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Abstract: Safety is one of the key issues preventing the deployment of reinforce-
ment learning techniques in real-world robots. While most approaches in the Safe
Reinforcement Learning area do not require prior knowledge of constraints and
robot kinematics and rely solely on data, it is often difficult to deploy them in
complex real-world settings. Instead, model-based approaches that incorporate
prior knowledge of the constraints and dynamics into the learning framework have
proven capable of deploying the learning algorithm directly on the real robot. Un-
fortunately, while an approximated model of the robot dynamics is often available,
the safety constraints are task-specific and hard to obtain: they may be too com-
plicated to encode analytically, too expensive to compute, or it may be difficult
to envision a priori the long-term safety requirements. In this paper, we bridge
this gap by extending the safe exploration method, ATACOM, with learnable con-
straints, with a particular focus on ensuring long-term safety and handling of un-
certainty. Our approach is competitive or superior to state-of-the-art methods in
final performance while maintaining safer behavior during training. 1
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1 Introduction

Safety is one of the most important problems when applying Reinforcement Learning (RL) to real-
world applications, as it is fundamental to prevent RL agents from harming people or causing dam-
age. To deal with this issue, RL researchers developed Safe Reinforcement Learning (SafeRL)
techniques, to learn policies maximizing the task performance while satisfying the safety require-
ments. Safe Exploration (SafeExp) aims to ensure the agent’s safety during the exploration phase
and formulates the safety problem as a stepwise constraint that the agent should not violate.

Solving the SafeExp problem requires additional prior knowledge, such as constraints, robot dynam-
ics, or previously collected datasets. While the SafeExp algorithms have been deployed successfully
in complex real-world tasks [1, 2, 3, 4], most of these approaches suffer from many drawbacks pre-
venting their application to complex or out-of-the-lab tasks. First, safety specifications defined
as constraints entail an in-depth understanding of the environment and dynamics. Designing and
validating safety constraints requires extensive expertise and experience. Second, real-world appli-
cations contain various uncertainty sources, such as sensor noise, model error, environmental distur-
bance, and partial observability, which are often neglected in the design of constraints. Third, the op-
timization techniques for constrained optimization problems are limited and often require a specific
problem structure, such as quadratic programming with linear complementarity constraints. Lastly,
the learning algorithms should also guarantee Long-Term Safety, which not only ensures the safety
of the current step but also considers the safety of future trajectories. The term Long-Term Safety
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unifies the Forward Invariance property for the static environment with known dynamics [5, 6] and
the predictive safety in a dynamic environment without full knowledge of dynamics.

We argue that incorporating prior knowledge for safety-critical robotics applications can be benefi-
cial, as prior knowledge, such as kinematics and dynamics, is often well-studied and readily avail-
able. Furthermore, in robotics, we can assume that a sufficiently good approximation of the dynam-
ics model is available, while the complete model of the environment is not. Under this assumption,
we combine techniques from model-free SafeRL methods and SafeExp approaches, showing how
to exploit the knowledge of the dynamics while learning of unknown, long-term constraints. To
achieve this goal, we extend the Acting on the TAngent Space of the COnstraint Manifold (ATA-
COM) approach by dropping key assumptions that the constraints are predefined, allowing learning
of long-term safety constraints directly from data. Furthermore, we explicitly model the constraints’
uncertainty in a distributional RL perspective, which provides us with a way to estimate the to-
tal uncertainty of the model. Consequently, we introduce Distributional ATACOM (D-ATACOM),
allowing us to derive a risk-aware policy by restricting the level of accepted risk.

Our experiments demonstrate that D-ATACOM achieves a safer performance during the training
phase and reaches a similar or better performance at the end of training. For tasks where the optimal
policy stays within constraints, D-ATACOM explores more cautiously at the cost of slower learning
speed. Instead, D-ATACOM show faster and safer behaviors during training whenever there is a
conflict between the policy optimization problem and the constraint satisfaction one.

Related Work In the last decades, SafeRL is a field of increasing interest for deploying learned
safe agents to the real world. Constrained Markov Decision Processes (CMDP) [7, 8] framework
as a first attempt from RL researchers has gained significant progress in recent research in solving
constrained control problems. One important formulation of constraint is the expected cumulative
cost. The RL agent aims to maximize the expected return while maintaining the expected cost below
a threshold [9, 10, 11, 12, 13, 14, 15, 16, 17]. This type of constraint has been extended to different
variants, such as the risk-sensitive constraint [18, 19, 20, 21] and the probabilistic constraint [22, 23,
24]. Different types of constrained optimization techniques are applied in the policy update process,
such as the trust-region method [9, 20], the interior point method [12], and the Lagrangian relaxation
method [7, 11, 13, 14, 18, 19]. Furthermore, the Lyapunov function is also used to derive a policy
improvement procedure [10, 25, 26]. Notably, learning the value function of the cumulative cost has
gained incremental attraction as it addresses long-term safety. Recent works have shared a common
view that the value function of constraint provides a predictive estimation of safety, such as the
feasibility value [27, 28], control barrier function [29, 30], and safety critic [31, 21]. In this paper,
we leverage the idea of the safety value function. Instead of penalizing the unsafe policy in the
objective, we combine the safety value function with a model-based exploration method ATACOM.

2 Preliminaries

We formulate the safety problem in the framework of CMDP. A CMDP is defined as a tuple
pS,A,P, r, k, γq with a state space S, an action space A, a stochastic function P : S ˆAˆS Ñ R
that represents the transition probability from a state to another state by an action, a reward function
rps, aq P rrmin, rmaxs, a constraint function kpsq P rkmin, kmaxs, and a discount factor γ P r0, 1q.
We first define the safety and feasibility following [28] as:

Definition 1. Consider a constraint function k : S Ñ R and a policy π : S Ñ A. i. A state s is
Safe if kpsq ď 0. ii). The Safe Set is defined as SS “ ts P S : kpsq ď 0u. iii. The Unsafe Set is
the complementary set sSS “ SzSS . iv. A state s is Feasible under a policy π if kpstq ď 0 for all
t P t0, 1, . . . ,8u, s0 “ s, at “ πpstq.

The SafeRL problem is formulated as a constrained optimization problem

max
π

E
π

«

8
ÿ

t“0

γtrpst, atq

ff

, s.t. Fpsq ď 0, (1)
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where F , depending on the perspective on the safety problem [32], can take different forms, such as

kpstq ď 0,@t (2a) Ppkpstq ą 0q ď ηc,@t (2b) E
π

«

ÿ

t

γtkpstq|st

ff

ď ηe (2c)

The first constraint in (2a) describes the hard constraint, to be satisfied at each time step. However,
we cannot enforce these constraints in the setting of stochastic environments. To address this issue,
we can use chance constraints, as shown in (2b), restrict the probability of the violations to be smaller
than a threshold ηc. Both (2a) and (2b) are stepwise constraints that focus on safety at the current
time step. The last type of constraint, as shown in (2c), forces the cumulative cost of the trajectory
to be smaller than a threshold ηe. In this paper, we will focus on the long-term safety constraint in a
stochastic formulation, a combination of (2b) and (2c).

Distributional Reinforcement Learning Unlike the typical RL setting that considers the expected
value of the reward (the cumulative cost in our case), distributional RL treats the reward (cost)
as a random variable and, therefore, the value function describes the distributions of the random
cumulative return (cumulative cost). Distributional RL has shown superior performance in many
benchmarking tasks, such as Atari Games [33, 34, 35] and Mujuco tasks [36] since the distributional
value function contains more information beyond the first moment. The value function is represented
as a random variable Zπ instead of a scalar of the expected value Qπ , the random variable Bellman
equation has a similar form 2 Zπpsq

D
“ Rpsq ` γZπpS1q where the distribution of the random

variable S1 depends on policy π and dynamics P . The distribution Zπpsq can be represented by
different types of models, such as the network with fixed support [33, 34], Gaussian Network [37]
and Implicit Quantile Networks (IQN) [35]. We demonstrate our method using Gaussian Networks.
However, our method is not limited to the model type as shown in Appendix C using IQN.

Safe Learning on the Constraint Manifold We briefly introduce the ATACOM approach [38, 3,
4], which forms the basis of our approach. ATACOM addresses stepwise hard constraint, as defined
in Equation (2a). Furthermore, ATACOM assumes that the dynamic system of the robot is a given
nonlinear affine system, 9s “ fpsq ` Gpsqa. ATACOM constructs the Constraint Manifold by
introducing a slack variable µ as M – tps,µq P D : cps,µq “ 0u with cps,µq “ kpsq ` µ. We
assume that µ is equipped with a dynamic system 9µ “ αpµquµ and α is a class K function3. Using
the concept of Constraint Manifold, a safe controller can be obtained by setting d

dtcps, µq “ 0. The
resulting controller has the following form

„

a
uµ

ȷ

“ W ps,µ,aq – ´J:
uψ ´ λJ:

uc`Buu, (3)

with Jups,µq “ rJGpsq Apµqs, JGpsq “ JkpsqGpsq, Jkpsq “ d
dskpsq and the Constraint Drift

ψpsq “ Jkpsqfpsq induced by the system drift fpsq. Apµq “ diagpαipµiqq, i P t1, . . . ,Ku is a
K-dimensional diagonal matrix for the slack variable. Bu is a set of basis vectors tangent to the
manifold. The first and the second terms on the right-hand side compensate the drift ψ and retract
the system to the manifold; the last term is the tangential term that drives the system along the
constraint manifold. An RL agent only needs to learn a policy for the tangential action u „ πpsq,
while the safety is guaranteed by the controller structure. Alg. 3 in Appendix A showed a detailed
process of action mapping. In this work, we extend ATACOM for the chance constraint and propose
a new method to simultaneously learn the policy and the long-term constraint online.

3 Long-term Safety under Uncertainty

In this section, we will introduce a method to estimate the constraint for long-term safety, and then
we show how to integrate the time-varying constraint into the ATACOM learning framework. The
overall algorithm Alg. 1 can be found in Appendix A.

2A
D
“ B denotes that two random variable A and B are equal in distributions.

3class K function: (1) continuous; (2) strictly increasing; (3) αp0q “ 0.
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3.1 Feasibility Value Function for Long-Term Safety

To ensure long-term constraint satisfaction, we introduce the concept of Feasibility Value Function
(FVF), which describes the expected cumulative constraint violation under a policy π with an infinity
horizon. Formally, we define the feasibility value function under a policy π as

V π
F psq “ E

π

«

8
ÿ

t“0

γt maxpkpstq, 0q

ˇ

ˇ

ˇ

ˇ

ˇ

s0 “ s

ff

(4)

We assume the constraint kpsq P rkmin, kmaxs is bounded and consequently V π
F P r0, kmax

1´γ s. When
k is an indicator function of the constraint violation, the FVF is analogous to the Constraint Decay
Function (CoDF) introduced in [28], defined as Fπpsq “ γNπpsq, with Nπpsq the number of steps
to the first constraint violation. Unlike the CoDF, which assumes the unsafe state to be absorbing,
the FVF does not assume episode termination at the unsafe state, allowing the agent to retract back
to a safe state in the future. Therefore, V π

F psq ě Fπpsq. The feasibility value function estimates
the expected discounted cumulative cost of maxpkpsq, 0q under policy π. We can use the standard
Bellman operator pBπVFqpsq “ maxpkpsq, 0q ` γVFpsq to update the estimate. For continuous
state-action space, a common choice is to use a neural network to approximate the value function
and update the value function using TD learning. When V π

F psq “ 0, we have maxpkpsq, 0q “ 0
indicating kpsq ď 0. Thus, the Feasibile Set SF “ ts P S : V π

F psq “ 0u is a subset of the Safe Set.
Ensuring the feasibility value function to be zero is sufficient to guarantee stepwise safety.

3.2 Distributional Feasibility Value Iteration

The original FVF definition in Eq. (4) evaluates the expected value over the future cost. This es-
timation does not capture the distribution of the future cost and could fail to ensure safety when
the distribution is multi-modal or heavy-tailed. Instead, we can exploit the theory of Distributional
RL [39] that learns the parametric model to approximate the distribution of the future expected cost.
Then, we can construct Value-at-Risk (VaR)/Conditional Value-at-Risk (CVaR) constraints that con-
sider both the safety and the uncertainty of the prediction when drawing actions.

Different parametric models have been used to approximate the distribution of the random value
function. In this paper, we approximate the target distribution maxpkpsq, 0q`γV π

F psq with Gaussian
support up to the 2nd-order moment [37, 31], i.e. we assume V π

F psq „ N
`

µF psq,ΣF psq
˘

. We can
compute the mean of the target distribution µF psq “ k1psq ` γµF ps1q and the variance

ΣF psq “ k1psq2 ` 2γk1psq E
s1

„Pπ

“

ΣF ps1q
‰

` γ2 E
s1

„Pπ

”

ΣF ps1q `
`

µF ps1q
˘2

ı

´
`

µF psq
˘2

Here, k1psq “ maxpkpsq, 0q and Pπps1|sq is the transition probability under policy π. The distri-
bution of FVF is parameterized by Gausian N pµF

ϕ psq,ΣF
ϕ psqq. The TD error between the target

distribution N pµF psq,ΣF psqq and the parameterized distribution N pµF
ϕ psq,ΣF

ϕ psqq with respect to
the 2-Wasserstein distance can be computed as

LF “ }µF psq ´ µF
ϕ psq}2 ` Tr

ˆ

ΣF psq ` ΣF
ϕ psq ´ 2

´

ΣF psq1{2ΣF
ϕ psqΣF psq1{2

¯1{2
˙

. (5)

Since the FVF is one-dimensional, Eq. (5) becomes LF “ }µF psq ´µF
ϕ psq}2 ` }σF psq ´ σF

ϕ psq}2.
We use a Softplus activation for the mean and a Exponetial parameterization for the standard de-
viation to ensure both values are positive. We use the Gaussian parameterization for illustration
purposes. However, our method is not restricted to such parameterization. Experiments using
IQN [35, 21] can be found in Appendix C.

During training, we keep a replay buffer of limited size. As training progresses, the agent will
behave safer and encounter fewer constraint violations, flushing away unsafe transitions when using
a single replay buffer. Instead, we would like the agent to remember the failures and avoid being
overly optimistic, using a separate, smaller, Failure Buffer Df to store the unsafe transitions. In each
data batch, we sample a proportional number of data coming from this buffer.
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3.3 Uncertainty-Aware Constraint using (Conditional) Value-at-Risk

VaR and CVaR quantify the risk of a random variable. VaR is the smallest value where the prob-
ability of Z is bigger than a α and CVaR measures the mean of the α-tail of the distribution.

VaRαpZq “ inftz P R|F pzq ě αu, (6a) CVaRαpZq “ E rz|z ě VaRαpZqs. (6b)

where F pzq is the Cumulative Distribution Function (CDF) of the random variable
Z. When F is continuous and strictly increasing, the VaR is uniquely defined as
VaRαpZq “ F´1pαq, i.e., the quantile function. The VaR and CVaR offer a risk-
aware constraint formulation by restricting their values to be smaller than a threshold δ.

Figure 1: Distribution of V π
F

and illustration of mean, VaR
(red), and CVaR (green). The
shaded area shows the cumu-
lative probability α.

The CVaR constraint for the Gaussian distribution [40] of FVF is

CVaRF
α psq – µF psq `

1

1 ´ α
φpΦ´1pαqqΣF psq ď δ, (7)

where φ and Φ are the Probability Density Function (PDF) and the
CDF of the standard normal distribution, respectively. α determines
the probability of constraint satisfaction; thus, the risk is 1 ´ α.

Using the CVaR constraints (7), the constraint in problem (1) is
defined as Fpsq – CVaRF

α psq ´ δ ď 0. During exploration, the
agent draws an action u „ πpu|sq, which is then converted to a
safe action a “ W ps, uq using ATACOM. Detailed algorithm of
ATACOM is shown in Alg. 3 in Appendix A.

Adaptive constraint threshold estimate While ideally, we would like to have the FVF to be al-
ways equal to zero, setting δ “ 0 is neither a practical choice since the network’s mean is always
bigger than 0, nor beneficial for the training of FVF as it restricts the exploration. The threshold δ
trades off the constraint violation and the exploration and requires further engineering. The experi-
ment comparing different thresholds is illustrated in Appendix E.1.

State Space

Feasible Set
0-level CVaR

Figure 2: Illustration of the
feasible set (light blue), the
learned FVF at 0-level red
and threshold δ. The thresh-
old δ provides a small feasi-
ble region (white) to explore
within a small cost budget.

To alleviate the engineering effort, we propose an adaptive scheme
that updates the δ based on the current episodic cost and the esti-
mation of the FVF. We use a Softplus parametrization to keep the
δ positive. The δ parameter is updated during the learning process
after each episode of horizon H using the following loss

Lδ “
1

H

H
ÿ

i“0

LHuber pdcpsiq,CVaRαpstq ´ δq (8)

where the term dcpsiq “
řH

t“i γ
t´ik1pstq ´ C̄ computes the differ-

ence between the empirical discounted cost starting from si and the
accepted discounted cost budget C̄ and CVaRαpstq ´ δ computes
the distance of the estimated FVF to its threshold. We use Huber
Loss [41] to obtain a more robust update against outliers. As shown
in Figure 2, δ is tuned based on the empirical cost to its cost budget.
If dcpsiq is bigger than 0 (the actual cost is bigger than the budget),
we reduce δ for a more conservative policy. Conversely, if dcpsiq is
smaller than 0, we increase δ to loose the constraints.

3.4 Policy Iteration with Learnable Constraint using ATACOM

As introduced in Section 2, ATACOM constructs a safe action space by determining the basis vectors
of the tangent space of the constraint manifold. However, previous work assumes that the constraint
is given, fixed, and deterministic. This assumption is no longer valid when the constraint is trained
during the learning process. Since the constraint function changes during training, the safe action
space changes accordingly, leading to a non-stationary Markov Decision Process (MDP), which
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causes the failure of the training. Specifically, let a P A be the action applied to the environment
and the u P U be the control input obtained from the policy u „ πpsq. ATACOM constructs an
affine mapping W : U Ñ A, defined in (3), that maps an action in safe space into the original
one. Combining ATACOM with the actor-critic framework, a value function estimator Qωps,uq is
trained to approximate the expected return. Then, the policy πθpsq is updated by maximizing the
Qωps,uq. However, when the constraint is updated during the training process, the action mapping
W will also change. The same action u will result in different a at different steps. This variation of
the action space leads to an unstable update of Qωps,uq and πθpsq.

In the following, we will demonstrate how to address this problem for the Soft Actor Critic (SAC)
algorithm [42]. However, it is possible to use the same methodology to extend most Deep RL
algorithms, e.g., DDPG [43] TD3 [44], PPO [45]. To solve this issue, we learn the value function
of the original action space Qωps,aq, which is invariant to the constraints. Since Qω is represented
by a neural network and can be differentiated, we can use the reparameterization trick to obtain the
gradient for θ (similar to TD3 and SAC [42]), the objective and policy gradient can be obtained as

max
πθ

Jπ “ E
s,u„πθpsq

rQωps,W puqqs, ∇θJπ “ ∇aQωps,aq∇uW puq∇θπθpsq.

Note that in SAC, the soft Q-function includes the entropy term HpW pπθpsqqq to encourage explo-
ration. The entropy term is indeed constraint-dependent. Thus, updating the constraints may change
the entropy of the policy, consequently, the estimated value function is not anymore proper. We ar-
gue that practically, the variation of the entropy bonus has a negligible effect on the training stability
because the entropy term is scaled down by a coefficient. Furthermore, online training in the value
function allows us to quickly adapt to the new policy entropy. The overall algorithm of D-ATACOM
and the modified SAC algorithm are illustrated in Alg. 1 and Alg. 2 in Appendix A.

4 Experiments

In this section, we compare the performance of our approach in three different environments with
different characteristics. Details of the environment description can be found in Appendix B. We
compare with SafeRL baselines such as the LagSAC [46] and the WCSAC [31]. All environments
and algorithms based on SAC are implemented using the MushroomRL framework [47]. We use
the implementations provided by OmniSafe [48] for PPO-based algorithms. We conducted a hyper-
parameter search on the learning rates, cost budget, and accepted risk with 10 random seeds. We
present the results with 25 seeds whose hyperparameters perform the best tradeoff between perfor-
mance and safety. Further hyperparameter search experiments are in Appendix D.

Cartpole This environment extends the classical Cartpole benchmark. The pendulum is initialized
in an upright position, and the goal is to move the pendulum tip to a desired point while keeping
the pendulum upright. The constraint enforces an angle smaller than 90 degrees from the upright
position. We further added a position limit to the cart. Despite the simplicity of the environment,
designing a feasible long-term constraint is very challenging due to the actuator limitation and cart
position limits. As we can see from the results in Figure 3, our approach is the best-performing
one among the SafeRL baselines in terms of learning speed, while achieving small constraint vio-
lations. SAC achieves a policy with higher performance, but this policy heavily violates the safety
constraints as it completely disregards the pole angle constraint while reaching the goal. The RCPO
algorithm [11] achieves better performance, but violations are comparable with SAC. Notice that
D-ATACOM requires a feasible cost budget to generate feasible actions since a single constraint vi-
olation will result in a high sum cost, reaching the maximum violation. An unachievable low budget
will lead to conservative performance due to a lack of exploration, as shown in Appendix E.2.

Navigation In this task, the goal is to control a differential-driven TIAGo++ robot and learn a
navigation policy leading to the goal position while avoiding collision with a moving Fetch Robot.
The Fetch robot moves to its randomly assigned target with a moving arm. In this task, agents do not
observe the Fetch robot’s joint positions while the end-effector’s position is available. The safety
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Figure 3: Learning Curves for the Cartpole Environment
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Figure 4: Learning Curves for the Navigation Environment
constraint considers the smallest distance between the two robots. In this setting, the impact of
the arm’s motion on the constraint is not explicit, which generates a stochasticity on the constraint.
From the result in Figure 4, D-ATACOM clearly outperforms all the state-of-the-art methods both in
terms of safety and final task performance. Inspecting the learned policies, D-ATACOM is the only
approach that performs active collision avoidance behaviors. These collision avoidance behaviors
are mostly achieved by the model-based treatment of the constraint function. In this setting, using
the constraint gradient and the dynamic model is a strong inductive bias for the method. On top
of that, the control system can exploit the physical meaning of the variables, such as other obstacle
velocity, allowing it to compensate in advance for the other robot movements. In this task, most
approaches behave the same. We argue that the conflict between the task objective and the constraint
function, forcing the robot to cause a detour, is problematic for the Lagrangian approaches. Indeed,
Lagrangian optimization is trying to balance constraint satisfaction and policy improvement in the
update step, possibly causing the algorithm to get stuck in local minima.

3dof Robot Air Hockey The objective of this task is to control a 3-DoF arm to score a goal in the
robot air hockey task. The arm is controlled by providing acceleration setpoints, and the constraints
include the joint position/velocity limits and collision avoidance with the table. Since the optimal
strategy for hitting the puck toward the goal is achievable within the tables’s boundary, high reward
performance and low constraint violations are achievable at the same time.

In addition to common baselines, we also compare D-ATACOM with the original ATACOM with
a pre-defined forward invariant constraint (ATACOM+FI) and a non-forward invariant constraint
(ATACOM + nFI). As illustrated in Figure 5, D-ATACOM approaches the performance of the AT-
ACOM + FI while maintaining low constraint violations. ATACOM + nonFI performs similarly to
unconstrained algorithms SAC, both in return and cost, as a poorly defined constraint can not ensure
safety. In this task, D-ATACOM is safer than the other baselines at the cost of slower learning per-
formance. The reason for this performance drop is that our approach learns to expand the safe region
progressively and improve the performance. The final performance is lower as the robot hits more
cautiously at the boundary regions to ensure safety, while other approaches allow the robot to go
outside for stronger hitting, as shown in Appendix E.4. A characteristic of this environment is that
the constraints do not majorly affect an optimal policy. Therefore, constraint satisfaction is more
difficult in the initial phases of learning than in the final one. This allows classical lagrangian meth-
ods to be particularly competitive in the task. Figure 6 illustrates the learned constraint at different
training steps. We can clearly observe that the feasible region expands progressively and reaches a
good coverage at the final epoch. Since FVF is a policy-dependent value function, the prediction at
the corner regions is poor, as the policy does not achieve higher performance.
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Figure 5: Learning Curves for the Air Hockey Environment
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Epoch 100

Table Boundary Goal Center Line CVaR− δ= 0 2 1 0 1 2

Figure 6: Learned FVF in the Air Hockey task. The color demonstrates the value of the learned
constraints kpsq “ CVaRF

α psq ´ δ in the half of the air hockey table. After a short training with an
initial dataset, the feasible region shrinks to a small region at Epoch 2 and then increases progres-
sively, reaching considerable coverage at the end of training.

Limitations While this paper is a first step towards safer and more efficient learning without pre-
defined constraints, the above-mentioned methodologies cannot solve complex control tasks, such
as the 7-DoF Robot Air Hockey task with equality constraints. Furthermore, training directly on
real robots remains challenging with the current approach, as robots need to explore unsafe states
to obtain the FVF. Another limitation of this approach is that it requires knowledge of the robot
dynamics. However, even in the presence of model mismatch, the FVF can still impose robust and
safe behaviors, as the unsafe transitions caused by the incorrect nominal model are included during
training. We show a preliminary study on the robustness of D-ATACOM in Appendix E.5. For
this reason, fine-grained domain randomization is a crucial step in successful sim-to-real transfer.
Finally, this paper does not explore the possibility of combining constraint learning with known
constraints. This can be easily implemented in the D-ATACOM framework. However, the resolution
of conflicts between constraints remains to be explored.

5 Conclusion

In this paper, we started to bridge the gap between SafeExp methods and model-free SafeRL ap-
proaches. We extended the ATACOM framework to work with learned constraints, ensuring long-
term safety and properly dealing with constraint uncertainty. Our results show that our method
is competitive with state-of-the-art approaches, outperforming them in terms of safety, keeping an
on-par learning speed, and achieving similar or better performance for environments with differ-
ent characteristics. Also, the method does not require excessive parameter tuning, as it includes
automatic tuning rules for the most important hyperparameters. Therefore, our work proves that
including prior knowledge in data-driven methods can actually be beneficial for scaling SafeRL
approaches. Although all of the experiments are trained from scratch, we believe starting with an
offline dataset and pre-training will significantly reduce the initial violations, leading to safe per-
formance. In future work, we will further investigate how to integrate known local constraints with
long-term safety. This integration will allow scaling the ATACOM approach to real-world robotics
tasks involving complex long-term constraints and human-robot interaction.

8



Acknowledgments

Research presented in this paper has been supported by the China Scholarship Council (No.
201908080039) and partially supported by the German Federal Ministry of Education and Research
(BMBF) within the subproject “Modeling and exploration of the operational area, design of the AI
assistance as well as legal aspects of the use of technology” of the collaborative KIARA project
(grant no. 13N16274).

References
[1] A. Taylor, A. Singletary, Y. Yue, and A. Ames. Learning for safety-critical control with control

barrier functions. In Learning for Dynamics and Control, pages 708–717. PMLR, 2020.

[2] K. Stachowicz and S. Levine. Racer: Epistemic risk-sensitive rl enables fast driving with fewer
crashes. arXiv preprint arXiv:2405.04714, 2024.

[3] P. Liu, K. Zhang, D. Tateo, S. Jauhri, Z. Hu, J. Peters, and G. Chalvatzaki. Safe Reinforcement
Learning of Dynamic High-Dimensional Robotic Tasks: Navigation, Manipulation, Interac-
tion. In Proceedings of the IEEE International Conference on Robotics and Automation. IEEE,
2023.

[4] P. Liu, H. Bou-Ammar, J. Peters, and D. Tateo. Safe reinforcement learning on the constraint
manifold: Theory and applications. arXiv preprint arXiv:2404.09080, 2024.

[5] K. P. Wabersich, A. J. Taylor, J. J. Choi, K. Sreenath, C. J. Tomlin, A. D. Ames, and M. N.
Zeilinger. Data-driven safety filters: Hamilton-jacobi reachability, control barrier functions,
and predictive methods for uncertain systems. IEEE Control Systems Magazine, 43(5):137–
177, 2023.

[6] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada. Control
barrier functions: Theory and applications. In 2019 18th European control conference (ECC),
pages 3420–3431. IEEE, 2019.

[7] E. Altman. Constrained Markov Decision Processes with Total Cost Criteria: Lagrangian
Approach and Dual Linear Program. Mathematical methods of operations research, 48(3):
387–417, 1998.

[8] E. Altman. Constrained Markov decision processes: stochastic modeling. Routledge, 1999.

[9] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained Policy Optimization. In Interna-
tional Conference on Machine Learning (ICML), 2017.

[10] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A Lyapunov-based Ap-
proach to Safe Reinforcement Learning. In Conference on Neural Information Processing
Systems (NIPS), 2018.

[11] C. Tessler, D. J. Mankowitz, and S. Mannor. Reward Constrained Policy Optimization. In
International Conference on Learning Representations (ICLR), 2019.

[12] Y. Liu, J. Ding, and X. Liu. Ipo: Interior-point policy optimization under constraints. In AAAI
Conference on Artificial Intelligence (AAAI), volume 34(04), pages 4940–4947, 2020.

[13] A. Stooke, J. Achiam, and P. Abbeel. Responsive Safety in Reinforcement Learning by PID
Lagrangian Methods. In International Conference on Machine Learning (ICML), 2020.

[14] D. Ding, X. Wei, Z. Yang, Z. Wang, and M. R. Jovanovic. Provably Efficient Safe Exploration
via Primal-Dual Policy Optimization. In International Conference on Artificial Intelligence
and Statistics (AISTATS), volume 130, 2021.

9



[15] H. B. Ammar, R. Tutunov, and E. Eaton. Safe policy search for lifelong reinforcement learning
with sublinear regret. In International Conference on Machine Learning. PMLR, 2015.

[16] A. I. Cowen-Rivers, D. Palenicek, V. Moens, M. A. Abdullah, A. Sootla, J. Wang, and H. Bou-
Ammar. Samba: Safe model-based & active reinforcement learning. Machine Learning, pages
1–31, 2022.

[17] M. Yu, Z. Yang, M. Kolar, and Z. Wang. Convergent policy optimization for safe reinforcement
learning. Advances in Neural Information Processing Systems, 32, 2019.

[18] V. Borkar and R. Jain. Risk-constrained markov decision processes. IEEE Transactions on
Automatic Control, 59(9):2574–2579, 2014.

[19] C. Ying, X. Zhou, H. Su, D. Yan, N. Chen, and J. Zhu. Towards safe reinforcement learn-
ing via constraining conditional value-at-risk. In International Joint Conference on Artificial
Intelligence, 2022.

[20] D. Kim and S. Oh. Efficient off-policy safe reinforcement learning using trust region condi-
tional value at risk. IEEE Robotics and Automation Letters, 7(3):7644–7651, 2022.

[21] Q. Yang, T. D. Simão, S. H. Tindemans, and M. T. Spaan. Safety-constrained reinforcement
learning with a distributional safety critic. Machine Learning, 112(3):859–887, 2023.

[22] N. C. Wagener, B. Boots, and C.-A. Cheng. Safe reinforcement learning using advantage-based
intervention. In International Conference on Machine Learning, pages 10630–10640. PMLR,
2021.

[23] B. Peng, Y. Mu, J. Duan, Y. Guan, S. E. Li, and J. Chen. Separated proportional-integral
lagrangian for chance constrained reinforcement learning. In 2021 IEEE Intelligent Vehicles
Symposium (IV), pages 193–199. IEEE, 2021.

[24] S. Pfrommer, T. Gautam, A. Zhou, and S. Sojoudi. Safe reinforcement learning with chance-
constrained model predictive control. In Learning for Dynamics and Control Conference,
pages 291–303. PMLR, 2022.

[25] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamzadeh. Lyapunov-based
Safe Policy Optimization for Continuous Control. In Reinforcement Learning for Real Life
(RL4RealLife) Workshop in the 36 th International Conference on Machine Learning, 2019.

[26] H. Sikchi, W. Zhou, and D. Held. Lyapunov barrier policy optimization. arXiv preprint
arXiv:2103.09230, 2021.

[27] Y. Zheng, J. Li, D. Yu, Y. Yang, S. E. Li, X. Zhan, and J. Liu. Safe offline reinforcement learn-
ing with feasibility-guided diffusion model. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=j5JvZCaDM0.

[28] Y. Yang, Z. Zheng, and S. E. Li. Feasible policy iteration. arXiv preprint arXiv:2304.08845,
2023.

[29] D. C. Tan, F. Acero, R. McCarthy, D. Kanoulas, and Z. A. Li. Your value function is a
control barrier function: Verification of learned policies using control theory. arXiv preprint
arXiv:2306.04026, 2023.

[30] S. Liu, C. Liu, and J. Dolan. Safe control under input limits with neural control barrier func-
tions. In Conference on Robot Learning, pages 1970–1980. PMLR, 2023.

[31] Q. Yang, T. D. Simão, S. H. Tindemans, and M. T. Spaan. Wcsac: Worst-case soft actor
critic for safety-constrained reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35 (12), pages 10639–10646, 2021.

10

https://openreview.net/forum?id=j5JvZCaDM0


[32] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig. Safe learn-
ing in robotics: From learning-based control to safe reinforcement learning. Annual Review of
Control, Robotics, and Autonomous Systems, 5:411–444, 2022.

[33] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pages 449–458. PMLR, 2017.

[34] W. Dabney, M. Rowland, M. Bellemare, and R. Munos. Distributional reinforcement learning
with quantile regression. In Proceedings of the AAAI conference on artificial intelligence,
volume 32(1), 2018.

[35] W. Dabney, G. Ostrovski, D. Silver, and R. Munos. Implicit quantile networks for distributional
reinforcement learning. In International conference on machine learning, pages 1096–1105.
PMLR, 2018.

[36] J. Duan, Y. Guan, S. E. Li, Y. Ren, Q. Sun, and B. Cheng. Distributional soft actor-critic:
Off-policy reinforcement learning for addressing value estimation errors. IEEE Transactions
on Neural Networks and Learning Systems, 33(11):6584–6598, 2022. doi:10.1109/TNNLS.
2021.3082568.

[37] Y. C. Tang, J. Zhang, and R. Salakhutdinov. Worst Cases Policy Gradients. In Proceedings of
the Conference on Robot Learning, volume 100, pages 1078–1093. PMLR, 2020.

[38] P. Liu, D. Tateo, H. B. Ammar, and J. Peters. Robot Reinforcement Learning on the Constraint
Manifold. In Conference on Robot Learning, pages 1357–1366. PMLR, 2022.

[39] M. G. Bellemare, W. Dabney, and M. Rowland. Distributional Reinforcement Learning. MIT
Press, 2023. http://www.distributional-rl.org.

[40] M. Norton, V. Khokhlov, and S. Uryasev. Calculating cvar and bpoe for common probabil-
ity distributions with application to portfolio optimization and density estimation. Annals of
Operations Research, 299:1281–1315, 2021.

[41] P. J. Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Method-
ology and distribution, pages 492–518. Springer, 1992.

[42] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[43] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra. Continuous Control with Deep Reinforcement Learning. In International Conference on
Learning Representations (ICLR), 2016.

[44] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018.

[45] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[46] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan. Learning to walk in the real world with minimal hu-
man effort. In J. Kober, F. Ramos, and C. Tomlin, editors, Proceedings of the 2020 Conference
on Robot Learning, volume 155 of Proceedings of Machine Learning Research, pages 1110–
1120. PMLR, 16–18 Nov 2021. URL https://proceedings.mlr.press/v155/ha21c.

html.

[47] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters. Mushroomrl: Simplifying
reinforcement learning research. Journal of Machine Learning Research, 22(131):1–5, 2021.
URL http://jmlr.org/papers/v22/18-056.html.

11

http://dx.doi.org/10.1109/TNNLS.2021.3082568
http://dx.doi.org/10.1109/TNNLS.2021.3082568
http://www.distributional-rl.org
https://proceedings.mlr.press/v155/ha21c.html
https://proceedings.mlr.press/v155/ha21c.html
http://jmlr.org/papers/v22/18-056.html


[48] e. a. Jiaming Ji, Jiayi Zhou. Omnisafe: An infrastructure for accelerating safe reinforcement
learning research. arXiv preprint arXiv:2305.09304, 2023.

[49] H. Sikchi, W. Zhou, and D. Held. Learning off-policy with online planning. In Conference on
Robot Learning, pages 1622–1633. PMLR, 2022.

[50] C. Dawson, Z. Qin, S. Gao, and C. Fan. Safe nonlinear control using robust neural lyapunov-
barrier functions. In 5th Annual Conference on Robot Learning, 2021. URL https:

//openreview.net/forum?id=8K5kisAnb_p.

[51] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe Exploration in
Continuous Action Spaces. arXiv preprint arXiv:1801.08757, 2018.

12

https://openreview.net/forum?id=8K5kisAnb_p
https://openreview.net/forum?id=8K5kisAnb_p


A Algorithms

Algorithm 1 demonstrates the D-ATACOM, and Algorithm 2 shows the adapted SAC update used
in line 9.

Algorithm 1 D-ATACOM with constraint learning

Initialize: FVF network ϕ, number of steps N , threshold δ, cost budget C̄, policy πθ , value function Qω

1: for 1 ¨ ¨ ¨N do
2: Construct CVaRF

α pstq using µF
ϕ pstq, ΣF

ϕ pstq from Eq (7).
3: Draw action ut „ πθ P U and obtain safe action at Ð W pst, utq using Alg. 3.
4: Observe st`1, rt, kt from the environment.
5: Save replay buffer pst, at, rt, kt, st`1q Ñ D and pst, kt, st`1q Ñ Df if kt ą 0.
6: If the episode terminates, update δ using Eq. (8).
7: Sample a batch of transitions ps, a, r, k, s1

q from D Y Df .
8: Update ϕ Ð ϕ´ αϕ∇ϕLF using Eq. (5),
9: Update the value function Qω and policy π using SAC in Algorithm 2.

10: end for

Algorithm 2 SAC implementation for D-ATACOM
Initialize: policy parameters θ and value function parameters ω, learning rate η
Input: Batch of transitions B “ ps, a, r, k, s1

q.
1: Draw action u1 and obtain safe action a1, B1

u Ð W pu1, s1
q using Alg. 3.

2: Compute log probability log p1
pa1

|s1
q “ log πθpu1

|s1
q ´ log |B1

u| using the change of variable rule.
3: Update Qω with the TD loss Lω “ 1{|B|pQωps, aq ´ r ´ γpQωps1, a1

q ` α log p1
qq

2.
4: Draw action u and obtain safe a,Bu Ð W pu, sq using Alg. 3.
5: Compute log probability, log pθ “ log πθpu|sq ´ log |Bu|.
6: Update policy θ Ð θ ´ η{|B|∇θ pQωps, aq ` α log pθq,

where ∇θQωps, aq “ ∇aQωps, aq∇uW puq∇θπθpsq.

Algorithm 3 Construct safe action with ATACOM
Input: state s, action u

1: Compute slack variable µ and constraint cps, µq “ kpsq ` µ.
2: Compute the Jacobian Jupsq “

“

JkpsqGpsq Apµq
‰

, drift ψpsq “ Jkpsqfpsq.
3: Truncate the drift that have a positive impact on safety ψpsq “ maxpψpsq, 0q.
4: Construct the tangent space basis Bu by computing the kernel of Ju using QR/SVD Decomposition.
5: Compute the safe action a using Eq. 3.

Output: safe action a, affine mapping matrix Bu
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B Experiment Environments

In this Section, we provide the full description of the environments used for the experiments. In all
environments, the cost value is a continuous variable. A value greater than zero indicates how much
the constraints are violated.

B.1 Cartpole

The cartpole environment, depicted in Figure 7a is a classic control problem with the goal of moving
the pole tip to a desired position (green point) by controlling a cart. The pole is one unit in length
and is initialized in an upright position on the cart. The cart can move on a rail 10 units long. The
cart is initialized on the left side of the rail, and the goal is to move the cart towards the goal position
of the pole tip on the right rail’s side while keeping the pole upright.

The state space of the environment is s “ rx, sin θ, cos θ, 9x, 9θsT where x is the position of the cart,
9x is the velocity of the cart, θ is the angle of the pole with the vertical axis, and 9θ is the angular
velocity of the pole. The action space is a P r´1, 1s where the action is the force applied to the cart.

The reward function given a goal position xG and pole tip position xT is defined as rpsq “ clipp1´
}xG´xT }

4 , 0, 1q. The constraint function prevents the pole from deviating more than π from the
vertical axis. Thus we define the cost function as cpsq “ max

`

θ
0.5π ´ 1, 0

˘

.

B.2 Navigation

The Navigation task consists of two robots, one differential-driven TIAGo++ (white) that moves in
a room while avoiding the Fetch robot (blue), as shown in Figure 7b. The Fetch robot constantly
moves its robotic arm in a periodic motion, such that the end-effector draws a lemniscate into the air
in front of the robot. Additionally, the Fetch robot constantly moves to a randomly assigned target
position using a hand-crafted policy that ignores the TIAGo. The agent controls the TIAGo robot to
reach the target position while avoiding the Fetch robot, which serves as a dynamic obstacle.

The state space consists of the cartesian position and velocity of the two robots, the target position
of the TIAGo, the previous action, and the cartesian position and velocity of Fetch’s end-effector.
The action space is the linear velocity in the x-direction and angular velocity around the z-axis of
the TIAGo robot. These are converted into the left and right wheel velocities.

Given the distance to the goal dG, the current orientation θ and the goal orientation θG the reward is
defined as:

rpsq “ ´}dG} ´ sigmoid p30p}dG} ´ 0.2qq
θG ´ θ

π
´ 0.1}a}

The constraint is the smallest 2d cartesian distance between the TIAGo base and every joint of the
Fetch Robot. Additionally, the constraint also prevents the TIAGo from hitting the surrounding
walls. Given the TIAGos’ position pT and cartesian position of the ith Fetch joint piF the Fetch cost
is cF psq “ maxip´p}pT ´piF }´ωqq where ω is a constant that accounts for the width of the robots.
The wall cost is defined as cW psq “ maxip´pdiwall ´ ωqq where diwall is the distance to the ith wall.
The step cost is cpsq “ maxpcF psq, cW psqq.

(a) Cartpole Environment (b) Navigation Environment (c) Air Hockey Environment

Figure 7: The three Environments used for evaluation of all algorithms
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B.3 Planar Air Hockey

In the Planar Air Hockey environment, the agent controls a 3-DoF robot arm with a mallet attached
to the end-effector. The goal is to hit a puck into the opponent’s goal, located on the opposite side of
the table, as shown in Figure 7c. The episode terminates when the puck enters the goal or hits one
of the table’s walls.

The state space consists of the robots’ joint positions, velocities, puck position, and velocity. The
action space is the acceleration setpoint for each robot joint.

The reward for non-absorbing states is the change of distance between the puck and the goal. In
absorbing states the reward depends on the distance of the puck to the goal. Given the puck position
rxt, ytsT at timestep t and the distance between puck and goal as dt, we define the reward as:

rpstq “

$

’

’

’

’

’

&

’

’

’

’

’

%

50pdt´1 ´ dtq if not absorbing
ρp1.5 ´ 5 ¨ clipp|yt|, 0, 0.1qq if puck in goal
ρp1 ´ 2 ¨ clipp|yt| ´ 0.1, 0, 0.35qq if puck on backboard next to goal
ρp0.3 ´ 0.3 ¨ clipp1.43 ´ |xt|, 0, 1qq if puck on sidebars
0 otherwise

where ρ is a constant that scales the reward. The constraint prevents the mallet from touching
the sides of the table and the robot from violating its joint position and joint velocity limits. The
mallet cost is defined as cM psq “ maxip´diW ` ωq where diW is the distance to the ith wall and
ω is a constant that accounts for the width of the mallet. Given the joint positions qi and the joint
velocities 9qi the position cost is cP psq “ maxipqi ´qu,i,´qi `ql,iq and the velocity cost is cV psq “

maxpt 9qi ´ 9qu,i,´ 9qi ` 9ql,iq. The total cost is cpsq “ maxpcP psq, cV psq, cM psq, 0q
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C Implicit Quantile Network

IQN is a parametric model representing the quantile function of the distribution, which takes a
quantile value τ as input and outputs a threshold value z so that the probability of Z being less or
equal to z is τ . Let ητϕpsq be the quantile function at τ P r0, 1s for the random feasibility value at
state s. The TD error between two samples τ, τ 1 „ Upr0, 1sq for the transition ps, a, s1, r, kq is

dτ,τ
1

ϕ “ k1psq ` γητ
1

ps1q ´ ητϕpsq

The IQN model can be optimized via the Huber quantile regression loss

Lτ pdq “ |τ ´ Itdu|Lkpdq, where Lkpdq “

#

d2{2k, |d| ă k

|d| ´ k{2, otherwise
(9)

In Figure 8 we compare the Gaussian and IQN approaches for the navigation task. In this experi-
ment, both algorithms use the same hyperparameters. The Gaussian approach slightly outperforms
IQN in terms of performance and safety. We theorize that the source of the performance difference
is the hyperparameters, which are tuned for the Gaussian assumption. The main difference in the
constraint estimation is that the Gaussian approach predicts higher uncertainty leading to higher per-
formance and safety in this environment. To achieve the same similar with IQN, the cost budget or
accepted risk has to be decreased. We plan to further investigate the performance of IQN-ATACOM
in future work, especially in environments providing only sparse cost feedback.
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Figure 8: Comparison between the Gaussian distribution assumption and the direct CDF estimation
for the navigation task. Both experiments use the same hyperparameters.
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D Hyperparameter tuning

In this section, we report the parameter tuning for all the baselines in all tasks. In general, we
test all the methods with different learning rates, cost budgets and safety parameters to ensure the
performance of the baseline is optimal. We report all the hyperparameter configurations we tried
and indicate which configuration is used for the main evaluation.

Every algorithm is first evaluated with the learning rates of 1e´4, 5e´4 and 1e´3. To keep the
computation reasonable, we use the same learning rate for the actor, the critic, the constraints, and
the learning rates for the Lagrangian multiplier that are updated every step. We report the results of
these experiments for each task in the following sections.

As a second step, we experimented with different cost budgets to get the best trade-off between
safety and performance. Our goal is to get the least constraint violations possible while maintaining
reasonable behavior. As we show in Section E.2, setting the cost budget too low can have an impact
on the performance with no safety benefit.

Lastly, we tuned the cost-dampening parameters of LagSAC and WCSAC using the same principle
we used for the cost budget.

D.1 CartPole

Figure 9 shows the results of the learning rate tuning for the CartPole task. We can see that RCPO
and LagSAC have a learning rate that achieves the best performance. For PPOLag and WCSAC, the
differences are more nuanced. Table 1 shows all the parameters we tried for the Cartpole task. The
resulting best parameters used for the main evaluation can be found in Table 2.

RCPO PPOLag LagSAC WCSAC D-ATACOM
Sweeping parameter
learning rate actor/critic/constraint t1e´3, 5e´4, 1e´4u

cost budget 5 5 {0.1, 5, 25, 40}
cost dampening - - {1, 10} -
learning rate lagrangian multipliers 0.035 0.035 t1e´4, 5e´4, 1e´4u

accepted risk - - - {0.1, 0.5, 0.9}
Default parameter
epochs 100 100 100 100 100
steps per epoch 20000 20000 10000 10000 10000
steps per fit 20000 20000 1 1 1
episodes per test - - 25 25 25
network size [128 128]
batch size 128 64 64 64 64
initial replay size - - 2000 2000 2000
max replay size 200000 200000 200000 200000 200000
soft update coefficient - - 1e´3 1e´3 1e´3

warm-up transitions - - 2000 2000 2000
target kl 0.01 0.02 - - -
update iterations 10 40 - - -

Table 1: Training Parameters for the CartPole task
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RCPO PPOLag LagSAC WCSAC D-ATACOM
Sweeping parameter
learning rate actor/critic/constraint 5e´4 1e´4 5e´4 5e´4 5e´4

cost budget 5 5 5 5 40
cost dampening - - 1 1 -
learning rate lagrangian multipliers 0.035 0.035 5e´4 5e´4 5e´4

accepted risk - - - 0.9 0.9
Table 2: Result of hyperparameter tuning for the CartPole task
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Figure 9: Learning rate ablation study for the Cartpole task. For each experiment we run 10 seeds
with all learning rates of the algorithm set to the respective value.
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D.2 Navigation

Figure 10 shows the results of the learning rate tuning for the navigation task. We can see WCSAC
is the only algorithm where the learning rate has a significant impact on the performance. Table 3
shows all the parameters we tested for the navigation task. The resulting best parameters used for
the main evaluation can be found in Table 4.

RCPO PPOLag LagSAC WCSAC D-ATACOM
Sweeping parameter
learning rate actor/critic/constraint t1e´3, 5e´4, 1e´4u

cost budget 0 0 {0, 1}
cost dampening - - {1, 10} -
learning rate lagrangian multipliers 0.035 0.035 t1e´4, 5e´4, 1e´4u

accepted risk - - - {0.1, 0.5, 0.9}
Default parameter
epochs 100 100 100 100 100
steps per epoch 20000 20000 10000 10000 10000
steps per fit 20000 20000 1 1 1
episodes per test - - 25 25 25
network size [128 128]
batch size 128 64 64 64 64
initial replay size - - 2000 2000 2000
max replay size 200000 200000 200000 200000 200000
soft update coefficient - - 1e´3 1e´3 1e´3

warm-up transitions - - 2000 2000 2000
target kl 0.01 0.02 - - -
update iterations 10 40 - - -

Table 3: Training Parameters for the navigation task

RCPO PPOLag LagSAC WCSAC D-ATACOM
Sweeping parameter
learning rate actor/critic/constraint 1e´4 1e´4 1e´4 1e´4 1e´4

cost budget 0 0 0 0 0
cost dampening - - 1 1 -
learning rate lagrangian multipliers 0.035 0.035 1e´4 1e´4 1e´4

accepted risk - - - 0.5 0.5
Table 4: Result of hyperparameter tuning for the navigation task
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Figure 10: Learning rate ablation study for the Navigation task. For each experiment, we run 10
seeds with all learning rates of the algorithm set to the respective value.
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D.3 Air Hockey

Figure 11 shows the results of the learning rate tuning for the air hockey task. We can see that RCPO
and PPOLag learn safer behaviors compared to LagSAC and WCSAC. However, their discounted
return is lower, and they need twice as many steps. Table 5 shows all the parameters we tested for
the air hockey task. The resulting parameters used for the main evaluation can be found in Table 6.

RCPO PPOLag LagSAC WCSAC D-ATACOM
Sweeping parameter
learning rate actor/critic/constraint t1e´3, 5e´4, 1e´4u

cost budget 0 0 {0, 1}
cost dampening - - {1, 10} -
learning rate lagrangian multipliers 0.035 0.035 t1e´4, 5e´4, 1e´4u

accepted risk - - - {0.1, 0.5, 0.9}
Default parameter
epochs 100 100 100 100 100
steps per epoch 20000 20000 10000 10000 10000
steps per fit 20000 20000 1 1 1
episodes per test - - 25 25 25
network size [128 128]
batch size 128 64 64 64 64
initial replay size - - 2000 2000 2000
max replay size 200000 200000 200000 200000 200000
soft update coefficient - - 1e´3 1e´3 1e´3

warm-up transitions - - 2000 2000 2000
target kl 0.01 0.02 - - -
update iterations 10 40 - - -

Table 5: Training Parameters for the air hockey task

RCPO PPOLag LagSAC WCSAC D-ATACOM
Sweeping parameter
learning rate actor/critic/constraint 5e´4 1e´3 5e´4 5e´4 5e´4

cost budget 0 0 0 0 1
cost dampening - - 1 1 -
learning rate lagrangian multipliers 0.035 0.035 5e´4 5e´4 5e´4

accepted risk - - - 0.9 0.9
Table 6: Result of hyperparameter tuning for the air hockey task
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Figure 11: Learning rate ablation study for the Air Hockey task. For each experiment, we run 10
seeds with all learning rates of the algorithm set to the respective value.
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E Additional Experiments

E.1 Air-Hockey with Fixed Delta

The safety threshold δ is an important parameter controlling the trade-off between safety and explo-
ration. A too-small threshold ensures safety at the cost of limiting exploration. Thus, the agent will
increase the performance slowly. A higher threshold results in a less restrictive exploration, but the
constraint is then not effective to ensure safety.

Therefore, we propose an adaptive threshold that updates its value based on the empirical costs and
its prediction of the FVF. In this experiment, we compare D-ATACOM with multiple fixed values for
δ in the planar air hockey task. Figure 12 compares these experiments with the introduced automatic
tuning method. We can observe that fixed δ has a detrimental impact on learning performance
because exploration is restrictive by too strict constraints. Interestingly, this lack of exploration also
hinders constraint estimation, which leads to slower convergence towards safe behaviors. With a
higher fixed δ there are no exploration issues. However, a higher δ consequently leads to higher
constraint violations. With our adaptive threshold, we get a good trade-off between the learning
performance and constraint satisfaction by having an initial high δ to encourage exploration, which
then converges towards a smaller sensible value that reflects a given cost budget.
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Figure 12: Performance of ATACOM with different fixed δ values
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E.2 CartPole with different Cost Budget

In this experiment, we will compare the impact of the cost budget parameter on D-ATACOM and
WCSAC. We chose the CartPole task for this comparison because both algorithms do not learn a
completely safe policy. Figure 13 shows the performance of D-ATACOM and WCSAC with differ-
ent cost budgets. We can observe that the performance of D-ATACOM is more sensitive to the cost
budget parameter compared to WCSAC. When the policy cannot achieve the given cost budget the
performance of D-ATACOM degrades significantly. This performance drop occurs because the delta
eventually will converge towards zero, which results in a very conservative policy. The behavior for
D-ATACOM with the cost budgets of 0.1 and 5 is balancing to the pole in its initial position because
the policy is too conservative to move towards the goal, as this will lead to constraint violations.

On the other hand, WCSAC is more robust w.r.t. the cost budget parameter. An unreasonable cost
budget will increase the Lagrange multiplier, giving more weight to the constraint. The difference
is that the Lagrange multiplier does not set an explicit limit to the constraint like the delta does in
D-ATACOM. Instead, WCSAC gives more weight to the constraint violations in the optimization
problem, which has less impact on policy performance. Is worth noting that, depending on the
application, one of the two behaviors would be preferable. In safety-critical applications, having
an algorithm that strongly enforces the constraint violation, independently of the performance, is
preferable. Instead, when partial constraint satisfaction is enough, it may be better to choose a
lagrangian-based algorithm.
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Figure 13: Impact of the cost budget parameter on D-ATACOM and WCSAC performance in the
CartPole task
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E.3 Experiment with different Accepted Risk

In the distributional setting, the parameter accepted risk determines how much of the tail of the
distribution we are willing to violate, i.e., how much risk we want to take. However, this is not the
only parameter that influences the safety of a policy. Usually, there is another parameter that is tuned
with a given cost budget that also influences how safe the behavior is. For WCSAC this parameter is
the Lagrange multiplier beta, and for D-ATACOM it is the learned δ. To show the complete impact
of the accepted risk, we fix δ to a constant value such that it cannot compensate for the difference in
the accepted risk. Figure 14 shows the performance of D-ATACOM with a fixed delta and different
levels of accepted risk in the Navigation task. Clearly, a lower accepted risk leads to safer behavior.

The impact of the accepted risk on the safety shrinks for D-ATACOM when the delta is learned.
Delta can compensate for a high accepted risk, resulting in the same safe policy as a lower accepted
risk would produce. The accepted risk has an impact in this setting toward the beginning of the
training when delta is not yet converged. Thus accepted risk determines how risky the exploration
at the beginning of the training will be. Figure 15 shows the impact of different accepted risk
settings on the air hockey task. Setting a lower accepted risk results in slower exploration, thus
achieving a slower convergence of the discounted return. The maximum violation and sum of cost
are comparable for all accepted risk settings because, in the air hockey task, the constraint does not
majorly affect the optimal policy.
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Figure 14: Impact of accepted risk on performance in the Navigation task with a fixed delta. The
plots are smoothed via the exponential moving average with 0.9 weight
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Figure 15: Impact of accepted risk on performance the air hockey task
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E.4 Analysis of Air Hockey

In the air hockey task, D-ATACOM cannot reach the same discounted return as LagSAC and WC-
SAC. We investigate the final performance of the policies to understand the differences that lead to
the performance gap. As D-ATACOM results in a safer policy, we theorize that performance is lost
when the puck is initialized too close to the edge of the table. To test this hypothesis, we evaluate
the performance of the final policies with an adjusted region for the initial puck position, that omits
these critical positions. Figure 16 shows the performance for the original and adjusted regions and
the difference between them.

For the original region D-ATACOM has significant outliers in the discounted return compared to
WCSAC and LagSAC. However, LagSAC and WCSAC have more outliers in the maximum vio-
lation and sum of cost. Thus, WCSAC and LagSAC sacrifice safety to gain a stable performance.
The safe exploration of D-ATACOM results in the opposite behavior, where the policy will sacrifice
performance to ensure safety.

When we evaluate the performance with the adjusted region, we can observe that the discounted
return of D-ATACOM increases more compared to WCSAC and LagSAC. Additionally, the decrease
in maximum violation and sum of cost is more significant for LagSAC and WCSAC. This result
confirms our hypothesis that D-ATACOM does not properly hit the puck when it is too close to the
edge of the table because it is not possible to do so safely. WCSAC and LagSAC learn to hit the
puck in these critical positions, but this comes at the cost of safety.
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Figure 16: Performance of the final policy from D-ATACOM, WCSAC, and LagSAC in the air
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E.5 Experiment with Dynamic Model Mismatch and Disturbances

The D-ATACOM exploits the knowledge of the dynamics model to derive the safe policy. The model
mismatch could potentially lead to unsafe behaviors. However, D-ATACOM is able to ensure safety
under model-mismatch, as the FVF is learned from the dataset collected from the mismatching
environment. In this section, we empirically show how dynamic model mismatch will affect the
performance of the algorithm.

We use the 3-DoF Air Hockey task as the study example. The robot is controlled by acceleration,
we use a simple dynamics model

:q “ a

To simulate the model mismatch and disturbances, the dynamics model used in the simulator is

:q “ a´ σ 9q ` ϵ

where ϵ „ N p0, σq is the Gaussian disturbance with standard deviation σ, and ´σ 9q is an unmod-
elled damping term. The experiment comparing the effect of different δ is shown in Figure 17.

The magnitude of the noise heavily affects the performance of the discounted return, as the RL
agent converges to a more robust policy that is more conservative. However, the safety performance
remains consistent. This is because the FVF is learned directly from the noisy simulator, and the
adaptive threshold balances the exploration and empirical safety during the learning process.

Training directly on real robots remains challenging with the current approach, as robots need to
explore unsafe states to estimate the FVF. However, we believe our approach can achieve zero-shot
transfer when trained in a realistic simulator. Moreover, since FVF is independent of the dynamic
model and the adaptive threshold estimation, we are able to exploit domain randomization during
the training process, leading to safe policies that are robust to dynamic mismatches.
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Figure 17: Impact of model mismatch and disturbances of D-ATACOMs in the air hockey task. We
add a zero mean Gaussian disturbances with standard deviation σ and an unmodelled damping term
of the form ´σ 9q to the environment.

27



E.6 Model-Based Baselines

In this experiment, we compared D-ATACOM with other model-based approaches in the Planar
AirHockey task. We use the OmniSafe [48] implementation of SafeLOOP [49], which learns the
dynamic model and the policy jointly at the same time. Additionally, we implement CBF-SAC,
which learns the Control Barrier Function and the policy jointly and tries to ensure the forward
invariant property via the agents dynamics. This approach is an adaptation of the work presented
in [50] to the online reinforcement learning setting. Finally, we use SafeLayerTD3, which is an
exploration method that learns the constraints that encode the dynamics [51].

As shown in Figure 18, CBF-SAC and SafeLayerTD3 achieve on-par performance to D-ATACOM
in discounted return. CBF-SAC manages to reduce constraint violations throughout training and
converges to a reasonable safety level. However, it converges slower and towards a less safe solution
compared to D-ATACOM. SafeLayerTD3 struggles to ensure safety properly because it learns the
constraint using supervised learning. This approach fails when the target constraint does not induce
long-term safety. SafeLOOP uses a learned dynamics model and look-ahead planning to check
safety. Due to the large computational demand, we run the experiment for only 500.000 steps,
which is enough for SafeLOOP to converge to a safe behaviour. However, SafeLOOP achieves poor
performance in terms of discounted return as it learns a very conservative policy that barely moves
the agent. In summary D-ATACOM achieves the same or better performance with stricter adherence
to constraints compared to the model-based baselines.
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Figure 18: Learning Curves for Model-Based algorithms in the Air Hockey Environment
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