

it
y

Process: [1]

0 2 4 6 8 10
Time

0

10

20

30

In
te
ns

it
y

Process: [1, 2]

0 2 4 6 8 10
Time

0.0

0.2

0.4

0.6

0.8

In
te
ns

it
y

Process: [1, 2, 3]

Order: 1
Order: 2

Order: 3
Order: 4

Ground Truth

0 2 4 6 8 10
Time

0.00

0.02

0.04

0.06

0.08

In
te
ns

it
y

Process: [1, 2, 3, 4]

(b) Sparse observations, N = 105.

Figure 6: Intensity function of higher dimensional processes. Dots represent observations. We have selected
four representative examples for our experimental results, full results are available in the supplementary
material. The order of the model (color of the line) represents the k-th order model, i.e., k = 1 (blue), k = 2
(orange), k = 3 (green), and k = 4 (red).

which is the superposition of the one-dimensional projection of the Gaussian kernels on each observation.
For the second-order process, the second-order model performs better than the first-order model because
it is able to directly learn the intensity function from the projection onto the two-dimensional space. In
contrast, the first-order model must approximate the second-order process using the observations from the
first-order processes. In the sparse case, the second-order model performs better when the correct bandwidth
is selected.

Table 1 compares our approach APP with other state-of-the-art approaches. APP performs best for first-
order processes in both sparse and dense experiments. Experiments for RKHS and DP-beta were unable
to complete running within two days for the dense experiment. In the second-order process, our approach
was outperformed by KDE, while the second-order APP was able to outperform both RKHS and DP-beta
processes for both sparse and dense experiments. Figures 3a and 3b show that KDE is sensitive to changes
in bandwidth, which means that, for any practical implementation of the model, second-order APP with a

10

Under review as submission to TMLR

Table 1: The lowest KL divergence from the ground truth distribution to the obtained distribution on two
types of single processes ([1] and [2]) and joint process of them ([1,2]). APP-# represents the order of the
Additive Poisson Process. Missing values mean that the computation did not finish within two days.

Process APP-1 APP-2 KDE RKHS DP-beta

Dense
[1] 4.98e-5 4.98e-5 2.81e-4 - -
[2] 2.83e-5 2.83e-5 1.17e-4 - -

[1,2] 2.98e-2 1.27e-3 6.33e-4 4.09e-2 4.54e-2

Sparse
[1] 7.26e-4 7.26e-4 8.83e-4 1.96e-2 2.62e-3
[2] 2.28e-4 2.28e-4 2.76e-4 2.35e-3 2.49e-3

[1,2] 2.88e-2 1.77e-2 3.67e-3 1.84e-2 3.68e-2
Table 2: Negative test log-likelihood for the New York Taxi data. Single processes ([T] and [W]) and joint
process of them ([T,W]). APP-# represents the order of the Additive Poisson Process.

Process APP-1 APP-2 KDE RKHS DP-beta

Jan
[T] 714.07 714.07 713.77 728.13 731.01
[W] 745.60 745.60 745.23 853.42 790.04

[T,W] 249.60 246.05 380.22 259.29 260.30

Feb
[T] 713.43 713.43 755.71 795.61 765.76
[W] 738.66 738.66 773.65 811.34 792.10

[T,W] 328.84 244.21 307.86 334.31 326.52

Mar
[T] 716.72 716.72 733.74 755.48 741.28
[W] 738.06 738.06 816.99 853.33 832.43

[T,W] 291.20 246.19 289.69 328.47 300.36

less sensitive bandwidth is more likely to learn a more accurate intensity function when the ground truth is
unknown.

4.2 Experiments on Higher-Dimensional Processes

We generate a fourth-order process to simulate the behavior of the model in higher dimensions. The model
is generalizable to higher dimensions, but it is difficult to demonstrate results for processes higher than the
fourth order. For our experiment, we generate an intensity function using 50 Gaussian components and draw
a sample with the size of 107 for the dense case and that with the size of 105 for the sparse case. We consider
the joint event to be the time frame of 0.1 seconds.

We were not able to run comparison experiments with other models because they are unable to learn when
there are no or few joint observations in third- and fourth-order processes. In addition, the time complexity
is too high to learn from joint observations in first- and second-order processes because all the other models
have their time complexity proportional to the number of observations. The time complexity for KDE is
O(ND) for the dimensionality with D, while DP-beta is O(N2K), where K is the number of clusters, and
RKHS is O(N2) for each iteration with respect to the sample size N , where DP-beta and RKHS are applied
directly on the joint observation as they cannot use the projections in lower-dimensional space. KDE is able
to make an estimation of the intensity function using projections in lower-dimensional space, but it was too
computationally expensive to complete running the experiment. By contrast, our model is more efficient
because the time complexity is proportional to the number of bins in our model. The time complexity of
APP for each iteration is O(|Ω||S|), where |Ω| = MD and |S| =

∑k
c=1

(
D
c

)
. Our model scales combinatorially

with respect to the number of dimensions. However, this is unavoidable for any model that directly takes
into account the high-order interactions. For practical applications, the number of dimensions D and the
order of the model k is often small, making it feasible to compute.

11

Under review as submission to TMLR

In Figure 5a, we observe similar behavior in the model, where the first-order processes fit precisely to the
empirical distribution generated by the Gaussian kernels. The third-order model is able to predict better on
the fourth-order process. This is because the observation shown in Figure 6a is largely sparse and learning
from the observations directly may overfit. A lower-dimensional approximation is able to provide a better
result in the third-order model. Similar trends can be seen in the sparse case, as shown in Figure 5b,
where a second-order model is able to produce better estimation in third- and fourth-order processes. The
observations are extremely sparse, as seen in Figure 6b, where there are only a few observations or no
observations at all to learn the intensity function.

4.3 Uncovering Common Patterns in the New York Taxi Dataset

We demonstrate the capability of our model on the 2016 Green Taxi Trip dataset4, which is an open-source
dataset with a CC0: Public Domain licenses. We are interested in finding the common pick-up patterns
across Tuesdays and Wednesdays. We define a common pick-up time to be within 1-minute intervals of
each other between the two days. We have chosen to learn an intensity function using the Poisson process
for Tuesday and Wednesday and a joint process for both of them. The joint process uncovers the common
pick-up patterns between the two days. We have selected to use the first two Tuesdays and Wednesdays
in January 2016 as our training and validation sets and the Tuesday and Wednesday of the third week of
January 2016 as our testing set. We repeat the same experiment for February and March.

We show our results in Table 2, where we use the negative test log-likelihood as an evaluation measure.
APP-2 has consistently outperformed all the other approaches for the joint process between Tuesday and
Wednesday. In addition, for the individual process, APP-1 and -2 also showed the best result for February
and March. We also observe similar results as the synthetic experiment where APP-1 and APP-2 have similar
values because there is no higher-order information to capture. These results demonstrate the effectiveness
of our model in capturing higher-order interactions between processes, which is difficult for the other existing
approaches.

5 Conclusion

We have proposed a novel framework, called Additive Poisson Process (APP), to learn the intensity function
of the higher-order interaction between Poisson processes using observations projected into lower-dimensional
spaces. We formulated our proposed model using the log-linear model and optimize it using information
geometric structure of the distribution space. We drew parallels between our proposed model and generalized
additive model and showed the ability to learn from lower dimensional projections via the Kolmogorov-Arnold
representation theorem. Our empirical results show the superiority of our method when learning the higher-
order interactions between Poisson processes and when there are no or extremely sparse joint observations.
Our model is also robust to varying sample sizes. Our approach provides a novel formulation to learn the joint
intensity function which typically has extremely low intensity. There is enormous potential to apply APP
to real-world applications, where higher-order interaction effects need to be modeled such as transportation,
finance, and ecology.

References
Alan Agresti. Categorical Data Analysis. Wiley, 3 edition, 2012.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998.

Shun-Ichi Amari. Information geometry on hierarchy of probability distributions. IEEE Transactions on
Information Theory, 47(5):1701–1711, 2001.

Sun-Ichi Amari. Information Geometry and Its Applications. Springer, 2016.

Nihat Ay, Paolo Gibilisco, and F Matus. Information Geometry and Its Applications. Springer, 2018.
4https://data.cityofnewyork.us/Transportation/2016-Green-Taxi-Trip-Data/hvrh-b6nb

12

Under review as submission to TMLR

A. Barron and N. Hengartner. Information theory and superefficiency. The Annals of Statistics, 26(5):
1800–1825, 1998.

Jürgen Braun. An application of Kolmogorov’s superposition theorem to function reconstruction in higher
dimensions. PhD thesis, Universitäts-und Landesbibliothek Bonn, 2009.

Jürgen Braun and Michael Griebel. On a constructive proof of Kolmogorov’s superposition theorem. Con-
structive Approximation, 30(3):653, 2009.

Andreas Buja, Trevor Hastie, and Robert Tibshirani. Linear smoothers and additive models. The Annals of
Statistics, 17(2):453–510, 1989.

Eric C Chi and Tamara G Kolda. On tensors, sparsity, and nonnegative factorizations. SIAM Journal on
Matrix Analysis and Applications, 33(4):1272–1299, 2012.

Daryl J Daley and David Vere-Jones. An Introduction to the Theory of Point Processes: Volume II: General
Theory and Structure. Springer, 2007.

Brian A Davey and Hilary A Priestley. Introduction to Lattices and Order. Cambridge University Press,
2002.

Seth Flaxman, Yee Whye Teh, and Dino Sejdinovic. Poisson intensity estimation with reproducing kernels.
Electronic Journal of Statistics, 11(2):5081–5104, 2017.

Jerome H Friedman and Werner Stuetzle. Projection pursuit regression. Journal of the American Statistical
Association, 76(376):817–823, 1981.

Deniz Ilalan. A poisson process with random intensity for modeling financial stability. The Spanish Review
of Financial Economics, 14(2):43–50, 2016.

ST John and James Hensman. Large-scale cox process inference using variational fourier features. In
International Conference on Machine Learning, pp. 2362–2370. PMLR, 2018.

Andrei Nikolaevich Kolmogorov. On the representation of continuous functions of many variables by super-
position of continuous functions of one variable and addition. Doklady Akademii Nauk, 114(5):953–956,
1957.

Athanasios Kottas. Dirichlet process mixtures of beta distributions, with applications to density and in-
tensity estimation. In Workshop on Learning with Nonparametric Bayesian Methods, 23rd International
Conference on Machine Learning (ICML), volume 47, 2006.

Athanasios Kottas and Bruno Sansó. Bayesian mixture modeling for spatial poisson process intensities, with
applications to extreme value analysis. Journal of Statistical Planning and Inference, 137(10):3151–3163,
2007.

Chris Lloyd, Tom Gunter, Michael Osborne, and Stephen Roberts. Variational inference for gaussian process
modulated poisson processes. In International Conference on Machine Learning, pp. 1814–1822. PMLR,
2015.

Simon Luo and Mahito Sugiyama. Bias-variance trade-off in hierarchical probabilistic models using higher-
order feature interactions. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, pp.
4488–4495, 2019.

Radford M Neal. Regression and classification using gaussian process priors. Bayesian Statistics, 6:475–501,
1999.

Krzysztof Nowicki and Tom A B Snijders. Estimation and prediction for stochastic blockstructures. Journal
of the American statistical association, 96(455):1077–1087, 2001.

Yosihiko Ogata. On Lewis’ simulation method for point processes. IEEE Transactions on Information
Theory, 27(1):23–31, 1981.

13

Under review as submission to TMLR

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals of Math-
ematical Statistics, pp. 832–837, 1956.

Yves-Laurent Kom Samo and Stephen Roberts. Scalable nonparametric bayesian inference on point processes
with gaussian processes. In International Conference on Machine Learning, pp. 2227–2236. PMLR, 2015.

H Schäbe. Nonparametric estimation of intensities of nonhomogeneous poisson processes. Statistical Papers,
34(1):113–131, 1993.

Aaron Schein, Mingyuan Zhou, David Blei, and Hanna Wallach. Bayesian poisson tucker decomposition for
learning the structure of international relations. In International Conference on Machine Learning, pp.
2810–2819. PMLR, 2016.

David W Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons,
2015.

Mahito Sugiyama, Hiroyuki Nakahara, and Koji Tsuda. Tensor balancing on statistical manifold. In Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 3270–3279, 2017.

Mahito Sugiyama, Hiroyuki Nakahara, and Koji Tsuda. Legendre decomposition for tensors. In Advances
in Neural Information Processing Systems 31, pp. 8825–8835, 2018.

HR Thompson. Spatial point processes, with applications to ecology. Biometrika, 42(1/2):102–115, 1955.

Feng Zhou, Zhidong Li, Xuhui Fan, Yang Wang, Arcot Sowmya, and Fang Chen. A refined MISD algorithm
based on Gaussian process regression. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pp. 584–596. Springer, 2018.

Feng Zhou, Simon Luo, Zhidong Li, Xuhui Fan, Yang Wang, Arcot Sowmya, and Fang Chen. Efficient
em-variational inference for nonparametric hawkes process. Statistics and Computing, 31(4):1–11, 2021.

A Additional Experiments

A.1 Bandwidth Sensitivity Analysis

Our first experiment is to demonstrate the ability of our proposed model to learn an intensity function from
samples. We generate a Bernoulli process with probably of p = 0.1 to generate samples every 1 second for
100 seconds to create a toy problem for our model. This experiment is to observe the behavior of varying
the bandwidth in our model. In Figure 7a, we observe that by applying no kernel, we learn the deltas of
each individual observation. When we apply a Gaussian kernel, the output of the model for the intensity
function is much more smooth. Increasing the bandwidth of the kernel will provide a wider and much
smoother function. Between the 60 seconds and 80 seconds mark, it can be seen when two observations have
overlapping kernels, the intensity function becomes larger in magnitude.

A.2 One Dimensional Poisson Process

A one-dimensional experiment is simulated using Ogata’s thinning algorithm (Ogata, 1981). We generate
two experiments using the standard sinusoidal benchmark intensity function with a frequency of 20π. The
dense experiment has troughs with 0 intensity and peaks at 201 and the sparse experiment has troughs with
0 intensity and peaks at 2. Figure 7d shows the experimental results of the dense case, our model has no
problem learning the intensity function. We compare our results using KL divergence between the underlying
intensity function used to generate the samples to the intensity function generated by the model. Figure 7b
shows that the optimal bandwidth is h = 1.

14

Under review as submission to TMLR

Algorithm 2 Thinning Algorithm for non-homogenous Poisson Process
1: Function Thinning Algorithm (λ (t), T):
2: n = m = 0, t0 = s0 = 0, λ̄ = sup0≤t≤Tλ (t)
3: repeat
4: u ∼ uniform (0, 1)
5: w = − 1

λ̄
ln u {w ∼ exponential(λ̄)}

6: sm+1 = sm + w
7: D ∼ uniform (0, 1)
8: if D ≤ λ(sm+1)

λ̄
then

9: tn+1 = sm+1
10: n = n+ 1
11: else
12: m = m+ 1
13: end if
14: if tn ≤ T then
15: return {tk}k=1,2,...,n

16: else
17: return {tk}k=1,2,...,n−1
18: end if
19: until sm ≤ T
20: End Function

15

Under review as submission to TMLR

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

In
te
ns

it
y

No Kernel
Gaussian Kernel, h=1
Gaussian Kernel, h=2
Gaussian Kernel, h=5
Gaussian Kernel, h=10

(a) Toy Example

0 2 4 6 8 10 12
Kernel Bandwith

0.000

0.025

0.050

0.075

0.100

0.125

KL
 D
iv
er
ge

nc
e

(b) KL divergence of dense experi-
ment

0 2 4 6 8 10 12
Kernel Bandwith

−0.2

−0.1

0.0

0.1

0.2

0.3

KL
 D
iv
er
ge

nc
e

(c) KL divergence of sparse experi-
ment

(d) Ogata’s thinning algorithm with high intensity

0 20 40 60 80 100
Time

0

2

4

In
te
ns

it
y

h=0.3

0 20 40 60 80 100
Time

0

1

2

3

In
te
ns

it
y

h=1

0 20 40 60 80 100
Time

0

1

2

In
te
ns

it
y

h=2

0 20 40 60 80 100
Time

0

1

2

In
te
ns

it
y

h=4

0 20 40 60 80 100
Time

0

1

2

In
te
ns

it
y

h=5

0 20 40 60 80 100
Time

0

1

2

In
te
ns

it
y

h=8

IGPP Ground Truth

0 20 40 60 80 100
Time

0

1

2

In
te
ns

it
y

h=10

0 20 40 60 80 100
Time

0

1

2

In
te
ns

it
y

h=50

(e) Ogata’s thinning algorithm with low intensity

Figure 7: One dimensional experiments

16

Under review as submission to TMLR

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
6

10
−
5

10
−
4

10
−
3

KL Divergence

Pr
oc

e
 :
 [
1]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
6

10
−
5

10
−
4

10
−
3

KL Divergence

Pr
oc

e
 :
 [
2]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
6

10
−
5

10
−
4

10
−
3

KL Divergence

Pr
oc

e
 :
 [
3]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
6

10
−
5

10
−
4

10
−
3

KL Divergence

Pr
oc

e
 :
 [
4]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
4

10
−
3

10
−
2

KL Divergence

Pr
oc

e
 :
 [
1,
 2
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
4

10
−
3

10
−
2

KL Divergence

Pr
oc

e
 :
 [
1,
 3
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
4

10
−
3

10
−
2

KL Divergence

Pr
oc

e
 :
 [
1,
 4
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
4

10
−
3

10
−
2

KL Divergence

Pr
oc

e
 :
 [
2,
 3
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
4

10
−
3

10
−
2

KL Divergence
Pr

oc
e

 :
 [
2,
 4
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
4

10
−
3

10
−
2

KL Divergence

Pr
oc

e
 :
 [
3,
 4
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
3

10
−
2

KL Divergence

Pr
oc

e
 :
 [
1,
 2
, 3

]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
3

10
−
2

10
−
1

KL Divergence

Pr
oc

e
 :
 [
1,
 2
, 4

]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
3

10
−
2

10
−
1

KL Divergence

Pr
oc

e
 :
 [
1,
 3
, 4

]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
3

10
−
2

10
−
1

KL Divergence

Pr
oc

e
 :
 [
2,
 3
, 4

]

O
rd

er
: 1

O
rd

er
: 2

O
rd

er
: 3

O
rd

er
: 4

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
2

10
−
1

KL Divergence

Pr
oc

e
 :
 [
1,
 2
, 3

, 4
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B
an

dw
id
th

10
−
2

10
−
1

10
0

KL Divergence

To
ta
l K

L
D
iv
er
ge

nc
e

(a
)

D
en

se
ob

se
rv

at
io

ns
.

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
4

10
−
3

KL Divergence

Pr
oc

es
s:

 [
1]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
4

10
−
3

KL Divergence

Pr
oc

es
s:

 [
2]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
4

10
−
3

KL Divergence

Pr
oc

es
s:

 [
3]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
4

10
−
3

KL Divergence

Pr
oc

es
s:

 [
4]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
3

10
−
2

KL Divergence

Pr
oc

es
s:

 [
1,

 2
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
3

10
−
2

KL Divergence

Pr
oc

es
s:

 [
1,

 3
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
3

10
−
2

KL Divergence

Pr
oc

es
s:

 [
1,

 4
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
3

10
−
2

KL Divergence

Pr
oc

es
s:

 [
2,

 3
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
3

10
−
2

KL Divergence

Pr
oc

es
s:

 [
2,

 4
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
2

KL Divergence

Pr
oc

es
s:

 [
3,

 4
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
2

10
−
1

KL Divergence
Pr

oc
es

s:
 [
1,

 2
, 3

]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
1

KL Divergence

Pr
oc

es
s:

 [
1,

 2
, 4

]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
2

10
−
1

KL Divergence

Pr
oc

es
s:

 [
1,

 3
, 4

]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
1

KL Divergence

Pr
oc

es
s:

 [
2,

 3
, 4

]

O
rd

er
: 1

O
rd

er
: 2

O
rd

er
: 3

O
rd

er
: 4

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
1

10
0

KL Divergence

Pr
oc

es
s:

 [
1,

 2
, 3

, 4
]

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Ke
rn

el
 B

an
dw

id
 h

10
−
1

10
0

KL Divergence

To
 a

l K
L

D
iv

er
ge

nc
e

(b
)

Sp
ar

se
ob

se
rv

at
io

ns
.

Fi
gu

re
8:

K
L

D
iv

er
ge

nc
e

fo
r

fo
ur

-o
rd

er
Po

iss
on

pr
oc

es
s.

17

Under review as submission to TMLR

0
2

4
6

8
10

Ti
m
e

0

10
00

00

Intensity

Pr
oc

es
s:
 [
1]

0
2

4
6

8
10

Ti
m
e

0

10
00

00

Intensity

Pr
oc

es
s:
 [
2]

0
2

4
6

8
10

Ti
m
e

0

10
00

00

Intensity

Pr
oc

es
s:
 [
3]

0
2

4
6

8
10

Ti
m
e

0

50
00

0

10
00

00

Intensity

Pr
oc

es
s:
 [
4]

0
2

4
6

8
10

Ti
m
e

0

20
00

Intensity

Pr
oc

es
s:
 [
1,
 2
]

0
2

4
6

8
10

Ti
m
e

0

20
00

40
00

Intensity

Pr
oc

es
s:
 [
1,
 3
]

0
2

4
6

8
10

Ti
m
e

0

10
00

20
00

Intensity

Pr
oc

es
s:
 [
1,
 4
]

0
2

4
6

8
10

Ti
m
e

0

10
00

20
00

Intensity

Pr
oc

es
s:
 [
2,
 3
]

0
2

4
6

8
10

Ti
m
e

0

10
00

20
00

Intensity

Pr
oc

es
s:
 [
2,
 4
]

0
2

4
6

8
10

Ti
m
e

0

10
00

20
00

Intensity

Pr
oc

es
s:
 [
3,
 4
]

0
2

4
6

8
10

Ti
m
e

05010
0

Intensity

Pr
oc

es
s:
 [
1,
 2
, 3

]

0
2

4
6

8
10

Ti
m
e

02550 Intensity

Pr
oc

es
s:
 [
1,
 2
, 4

]

0
2

4
6

8
10

Ti
m
e

050 Intensity

Pr
oc

es
s:
 [
1,
 3
, 4

]

0
2

4
6

8
10

Ti
m
e

050 Intensity

Pr
oc

es
s:
 [
2,
 3
, 4

]

0
2

4
6

8
10

Ti
m
e

024 Intensity

Pr
oc

es
s:
 [
1,
 2
, 3

, 4
]

O
rd
er
: 1

O
rd
er
: 2

O
rd
er
: 3

O
rd
er
: 4

G
ro
un

d
Tr
ut
h

(a
)

D
en

se
ob

se
rv

at
io

ns
.

18

Under review as submission to TMLR

0
2

4
6

8
10

Ti
m
e

0

10
00

Intensity

Pr
oc

es
s:
 [
1]

0
2

4
6

8
10

Ti
m
e

0

10
00

Intensity

Pr
oc

es
s:
 [
2]

0
2

4
6

8
10

Ti
m
e

0

10
00

Intensity

Pr
oc

es
s:
 [
3]

0
2

4
6

8
10

Ti
m
e

0

50
0

10
00

Intensity

Pr
oc

es
s:
 [
4]

0
2

4
6

8
10

Ti
m
e

020 Intensity

Pr
oc

es
s:
 [
1,
 2
]

0
2

4
6

8
10

Ti
m
e

02040 Intensity
Pr
oc

es
s:
 [
1,
 3
]

0
2

4
6

8
10

Ti
m
e

01020 Intensity

Pr
oc

es
s:
 [
1,
 4
]

0
2

4
6

8
10

Ti
m
e

01020 Intensity

Pr
oc

es
s:
 [
2,
 3
]

0
2

4
6

8
10

Ti
m
e

01020 Intensity

Pr
oc

es
s:
 [
2,
 4
]

0
2

4
6

8
10

Ti
m
e

01020 Intensity

Pr
oc

es
s:
 [
3,
 4
]

0
2

4
6

8
10

Ti
m
e

0.
0

0.
5

Intensity

Pr
oc

es
s:
 [
1,
 2
, 3

]

0
2

4
6

8
10

Ti
m
e

0.
0

0.
2

0.
4

Intensity

Pr
oc

es
s:
 [
1,
 2
, 4

]

0
2

4
6

8
10

Ti
m
e

0.
00

0.
25

0.
50

Intensity

Pr
oc

es
s:
 [
1,
 3
, 4

]

0
2

4
6

8
10

Ti
m
e

0.
0

0.
5

1.
0

Intensity

Pr
oc

es
s:
 [
2,
 3
, 4

]

0
2

4
6

8
10

Ti
m
e

0.
00

0.
05

Intensity

Pr
oc

es
s:
 [
1,
 2
, 3

, 4
]

O
rd
er
: 1

O
rd
er
: 2

O
rd
er
: 3

O
rd
er
: 4

G
ro
un

d
Tr
ut
h

(a
)

Sp
ar

se
ob

se
rv

at
io

ns
.

Fi
gu

re
10

:
In

te
ns

ity
fu

nc
tio

n
of

hi
gh

er
di

m
en

sio
na

lp
ro

ce
ss

es
.

D
ot

s
re

pr
es

en
t

ob
se

rv
at

io
ns

.

19

	Introduction
	Related Work
	Density Estimation
	Bayesian Inference for Poisson Process
	Poisson Factorization

	Formulation
	Generalized Additive Model
	Additive Poisson Process
	Optimization

	Experiments
	Experiments on Two-Dimensional Processes
	Experiments on Higher-Dimensional Processes
	Uncovering Common Patterns in the New York Taxi Dataset

	Conclusion
	Additional Experiments
	Bandwidth Sensitivity Analysis
	One Dimensional Poisson Process

