
Published as a conference paper at ICLR 2026

CLAUSE: AGENTIC NEURO-SYMBOLIC KNOWLEDGE
GRAPH REASONING VIA DYNAMIC LEARNABLE CON-
TEXT ENGINEERING

Yang Zhao1∗, Chengxiao Dai2∗, Wei Zhuo3, Yue Xiu1, Dusit Niyato3
1Independent Researcher.
2School of Computer Science, The University of Sydney, Australia.
3College of Computing & Data Science, Nanyang Technological University, Singapore.

ABSTRACT

Knowledge graphs provide structured context for multi-hop question answering, but
deployed systems must balance answer accuracy with strict latency and cost targets
while preserving provenance. Static k-hop expansions and “think-longer” prompt-
ing often over-retrieve, inflate context, and yield unpredictable runtime. Thus,
we introduce CLAUSE, an agentic three-agent neuro-symbolic framework that
treats context construction as a sequential decision process over knowledge graphs,
deciding what to expand, which paths to follow or backtrack, what evidence to keep
and when to stop. Latency (interaction steps) and prompt cost (selected tokens)
are exposed as user-specified budgets or prices, allowing per-query adaptation to
trade-offs among accuracy, latency, and cost without retraining. CLAUSE employs
the proposed Lagrangian-Constrained Multi-Agent Proximal Policy Optimization
(LC-MAPPO) algorithm to coordinate three agents: Subgraph Architect, Path
Navigator, and Context Curator, so that subgraph construction, reasoning paths
discovery, and evidence selection are jointly optimized under per-query resource
budgets on edge edits, interaction steps, and selected tokens. Across HotpotQA,
MetaQA, and FactKG, CLAUSE yields higher EM@1 while reducing subgraph
growth and end-to-end latency at equal or lower token budgets. On MetaQA-2-hop,
relative to the strongest RAG baseline (GraphRAG), CLAUSE achieves +39.3
EM@1 with 18.6% lower latency, and 40.9% lower edge growth. The resulting
contexts are compact, provenance-preserving, and deliver predictable performance
under deployment constraints.

1 INTRODUCTION

Large language models (LLMs) benefit from external structure for knowledge graph question answer-
ing (KGQA) that require multi-hop reasoning and provenance (Lewis et al., 2020; Yang et al., 2018;
Pan et al., 2023). Knowledge graphs (KGs) are a natural substrate: they expose typed entities and
relations, support symbolic traversals, and yield auditable context trails (Yasunaga et al., 2021; Das
et al., 2018). A common design is to build a query-based local neighborhood in the KG, and then
condition a reader language model to produce the answer (Sun et al., 2019; Ding et al., 2024).

How the graph context is assembled often misaligns with both answer quality and runtime constraints.
Fixed k-hop expansions serialize many triples, inflating token mass and latency (Zhou et al., 2024;
Wan et al.) and introducing distractors that depress accuracy (Jiang & Bansal, 2019). Extending
chain-of-thought (Wei et al., 2022; Kojima et al., 2022) lengthens per-step reasoning without changing
which evidence is visible and offers little control over end-to-end latency (Zhou et al., 2024). In
practice, systems are constrained not only by prompt length but also by the number of interaction
steps, how often we edit, traverse, and curate, yet most pipelines expose only heuristic knobs (hop
depth, degree caps, top-k).

Our view is to make context construction itself as the learning problem: decide which edges to add or
delete, which paths to pursue or backtrack, which snippets to keep, and when to stop, all under explicit

∗Equal contribution. Corresponding author: Yang Zhao (s180049@e.ntu.edu.sg).

1

Published as a conference paper at ICLR 2026

caps or prices on interaction steps and selected tokens. This replaces brittle k-hop heuristics with a
learned, budget-aware controller and makes accuracy–latency–cost trade-offs explicit and tunable.
We then propose CLAUSE, an agentic neuro-symbolic framework with three agents—Subgraph
Architect, Path Navigator, and Context Curator. Decisions unfold sequentially on a symbolic state
(nodes, edges, paths) through discrete, auditable actions (edit, traverse, curate), while compact neural
scorers prioritize entities, relations, and neighborhoods. In this design, step and token usage enter the
training objective directly, so stopping rules and exploration depth are learned rather than hard-coded.

Specifically, three cooperative agents operate on the KG: Subgraph Architect constructs a
question-anchored subgraph that preserves answer-supporting paths while avoiding over-expansion;
the Path Navigator discovers and revises reasoning paths while respecting a step budget; and Context
Curator assembles a minimal set of textualized snippets sufficient for accurate responses from LLMs
under a token budget. We coordinate three agents with LC-MAPPO—a Lagrangian-constrained
centralized training with decentralized execution (CTDE) variant of PPO that uses a centralized critic
and Lagrangian dual variables to learn decentralized policies, which maximize task reward while
enforcing per-query budgets on edge edits, interaction steps, and selected tokens (Foerster et al.,
2018; Rashid et al., 2020; Schulman et al., 2017; Yu et al., 2022; Achiam et al., 2017; Stooke et al.,
2020). During inference, a single checkpoint runs under hard budgets (caps) or fixed prices (soft
trade-offs), adapting per query without retraining.

Empirically, CLAUSE framework produces compact, targeted contexts and predictable runtime. In
HotpotQA, MetaQA, and FactKG, it reduces edge counts and end-to-end latency while improving
exact match at the matched token mass, as shown in Section 5. Requirement sweeps reveal clear
accuracy–latency–cost Pareto frontiers: shifting budget from per-step reasoning to interaction im-
proves accuracy at fixed tokens, and tightening the step budget reduces latency with little or no loss
in accuracy.

Contributions. (1) Formulation. We cast multi-hop KGQA as requirements-conditioned context
assembly with per-query budgets/prices on three deployment-relevant resources: (i) subgraph edits,
(ii) interaction steps (latency proxy), and (iii) selected tokens (prompt cost). This makes accuracy–
efficiency trade-offs explicit and tunable.
(2) Framework. CLAUSE is an agentic neuro-symbolic controller that jointly decides what to edit,
which paths to follow or backtrack, what textual evidence to keep, and when to STOP. Actions
are symbolic (auditable) and priorities come from lightweight neural scorers, yielding compact,
provenance-preserving context.
(3) Training. We adapt constrained RL to this setting via LC-MAPPO: centralized training with
decentralized execution, a multi-head critic that separates task value from edge/step/token costs, and
per-budget dual variables that enforce episode-level requirements or enable price-based trade-offs at
test time.
(4) Evidence. In HotpotQA, MetaQA, and FactKG, CLAUSE achieves higher or matched EM at
equal or lower budgets, with reduced subgraph growth and latency. Ablations show that removing
any agent or constraint handling degrades accuracy and/or efficiency, supporting the need for joint
control and explicit budgets.

2 PRELIMINARIES AND RELATED WORK

2.1 PRELIMINARIES

Neuro-symbolic definition. We view neuro-symbolic inference as coupling an explicit symbolic
calculus (Boolean, first-order, or soft/fuzzy) with a learned scoring/belief module; differentiable logic
is unnecessary—only a principled linkage between symbols and learned scores is required (Smet
& Raedt, 2025). KGQA as neuro-symbolic. KGQA operates on typed entity–relation graphs and
commonly targets (i) single-relation queries, (ii) multi-hop path queries, and (iii) compositional-logic
queries (e.g., conjunction/disjunction/negation) (Zhang et al., 2021). Surveys group approaches into
(1) logic-informed embeddings, (2) embeddings trained with logical constraints, and (3) rule/path
learning where a neural controller searches over symbolic paths/rules (DeLong et al., 2025). We
adopt (3): a dynamic learnable agentic framework edits a KG for reasoning.

2

Published as a conference paper at ICLR 2026

2.2 RELATED WORK

Existing Multi-hop KGQA Solutions. Multi-hop KGQA must balance accuracy and provenance
with strict constraints on latency and prompt cost. In practice, two resources dominate deployment
behavior: the number of interaction steps taken while assembling context and the selected tokens
ultimately shown to the reader LLM. Static k-hop expansions often over-retrieve, inflate prompts, and
surface distractors (Zhou et al., 2024; Wan et al.; Jiang & Bansal, 2019), while typical pipelines expose
only heuristic knobs rather than learned, per-query control. A long line of symbolic/neuro-symbolic
KGQA operates directly on entity–relation structure. Path-following and rule-learning systems (e.g.,
MINERVA, NeuralLP, TensorLog, RNNLogic) traverse the graph to derive answers (Das et al., 2018;
Yang et al., 2017; Cohen, 2016; Qu et al., 2021); graph-aware readers (e.g., QAGNN) inject KG
signals into the encoder (Yasunaga et al., 2021). Question-conditioned subgraph builders such as
GraftNet and PullNet assemble local neighborhoods for a downstream reader (Sun et al., 2019). These
approaches typically set expansion depth/degree and filtering thresholds a priori, which makes runtime
behavior sensitive to manual tuning and obscures the accuracy–efficiency trade-off. Then, work on
context engineering shows that prompt composition strongly affects both cost and accuracy (Zhou
et al., 2024; Wan et al.). Chain-of-thought prompting can help certain tasks (Wei et al., 2022; Kojima
et al., 2022; Han et al., 2025), yet it primarily lengthens the reasoning text without changing which
evidence is visible, offering limited leverage over end-to-end latency (Zhou et al., 2024). Moreover,
Retrieval-augmented generation (RAG) conditions generation on external evidence (Lewis et al.,
2020; Karpukhin et al., 2020; Izacard et al., 2023). Recent variants interleave reasoning and retrieval
(ReAct) (Yao et al., 2023), incorporate self-feedback (SELF-RAG) (Asai et al., 2024), or adapt
retrieval frequency to difficulty/confidence (Jeong et al., 2024; Zhang et al., 2024). Graph-guided
pipelines (e.g., GraphRAG; Think-on-Graph 2.0) leverage entity–relation structure for multi-hop
collection (Edge et al., 2025; Ma et al.). These systems often rely on fixed hop limits or hand-tuned
schedules; optimization of construction, traversal, and selection is rarely carried out jointly under
explicit step/token costs. Finally, agentic LLMs plan, call tools, and decide when to act versus reflect
(Press et al., 2022; Yao et al., 2023; Shinn et al., 2023; Schick et al., 2023; Shen et al.; Liu et al.;
Wang et al., 2023). Their flexibility comes with multi-step deliberation that can raise interaction cost,
and per-episode resource control is implicit.

MARL and constrained optimization. Multi-agent reinforcement learning (MARL) addresses
decentralized coordination under partial observability and non-stationarity, where multiple local-view
actors must produce joint behavior that optimizes a global objective subject to deployment con-
straints (e.g., latency, token budget, graph edits). A widely used recipe is centralized training with
decentralized execution (CTDE), which stabilizes learning and credit assignment via a centralized
value while keeping actors decentralized at test time; representative instances include COMA, which
introduces a counterfactual baseline for per-agent credit, and QMIX, which learns a monotonic
mixing network to factorize joint values into per-agent utilities (Foerster et al., 2018; Rashid et al.,
2020). Building on PPO (Schulman et al., 2017), MAPPO shows that PPO-style updates with a
centralized critic are strong, simple baselines on standard cooperative benchmarks (Yu et al., 2022).
Existing methods largely fall into two families: value factorization (e.g., QMIX), which is efficient
and scalable but restricted by the monotonic mixing constraint and can misattribute credit when joint
action values are non-monotonic; and policy-gradient CTDE (e.g., COMA/MAPPO), which is flexible
but higher-variance/sample-hungry and, in vanilla form, lacks principled mechanisms to enforce
per-episode resource constraints. Single-penalty constrained RL such as Reward-Constrained Policy
Optimization (RCPO) (Tessler et al., 2019) further conflates heterogeneous costs, making it difficult
to independently control edge growth, interaction steps, and selected tokens. Preference-optimization
methods (GRPO/DPO) instead learn from static pairwise/group preferences over complete responses
in bandit-like, text-only settings without explicit environment state transitions (Rafailov et al., 2023;
Shao et al., 2024); they neither decompose multi-agent credit nor estimate shaped values on graph
states, and they provide no handle for enforcing per-episode constraints.

Positioning. In summary, we situate CLAUSE among four families: (i) question-conditioned
subgraph builders and graph-guided RAG (e.g., GraftNet, PullNet, GraphRAG; (Sun et al., 2019;
Edge et al., 2025)), which rely on fixed hop/degree/top-k rules; (ii) path/rule learners (MINERVA,
NeuralLP, RNNLogic; (Das et al., 2018; Yang et al., 2017; Qu et al., 2021)) that optimize task reward
without explicit latency/token control; (iii) agentic LLMs (ReAct, Graph-of-Thoughts, AutoGen;
(Yao et al., 2023; Besta et al., 2024; Wu et al.)) that interleave tools but do not enforce per-episode
resources; and (iv) constrained RL (RCPO or fixed-penalty PPO; MAPPO/COMA without constraints;

3

Published as a conference paper at ICLR 2026

Table 1: Notation. See Appendix B for the extended table.
Symbol Description

K = (V,R,E) Global knowledge graph; E ⊆ V ×R× V
Gt = (Vt, Et); G∗ Evolving subgraph at step t; final subgraph
Ft; Pt; At Frontier nodes; candidate pool at step t; typed outgoing candidates (navigator

actions)
q; y, ŷ Input question; gold / predicted answers
pt; Π Path prefix at step t; set of discovered paths (provenance)
πB , πT , πS ; aB

t , a
T
t , a

S
t Policies and actions for EDIT/TRAVERSE/CURATE

st = (q,Gt,Ft,Pt,bt) State summary at step t; bt: remaining budgets (vector)
β = (βedge, βlat, βtok) Episode budgets: edges, latency (steps), selected tokens
C = (Cedge, Clat, Ctok); c

(k)
t Cumulative costs and per-step increments (k∈{edge, lat, tok};

∑
t c

(k)
t = Ck)

λ = (λedge, λlat, λtok) Lagrange multipliers (resource prices)
Racc(τ); racct ; r′t Episode reward; per-step task reward; shaped return r′t = racct −

∑
k λk c

(k)
t

L(π,λ) Lagrangian E[Racc(τ)− λ⊤C(τ)]
Qtask, Qedge, Qlat, Qtok Centralized-critic action-values (task head + three cost heads)
Ai,h

t , Ai,λ
t ; i ∈ {B, T, S} Counterfactual and Lagrangian-shaped advantages; agent index

D⋆; tok(·) Ordered curated evidence; token-count operator
e = (u, r, v) KG triple (head u, relation r, tail v)
H, d̄, |Pt|, K Hop cap; avg local branching factor; pool size; selected list length (K dynamic)

(Tessler et al., 2019; Schulman et al., 2017; Yu et al., 2022; Foerster et al., 2018)). In contrast, we cast
KGQA as a constrained decision process with three deployment-relevant costs (edges/steps/tokens),
learn price-aware edit/traverse/curate policies with explicit STOP, and train with separate cost heads
and dual variables so a single checkpoint supports both budget caps and price trade-offs.

3 PROBLEM FORMULATION

Problem. We study multi-hop KGQA over a typed knowledge graph K = (V,R,E) with entities
V , relation types R, and triples E ⊆ V × R × V . A query q is natural language; the gold answer
y⋆ ⊆ V can be a single entity or a set (surface strings, when provided, are canonicalized to IDs in V).
Given (K, q), the system outputs a prediction ŷ ⊆ V and a compact, provenance-preserving context
for the reader LLM. An episode corresponds to one question.

State and observations. At round t, the controller maintains a working subgraph

Gt = (Vt, Et), Et ⊆ Vt ×R× Vt,
a frontier Ft ⊆ Vt of nodes eligible for expansion, a candidate pool Pt of textualized units
(nodes/edges/paths and optional retrieval hits), and remaining budgets bt = (bedge

t , blat
t , b

tok
t). We

write st =
(
q, Gt, Ft, Pt, bt

)
, and each agent acts on a compact observation oit = ϕi(st).

Action space. We use three action families, at ∈ {EDIT, TRAVERSE, CURATE}. Let the current path
prefix be pt = (u0, r1, u1, . . . , ut) with tip ut. Define the typed outgoing options At := { (r, v′) ∈
R× V : (ut, r, v

′) ∈ E }. Then,

EDIT: {ADD(e), DELETE(e), STOP}, e = (u, r, v) ∈ Ecandt ,

TRAVERSE: {CONTINUE(r, v′), BACKTRACK, STOP}, (r, v′) ∈ At,

CURATE: {SELECT(d), STOP}, d ∈ Pt,

where Ecandt are frontier-adjacent edges (defined below).

Costs and budgets. We track episode-level costs for subgraph edits, interaction steps (latency proxy),
and selected tokens (prompt cost):

Cedge =
∑
t

cedge
t , Clat =

∑
t

clat
t , Ctok =

∑
t

ctok
t ,

with increments (at most one edit per round)

cedge
t = 1{at ∈ {ADD, DELETE}}, clat

t = 1{at ̸= STOP}, ctok
t =

∑
d∈∆Dt

tok(d),

4

Published as a conference paper at ICLR 2026

where ∆Dt are newly selected units at round t and tok(·) counts tokens. Per-episode budgets are
β = (βedge, βlat, βtok). An episode ends when all three agents emit STOP or any budget is exhausted.

Objective (CMDP). Let Racc(τ) be the episode reward. We solve

max
π

Eτ∼π

[
Racc(τ)

]
s.t. E[Cedge] ≤ βedge, E[Clat] ≤ βlat, E[Ctok] ≤ βtok. (1)

The Lagrangian is L(π,λ) = E
[
Racc − λ⊤C

]
with prices λ = (λedge, λlat, λtok) ≥ 0.

Frontierized subgraph. A subgraph Gt is frontierized if Ecandt ⊆ {(u, r, v) ∈ E : u ∈ Ft}, i.e., all
candidate expansions originate from the frontier. After each accepted edit or traversal, Ft is updated
by adding touched endpoints and removing saturated nodes.

4 METHOD

4.1 CLAUSE OVERVIEW

We propose CLAUSE, an agentic neuro-symbolic framework for multi-hop KGQA that learns to
edit, traverse, and curate compact, query-specific graph contexts under explicit per-episode budgets.
An overview of the CLAUSE architecture is shown in Figure 1. CLAUSE operates over KG symbols
(entities/relations/paths) with lightweight neural controllers, yielding auditable traces. Three agents
act on the evolving subgraph Gt and are trained jointly with LC–MAPPO (centralized training with
a constrained multi-head critic; §4.4): (i) Subgraph Architect for conservative, reversible edits to
keep Gt compact; (ii) Path Navigator that decides CONTINUE/BACKTRACK/STOP along symbolic
paths; and (iii) Context Curator that performs budget-aware evidence selection with an explicit
STOP. CLAUSE exposes deployable controls via per-query budgets (βedge, βlat, βtok) or equivalent
prices λ, enabling accuracy–efficiency trade-offs without retraining. The algorithms are given in the
Appendix C.

Question q

Subgraph
Architect

Path Navigator Context Curator Curated
context

(budgeted)

Reader
LLM

Answer y

{CONTINUE, BACKTRACK, STOP}{ADD, DELETE, STOP} {SELECT, STOP}

Edit Traverse Curate

𝑮𝒕+𝟏, 𝔽𝒕+𝟏, 𝒄𝒕
𝒆𝒅𝒈𝒆

𝒂𝒅𝒅,𝒅𝒆𝒍𝒆𝒕𝒆, 𝒔𝒕𝒐𝒑?

𝝅𝒕+𝟏, 𝜫 𝒑𝒂𝒕𝒉𝒔 , 𝒄𝒕
𝒍𝒂𝒕

𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆,𝒃𝒂𝒄𝒌𝒕𝒓𝒂𝒄𝒌, 𝒔𝒕𝒐𝒑?
𝓢𝒕 𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅 , 𝑿𝒕 𝒕𝒆𝒙𝒕 , 𝒄𝒕

𝒕𝒐𝒌

𝒔𝒆𝒍𝒆𝒄𝒕, 𝒔𝒕𝒐𝒑?

LC-MAPPO (centralized critic + dual updates)

joint action & state summaries advantages + cost-shaped returns

Centralized Critic:
𝑸𝒕𝒂𝒔𝒌, 𝑸𝒆𝒅𝒈𝒆 , 𝑸𝒍𝒂𝒕 , 𝑸𝒕𝒐𝒌

Dual Variables:
λ𝒆𝒅𝒈𝒆,λ𝒍𝒂𝒕 ,λ𝒕𝒐𝒌

Dual Ascent

Budget: 𝜷𝒆𝒅𝒈𝒆, 𝜷𝒍𝒂𝒕 , 𝜷𝒕𝒐𝒌

𝒓𝒕
′ = 𝒓𝒕

𝒂𝒄𝒄 − 𝝀𝒆𝒅𝒈𝒆𝒄𝒕
𝒆𝒅𝒈𝒆

− 𝝀𝒍𝒂𝒕𝒄𝒕
𝒍𝒂𝒕 − 𝝀𝒕𝒐𝒌𝒄𝒕

𝒕𝒐𝒌

Figure 1: The CLAUSE workflow. Three agents (Architect, Navigator, Curator) operate on a
symbolic KG state under per-episode budgets; LC–MAPPO trains task and cost heads jointly and
provides deployable dials at inference.

4.2 DESIGN PRINCIPLES

Per-episode budgets. Each query carries budgets (βedge, βlat, βtok) (or prices λ; see §3).
Joint control. Editing, traversal, and curation are optimized together, replacing k-hop/degree/top-k
heuristics.
Learned stopping. The agents keep going only if another hop or another snippet is worth its cost;
otherwise they stop.

5

Published as a conference paper at ICLR 2026

Neuro-symbolic transparency. Actions are discrete KG edits/moves; neural modules provide the
scores; traces are auditable.

4.3 AGENTIC WORKFLOW

At each decision round, CLAUSE executes a three-stage loop—edit → traverse → cu-
rate —conditioned on (βedge, βlat, βtok) or λ. After every action, counters (Cedge, Clat, Ctok) update,
remaining budgets are recomputed, and any agent may issue STOP; the episode ends when all modules
stop or a budget is exhausted. We train three agents jointly with LC–MAPPO (Section 4.4).

(1) Subgraph Architect (anchoring & edit). From the question q, we extract mention candidates
M(q) by matching to entity names/aliases (optionally aided by a simple tagger). For a mention m
and entity v, we compute the anchor score sanch(m, v). We aggregate to an entity score sent(v |
q) = maxm∈M(q) sanch(m, v), and form a seed set S0 by taking the top-k entities. If alias hits are
weak or absent, we fall back to a frozen-encoder retrieval over entity textual fields and take the top-k
as seeds. The initial frontier is F0 := S0; the initial subgraph G0 is built around F0 (within budget).

Let (Gt,Ft) be the current subgraph and frontier Ft ⊆ V (Gt). The architect considers frontier-
adjacent candidates Ecand

t ⊆ {(u, r, v) ∈ E : u ∈ Ft}. Each candidate e = (u, r, v) receives a fused
score

s(e | q,Gt) = w⊤
[
ϕent(u, q), ϕrel(r, q), ϕnbr(u,Gt), ϕdeg(u)

]
,

where ϕent and ϕrel combine lexical features and cosine similarities from a frozen encoder, and
ϕnbr, ϕdeg encode neighborhood and degree priors (hub throttling). At step t the agent chooses
at ∈ {ADD, DELETE, STOP} and, if applicable, et ∈ Ecand

t to maximize the price-shaped gain

g(a, e | q,Gt) = s(e | q,Gt) − λedge cedge(a, e),

subject to remaining edge/latency budgets. An edit is applied only if g(at, et) > 0 and budget
remains; (Gt+1,Ft+1) are updated accordingly. All candidates originate from the frontier, avoiding
uninformed k-hop expansions. Per round, scoring costs O(CBd) with CB = |Ecand

t | and encoder
width d; applying accepted edits costs O(∆E).

(2) Path Navigator (traverse). Given Gt, the navigator maintains a path prefix pt and observes
(q, vt,At, summary(pt)), where At are typed outgoing candidates. A light encoder outputs (i)
a termination head over {STOP, CONTINUE} and (ii) candidate logits over At when continuing;
BACKTRACK is modeled as an explicit action. Each hop increments Clat, so continuation occurs
only when expected shaped value exceeds the current step price. We cap the horizon by a small
H and retain log-probabilities for credit assignment. Discovered paths Π = {p1, . . . , pm} serve as
human-readable provenance.

(3) Context Curator (curate). From a pool Pt (textualized nodes/edges/paths and optional retrieval
hits), the curator performs listwise selection with an explicit STOP:

max
πS

Rtask(S) s.t.
∑
c∈S

tok(c) ≤ βtok, S = Curate(Pt;πS).

Beyond independent passage thresholds, we use listwise, redundancy-aware scoring with a learned
STOP head conditioned on the token price (dual λtok), aligning selection with Ctok and producing
compact, complementary evidence sets that are both efficient and auditable.

Observations and cost attribution. Agents receive compact summaries of (Gt,Ft,Pt) and the
remaining budgets. Costs are attributed at source, edits→Cedge, steps→Clat, curations→Ctok,
which simplifies credit assignment and supplies the cost signals used by LC-MAPPO.

4.4 LEARNING: LC-MAPPO

To enforce per-episode budgets in edges, steps, and tokens while preserving accuracy, we propose
LC–MAPPO, a Lagrangian-constrained CTDE variant of MAPPO that jointly learns task value and
multiple cost processes with deployable test-time dials. A centralized critic estimates one task head
Qtask and three cost heads (Qedge, Qlat, Qtok) over joint actions; a monotonic mixer aggregates
per-agent utilities for each head (Rashid et al., 2020). Let c(k)t denote instantaneous cost increments

6

Published as a conference paper at ICLR 2026

whose episode sums yield Ck in Eq. 1, for k∈{edge, lat, tok}. The PPO surrogate uses COMA-style
counterfactual advantages (Foerster et al., 2018; Schulman et al., 2017; Yu et al., 2022) on the shaped
return

r′t = racct − λedge c
edge
t − λlat c

lat
t − λtok c

tok
t , (2)

which instantiates the per-step Lagrangian of the CMDP in Eq. 1. At optimum, the duals λ⋆ equal the
partial derivatives of the optimal value w.r.t. budgets (shadow-price property), and therefore predict
the local slope of the accuracy–latency-cost frontiers (Appendix G).

Rather than fixing a single penalty, LC–MAPPO maintains separate dual variables λedge, λlat, λtok
and updates them by projected ascent,

λk ←
[
λk + η

(
Ê[Ck]− βk

)]
+
, k ∈ {edge, lat, tok},

optionally stabilized with PID control (Achiam et al., 2017; Stooke et al., 2020). This is stochastic
dual ascent on the Lagrangian of Eq. 1, moving λ to enforce E[Ck] ≤ βk while actors ascend
the shaped objective. The separation of a task head from cost heads improves credit assignment
and exposes explicit accuracy–efficiency trade-offs at test time (tune λ or β without retraining).
Convergence is stated in Appendix H.

4.5 INFERENCE AND DEPLOYMENT CONTROLS

At test time, agents act greedily with learned STOP. Operators may run in cap mode (set
(βedge, βlat, βtok)) for hard guarantees or in price mode (fix λ) for smooth trade-offs—both from a
single checkpoint. Symbolic decisions yield step-level traces (what was added, explored, selected,
and where we stopped) for audit and ablation.

5 EXPERIMENTS

Dataset. We evaluate on three multi-hop KGQA datasets, including METAQA (Zhang et al., 2018),
HOTPOTQA (Yang et al., 2018), and FACTKG (Kim et al., 2023).

Baselines. We compare three families under a shared retriever/reader and decoding (except the
no-retrieval group). Pretrained LLMs (no retrieval): GPT-OSS-120B; LLaMA3.3-70B; Qwen3-
32B. RAG methods (Qwen3-32B): Vanilla RAG (Lewis et al., 2020); Hybrid RAG (Robertson
& Zaragoza, 2009; Karpukhin et al., 2020; Nogueira & Cho, 2019); LightRAG (Guo et al., 2025);
GraphRAG. Agent-based methods (Qwen3-32B): ReAct (Yao et al., 2023); Graph-of-Thoughts
(GoT) (Besta et al., 2024); AutoGen (Wu et al.); KG-Agent (Jiang et al., 2025). Additionally, LC-
MAPPO is compared with MAPPO (Yu et al., 2022), fixed-penalty PPO (Schulman et al., 2017) and
single-multiplier RCPO (Tessler et al., 2019)

Metrics. Accuracy is reported as top-1 exact match (EM@1). Efficiency is measured by (i) Average
latency, normalized so that Vanilla RAG = 1.0× per dataset/hop; and (ii) Average edge budget, i.e.,
the mean number of graph edges explored, also normalized to Vanilla RAG = 1.0×.

5.1 EXPERIMENTAL RESULTS AND ANALYSIS

Exact Match. Table 2 reports EM@1 in HotpotQA (distractor), FactKG, and MetaQA. CLAUSE
achieves the best accuracy on all datasets and hops (71.7 on HotpotQA, 84.2 on FactKG, and
91.0/87.3/85.5 on MetaQA 1/2/3-hop), consistently surpassing both RAG baselines (e.g., Hybrid
RAG 66.0 on HotpotQA) and agent baselines (e.g., KG-Agent 68.7 on HotpotQA, 87.3/78.0/75.4 on
MetaQA). Pure pretrained LLMs perform markedly worse, highlighting the value of budget-aware,
neuro-symbolic control over subgraph editing, traversal, and evidence curation.

Latency. Table 3 shows average latency normalized to Vanilla RAG = 1.0×. Among RAG methods,
LightRAG is the fastest but sacrifices accuracy; GraphRAG is slowest because of graph construction
overheads. Agent baselines incur higher latency than RAG (e.g., AutoGen and GoT are the slowest)
because of multi-step tool/use deliberations. CLAUSE achieves agent-level accuracy with competitive
efficiency: its latency is close to or below Hybrid/GraphRAG and substantially lower than typical
agent systems (e.g., 1.48× on HotpotQA vs. 2.43× for AutoGen), and even dips below Vanilla on
MetaQA 1-hop (0.98×), reflecting effective learned stopping and budgeted context construction;

7

Published as a conference paper at ICLR 2026

Table 2: Main QA results: EM@1 on HotpotQA, FactKG, and MetaQA.
Family Method HotpotQA FactKG MetaQA

(Distractor) 1-hop 2-hop 3-hop

Pretrained-LLMs
GPT-OSS-120B 44.5 68.0 62.7 41.5 52.3
LLaMA3.3-70B 41.0 66.7 57.2 29.0 44.2
Qwen3-32B 37.9 60.1 52.5 22.8 39.0

RAG-based
(Qwen3-32B)

Vanilla RAG 62.1 77.0 60.2 37.6 33.0
Hybrid RAG 66.0 80.2 63.0 41.5 34.1
LightRAG 44.3 64.5 54.0 35.0 32.0
GraphRAG 50.1 72.0 63.5 48.0 44.4

Agent-based
(Qwen3-32B)

ReAct 63.5 78.2 82.3 52.1 49.4
Graph-of-Thoughts 59.2 74.0 79.5 48.4 46.3
AutoGen 64.0 76.5 85.2 55.7 53.5
KG-Agent 68.7 82.1 87.3 78.0 75.4

Ours CLAUSE 71.7 84.2 91.0 87.3 85.5

the slight rise at 2/3-hop mirrors increased multi-hop exploration while remaining well under other
agentic baselines.

Table 3: Efficiency results: Average latency (normalized to Vanilla RAG = 1.0×).
Family Method HotpotQA FactKG MetaQA

(Distractor) 1-hop 2-hop 3-hop

RAG-based
(Qwen3-32B)

Vanilla RAG 1.00 1.00 1.00 1.00 1.00
Hybrid RAG 1.18 1.15 1.12 1.20 1.28
LightRAG 0.85 0.88 0.80 0.83 0.86
GraphRAG 1.45 1.35 1.25 1.40 1.60

Agent-based
(Qwen3-32B)

ReAct 1.62 1.40 1.25 1.45 1.70
Graph-of-Thoughts 2.10 1.78 1.65 1.90 2.32
AutoGen 2.43 2.20 1.81 2.14 2.62
KG-Agent 1.70 1.54 1.30 1.62 1.90

Ours CLAUSE 1.48 1.36 0.98 1.14 1.27

Average Edge Budget. Table 4 reports the average edge budget normalized to Vanilla RAG (1.0×),
which reflects how much the working subgraph grows during context construction. Within RAG
baselines, LightRAG is the most frugal (0.75–0.82) and GraphRAG the most expansive (1.18–1.55),
while Hybrid RAG sits slightly above Vanilla due to dual-channel retrieval and re-ranking. Agent
systems generally consume more edges than RAG (e.g., AutoGen up to 2.10× on MetaQA-3hop)
because multi-step deliberation triggers additional expansions. In contrast, CLAUSE achieves the
smallest edge budgets across all settings (0.74–0.90) while still delivering the best EM (cf. Table 2),
indicating that its budget-aware subgraph editing and learned STOP decisions effectively suppress
redundant growth. The modest increase from MetaQA 1-hop to 3-hop matches the expected need to
explore deeper paths, yet remains well below other agentic approaches.

Table 4: Efficiency results: Average Edge Budget (normalized to Vanilla RAG = 1.0×).
Family Method HotpotQA FactKG MetaQA

(Distractor) 1-hop 2-hop 3-hop

RAG-based
(Qwen3-32B)

Vanilla RAG 1.00 1.00 1.00 1.00 1.00
Hybrid RAG 1.12 1.08 1.05 1.12 1.20
LightRAG 0.78 0.80 0.75 0.78 0.82
GraphRAG 1.35 1.30 1.18 1.32 1.55

Agent-based
(Qwen3-32B)

ReAct 1.20 1.13 1.05 1.18 1.35
Graph-of-Thoughts 1.55 1.40 1.30 1.55 1.85
AutoGen 1.84 1.72 1.45 1.75 2.10
KG-Agent 1.30 1.22 1.10 1.32 1.58

Ours CLAUSE 0.78 0.74 0.77 0.78 0.90

Token Usage. As shown in Figure 2, across all three datasets, Qwen3-32B (no RAG) exhibits
the lowest normalized token usage (because no retrieved context is concatenated), while CLAUSE,

8

Published as a conference paper at ICLR 2026

without relying on multi-agent expansion, consistently uses fewer tokens than the family averages of
RAG-based and Agent-based methods, indicating better token efficiency. (Note: the MetaQA panel
reports the average over the 1/2/3-hop settings.)

Qwen3-32B
RAG-based

Agent-based ours

0.5

1.0

1.5

2.0

No
rm

al
ize

d
To

ke
n

M
as

s ×
(V

an
illa

 R
AG

 =
 1

.0
)

HotpotQA

Qwen3-32B
RAG-based

Agent-based ours

FactKG

Qwen3-32B
RAG-based

Agent-based ours

MetaQA

Token Usage (normalized) mean ± SD

Figure 2: Normalized Token Consumption (Vanilla RAG = 1.0×).

Constraint Satisfaction Performance. We evaluate LC-MAPPO against MAPPO (Yu et al., 2022),
Fixed-Penalty PPO (Schulman et al., 2017) and RCPO (Tessler et al., 2019) on the MetaQA KGQA
task under constrained settings (edge budget = 0.5, latency budget = 0.7). Figure 3 demonstrates
LC-MAPPO’s superior constraint satisfaction capabilities across multiple metrics. LC-MAPPO
achieves a 191% improvement in feasibility rate compared to standard MAPPO (0.340 vs. 0.117),
indicating significantly better constraint adherence. Furthermore, LC-MAPPO reduces latency
violations by 34% (0.577 vs. 0.880) and latency costs by 12% (0.738 vs. 0.838), demonstrating
effective latency-aware optimization. LC-MAPPO demonstrates the strongest constraint learning
with adaptive dual variables of 0.004, outperforming RCPO’s 0.001 and surpassing methods without
constraint adaptation, confirming that our multi-head centralized critic successfully learns to balance
task performance with constraint satisfaction. These results validate LC-MAPPO’s design for
constraint-aware MARL, where the algorithm substantially improved constraint compliance.

MAPP
O

Fix
ed

-Pe
na

lty
 PP

O
RC

PO

LC
-M

APP
O

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fe
as

ib
ilit

y
Ra

te

Constraint Feasibility
(Higher = Better)

MAPP
O

Fix
ed

-Pe
na

lty
 PP

O
RC

PO

LC
-M

APP
O

0.0

0.2

0.4

0.6

0.8

Vi
ol

at
io

n
Ra

te

Latency Violations
(Lower = Better)

MAPP
O

Fix
ed

-Pe
na

lty
 PP

O
RC

PO

LC
-M

APP
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Co

st

Latency Cost
(Lower = Better)

MAPP
O

Fix
ed

-Pe
na

lty
 PP

O
RC

PO

LC
-M

APP
O

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Du
al

 V
ar

ia
bl

e
Va

lu
e

Constraint Learning
(Higher = More Active)

Figure 3: Constraint satisfaction performance comparison. (a) Constraint Feasibility. (b) Latency
Violations. (c) Latency Cost. (d) Constraint Learning.

5.2 ABLATIONS

As summarized in Table 5, removing any agent or disabling constraint handling hurts both accuracy
and efficiency. The full CLAUSE attains the best EM@1 (87.3) at the reference latency and edge
budget (both 1.00×). Without the Subgraph Architect (StaticRAG; no-KG), EM drops sharply to
74.8 while latency and edge usage rise to 1.32× and 1.44×, indicating severe over-expansion without
budget-aware graph editing. Removing the Path Navigator (Greedy-Hop) yields EM 82.1 with higher
latency/edges (1.18× /1.22×), showing that learned continue/backtrack/stop decisions are important
for disciplined exploration. Omitting the Context Curator (Top-k Rerank) reduces EM to 80.6 and
raises latency to 1.24× (edges 1.07×), reflecting longer, unpruned contexts when the learned stop is
absent. Constraint ablations further confirm the role of LC-MAPPO: MAPPO without duals achieves
EM 85.0 but overshoots edges (1.28×), and fixing λ (no updates) reaches EM 84.6 with milder but
persistent budget violations (1.06× latency, 1.15× edges). Together, these results demonstrate that
all three agents and adaptive dual updates are necessary to jointly optimize EM, latency, and edge
growth under requirements.

9

Published as a conference paper at ICLR 2026

Table 5: Core ablations on MetaQA. All runs use the same reader and settings (normalized to
CLAUSE = 1.0×).

Variant EM@1↑ Latency↓
(avg)

Edge budget↓
(avg)

CLAUSE (full) 87.3 1.00 1.00
w/o Subgraph Architect (StaticRAG; no-KG) 74.8 1.32 1.44
w/o Path Navigator (Greedy-Hop; no traversal policy) 82.1 1.18 1.22
w/o Context Curator (Top-k Rerank; no learned stop) 80.6 1.24 1.07
MAPPO (no duals) 85.0 1.08 1.28
Fixed λ (no updates) 84.6 1.06 1.15

5.3 CASE STUDY

Question: Who co-starred with Brian Backer?

(1) Subgraph Architect. Anchors: Brian Backer (actor).
• Add (Moving Violations, starred_actors, Brian Backer)

• Add (...)
• Stop (edge budget nearly met)

(2) Path Navigator Path discovered:

Actor_A
starred_actors←−−−−−−−−−−− Movie

starred_actors−−−−−−−−−−−→ Actor_B .

At hop 2, backtracking is not triggered; STOP fires with high confidence due to saturated utility.

(3) Context Curator. With βtok = 512, the curator selects two snippets: “Moving Violations —
starred_actors: Jennifer Tilly” and “Moving Violations — starred_actors: John Murray”. Token
mass is ≈ 36 (< βtok), so STOP triggers; latency is 238.6ms. The reader returns Jennifer Tilly
& John Murray. (The complete process is illustrated in Figure 4)

(a) (b) (c)

Brian Backer Moving
Violations

Brian Backer

Jennifer
Tilly

Do Not
Disturb

Relation：
starred_actors

Brian Backer

William
Hurt

Anchor Entity

Recognition

Local Subgraph

Construction

Path Traversal

Policy-Guided

Exploration

John
Murray

Figure 4: End-to-End Case Study Overview.

6 CONCLUSION

This work formulates KGQA as dynamic learnable context construction: instead of a fixed k-hop
neighborhood, the system must decide what context to assemble, how to obtain it, and when to
stop under per-query limits on edits, interaction steps, and tokens. CLAUSE instantiates this by
decomposing context into three components: (i) subgraph structure, (ii) path traces, and (iii) textual
evidence, and assigning them to three simple agents (Architect, Navigator, Curator) that make discrete,
auditable choices. LC-MAPPO optimizes the overall workflow by pricing resources via a centralized
multi-head critic with dual variables, so agents continue only when the predicted marginal utility
exceeds the current price. This requirement-conditioned controller yields compact provenance and
predictable latency/cost, and empirically traces stronger accuracy–efficiency frontiers than heuristic
expansion or unconstrained agent loops.

10

Published as a conference paper at ICLR 2026

ETHICS STATEMENT

We comply with the ICLR Code of Ethics. This work uses only publicly available benchmark datasets
and does not involve human-subject data or personally identifiable information; therefore, IRB
approval was not required. The methods are intended for benign research uses and are not designed
to facilitate privacy violations or discriminatory outcomes. The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This research is supported by Seatrium New Energy Laboratory, Singapore Ministry of Education
(MOE) Tier 1 (RT5/23 and RG24/24), the Nanyang Technological University (NTU) Centre for Com-
putational Technologies in Finance (NTU-CCTF), and the Research Innovation and Enterprise (RIE)
2025 Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) (Award I2301E0026),
administered by Agency for Science, Technology and Research (A*STAR).

REPRODUCIBILITY STATEMENT

We provide an anonymized code archive in the supplementary materials. The model and objective are
specified in Section 4, and pseudocode in Appendix C. Datasets and preprocessing are described in
Section 5 and Appendix D. Metrics, baseline settings, and normalization are defined in Section 5;
seeds, environment details, and run scripts are included in the archive.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, pp.
22–31. JMLR.org, 2017.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avi Sil, and Hannaneh Hajishirzi. Self-RAG: Learning to
Retrieve, Generate, and Critique through Self-Reflection. In International Conference on Learning
Representations, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michał Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph
of thoughts: solving elaborate problems with large language models. In Proceedings of the Thirty-
Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in
Artificial Intelligence, AAAI’24/IAAI’24/EAAI’24. AAAI Press, 2024. ISBN 978-1-57735-887-
9. doi: 10.1609/aaai.v38i16.29720. URL https://doi.org/10.1609/aaai.v38i16.
29720.

William W. Cohen. Tensorlog: A differentiable deductive database, 2016. URL https://arxiv.
org/abs/1605.06523.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement learning. In International Conference on
Learning Representations, 2018.

Lauren Nicole DeLong, Ramon Fernández Mir, and Jacques D. Fleuriot. Neurosymbolic ai for
reasoning over knowledge graphs: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 36(5):7822–7842, May 2025. ISSN 2162-2388. doi: 10.1109/tnnls.2024.3420218. URL
http://dx.doi.org/10.1109/TNNLS.2024.3420218.

Wentao Ding, Jinmao Li, Liangchuan Luo, and Yuzhong Qu. Enhancing complex question answering
over knowledge graphs through evidence pattern retrieval. In Proceedings of the ACM Web
Conference 2024, WWW ’24, pp. 2106–2115, New York, NY, USA, 2024. Association for
Computing Machinery. ISBN 9798400701719. doi: 10.1145/3589334.3645563. URL https:
//doi.org/10.1145/3589334.3645563.

11

https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/1605.06523
https://arxiv.org/abs/1605.06523
http://dx.doi.org/10.1109/TNNLS.2024.3420218
https://doi.org/10.1145/3589334.3645563
https://doi.org/10.1145/3589334.3645563

Published as a conference paper at ICLR 2026

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
graph rag approach to query-focused summarization, 2025. URL https://arxiv.org/abs/
2404.16130.

Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon White-
son. Counterfactual multi-agent policy gradients. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelli-
gence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. LightRAG: Simple and fast
retrieval-augmented generation. In Christos Christodoulopoulos, Tanmoy Chakraborty, Car-
olyn Rose, and Violet Peng (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2025, pp. 10746–10761, Suzhou, China, November 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-335-7. doi: 10.18653/v1/2025.findings-emnlp.568. URL
https://aclanthology.org/2025.findings-emnlp.568/.

Feijiang Han, Hengtao Cui, Licheng Guo, Zelong Wang, and Zhiyuan Lyu. Read before you
think: Mitigating llm comprehension failures with step-by-step reading, 2025. URL https:
//arxiv.org/abs/2504.09402.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning with
retrieval augmented language models. Journal of Machine Learning Research, 24(251):1–43, 2023.
URL http://jmlr.org/papers/v24/23-0037.html.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong Park. Adaptive-RAG:
Learning to adapt retrieval-augmented large language models through question complexity. In
Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pp. 7036–7050, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.389. URL
https://aclanthology.org/2024.naacl-long.389/.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song, Chen Zhu, Hengshu Zhu, and Ji-Rong Wen.
KG-agent: An efficient autonomous agent framework for complex reasoning over knowledge
graph. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.),
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9505–9523, Vienna, Austria, July 2025. Association for Computational
Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.468. URL https:
//aclanthology.org/2025.acl-long.468/.

Yichen Jiang and Mohit Bansal. Avoiding reasoning shortcuts: Adversarial evaluation, training,
and model development for multi-hop QA. In Anna Korhonen, David Traum, and Lluís Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 2726–2736, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1262. URL https://aclanthology.org/P19-1262/.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense Passage Retrieval for Open-Domain Question Answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781, 2020.

Jiho Kim, Sungjin Park, Yeonsu Kwon, Yohan Jo, James Thorne, and Edward Choi. FactKG: Fact
verification via reasoning on knowledge graphs. arXiv preprint arXiv:2305.06590, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

12

https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://aclanthology.org/2025.findings-emnlp.568/
https://arxiv.org/abs/2504.09402
https://arxiv.org/abs/2504.09402
http://jmlr.org/papers/v24/23-0037.html
https://aclanthology.org/2024.naacl-long.389/
https://aclanthology.org/2025.acl-long.468/
https://aclanthology.org/2025.acl-long.468/
https://aclanthology.org/P19-1262/

Published as a conference paper at ICLR 2026

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. AgentBench: Evaluating LLMs as Agents. In The Twelfth
International Conference on Learning Representations.

Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian
Guo. Think-on-Graph 2.0: Deep and Faithful Large Language Model Reasoning with Knowledge-
guided Retrieval Augmented Generation. In The Thirteenth International Conference on Learning
Representations.

Rodrigo Nogueira and Kyunghyun Cho. Passage Re-ranking with BERT. arXiv:1901.04085, 2019.

Jeff Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze,
Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, et al. Large language models
and knowledge graphs: Opportunities and challenges. Transactions on Graph Data and Knowledge,
2023.

Ofir Press, Sewon Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Yejin Choi. Measuring
and narrowing the compositionality gap in language models. In ACL, 2022. Introduces Self-Ask
with tool calls.

Meng Qu, Junkun Chen, Louis-Peng Guo, Xiaokai Zhang, and Jian Tang. Rnnlogic: Learning logic
rules for reasoning on knowledge graphs. In KDD, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, and Chelsea Finn. Direct Preference
Optimization: Your language model is secretly a reward model. In NeurIPS, 2023.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends in Information Retrieval, 2009.

Timo Schick, Jane Dwivedi-Yu, Roberta Raileanu, et al. Toolformer: Language models can teach
themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, et al. DeepSeekMath: Pushing the limits of mathematical reasoning in
open language models. arXiv preprint arXiv:2402.03300, 2024.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
gingGPT: Solving AI Tasks with ChatGPT and Its Friends in HuggingFace. In Thirty-seventh
Conference on Neural Information Processing Systems.

Noah Shinn, Federico Cassano, Aidan Chen, et al. Reflexion: Language agents with verbal reinforce-
ment learning. arXiv preprint arXiv:2303.11366, 2023.

Lennert De Smet and Luc De Raedt. Defining neurosymbolic ai, 2025. URL https://arxiv.
org/abs/2507.11127.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive Safety in Reinforcement Learning
by PID Lagrangian Methods. In International Conference on Machine Learning, pp. 9133–9143.
PMLR, 2020.

13

https://arxiv.org/abs/2507.11127
https://arxiv.org/abs/2507.11127

Published as a conference paper at ICLR 2026

Haitian Sun, Tania Bedrax-Weiss, and William Cohen. PullNet: Open Domain Question Answering
with Iterative Retrieval on Knowledge Bases and Text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 2380–2390, 2019.

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward Constrained Policy Optimiza-
tion. In International Conference on Learning Representations (ICLR), 2019. URL https:
//openreview.net/forum?id=SkfrvsA9FX.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, et al. Efficient large language models: A survey. Transactions on Machine
Learning Research.

Guanzhi Wang, Shun Ren, Yuxiang Gu, Silvio Savarese, Yuke Xie, and Linxi Fan. Voyager: An
open-ended embodied agent with large language models. arXiv preprint arXiv:2305.16291, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. AutoGen: Enabling Next-Gen LLM Applications via
Multi-Agent Conversation. In First Conference on Language Modeling.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowledge
base reasoning. In ICLR, 2017.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct:Synergizing Reasoning and Acting in Language Models. In International Conference on
Learning Representations (ICLR), 2023.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:
Reasoning with language models and knowledge graphs for question answering. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 535–546, 2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of PPO in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611–24624, 2022.

J. Zhang, L. Yao, X. Chen, X. Wang, J. Wang, and B. Benatallah. Neural, symbolic and neural-
symbolic reasoning on knowledge graphs. AI Open, 2:14–35, 2021.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola, and Le Song. Variational reasoning
for question answering with knowledge graph. In AAAI, 2018.

Zihan Zhang, Meng Fang, and Ling Chen. RetrievalQA: Assessing Adaptive Retrieval-Augmented
Generation for Short-form Open-Domain Question Answering. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 6963–6975, 2024.

Yining Zhou. Self-supervised transfer learning with shared encoders for cross-domain cloud op-
timization. In 2025 5th International Conference on Electronic Information Engineering and
Computer Science (EIECS), pp. 1435–1439. IEEE, 2025.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Lun-
ing Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan
Dong, and Yu Wang. A survey on efficient inference for large language models. arXiv preprint
arXiv:2404.14294, 2024.

14

https://openreview.net/forum?id=SkfrvsA9FX
https://openreview.net/forum?id=SkfrvsA9FX

Published as a conference paper at ICLR 2026

APPENDIX CONTENTS

A Large Language Models Usage Disclosure 16

B Notation Table 17

C Algorithm 18

D Implementation Details & Supplementary Experiment 20

E Complexity Analysis 21

E.1 Time Complexity . 21

E.2 Space Complexity . 22

F Training Cost and Scalability to Large and Noisy KGs 23

G Trade-off Analysis 24

G.1 Lagrangian shaping: costs as prices, duals as shadow values 24

H Proof of Convergence of LC-MAPPO 25

H.1 Assumptions . 25

H.2 Primal (Actor) Convergence for Fixed Duals . 25

H.3 Dual (Multiplier) Convergence and KKT . 26

H.4 Proof Template Mirroring A Smoothness Step . 26

15

Published as a conference paper at ICLR 2026

A LARGE LANGUAGE MODELS USAGE DISCLOSURE

Scope of use. We used large language models in three defined roles:

1. Writing assistance (polish/clarity only). Micro-edits for grammar, concision, tense/voice consis-
tency, LaTeX phrasing, section headings, figure/table captions, and title/abstract variants.

2. Retrieval & discovery (related work support). Query about recommended papers related to my
idea.

3. Research ideation (early brainstorming). Generating alternative task framings, evaluating
feasibility of my idea, naming options for modules.

Author responsibility. The authors are solely responsible for the methods, experiments, analyses,
and claims. LLMs supported drafting, search query design, and ideation; they did not generate or
select results.

16

Published as a conference paper at ICLR 2026

B NOTATION TABLE

Table 6: Symbols and notation used throughout the paper.
Symbol Description
K = (V,R,E) Global knowledge graph with entities V , relations R, and edges

E ⊆ V ×R× V
Gt = (Vt, Et); G∗ Query-conditioned subgraph at step t; final subgraph at termination
Ft Frontier node set at step t
Pt Candidate pool (textualized nodes/edges/paths and optional retrieval

hits) at step t
At Typed outgoing candidates (actions) available to the navigator at step t
q; y, ŷ Input question; gold / predicted answers
pt; Π = {p1, . . . , pm} Path prefix maintained by the navigator; set of discovered paths

(provenance)
πB , πT , πS Policies for EDIT (Subgraph Architect), TRAVERSE (Path Navigator),

CURATE (Context Curator)
aBt , a

T
t , a

S
t Actions at step t for edit / traverse / curate modules

st State summary at step t: (q,Gt,Ft,Pt,bt)
bt Remaining budget vector at step t
β = (βedge, βlat, βtok) Episode budget vector for edge growth, latency (steps), and selected

tokens
C = (Cedge, Clat, Ctok) Cumulative costs (accepted edits / interaction steps / selected tokens)
c
(k)
t Instantaneous cost increment at step t for k ∈ {edge, lat, tok};∑

t c
(k)
t = Ck

λ = (λedge, λlat, λtok) Lagrange multipliers (prices) for edge/step/token costs
Racc(τ), r

acc
t , r′t Episode-level task reward, per-step (unshaped) task reward, and shaped

return r′t = racct −
∑

k λk c
(k)
t

L(π,λ) Lagrangian objective E[Racc(τ)− λ⊤C(τ)] for the CMDP
Qtask, Qedge, Qlat, Qtok Centralized-critic action-values (task head and three cost heads)
Ai,h

t , Ai,λ
t ; i ∈ {B, T, S} Counterfactual advantage for agent i and head h; Lagrangian-shaped

advantage for PPO
D⋆ Ordered, curated evidence list passed to the reader
tok(·) Token count operator for a textual unit
e = (u, r, v) KG edge (triple) with head entity u, relation r, tail entity v
Ecandt Frontier-adjacent candidate edges considered by the Architect at step t
s(e | q,Gt) Fused edge-utility score used by the Architect for edit decisions
H, d̄, |Pt|, K Hop cap; average local branching factor; candidate pool size; selected

list length (K dynamic)

17

Published as a conference paper at ICLR 2026

C ALGORITHM

Algorithm 1 CLAUSE: Training with a constrained centralized-critic PPO (LC-MAPPO)
1: Input: dataset D of (question, answer) pairs; budgets β = {βedge, βlat, βtok}; learning rates.
2: Initialize: actor params for EDIT/TRAVERSE/CURATE (θB , θT , θS); centralized critic ψ with

multi-head outputs {Qtask, Qedge, Qlat, Qtok}; duals λ = {λedge, λlat, λtok}≥0. epoch = 1, . . . , E
3: Rollout. Sample a minibatch B⊂D. For each question q∈B:
4: Reset G0,F0,P0, budgets b0, buffer T ←∅; t←0. NOT_TERMINAL and t < Tmax

5: aBt ∼πB(· | st); apply edit (add/delete/stop) to Gt; accrue cedge
t .

6: aTt ∼πT (· | st); continue or STOP exploration; accrue clat
t .

7: aSt ∼πS(· | st); curate context or STOP; accrue ctok
t .

8: Log (st,at, log πt, ct) to T ; update state st+1; t← t+1.
9: Produce answer ŷ; compute terminal task reward racc; finalize episode T .

10: Critic update. Compute targets with GAE/TD for each head using T ; update ψ (task & cost
heads).

11: Advantages. Form shaped rewards r′t=r
acc
t − λedgec

edge
t − λlatc

lat
t − λtokc

tok
t ; compute GAE; for

each agent i∈{B, T, S}, compute counterfactual advantages

Ai(st,at) = Qtask(st,at)− Ea′
i

[
Qtask(st, (a−i, a

′
i))

]
.

12: Actor update. Apply PPO to {θB , θT , θS} with clipped ratios, entropy bonus, and using the
agent-specific Ai.

13: Dual update. For each k∈{edge, lat, tok}:

λk ←
[
λk + ρ

(
Ê[Ck]− βk

)]
+
.

Algorithm 2 Budgeted Inference (CLAUSE, decentralized execution)
1: Input: question q; global budgets β = {βedge, βlat, βtok}; trained agents πB (Subgraph Architect),
πT (Path Navigator), πS (Context Curator).

2: Initialize G0←∅; frontier F0← anchors(q); pool P0←∅; counters e=0, ℓ=0, τ=0. ℓ < βlat
and not STOPPED

3: aB∼πB(· | q,Gt,Ft, β−usage) {Add/Delete/Stop edits}
4: Apply aB ; update Gt, Ft; e←e+edit_count(aB) e > βedge break
5: aT ∼πT (· | q,Gt,Ft, β−usage) {Next hop or STOP}
6: Apply aT ; update traversal traces; push touched edges/nodes into candidate pool Pt

7: aS∼πS(· | q,Pt, β−usage) {Select or STOP}
8: Update selected set D⋆ and token mass τ ; if τ > βtok then prune last add or force STOP
9: ℓ←ℓ+1

10: return reader answer ŷ ← Reader(q,D⋆) and the trace ⟨G∗, paths, D⋆⟩

Algorithm 3 Counterfactual Advantage (per head) with Centralized Critic
1: Given: critic heads {Qh} for h ∈ {task, edge, lat, tok}; joint action at; per-agent agents {πi}

agent i ∈ {B,T,S} head h
2: bi,h(st,a

−i
t)← Eai∼πi(·|oit)

[
Qh(st, (ai,a

−i
t))

]
3: Ai,h

t ← Qh(st,at)− bi,h(st,a−i
t)

4: Lagrangian advantage: Ai,lag
t ← Ai,task

t − λedgeA
i,edge
t − λlatA

i,lat
t − λtokA

i,tok
t

5: return {Ai,lag
t }

18

Published as a conference paper at ICLR 2026

Algorithm 4 Context Curator (list-wise, dynamic K) — one pass
1: Input: question q, candidate pool P with token counts tok(·), budget βtok
2: Initialize D⋆←⟨⟩, used_tokens T←0, remainingR←P R ̸= ∅
3: Score all d∈R with list-wise scorer s(d | q,R, D⋆)
4: d⋆ ← argmaxd∈R s(d) T + tok(d⋆) > βtok break
5: Append d⋆ to D⋆; T←T + tok(d⋆);R←R \ {d⋆}
6: With probability πS(STOP | q,R, D⋆, β−usage) do break
7: return D⋆

19

Published as a conference paper at ICLR 2026

D IMPLEMENTATION DETAILS & SUPPLEMENTARY EXPERIMENT

Hardware. All experiments are run on a single NVIDIA L20 (48 GB) GPU with 20 vCPU Intel
Xeon Platinum 8457C, 100 GB RAM, and two SSD partitions (system: 128 GB; data: 1024 GB). The
OS image is Ubuntu 22.04 with Miniconda (Python 3.10).

Software & API. We use PyTorch (CUDA 11.8 build). Retrieval does not use a generative LLM:
we produce dense embeddings with sentence-transformers (thenlper/gte-small) and perform
lightweight NER with spaCy; sparse recall uses BM25. Vectors are L2-normalized and queried with
FAISS IndexFlatIP (cosine-equivalent). Unless stated otherwise, the shared reader LLM for all
RAG/agent baselines is Qwen3-32B. We also evaluate GPT-OSS-120B and LLaMA3.3-70B for
ablations/comparisons and final answer generation, invoked via SiliconFlow / Groq APIs. Token
budgets and token counting always use the reader’s tokenizer.

Datasets & Knowledge Graphs (KGs). We test CLAUSE on three large-scale, real-world, noisy
KGs, and provide construction details. We do not share a single KG across datasets; each bench-
mark uses its own canonical KG (Table 7). Our graphs are cross-domain: METAQA relies on a
movie/entertainment-domain KB, HOTPOTQA uses a Wikidata-derived subgraph built from general
encyclopedic entities, and FACTKG is grounded in the DBpedia open-domain fact graph. Anchoring
links surface mentions to KG entities via NER and an alias dictionary; ties or unresolved mentions
fall back to dense nearest neighbors in the alias embedding space. For HOTPOTQA, we first run
entity recognition and alias matching over the questions and supporting paragraphs, link mentions
to Wikidata entities, and then extract a local neighborhood (within a fixed hop radius) for these
entities from a frozen Wikidata dump, yielding a subgraph with roughly millions of nodes and tens of
millions of edges. In Table 7, we report the scale of this subgraph using O(10·) notation because the
exact node/edge counts can vary slightly with the chosen Wikidata version and neighborhood radius,
while the order of magnitude is sufficient to convey that the setting is web-scale.

Table 7: Benchmarks and knowledge graphs. We report the KG identity, scale, and the exact anchoring
protocol. All RAG/agent baselines share the same reader and tokenizer.

Benchmark KG source #Nodes #Edges #Relations

METAQA (1/2/3-hop) (Zhang et al., 2018) 4.3× 104 1.35× 105 9
HOTPOTQA (distractor) (Yang et al., 2018) O(106) O(107) O(103)
FACTKG (Kim et al., 2023) ∼ 4× 106 ∼ 1× 108 ∼ 103

Default inference settings. Unless stated otherwise, we adopt the following default configuration:
the token budget is set to βtok = 512; the reranker runs for 15 steps with a minimum of Kmin = 2
picks; the traversal is capped at 4 hops (with an earlier stop if the learned stopping policy fires); and
the curator operates on a candidate pool of size 128 with a dense-fallback pool of 64 candidates.

Supplementary experiments with alternative LLM backbones. We further report results when
using two alternative reader LLM backbones, LLaMA3.3-70B and GPT-OSS-120B, for all RAG/agent
baselines and CLAUSE. The detailed numerical results are given in Tables 8 and 9. Across all three
backbones (Qwen3-32B, LLaMA3.3-70B, and GPT-OSS-120B), CLAUSE consistently achieves the
best EM on HotpotQA, FactKG, and MetaQA. At the same time, the absolute gap between different
backbones becomes much smaller once they are coupled with our budget-aware neuro-symbolic
controller: Qwen3-32B+CLAUSE already matches or nearly matches the performance of larger
backbones, indicating that CLAUSE can largely close the performance gap between medium and
large LLMs while keeping the reader size flexible.

20

Published as a conference paper at ICLR 2026

Table 8: Main QA results: EM@1 on HotpotQA, FactKG, and MetaQA using LLaMA3.3-70B.
Family Method HotpotQA FactKG MetaQA

(Distractor) 1-hop 2-hop 3-hop

RAG-based
(LLaMA3.3-70B)

Vanilla RAG 63.8 78.3 62.0 38.6 45.4
Hybrid RAG 66.7 82.0 64.3 43.0 45.8
LightRAG 48.6 68.2 59.6 36.8 45.0
GraphRAG 51.4 73.4 65.0 49.5 50.3

Agent-based
(LLaMA3.3-70B)

ReAct 65.0 79.5 83.0 53.3 50.6
Graph-of-Thoughts 60.3 75.2 81.0 49.0 47.6
AutoGen 65.2 77.3 86.2 56.5 55.1
KG-Agent 69.3 83.3 88.0 78.8 76.3

Ours CLAUSE 73.5 85.0 92.7 87.7 87.2

Table 9: Main QA results: EM@1 on HotpotQA, FactKG, and MetaQA using GPT-OSS-120B.
Family Method HotpotQA FactKG MetaQA

(Distractor) 1-hop 2-hop 3-hop

RAG-based
(GPT-OSS-120B)

Vanilla RAG 65.9 79.2 64.8 44.9 52.5
Hybrid RAG 68.9 82.9 67.0 49.2 52.8
LightRAG 50.7 69.2 62.9 43.0 52.4
GraphRAG 53.5 74.3 67.8 55.6 54.3

Agent-based
(GPT-OSS-120B)

ReAct 65.5 80.6 84.1 65.5 53.5
Graph-of-Thoughts 61.0 76.0 81.7 49.3 52.6
AutoGen 66.6 78.3 87.0 66.0 55.8
KG-Agent 69.8 84.2 88.9 79.4 76.9

Ours CLAUSE 75.0 85.8 92.2 88.0 87.5

E COMPLEXITY ANALYSIS

E.1 TIME COMPLEXITY

Let |V ∗|, |E∗| be the sizes of the constructed subgraph, b the average out-degree on active frontiers,H
the hop cap, P the candidate-pool size, K the selected context length (dynamic), and d the embedding
width of light encoders.

Subgraph Architect (anchoring & edit). Each edit round ranks at most CB candidate edges
(retrieval + local expansion). With precomputed entity/relation embeddings and cached neighbor lists,
scoring is O(CBd); applying batched edits is O(∆E) where ∆E is the number of accepted edits.
Over TB rounds,

Tedit = O(TB · CBd+
∑
t

∆Et) ⊆ O(βlat · CBd+ βedge).

Path Navigator (traverse). At each hop, neighborhood scoring is O(bd) (or O(deg(v)) with
simple degree-based features). For TT ≤ H hops and small beam Bbeam:

Ttraverse = O(TT ·Bbeam · bd) ⊆ O(βlat · bd).

Context Curator (curate). A single-pass pointer/list-wise scorer over P items costs O(Pd) per
step; selecting K items without replacement:

Tcurate = O(K · Pd) (naive), O(Pd+K logP) (with heap/top-K).
Given a token budget βtok and average item length t̄, K ≤ βtok/t̄.

Reader call. The reader sees only the curated K items with token mass ≤ βtok. Reader runtime is
thus O(βtok) (with a fixed decoder).

Training cost (LC-MAPPO). Let S be steps per trajectory, M mini-batch size of trajectories, and
#heads = 4 (task/edge/lat/tok). The critic’s forward/backward per update is O(MSd · #heads);
actor updates add O(MS|Ai|) across the three agents. Because costs are attributed at source, the
critic’s label construction is linear in S with negligible overhead.

21

Published as a conference paper at ICLR 2026

E.2 SPACE COMPLEXITY

The dominant terms are (i) subgraph cache O(|V ∗|+ |E∗|), (ii) candidate pool O(P), and (iii) re-
play/rollout buffers O(MS) during training. Budgets bound |E∗| and S by βedge and βlat respectively.

End-to-end bound under budgets. With explicit budgets,

Tend2end = O(βlatCBd+ βedge)︸ ︷︷ ︸
edit

+O(βlatbd)︸ ︷︷ ︸
traverse

+O(Pd+K logP)︸ ︷︷ ︸
curate

+O(βtok)︸ ︷︷ ︸
reader

so latency scales linearly in βlat and βtok, allowing direct runtime control.

22

Published as a conference paper at ICLR 2026

F TRAINING COST AND SCALABILITY TO LARGE AND NOISY KGS

Let m=3 agents (Architect, Navigator, Curator), Hheads=4, batch (M,S), and width d. One update
decomposes as

Tupdate = Tenv(M,S) + Tactor(M,S) + Tcritic(M,S) + Tio/cache.

Tenv scales with edge scoring and neighbor expansions (counts
∑

t CB and
∑

t bt), alias ANN
fallbacks, and accepted edits Cedge. Tactor covers ≈ MS forward passes per agent with candidate
sizes (CB , b, P); Tcritic uses MS samples with Hheads and a GAE horizon; Tio/cache captures FAISS
lookups and adjacency fetches. The three-agent CTDE design does not triple cost: encoders are
shared for representation reuse across settings (small per-agent MLP heads) (Zhou, 2025), action sets
are typed and small (Architect: CB≪|E|; Navigator: b; Curator: pruned P), and a single centralized
critic has Hheads heads. Thus, constants grow with m and Hheads, while dependence remains linear in
S and tokens. A per-episode spend model is

Cost ≈ csym ·
(
βlatCBd+ βedge + βlatbd+ Pd+K logP

)
+ cLLM ·βtok,

with βtok fixed/small and the symbolic term linear in the budgets, yielding bounded and predictable
cost.

For memory and indexing, entity/alias embeddings and FAISS live on CPU; GPU holds the active
subgraph Gt and batched activations:

RAM ≈ O(|V | d) + O(FAISS) + O(|V ∗|+|E∗|) + O(MS).

Product quantization or 8-bit embeddings reduce ANN footprint by ×3–×8. For large KGs, frontier-
ization and budgeted pricing make per-step work depend on local branching (b) and (βedge, βlat, βtok)
rather than |E|: we use IVF+HNSW or IVF+PQ for alias lookup, degree/type-aware neighbor sam-
pling to cap CB and b, partitioned/frontier caches, and hub pricing via a degree prior in s(e | q,Gt).
Noise is mitigated via price-aware acceptance s(e) − λedgecedge>0, listwise de-duplication, and
type/logic constraints. For reproducibility, report per epoch: (M,S) and total env steps; feasible rate
under (βedge, βlat, βtok); seconds/update split (env/actor/critic/I/O); averages of CB , b, P , K; FAISS
ms/query and cache hit rate; peak CPU/GPU RAM; index size; and average reader tokens.

23

Published as a conference paper at ICLR 2026

G TRADE-OFF ANALYSIS

G.1 LAGRANGIAN SHAPING: COSTS AS PRICES, DUALS AS SHADOW VALUES

Recall the constrained objective (Eq. 1) maxπ E[Racc(τ)] s.t. E[Ck(τ)] ≤ βk, k∈{edge, lat, tok}.
The Lagrangian is L(π, λ) = E

[
Racc−

∑
k λk(Ck−βk)

]
, and the actor updates optimize the shaped

return R′ = Racc −
∑

k λkCk (Eq. 2) while dual ascent updates λ to enforce the constraints.
Proposition 1 (Shadow-price interpretation). Let J⋆(β) be the optimal value of the CMDP as a
function of the budget vector β. Under standard regularity, the optimal duals λ⋆ satisfy the envelope
property ∂J⋆(β)

∂βk
= λ⋆k. Hence, λ⋆k is the marginal EM gain per unit relaxation of budget k (edge,

latency, or tokens).

Sketch. This is a standard consequence of the envelope theorem for convex CMDPs and KKT
conditions (Appendix H).

Practical reading. λlat quantifies the EM increase obtainable by allowing one more interaction step
on average; λtok quantifies EM gain per additional token; λedge quantifies the benefit of expanding the
subgraph. Increasing any λk acts like raising the price of that resource, biasing policies toward using
less of it.

24

Published as a conference paper at ICLR 2026

H PROOF OF CONVERGENCE OF LC-MAPPO

This appendix states conditions under which the proposed LC-MAPPO converges to a stationary
point of the CMDP Lagrangian and satisfies the KKT conditions. We follow the two/three–time–scale
view in the assumptions (A1)–(A6): the centralized critic tracks action-values (fast), the actor ascends
the (penalized) objective (medium), and the dual variables perform projected ascent on constraint
violation (slow).

H.1 ASSUMPTIONS

A1 (Bounded Rewards and Costs). There exists Cr > 0 such that

|r(s, a)| ≤ Cr, |ck(s, a)| ≤ Cr, ∀(s, a), k.

Thus Jr(θ) and Jck(θ) are finite and admit stochastic gradients with bounded second moments.

A2 (Smoothness). For any fixed dual vector λ, the penalized objective

F (θ;λ) = Jr(θ)−
∑
k

λk (Jck(θ)− βk)

is LF -smooth in θ:
∥∇θF (θ;λ)−∇θF (θ

′;λ)∥ ≤ LF ∥θ − θ′∥.

A3 (Asymptotic Unbiasedness). The stochastic policy gradient estimator ĝt satisfies

E[ĝt | Ft] = ∇θF (θt;λ) + εt, εt → 0.

A4 (Bounded Variance). There exists Cg > 0 such that

E∥ĝt∥2 ≤ Cg, ∀t.

A5 (Step-Size and Time-Scale Separation). The actor step-size {αt} satisfies

∞∑
t=0

αt =∞,
∞∑
t=0

α2
t <∞.

The dual step-size ρt is slower, i.e., ρt ≪ αt. All stochastic gradients admit bounded second
moments.

A6 (Small Trust-Region Bias). Let θ̂t+1 = θt − αtgt be the ideal gradient step. The actual
PPO/COMA update θt+1 satisfies

|F (θt+1;λ)− F (θ̂t+1;λ)| ≤ Cbα
2
t .

H.2 PRIMAL (ACTOR) CONVERGENCE FOR FIXED DUALS

Fix λ and define the penalized objective L(θ, λ) = JR(θ)−
∑

k λk (JCk
(θ)−βk), and its minimiza-

tion surrogate
F (θ;λ) ≜ −L(θ, λ). (3)

Assume F (·;λ) is Lθ-smooth in θ (from (A2) and bounded rewards/costs (A1)). Denote by gt =
∇θF (θt;λ) the exact gradient and by ĝt the PPO/GAE/COMA-based stochastic gradient used by
LC-MAPPO. The actor step is

θt+1 = θt − αt ĝt, (4)

with {αt} satisfying (A5). Let the ideal step be θ̂t+1 ≜ θt − αt gt. By the Lθ-smoothness (second-
order Taylor bound),

F (θt+1;λ) ≤ F (θ̂t+1;λ) +
〈
θt+1 − θ̂t+1, ∇F (θ̂t+1;λ)

〉
+
Lθ

2
∥θt+1 − θ̂t+1∥2. (5)

25

Published as a conference paper at ICLR 2026

Taking expectations conditioned on the filtration Ft (all randomness up to t) and using the surrogate’s
(asymptotic) unbiasedness (A3)–(A4) and small-trust-region bias (A6),

E[F (θt+1;λ) | Ft] ≤ E
[
F (θ̂t+1;λ)

∣∣∣Ft

]
+
Lθ

2
E
[
∥θt+1 − θ̂t+1∥2

∣∣∣Ft

]
(a)
= F (θ̂t+1;λ) +

Lθ

2
α2
t E

[
∥ĝt − gt∥2

∣∣Ft

]
, (6)

where (a) uses θt+1− θ̂t+1 = −αt(ĝt− gt) and E[ĝt | Ft] = gt + εt with ∥εt∥ ≤ cTRϵD̄KL + cQδQ
capturing trust-region and critic-tracking biases (constants from (A3),(A6)). Next, smoothness around
θt gives

F (θ̂t+1;λ) ≤ F (θt;λ) +
〈
θ̂t+1 − θt, ∇F (θt;λ)

〉
+
Lθ

2
∥θ̂t+1 − θt∥2, (7)

which, using θ̂t+1 − θt = −αtgt, yields

F (θ̂t+1;λ) ≤ F (θt;λ)− αt∥gt∥2 +
Lθ

2
α2
t ∥gt∥2. (8)

Combining equation 6 and equation 8 and taking the total expectation,

E[F (θt+1;λ)]− E[F (θt;λ)] ≤ −αt E
[
∥gt∥2

]
+
Lθ

2
α2
t E

[
∥gt∥2

]
+
Lθ

2
α2
t E

[
∥ĝt − gt∥2

]
≤ −αt

2
E
[
∥gt∥2

]
+ C1 α

2
t + C2 α

2
t

(
ϵ2D̄2

KL + δ2Q

)
, (9)

for bounded second moments (A5) and small enough αt so that 1− Lθ

2 αt ≥ 1
2 . Summing equation 9

over t and using
∑

t αt =∞,
∑

t α
2
t <∞ (A5), Robbins–Siegmund implies

∞∑
t=0

αt E
[
∥gt∥2

]
<∞ =⇒ lim inf

t→∞
E
[
∥∇θF (θt;λ)∥2

]
= 0. (10)

Hence any limit point θ⋆(λ) is stationary for F (·;λ), equivalently stationary for L(·, λ).

H.3 DUAL (MULTIPLIER) CONVERGENCE AND KKT

The dual update is
λk,t+1 =

[
λk,t + ρt

(
ĴCk

(θt)− βk
)]

+
, (11)

with ρt satisfying (A5) and ρt ≪ αt (actor faster than duals). On the slower time scale, the actor
tracks θ⋆(λt) from Part A, so the dual recursion behaves as a projected gradient ascent on the concave
dual function D(λ) = maxθ L(θ, λ). Standard two–time–scale results then yield convergence of
{λt} to the dual-optimal set Λ⋆ and primal feasibility:

lim
t→∞

(
JCk

(θt)− βk
)
+
= 0, lim

t→∞
dist(λt,Λ

⋆) = 0. (12)

Finally, any limit point (θ⋆, λ⋆) satisfies the KKT conditions of the CMDP:
∇θL(θ

⋆, λ⋆) = 0, JCk
(θ⋆) ≤ βk, λ⋆k ≥ 0, λ⋆k

(
JCk

(θ⋆)− βk
)
= 0, ∀k. (13)

H.4 PROOF TEMPLATE MIRRORING A SMOOTHNESS STEP

For completeness, we restate the key inequality in the style of the referenced lemma. Let F be as in
equation 3, gt=∇F (θt;λ), and define θ̂t+1 = θt − αtgt and θt+1 = θt − αtĝt. By Lθ-smoothness:

F (θt+1) ≤ F (θ̂t+1) +
〈
θt+1 − θ̂t+1,∇F (θ̂t+1)

〉
+ Lθ

2 ∥θt+1 − θ̂t+1∥2. (A.1)
Taking expectations and using E[ĝt | Ft] = gt + εt,

E[F (θt+1)] ≤ E
[
F (θ̂t+1)

]
+ Lθ

2 α
2
t E

[
∥ĝt − gt∥2

]
. (A.2)

Also,

F (θ̂t+1) ≤ F (θt)+⟨θ̂t+1−θt,∇F (θt)⟩+ Lθ

2 ∥θ̂t+1−θt∥2 = F (θt)−αt∥gt∥2+ Lθ

2 α
2
t ∥gt∥2. (A.3)

Combining (A.2)–(A.3) and adding/subtracting εt as in equation 9 gives
E[F (θt+1)]− E[F (θt)] ≤ −αt E

[
∥gt∥2

]
+ Lθ

2 α
2
t E

[
∥gt∥2

]
+ Lθ

2 α
2
t E

[
∥ĝt − gt∥2

]
, (A.4)

which is the LC–MAPPO analogue of the inequality chain in (32)–(36); the rest follows by summa-
bility of {α2

t } and two–time–scale analysis for {λt}.

26

	Introduction
	Preliminaries and Related Work
	Preliminaries
	Related Work

	Problem Formulation
	Method
	CLAUSE Overview
	Design Principles
	Agentic Workflow
	Learning: LC-MAPPO
	Inference and Deployment Controls

	Experiments
	Experimental Results and Analysis
	Ablations
	Case Study

	Conclusion
	Appendix
	Large Language Models Usage Disclosure
	Notation Table
	Algorithm
	Implementation Details & Supplementary Experiment
	Complexity Analysis
	Time Complexity
	Space Complexity

	Training Cost and Scalability to Large and Noisy KGs
	Trade-off Analysis
	Lagrangian shaping: costs as prices, duals as shadow values

	Proof of Convergence of LC-MAPPO
	Assumptions
	Primal (Actor) Convergence for Fixed Duals
	Dual (Multiplier) Convergence and KKT
	Proof Template Mirroring A Smoothness Step

