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Abstract

The rapid progression of multimodal large001
language models (MLLMs) has demonstrated002
superior performance on various multimodal003
benchmarks. However, the issue of data con-004
tamination during training creates challenges in005
performance evaluation and comparison. While006
numerous methods exist for detecting mod-007
els’ contamination in large language models008
(LLMs), they are less effective for MLLMs due009
to their various modalities and multiple train-010
ing phases. In this study, we introduce a multi-011
modal data contamination detection framework,012
MM-Detect, designed for MLLMs. Our experi-013
mental results indicate that MM-Detect is quite014
effective and sensitive in identifying varying015
degrees of contamination, and can highlight016
significant performance improvements due to017
the leakage of multimodal benchmark training018
sets. Furthermore, we explore whether the con-019
tamination originates from the base LLMs used020
by MLLMs or the multimodal training phase,021
providing new insights into the stages at which022
contamination may be introduced.023

1 Introduction024

The development of MLLMs has exceeded expec-025

tations (Liu et al., 2023a; Lin et al., 2023), show-026

casing extraordinary performance on various mul-027

timodal benchmarks (Lu et al., 2022; Liu et al.,028

2023b; Song et al., 2024), even surpassing human029

performance. However, due to the partial obscurity030

associated with MLLMs training (OpenAI, 2023;031

Reid et al., 2024), it remains challenging to defini-032

tively ascertain the impact of training data on model033

performance, despite some works showing the em-034

ployment of the training set of certain datasets (Liu035

et al., 2023a; Chen et al., 2023; Bai et al., 2023b).036

The issue of data contamination, occurring when037

training or test data of benchmarks is exposed dur-038

ing the model training phase (Xu et al., 2024),039

could potentially instigate inequitable performance040

comparisons among models. This not only creates041
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Figure 1: A description of Multimodal Data Contamina-
tion, which can originate from various training stages.

a dilemma for users in model selection but also 042

poses a significant hurdle to further advancements 043

in this domain. 044

While numerous works in the field of LLMs 045

have proposed methods for detecting data contami- 046

nation (Yeom et al., 2018; Deng et al., 2024; Dong 047

et al., 2024), MLLMs, due to their various modali- 048

ties and multiple training phases (Liu et al., 2023a; 049

Li et al., 2023), face limitations when applying 050

these methods. Therefore, there is a pressing need 051

for a multimodal contamination detection frame- 052

work specifically tailored for MLLMs. 053

In this study, we carry out a systematic anal- 054

ysis of multimodal data contamination. Initially, 055

we define Multimodal Data Contamination, as 056

it pertains to the modality of data sources exposed 057

to the MLLMs, into two categories: Unimodal 058

Contamination and Cross-modal Contamination, 059

as illustrated in Figure 1. Subsequently, we un- 060

veil a detection framework, MM-Detect, which 061

incorporates two methods, Option Order Sensitiv- 062

ity Test and Slot Guessing for Perturbation Caption, 063

designed to handle two common types of Visual 064

Question Answering (VQA) tasks: multiple-choice 065

and caption-based questions, respectively. 066

To corroborate the validity and sensitivity of our 067

approach, we deliberately induce contamination 068
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in MLLMs, thus simulating feasible real-world069

scenarios. Experimental results indicate that our070

method proves to be quite effective and sensitive071

in identifying varying degrees of contamination.072

Interestingly, our findings reveal that not only does073

leakage in the multimodal benchmark test set074

play a role, but the training set can also con-075

tribute significantly to enhancing the model’s per-076

formance. Then, applying MM-Detect on twelve077

widely-used MLLMs across five prevalent VQA078

datasets, we find that both open-source and pro-079

prietary MLLMs exhibit contamination with080

varying degrees.081

To further delve into the stage where contamina-082

tion is introduced, we employ a heuristic method.083

This method seeks to distinguish whether the con-084

tamination originates from the pre-training phase085

of LLMs or the multimodal training phase. Our086

findings suggest that the contamination observed087

in some MLLMs may not necessarily stem from088

the multimodal training phase. Instead, it could089

potentially be traced back to the pre-training stage090

of their respective LLMs.091

To the best of our knowledge, our work is the092

first effort to systematically analyze multimodal093

data contamination. In conclusion, our research094

makes several important contributions:095

• We formulate the definition for multimodal096

contamination and present the MM-Detect097

framework, comprising two innovative meth-098

ods specifically designed for effective contam-099

ination detection in MLLMs.100

• We demonstrate that leakage from multimodal101

benchmark data—whether from the training,102

validation, or test sets—can significantly en-103

hance models’ performance, with this perfor-104

mance gain intensifying as the degree of con-105

tamination increases.106

• By employing a heuristic method, we pioneer107

the exploration into the stage at which con-108

tamination is introduced, revealing that it may109

stem not solely from the multimodal data but110

could also from the LLMs.111

2 Preliminaries112

We formally define the problem of multimodal data113

contamination and outline the unique challenges114

associated with its detection.115

2.1 Definition of Multimodal Data 116

Contamination 117

In contrast to single-modal contamination, mul- 118

timodal contamination may arise from both uni- 119

modal and multimodal data sources, as depicted 120

in Figure 1. The training data for MLLMs gener- 121

ally consists of pure text pre-training data Dpretrain 122

and multimodal alignment or instruction-following 123

data Dvision. Consider an instance (x, i, y) from a 124

benchmark dataset D, where x represents the text 125

input, i is the image input, and y is the label. Data 126

contamination in MLLMs can be categorized into 127

the following two cases: 128

• Unimodal Contamination: The pair (x, y) 129

or the input x appears in Dpretrain. 130

• Cross-modal Contamination: The triplet 131

(x, i, y) appears in Dvision. 132

In both cases, models trained on these data may 133

gain an unfair advantage. 134

2.2 Challenges in Multimodal Detection 135

The challenges of multimodal contamination detec- 136

tion mainly arise from two aspects. 137

Challenge I: Inefficiency of Unimodal Methods. 138

Despite the prevalence of unimodal detection meth- 139

ods, their application in multimodal scenarios of- 140

ten encounters difficulties. For example, retrieval- 141

based methods (Brown et al., 2020; Touvron et al., 142

2023a) attempt to detect contamination by retriev- 143

ing large-scale corpora used for model training. 144

Yet, they struggle when retrieving multimodal in- 145

formation. Similarly, logits-based methods (Shi 146

et al., 2024; Yeom et al., 2018) rely on observ- 147

ing the distribution of low-probability tokens in 148

model outputs, but the disparity in token probabil- 149

ity distributions is less pronounced in instruction- 150

tuned MLLMs. Masking-based methods (Deng 151

et al., 2024), which assess training contamination 152

by evaluating a model’s ability to predict specific 153

missing or masked text, face challenges when im- 154

ages in multimodal samples provide clues, leading 155

to overestimated contamination detection. Finally, 156

comparison-based methods (Dong et al., 2024) 157

that measure contamination by comparing model 158

outputs with benchmark data prove to be ineffective 159

for image caption tasks due to low output similarity. 160

To validate these inefficiencies, we have conducted 161

comprehensive experiments with compelling re- 162

sults, which are detailed in Appendix A. 163
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Figure 2: The overview of proposed MM-Detect framework.

Challenge II: Multi-stage Training in MLLMs.164

Another challenge in detecting contamination in165

MLLMs is the multi-stage nature of their train-166

ing (Yin et al., 2023). Each stage may be subject167

to data contamination. 1) Initially, the pretrain-168

ing corpus could contain the textual components169

of questions from benchmark samples. Moreover,170

in certain native multimodal model training (Reid171

et al., 2024), samples may be entirely exposed. 2)172

Subsequently, during multimodal fine-tuning, the173

model may utilize training samples of some bench-174

marks, leading to skewed performance improve-175

ments. 3) Furthermore, some models employ ex-176

tensive mixed image-text data from the internet for177

modality alignment training (Lin et al., 2023; Bai178

et al., 2023b), potentially introducing additional179

contamination. Given the challenges, the develop-180

ment of an effective detection framework for multi-181

modal contamination becomes an urgent need.182

Based on the discussion above, we have designed183

a detection method specifically tailored for multi-184

modal contamination, with a particular focus on185

VQA tasks. Additionally, we have developed a186

heuristic method to trace the introduction of con-187

tamination across different training phases.188

3 MM-Detect189

In this section, we introduce the multimodal con-190

tamination detection framework, MM-Detect. The191

core philosophy of MM-Detect is to detect the un-192

usual discrepancies in model performance before193

and after semantic-irrelevant perturbations. As de-194

picted in Figure 2, this framework operates in two195

primary steps:196

• The first step is to generate perturbed datasets197

using two innovative methods: the Option198

Order Sensitivity Test (§3.1) and the Slot199

Guessing for Perturbation Captions (§3.2),200

tailored for multiple-choice and image cap- 201

tioning tasks, respectively. 202

• The second step involves the application of 203

predefined metrics to detect contamination 204

(§3.3), conducting thorough analyses at both 205

the dataset and instance levels. 206

3.1 Option Order Sensitivity Test 207

This method is based on a reasonable and intuitive 208

premise that if the model’s performance is highly 209

sensitive to the order of the options, as shown in 210

Figure 3, it indicates potential contamination, lead- 211

ing the model to memorize a certain canonical or- 212

der of the options. 213

Figure 3: An example of Option Order Sensitivity
Test applied to a contaminated model.

Method Formulation. Let D be a dataset con- 214

sisting of n datapoints. Each datapoint di (i ∈ 215

{1, . . . , n}) comprises a question Qi, an asso- 216

ciated image Ii, and a set of answer choices 217

Ai = {a1i , a2i , . . . , ami }, where m is the number 218

of choices and the correct answer is denoted by aci . 219

To introduce positional variation, the set Ai is 220

randomly shuffled to obtain a new set A′
i, ensur- 221

ing that the index of the correct answer aci in A′
i 222

differs from its original position in Ai. The final 223

prompts, before and after shuffling, are constructed 224

by concatenating the image, question and choices: 225

P = Concat(Ii, Qi, Ai), 226
227

P ′ = Concat(Ii, Qi, A
′
i), 228
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where P and P ′ are the inputs to the model, and Qi229

and Ii remain unchanged throughout this process.230

3.2 Slot Guessing for Perturbation Caption231

This method is based on the intuition that if a232

model can predict a missing and important part of a233

sentence but fails with the back-translated version234

(from English to Chinese, then back to English), it235

likely indicates that the model has encountered the236

original sentence during training.237

Figure 4: A simple example shows the procedure.

As shown in Figure 4, the keywords identified238

are “woods” and “bike”. Since the image contains239

“woods”, a correct guess by the model may stem240

from its multimodal capabilities rather than data241

contamination. However, if the model fails to pre-242

dict “bike”, which is also present in the image, this243

may indicate potential leakage of this instance.244

Method Formulation. Let D be a dataset con-245

taining n datapoints. Each datapoint di (i ∈246

{1, . . . , n}) consists of an image-caption pair,247

where the caption Si describes the visual features248

of the corresponding image Ii. We first apply a249

back-translation function1 to Si:250

S′
i = fback-translate(Si).251

resulting in a paraphrased version S′
i. Next, we252

perform keyword extraction2 on both Si and S′
i:253

Ki = fkeyword(Si), K ′
i = fkeyword(S

′
i),254

where Ki and K ′
i denote the extracted keywords255

from Si and S′
i, respectively. We then apply a256

masking function fmask to replace the extracted257

keywords with a placeholder token [MASK]:258

Si,mask = fmask(Si,Ki), sS
′
i,mask = fmask(S

′
i,K

′
i).259

1We use the Google Translate API for Python to implement
back-translation.

2We employ the Stanford POS Tagger (Toutanvoa and
Manning, 2000), targeting nouns, adjectives, and verbs, as
they encapsulate the core meaning of the sentences.

The final prompt guiding the model to complete 260

the masked-word prediction can be represented as: 261

Pi = Concat(Ii, Qi, Si,mask), 262

263P ′
i = Concat(Ii, Qi, S

′
i,mask). 264

3.3 Detection Metrics 265

Having introduced two detection methods, we 266

now delineate the atomic metrics for the detection 267

pipeline, which consists of two primary steps. 268

Step 1: Correct Rate Calculation. This step 269

assesses the model’s performance on benchmark 270

D before and after perturbation. We denote the 271

correct rate (CR) and perturbed correct rate (PCR) 272

uniformly for both Option Order Sensitivity Test 273

(using Accuracy) and Slot Guessing (using Exact 274

Match). Here, N and N ′ are the counts of correct 275

answers before and after perturbation, respectively. 276

They are calculated as: 277

CR =
N

|D|
, PCR =

N ′

|D|
. 278

Step 2: Contamination Degree Analysis. This 279

step quantifies the model’s contamination degree 280

based on the performance variation pre- and post- 281

perturbation. Specifically, we introduce two met- 282

rics to evaluate contamination at both dataset and 283

instance levels. 284

Dataset Level Metric. We evaluate the reduc- 285

tion in atomic metrics, denoted as ∆: 286

∆ = PCR− CR 287

This reduction indicates the model’s familiarity or 288

memory of the original benchmark relative to the 289

perturbed set, thereby offering insights into poten- 290

tial contamination at the dataset level. A signifi- 291

cant negative ∆ suggests potential extensive leak- 292

age in the benchmark dataset, leading to highly 293

perturbation-sensitive model performance. 294

Instance Level Metric. Despite a non- 295

significant or positive ∆, contamination may still 296

occur at the instance level, as some instances may 297

still have been unintentionally included during 298

training. To identify such instances, we compute 299

X , the count of cases where the model provided 300

correct answers before perturbation but incorrect 301

answers after. The instance leakage metric Φ is 302

then obtained by dividing X by the dataset size: 303

Φ =
X

|D|
, 304
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where a larger Φ indicates a higher likelihood of305

instance leakage.306

307

Contamination Degree. We define the contam-308

ination degree solely based on ∆, capturing how309

much performance changes from D to Dpert. The310

threshold for each severity level (Minor, Partial,311

Severe) is derived from experimental findings in312

§4. The entire pipeline, including how these levels313

are assigned, is summarized in Algorithm 1.314

Algorithm 1 MM-Detect Framework
Require: Benchmark dataset D, Model M
1: Define contamination degree CMinor, CPartial,
CSevere

2: if D is multiple-choice then
3: Generate perturbed set Dpert via §3.1
4: else
5: Generate perturbed set Dpert via §3.2
6: end if
7: Compute CR, PCR, ∆, Φ using §3.3
8: if multiple-choice then

9: C ←


CMinor, ∆ ∈ (−1.6,−0.2]
CPartial, ∆ ∈ (−2.9,−1.6]
CSevere, ∆ ≤ −2.9

10: else

11: C ←


CMinor, ∆ ∈ (−2.4,−1.1]
CPartial, ∆ ∈ (−5.0,−2.4]
CSevere, ∆ ≤ −5.0

12: end if
Ensure: CR, PCR, ∆, Φ, C

315

4 Intentional Contamination316

In this section, we address three research questions317

through intentional contamination:318

RQ1: Is MM-Detect an effective detector?319

RQ2: How sensitive is MM-Detect?320

RQ3: Does training set leakage cause bias?321

To answer these questions, we adopt the LLaVA322

framework and train several 7B-parameter models323

using intentionally contaminated downstream task324

data during the visual instruction tuning phase. We325

then evaluate the degree of contamination in each326

model. The contamination data are identical to327

those described in §5.1.328

4.1 MM-Detect is An Effective Detector329

We reproduced the LLaVA-1.5-7B experiment to330

obtain a baseline model without contamination.331

Recognizing that contamination can occur any-332

where in the training data, we inserted contami-333

nated samples into the visual instruction tuning334

dataset (Dtuning) at three positions, early, mid, and335

late, creating two groups of contaminated training336

sets using 1340 ScienceQA test samples or 1000337

NoCaps validation samples. Corresponding mod- 338

els, termed Early Cont., Mid Cont., and Late Cont., 339

were then trained for comparison with the baseline. 340

Models
ScienceQA Test Set NoCaps Val. Set
CR PCR ∆ CR PCR ∆

Baseline 61.4 61.5 0.01 33.0 32.1 -0.9
Early Cont. 71.5 68.1 -3.4 37.5 32.0 -5.5
Mid Cont. 69.4 67.3 -2.1 38.5 35.1 -3.4
Late Cont. 70.2 66.9 -3.3 38.7 32.6 -6.1

Table 1: Detection results on contamination using the
ScienceQA test set and NoCaps validation set.

Table 1 shows that incorporating contaminated 341

data during training increases both the model’s per- 342

formance and its sensitivity to perturbations. Com- 343

pared with the baseline, ScienceQA-contaminated 344

models exhibit average increases in CR and PCR 345

of 9.0% and 5.9%, respectively, while NoCaps- 346

contaminated models show increases of 5.2% and 347

1.1%. Moreover, all contaminated models demon- 348

strate a marked decrease in ∆, confirming that 349

MM-Detect effectively identifies data contamina- 350

tion. We define the average ∆ across these models 351

as the threshold for severe contamination (CSevere); 352

specifically, ∆ ≤ −2.9 indicates severe leakage in 353

the multiple-choice dataset, and ∆ ≤ −5 indicates 354

severe leakage in the caption dataset. 355

4.2 MM-Detect is Sensitive and Fine-grained 356

We evaluated MM-Detect’s sensitivity by varying 357

leakage levels in the training set. Using the fully 358

contaminated model as our baseline, we trained 359

additional models with moderate and minimal con- 360

tamination, by inserting reduced amounts (10% and 361

50%) of contaminated data at the late position of 362

the training set, to assess leakage impact. 363
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Figure 5: Performance and atomic metrics evaluated
under varying leakage levels on the ScienceQA test set
and NoCaps validation set.

As illustrated in Figure 5, increasing contami- 364

nation from 10% to 50% to 100% results in cor- 365

responding increases in CR and PCR, alongside 366

progressively larger ∆ values. We define the ∆ 367

for 50% contamination as the threshold for partial 368
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leakage (CPartial) and that for 10% contamination369

as the threshold for minor leakage (CMinor), as de-370

tailed in Algorithm 1. These findings confirm that371

our framework can accurately differentiate between372

varying leakage levels in benchmark datasets.373

4.3 Training Set Leakage Leads to Unfairness374

We investigated whether training set leakage bi-375

ases evaluations by comparing models trained with376

and without benchmark data contamination. For377

the ScienceQA experiment, we appended 2000 Sci-378

enceQA training samples to the training dataset,379

creating a contaminated model. For the COCO380

experiment, we removed the COCO-Caption2017381

training data from the original training dataset, re-382

sulting in a model without leakage.383

Model Dataset CR PCR ∆

Clean ScienceQA 61.4 61.5 0.01
Leaked ScienceQA 64.3 63.8 -0.5

Clean COCO-Caption2017 32.5 31.9 -0.6
Leaked COCO-Caption2017 38.1 34.9 -3.2

Table 2: Performance of models trained without (Clean)
and with (Leaked) training set contamination.

Table 2 compares the models’ performance. On384

the ScienceQA test set, the contaminated model385

outperforms the clean model by 2.9% in CR and386

2.3% in PCR, with a ∆ of -0.5, meeting the mi-387

nor leakage threshold (CMinor). On the COCO-388

Caption2017 validation set, the model with COCO389

data shows a ∆ of -3.2, exceeding the partial leak-390

age threshold (CPartial). The results indicate that391

training set leakage inflates performance and that392

MM-Detect can effectively detect it likewise.393

Takeaways
Both training and test set leakage can result in un-
fairness, and the degree of contamination can be
detected through MM-Detect effectively.

5 Experiment394

In this section, we demonstrate the practicality of395

our methodology in verifying the leakage of multi-396

modal benchmark datasets across several MLLMs.397

5.1 Setup398

Models. We conducted extensive evaluations on399

nine open-source MLLMs, including LLaVA-1.5-400

7B (Liu et al., 2023a), VILA1.5-3B (Lin et al.,401

2023), Qwen-VL-Chat (Bai et al., 2023b), fuyu-402

8b3, idefics2-8b (Laurençon et al., 2024), Phi-3-403

vision-128k-instruct (Abdin et al., 2024), Yi-VL-404

6B (AI et al., 2024), InternVL2-8B (Chen et al.,405

3https://www.adept.ai/blog/fuyu-8b

2023, 2024b), DeepSeek-VL2-Tiny (Wu et al., 406

2024), as well as three proprietary MLLMs: GPT- 407

4o-2024-08-06 (OpenAI, 2023), Gemini-1.5-Pro- 408

002 (Reid et al., 2024), and Claude-3.5-Sonnet- 409

2024-06-204. 410

Benchmark Datasets. Our analysis leverages 411

two multi-choice datasets: ScienceQA (Lu et al., 412

2022) and MMStar (Chen et al., 2024a), along with 413

three caption datasets: COCO-Caption2017 (Lin 414

et al., 2015), NoCaps (Agrawal et al., 2019), and 415

Vintage5. MMStar and Vintage, owing to their 416

recent inception, serve to contrast leakage levels 417

with other datasets. We randomly selected 2000 418

and 1340 samples from ScienceQA’s training and 419

test sets, respectively, with 1000 samples from the 420

other datasets. Given the unavailability of public 421

test labels for COCO-Caption2017 and NoCaps, 422

we used their validation sets. 423

5.2 Main Results 424

Multi-choice Datasets. Table 3 yields several 425

conclusions: (1) Both open-source and propri- 426

etary models exhibit contamination. For exam- 427

ple, on the ScienceQA training set, both open- 428

source models like LLaVA-1.5-7B and idefics2-8b 429

and proprietary model Gemini-1.5-Pro show minor 430

contamination degree. (2) Proprietary models are 431

more contaminated. Claude-3.5-Sonnet, for in- 432

stance, registers a severe ∆ with higher Φ values 433

on both ScienceQA training and test sets, indicat- 434

ing extensive leakage. (3) Training set leakage is 435

more pronounced than test set leakage. On the 436

ScienceQA dataset, models generally exhibit larger 437

∆ values in the training set, for instance, Claude- 438

3.5-Sonnet shows ∆ = −5.3 on training versus 439

∆ = −2.4 on the test set, while most models have 440

near-zero ∆ on the test set. (4) Older benchmarks 441

are more prone to leak. The older ScienceQA test 442

set shows more severe leakage (e.g., Claude-3.5- 443

Sonnet’s ∆ of -2.4) compared to the newer MMStar 444

validation set (e.g., fuyu-8b’s ∆ of -1.2). 445

Caption Datasets. Table 4 yields several con- 446

clusions: (1) Both open-source and propri- 447

etary models exhibit contamination on caption 448

datasets. For example, in the COCO Validation 449

Set, open-source models such as DeepSeek-VL2- 450

Tiny and proprietary models like GPT-4o record 451

4https://www.anthropic.com/news/
claude-3-5-sonnet

5https://huggingface.co/datasets/
SilentAntagonist/vintage-artworks-60k-captioned
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Model ScienceQA Training Set ScienceQA Test Set MMStar Validation Set

Metric CR PCR ∆ Φ CR PCR ∆ Φ CR PCR ∆ Φ

Open-source MLLMs
LLaVA-1.5-7B 59.7 58.6 -1.1 12.7 60.3 61.6 1.3 10.5 38.9 41.7 2.8 11.0
VILA1.5-3B 57.7 58.3 0.6 14.5 60.3 59.8 -0.5 14.8 38.6 37.6 -1.0 13.9
Qwen-VL-Chat 58.4 60.8 2.5 13.3 60.3 60.4 0.1 13.7 40.9 44.2 3.3 13.2
fuyu-8b 36.5 37.5 1.0 13.4 37.4 36.9 -0.5 14.9 28.2 27.0 -1.2 17.7
idefics2-8b 85.1 84.0 -1.2 3.7 84.0 84.3 0.3 2.8 48.2 49.3 1.1 7.9
Phi-3-vision-128k-instruct 90.5 90.4 -0.1 4.6 88.4 89.1 0.7 3.9 48.7 51.9 3.2 7.2
Yi-VL-6B 60.5 61.8 1.3 10.0 59.5 61.3 1.8 9.6 38.8 44.0 5.2 9.3
InternVL2-8B 94.1 93.9 -0.3 2.0 92.3 93.1 0.8 1.7 56.9 60.1 3.2 5.1
DeepSeek-VL2-Tiny 86.4 86.5 0.1 5.3 87.1 86.9 -0.2 5.3 51.1 52.1 1.0 10.7

Proprietary MLLMs
GPT-4o 69.9 70.0 0.1 2.7 69.1 69.7 0.6 2.8 48.6 50.5 1.9 9.4
Gemini-1.5-Pro 68.5 67.9 -0.6 6.6 66.5 66.2 -0.3 7.1 45.7 45.5 -0.2 9.9
Claude-3.5-Sonnet 70.3 65.0 -5.3 15.3 67.3 64.9 -2.4 12.4 36.3 36.4 0.1 15.9

Table 3: Comparison of MLLMs on multichoice datasets. Bold values represent the most significant ∆ or Φ; color
codes denote contamination degree: green for CMinor, yellow for CPartial, and red for CSevere.

Model COCO Validation Set NoCaps Validation Set Vintage Training Set

Metric CR PCR ∆ Φ CR PCR ∆ Φ CR PCR ∆ Φ

Open-source MLLMs
LLaVA-1.5-7B 34.6 34.0 -0.6 19.0 30.9 28.5 -2.4 17.9 10.8 10.1 -0.7 9.0
VILA1.5-3B 19.1 20.5 1.4 13.0 19.1 20.5 1.4 13.0 1.5 2.2 0.7 1.5
Qwen-VL-Chat 32.2 30.3 -1.9 19.2 28.7 27.3 -1.4 16.7 15.1 15.4 0.3 12.4
fuyu-8b 9.6 10.6 1.0 7.8 10.0 9.8 -0.2 8.3 2.4 3.3 0.9 2.3
idefics2-8b 43.5 42.3 -1.2 21.2 42.6 37.5 -5.1 23.3 18.5 17.0 -1.5 14.5
Phi-3-vision-128k-instruct 38.8 39.3 0.5 19.4 36.9 33.3 -3.6 19.7 17.4 11.7 -5.7 14.3
Yi-VL-6B 43.9 43.3 -0.6 19.4 37.2 36.1 -1.1 17.5 3.3 4.2 0.9 2.8
InternVL2-8B 53.3 51.9 -1.4 20.4 48.0 46.2 -1.8 20.9 28.0 28.7 0.7 18.8
DeepSeek-VL2-Tiny 23.8 21.4 -2.4 13.5 19.3 18.1 -1.2 12.2 7.5 6.9 -0.6 6.3

Proprietary MLLMs
GPT-4o 58.1 54.4 -3.7 23.1 54.2 55.1 0.9 19.4 36.3 38.4 2.1 20.1
Gemini-1.5-Pro 57.5 55.3 -2.2 21.6 51.2 52.0 0.8 18.7 46.3 41.0 -5.3 28.3
Claude-3.5-Sonnet 53.7 51.0 -2.7 21.8 50.8 51.5 0.7 20.0 35.2 33.0 -2.2 21.3

Table 4: Comparison of MLLMs on caption datasets.

a significant contamination degree. (2) Leakage452

levels vary significantly by benchmark. For ex-453

ample, on the NoCaps Validation Set, open-source454

models exhibit more pronounced contamination de-455

gree than proprietary models, whereas the trend456

reverses on the COCO Validation Set. These find-457

ings confirm that caption datasets are vulnerable to458

leakage, with proprietary models generally exhibit-459

ing more pronounced contamination effects.460

Takeaways
Multimodal data contamination, at both dataset and
instance levels, is prevalent in open-source and pro-
prietary MLLMs across multi-choice and image cap-
tion datasets.

6 At Which Stage is Contamination461

Introduced?462

In this section, we investigate the source of contam-463

ination in MLLMs. Although the training data for464

some MLLMs is openly documented, an important465

question remains: if contamination does not arise 466

during the multimodal training phase, could it stem 467

from the unimodal (pre-training) phase, as defined 468

in §2.1? To address this possibility, we examined 469

the underlying LLMs of the evaluated MLLMs and 470

conducted a series of experiments (§6.1). We also 471

explored the origins of cross-modal contamination 472

arising during visual instruction tuning (§6.1). 473

6.1 A Heuristic Experiment for Unimodal 474

Contamination Detection 475

We employed a heuristic approach based on the 476

intuition that if an LLM can correctly answer an 477

image-required question without the image, it may 478

indicate the leakage of that instance. 479

Experiment Setup. We used MMStar as the 480

benchmark, where every question relies on vi- 481

sual input for correct answers. The tested mod- 482

els include LLaMA2-7B (Touvron et al., 2023b) 483

(used by LLaVA-1.5 and VILA), Qwen-7B (Bai 484
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et al., 2023a) (used by Qwen-VL), Mistral-7B-v0.1485

(Jiang et al., 2023) (used by idefics2), Phi-3-small-486

128k-instruct (Abdin et al., 2024) (used by Phi-3-487

vision), Yi-6B (AI et al., 2024) (used by Yi-VL),488

and Internlm2-7B (Cai et al., 2024) (used by In-489

ternVL2). To discourage random guessing, we ap-490

pended the prompt “If you do not know the answer,491

output I don’t know” to the instructions. Accuracy,492

the frequency with which models correctly answer493

questions without image input, is reported as the494

primary metric. Note that we did not evaluate Fuyu-495

8B and proprietary models since their unimodal496

LLM and training data remain undisclosed.497

Model Accuracy ΦM

LLaMA2-7b (LLaVA-1.5 & VILA) 25.6 11.0
Qwen-7B (Qwen-VL) 13.2 13.2
Internlm2-7B (InternVL2) 11.0 5.1
Mistral-7B-v0.1 (idefics2) 10.7 7.9
Phi-3-small-128k-instruct (Phi-3-vision) 6.1 7.2
Yi-6B (Yi-VL) 3.4 9.3

Table 5: Contamination rates of LLMs used by MLLMs.
ΦM denotes the Φ of the respective MLLMs.

Main Results. Table 5 yields several conclusions:498

(1) Contamination occurs in LLM. All models499

exhibit varied contamination rates, indicating that500

their pre-training data likely included text from501

multimodal benchmarks. (2) Elevated LLM con-502

tamination correlates with increased MLLM503

leakage. For instance, VILA1.5-3B and Qwen-VL-504

Chat exhibit significant Φ values that mirror their505

underlying LLM contamination levels. These find-506

ings suggest that contamination in these MLLMs507

may originate partly from the LLMs’ pre-training508

phase, rather than solely from multimodal training.509
510

6.2 Tracing Origins: A Review of MLLM’s511

Visual Instruction Tuning Data512

To investigate the origins of cross-modal contam-513

ination, we scrutinize the visual instruction tuning514

data of MLLMs. We delve into the construction515

process of three benchmark datasets: ScienceQA,516

COCO Caption, and Nocaps, comparing them with517

the training data and its sources of various open-518

source MLLMs to analyze the degree of overlap.519

520 As Table 6 illustrates, MLLMs marked in red521

and yellow typically exhibit a significant contami-522

nation degree. Yet, even MLLMs labeled in green523

aren’t exempt from the risk of cross-modal con-524

tamination. This is because some models have525

been trained on large-scale interleaved image-text526

datasets (e.g., OBELICS (Laurenon et al., 2023)),527

Model ScienceQA COCO Caption Nocaps

Phi-3-Vision 0.7 0.5 -3.6
VILA -0.5 1.4 1.4

Idefics2 0.3 -1.2 -5.1
LLaVA-1.5 1.3 -0.6 -2.4

Yi-VL 1.8 -0.6 -1.1
DeepSeek-VL2 -0.2 -2.4 -1.2
Qwen-VL-Chat 0.1 -1.9 -1.4

InternVL2 0.8 -1.4 -1.8

Table 6: Depiction of the overlap between the training
data of MLLMs and the benchmarks, as well as the
contamination degree ∆ of MLLMs on benchmarks.
Green signifies no overlap, yellow suggests potential
overlap, and Red indicates partial or entire overlap.

datasets derived from online sources (e.g., Concep- 528

tual Caption (Sharma et al., 2018)), or in-house 529

data. Furthermore, some models haven’t fully dis- 530

closed their training data, which may lead to over- 531

looked potential leaks in benchmark datasets. 532

Takeaways
The contamination in MLLMs may not only stem
from cross-modal contamination but also from uni-
modal contamination, both of which can signifi-
cantly impact the overall performance.

7 Conclusion and Future Work 533

In this study, we introduce and validate a multi- 534

modal data contamination detection framework, 535

MM-Detect, providing new perspectives for eval- 536

uating contamination in MLLMs. We discovered 537

that popular MLLMs exhibit varying degrees of 538

data contamination, which directly impacts their 539

performance and generalization ability. In addition, 540

our experiment indicates that MM-Detect is sensi- 541

tive to varying degrees of contamination and can 542

highlight significant performance improvements 543

due to the leakage in the multimodal benchmark 544

training set. Furthermore, we found that the con- 545

tamination in MLLMs may not solely originate 546

from the cross-modal contamination but could also 547

stem from the unimodal contamination. 548

Future work will focus on two key areas: 549

• Firstly, standardizing the use of multimodal 550

datasets and reporting potential contamination 551

impacts to minimize contamination, thereby 552

enhancing data consistency and quality. 553

• Secondly, creating a continuously updated 554

benchmarking system for the ongoing eval- 555

uation of multimodal model performance. 556

This will support advancements and broader appli- 557

cations in this field. 558
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Limitations559

We acknowledge several limitations in our work.560

First, this work is limited to discussions around vi-561

sual modalities, and does not yet cover other modal-562

ities such as audio or video. Second, we only se-563

lected widely used and representative multimodal564

datasets for detection, including multiple-choice565

datasets and caption datasets, without testing ad-566

ditional datasets, such as open-ended generation567

and cloze questions. However, we speculate that568

the method Slot Guessing for Perturbation Caption569

may also apply to other types of image-feature-570

analyzing benchmarks. Third, the effectiveness of571

Option Order Sensitivity Test can be undermined572

by option shuffling, which, while potentially im-573

proving model performance, is computationally574

expensive and may increase the training cost.575
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A Inefficiency of Unimodal Methods 853

We demonstrate the results of traditional uni- 854

modal contamination detection methods applied 855

to MLLMs. 856

A.1 Logits-base 857

These methods determine contamination by observ- 858

ing the distribution of low-probability tokens in 859

model outputs. However, MLLMs typically un- 860

dergo instruction fine-tuning, which enhances their 861

instruction-following capabilities, leading to less 862

significant differences in token probability distri- 863

butions. As shown in Table 7, LLaVA-1.5-13b 864

exhibits extremely low perplexity on multimodal 865

benchmark datasets. 866

Dataset Perplexity Split

ScienceQA 1.4498 Training Set
MMStar 1.4359 Validation Set

COCO-Caption2017 1.7530 Validation Set
NoCaps 1.8155 Validation Set

Table 7: Perplexity of LLaVA-1.5-13b on various mul-
timodal benchmarks (100 samples randomly selected
from each dataset).

A.2 Masking-base 867

These methods involve masking phrases or sen- 868

tences and providing data from the benchmark to 869

guide the model in filling in the missing parts. How- 870

ever, multimodal datasets often contain images that 871

include the masked portions of sentences, effec- 872

tively providing answers to the model. This results 873

in significantly higher success rates for MLLMs 874

in predicting missing parts compared to unimodal 875

language models, leading to exaggerated contam- 876

ination detection. As shown in Table 8, LLaVA- 877

1.5-13b has a high probability of Exact Match for 878

predicting the masked word. 879

A.3 Comparison-base 880

These methods identify contamination by compar- 881

ing the similarity between models’ outputs and 882
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Dataset Exact Match ROUGE-L F1 Split

COCO-Caption2017 0.24 0.36 Validation Set
NoCaps 0.22 0.29 Validation Set

Table 8: Contamination detection of LLaVA-1.5-13b
using TS-Guessing (question-based) on various mul-
timodal benchmarks (100 samples randomly selected
from each dataset).

benchmark data. However, MLLMs often undergo883

data augmentation, causing their outputs to diverge884

significantly from the labels in benchmark data,885

making effective contamination detection challeng-886

ing. From Table 9, we can see that CDD (Contami-887

nation Detection via Output Distribution) indicates888

a contamination metric of 0% across all multimodal889

benchmark datasets.890

Dataset Contamination Metric Split

COCO-Caption2017 0.0000% Validation Set
NoCaps 0.0000% Validation Set

Table 9: Contamination detection of LLaVA-1.5-13b us-
ing CDD (Contamination Detection via Output Distribu-
tion) on various multimodal benchmarks (100 samples
randomly selected from each dataset).
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