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ABSTRACT

Deep Neural Networks (DNNs) are powerful systems able to freely evolve on
their own from training data. However, like any highly parametrized mathemati-
cal model, capturing the explanation of any prediction of such models is rather
difficult. We believe that there exist relevant mechanisms inside the structure
of post-hoc DNNs that supports transparency and interpretability. To capture
these mechanisms, we quantify the effects of parameters (pieces of knowledge)
on models’ predictions using the framework of causality. We introduce a gen-
eral formalism of the causal diagram to express cause-effect relations inside the
DNN’s architecture. Then, we develop a novel algorithm to construct explanations
of DNN’s predictions using the do-operator. We call our method, Interventional
Black-Box Explanations. On image classification tasks, we explain the behaviour
of the model and extract visual explanations from the effects of the causal filters in
convolution layers. We qualitatively demonstrate that our method captures more
informative concepts compared to traditional attribution-based methods. Finally,
we believe that our method is orthogonal to logic-based explanation methods and
can be leveraged to improve their explanations.

1 INTRODUCTION

The design of deep neural networks (DNNs) is built on complex structure of neurons, layers and
operations (e.g., convolutions, non-linearity and back-propagation). These biologically-inspired de-
signs are able to evolve by their own from training data. Their high dimensional parameter space
allows learning meaningful semantics from large data distributions and perform well on many tasks.
However, makes difficult to capture explanation of their behaviour. This is one of fundamental
obstacles for using these models on critical systems. Most popular explanation methods focus on
creating saliency maps from classification models to visualize important features (Selvaraju et al.
(2017b); Binder et al. (2016); Simonyan et al. (2014)) of a predicted class. However, saliency maps
are not sufficient to reason on model behaviour and the explanations are not consistent between
these methods. It is important to explain what are the mechanisms inside the hidden layers by which
the model makes a prediction from an input. In this paper, we address this problem using causal
inference.

Understanding of cause-effect relations in the DNN architecture is one way to make such black
box models transparent and to explain their behaviour when tested on new data. Structural causal
models (SCM) (Pearl (2009)) and their causal diagrams use interventions in terms of the do-calculus
to express these relations. We rely on this framework to explain black box DNNs. We are interested
in explaining post-hoc models, i.e., models after training. Recently, some work have addressed DNN
explanations using causality (Chattopadhyay et al. (2019); O’Shaughnessy et al. (2020); Narendra
et al. (2018)). These methods concentrate on the data generation process and input-output relations
in classification models. Their goal is to explain the effects of changing aspects in input data on
model predictions. Our work is different because we focus on the model itself, more precisely,
the pre-trained knowledge stored in its parameters. We consider deep convolution models which
are widely applied to computer vision tasks and have some applications in speech recognition and
natural language processing. A neural network architecture is a form of Directed Acyclic Graph
(DAG) models, in which neurons (nodes) are connected by directed edges form one layer to the next.
A causal diagram or SCM was used to summarize the complex structure of DNNs (Chattopadhyay
et al. (2019); Narendra et al. (2018)) such that interventions can be applied to explain the effect of
a variable of interest on model prediction. The construction of the causal diagram depends on the
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Figure 1: The proposed causal diagram of DNN model. (a) Examples of DNNs with convolution
layers. (b) A graphical abstraction of the DNNs architectures to a simple DAG graph. Each node ui
represents one channel in a hidden layer. (c) Illustrates the proposed causal diagram on an example
of a CNN with 2 hidden layers, each composed of one convolution unit.

variables of interest that we would like to understand their effects. Some methods (Chattopadhyay
et al. (2019); O’Shaughnessy et al. (2020); Harradon et al. (2018)) consider the latent features of a
generative model as variables of interest. Narendra et al. (2018) focused on explaining the effect of
the variance in convolution filters of a CNN. In this work, we provide a different view of the causal
diagram (see Fig.1) which allows to perform causal reasoning on the entire structure of the DNN.

We summarize our contributions as follows. We build a causal graph of a post-hoc DNN. We de-
velop an algorithm, termed interventional black box explanations, to find the causal mechanisms that
explain the local and global DNN behaviour on individual samples and across samples, respectively.
We show that our explanations can be used to correct or improve the probability of a prediction in
test time. We consider, in this work, architectures for image classification. We capture explanations
for LeNet and ResNet18 architectures using MNIST and ImageNet data inputs. We show that the
explanations obtained by our method can be effectively used to remove noise in the model and im-
prove its performance. Finally, like attribution-based methods, we provide visual explanations of
classifier’s behaviour computing visual concepts (semantics) from the effect variables (response of
causal filters). We qualitatively demonstrate that our method captures more informative concepts
strongly connected to model’s prediction and useful for human interpretability.

2 INTERVENTIONAL BLACK BOX EXPLANATION

We begin our method by paving the way to the construction of the proposed causal diagram for
post-hoc DNN (Section 2.1). In Section 2.2, we define the causal diagram followed describing of
the proposed algorithm (Section 2.3).

2.1 FORMAL SETTING

We will use DNN and CNN interchangeably in this paper as we focus on classification networks
comprising hidden convolution layers, but we keep in mind that our method is generic and can be
applied on other architectures. In formal setting, a black-box CNN has two major components: a
feature extraction module consisting of n convolution layers followed by a classifier with m fully
connected layers. An input is an image X ∈ Rd1×d2×c0 , (d1, d2 are the spatial dimensions and c0
is the channels number). The subscribe number indicates that this is the input layer l0. An output
y ∈ RK (K is the number of classes) is a real-valued vector of predictions indicating the class logits
of X . The feature extraction module can be a simple structure of sequential layers (l1, ...., ln) where
each layer li consists of ci convolution units (we call them nodes) and connected with all ci+1 units
in layer li+1. This structure can be more complex in state-of-the-art DNNs, such as ResNets, where
skip connections are designed to jump over some layers (see Fig 1(a)). For simplicity, we assume
non-linearity, batch normalization and pooling (if they exist) as parts of every node in layer li. A
layer li in the classifier module consists of vi neurons, and every neuron is densely connected to all
vi+1 neurons in layer li+1. The neurons are naturally nodes in those densely connected layers. We
will substitute ci by vi to unify the notations. Consequently, we summarize the graphical structure
of the DNN by GM = ({v0, ..., vn, ....vN}), {E0,1, ..., EN−1,N}, with N = n + m and Ei,i+1 is
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edge vector connecting the nodes in layer li to li+1 as shown in Fig 1(b). In post-hoc DNNs, each
path communicates the information from layer li to layer li+1 in a single direction starting from the
input and passing forward to the output (prediction). It is an Acyclic Directed Graph (DAG). Note
that this assumption is not valid on the network during training because of backpropagation. The
pre-trained knowledge captured from training data is stored in the DNN’s parameters (i.e., weights).
We define wk

i ∈ Rvi as the weight vector connected to the k-th node in layer li+1. We show in the
next section the motivation for this notation.

2.2 THE CAUSAL DIAGRAM OF POST-HOC DNNS

A causal diagram is a graphical model that summarizes an existing knowledge where the nodes rep-
resent the variables of interest and edges represent the causal relationships between variables (Green-
land & Pearl (2011)). A causal explanation consists of a causal diagram and symbolic queries de-
fined by interventions, or do-calculus, to express cause-effect relations (Pearl & Mackenzie (2018)).
For post-hoc DNNs, knowledge is encapsulated in its weights during the training phase. For CNNs,
the filters of convolution layers express the pieces of knowledge that construct the entangled feature
space and concepts of an input data. There are too many parameters to explore, and the goal of the
causal graph is to uncover the important ones that explain the behaviour of the model. To explain
the effects of these parameters on predictions, we propose a causal diagram as the example shown
in Fig. 1(c). In this graph, we distinguish between two types of variables: parameters and features
(network nodes). Our variables of interest are: parameters W = (W0, ...,WN−1), test input X and
the output (prediction logits) y. In between, there are mediator variables (features) which transmit
the effect of interventions on the parameters of intermediate layers to the output. As we can see,
there is no direct effect of parameters variables in intermediate layers; there is only one direct effect
on y which is the effect of WN−1 (N is the logits layer). Also, there is no effect of input data X
on parameters variables as they are independent in the case of post-hoc DNNs1. The parameters
variables, wi, and features ui form a collider at ui+1 in layer li+1 . This brings us to the following
assumption which is the basic block of our proposed method.

Assumption 1 A de-confounded (robust) explanation of a black-box DNN can be defined by the
measure of changes between the effect distributions P (y|do(wk

i ),X) obtained by interventions on
wk

i and the observed distribution (outcome) P (y|X), for any i ∈ {1, ..., N} and k ∈ {1, ..., vi+1}.

It is easy to check the validity of Assumption 1 from the causal graph shown in Fig. 1(c). First,
the graph allows us isolating the parameters of interest and reason on the effect of every parameter
on model output. Second, model parameters are not confounded by the skip connections existing in
complex models, like ResNet. This is not the case when considering the features space where some
variables may have common effects on multiple variables. We show such case in Fig. 1(c) where u1
is a confounder (u2 ← u1 → y). Confounders require adjustment criterion (Pearl (2009)) to block
any superiors correlations that give wrong effect estimates. This becomes more difficult in complex
DNNs because of many confounders (Chattopadhyay et al. (2019)).

2.3 FINDING CAUSAL MECHANISMS IN POST-HOC DNN

We are interested in finding the mechanisms (causal pathways) along which changes flow from
causal variables to the effects. These mechanisms will form explanations of the DNN’s behaviour
for every data input (local explanations) and across inputs (global explanations).

For simplicity, let us first consider the example in Fig 1 (c), where we have a single parameter w in
each layer. The causal model shows that the effect of a causal parameter wk

i , or filter for convolution
layers, on model output (y) is mediated by the effect of changes on variables (called mediators) along
the paths from layers li+1, ..., lN−1 after intervening on wk

i . These changes will also transmit to the
output variable in lN . Generally, each layer has multiple neurons and we may apply interventions
on a set of selected parameters (k ∈ I) to analyze their combined effect on model’s output.

1The parameters update their values in the training phase using the training data inputs, which creates a
causal path between data inputs and model parameters.
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The interventions do(wk
i ) imply changing the values of wk

i . In convolution layers, each wk
i is a

tiny set of pixels (e.g., 9 in case of 3 × 3 filter). Changing one single value would not carry out
significant changes on the output. Therefore, we consider changing all the values of the filter. In
fully connected layers, a parameter is a scalar value. The effect of changing one single parameter in
the penultimate layer of the classifier would be highly significant to the output.

To find the causal mechanisms, we start by quantifying the direct effect on the prediction variable yj
(for class j), which are in this case the parameters wj

N−1. We intervene on every single parameter
and analyze its effect. Finding the direct effects enables identifying the causal paths in the network.
However, for intermediate layers we cannot do interventions on every single parameter. This is
computationally very expensive and not practical in inference time. Moreover, deep networks are
highly parametrized, which would lead to a high variance in cause-effect relations thus making
difficult to capture robust explanations. We propose a robust selection criterion to select the variables
that we want to intervene on. This leads to the following proposition.

Proposition 1 (Intervention variables in intermediate layers) For wK
i , the set of indices K ∈

{1, ..., vi+1} of the mediators in intermediate layer li+1 and I ∈ {1, ..., vi} a subset of indices cor-
responding to the causal parameters wK

I,i. Then there exist causal paths between uI,i and uK,i+1

and I will identify the intervention variables in li−1

We proof Proposition 1 on simple example in Appendix A. As we notice, we measure changes in
retrospective way, so the selection criterion is defined for layer li−1 after finding the causal param-
eters in layer li. To find the indices I for layer li−1, we focus on changes which are statistically
significant using a threshold δi which is defined as

δi = (µỹ − µj)/σỹ (1)

where µj is the original prediction (reference) of the true class j, and µỹ is the average value of
changed prediction and σỹ is the standard deviation. To capture the informativeness in causal pa-
rameters, we introduce in Proposition 2 the formula for the causal effect.

Proposition 2 (Causal effect) Given an input X and let WK
i be the set of causal variables (or

paths) to the K neurons in li+1, the causal effect (CSi) of do(WK
i ) is a measure of the information

flow from WK
i to y which is defined as:

CSi(n) = Ey

[
log p(y|wK

n,i = αn,X)

log p(y|xs)

]
(2)

where p(y|X) is the Softmax of the prediction logits of an input X , n = (0, ..., vi − 1), and αn are
the change values for each single parameter.

We put details of Proposition 2 in Appendix A. The interventions that we used in this work are
αn = 0. Propositions 1 and 2 uncover the causal mechanism of a hidden layer i in the DNN’s
architecture. Algorithm 1 describes how we apply them to capture the causal mechanisms in all
layers.

2.4 IMPLEMENTATION DETAILS

The implementation of our Algorithm requires an architecture (GM ) of the DNN, that can be a simple
MLP or a CNN, a pre-trained knowledge (W), an input X and its prediction y. The output of the
algorithm is two dictionaries G+ and G− which we use to explain the behaviour of the model given
X and y. The algorithm starts in a retrospective way from the penultimate layer (l = N−1) and the
target class K = j. First, it computes the direct effect of the parameters on the output (prediction
layer lN ). It searches two sets of indices: I+ indicating the causal parameters, {wk

l }, which have
positive effect, and I− that refers to the causal parameters, {wn

l } (n 6= k ∀k, n), that have negative
effect on the class of interest yj , then updates G+, G− respectively. Next, we use I+ to update K
and select the intervention variables {wK

l } for the next iteration (where l becomes l−1). We repeat
the steps 3 to 10 until we end up with the input layer l0.
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Algorithm 1 Causal mechanisms of post-hoc DNN

Input: X,y, j,GM , N,W
Output: G+, G−

1: Initialize l = N − 1, G+ = G− = {},K = {j}
2: repeat
3: I+ ← {}, I− ← {}
4: for each w ∈ wK

l do
5: w ← 0 and compute ỹ
6: Add the index of w to I+ if ỹ − y < δl else: Add the index of w to I− if ỹ − y > δl
7: Compute causal effects CSl(n) in layer l
8: update G+ and G− by cause-effect variables corresponding to I+ and I−
9: end for

10: l← l − 1, K ← I+,
11: until l = l0

3 EXPERIMENTS

We implement interventional black box explanations on deep neural networks trained for image
classification tasks. We use two convolution neural network architectures: LeNet (Lecun et al.
(1998)), a simple architecture composed of two convolution layers followed by two fully connected
layers, and ResNet18 (He et al. (2016)). We capture post-hoc explanations for the model LeNet
using MNIST data with 10 digits; and for ResNet18 using MNIST and a subset of ImageNet data
(Deng et al. (2009)). For explainability, we selected the digits 3 and 8 from MNIST data, and some
arbitrary classes from ImageNet.

3.1 CAUSAL EXPLANATIONS

Per-sample causal mechanisms. We implemented Algorithm 1 on single inputs to extract local
explanations model’s prediction. For this experiment, we chose an example where the model pro-
vided correct predictions and compute the causal effects CS of interventions from each layer. Fig.
2 shows the causal effect computed over all layers (convolution and fully connected). This figure
shows the differences between the causal mechanisms that the model use to reason on each different
class. As we can see, the causal effects uncover different and common causal parameters between
classes. To illustrate the behaviour of model’s prediction, we show in Fig. 3 the effect distributions
ỹ3 and ỹ8 and compare it to the prediction obtained using the original parameters of the model. For
these examples, the original logit values are y3 = 8.19 and y8 = 11.29 and the probabilities ob-
tained by the Softmax function are 93% and 97% respectively. Fig. 2 demonstrates an evidence on
the presence of causal mechanisms that have either positive or negative effects on model prediction.
Moreover, there are many parameters that don’t have any effect on model behaviour, i.e. removing
or keeping these parameters didn’t change the output. As we mentioned in Section 2.3, removing
these parameters is equivalent to removing the effect of the mediators (features) in the same layer.

Cross-samples causal mechanisms. We applied our algorithm on group of samples (100 positive
example) to capture explanations about a global behaviour of the model. Fig. 4 shows results on
MNIST digits predicted by LeNet. It illustrates the frequency of causal parameters in convolution
and fully connected layers in terms of number of samples (colour and size of blobs are relative to
the frequency). We also illustrate the causal filters which appeared in above 80% of the samples.
These filters explain the global patterns in each digit. The causal filters in the first convolution layer
are identical across the samples of two classes. They are edge detectors and capture a global shape
of the object. Note that their effect is not identical as we show later in Fig. 6. The causal filters in
the second convolution layer are more interesting. They explain what makes a prediction to be a
class 3 or 8 as their responses describe meaningful concepts. In fully connected layers, our method
highlights different levels of importance of causal parameters. Those which persist for more than
80% of samples are the most important and explain a global behaviour of the model. The causal
parameters which have lower frequency explain local behaviour in small group of samples.
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Figure 2: Causal effect of interventions on LeNet parameters over each layer for 3 and 8 digits using
one test input

Figure 3: Distribution of effects of intervention variables over LeNet layers.

3.2 USE EXPLANATIONS TO CORRECT PREDICTIONS

In previous experiments, we provided explanations for positive predictions. In this experiment, we
focus on negative samples to evaluate if our method can capture meaningful explanations to correct
the predictions of wrong classes. We selected samples with digits 3 on which LeNet predicted the
wrong digit 8. The model made wrong predictions for 11 samples from the test set. We implemented
our algorithm on all negative samples belonging to this subset and extracted cause-effect relations
corresponding to the true class. Fig 5 shows the causal parameters for the last convolution layer
and the fully connected layers. Comparing the results to the group of 100 positive samples shown
in Fig. 4 for digit 3, the algorithm consistently captures similar explanations corresponding to the
strongest causal parameters. Other causal parameters are mostly related to local differences specific
to each sample. This demonstrates that the extracted causes can be used to correct the model. To do
so, we turned off (put to zero) all the non-causal parameters and the ones in G− and only kept the
causal parameters in G+. Those which are expected to have positive effect on the model. Then, we
tested the model again on the data. As we show in Fig 5, the model is 100% certain of its prediction
with significantly high logit value compared to the original predictions where the average probability
was 15% for the true class. We show in Appendix B additional results on ResNet18.

3.3 COMPARISON TO EXPLANATION METHODS

Besides that our method captures the causal parameters and filters that affect DNN’s prediction
on each class, we can visualize the features in the mediators located in the paths of the causal
graphs. These mediators are simply the neurons or channels (in case of convolution layers) that
mediate the effect of causal parameters on model predictions. Based on Assumption ??, we can
find the mediators from the index set I+of the causal weights. For instance, the mediator in the
last convolution layer of ResNet18, layer4.1.conv2, is a 2D feature vector of dimension K = 512
with the n effective channels where n ∈ I+. Remaining channels are omitted. We obtain the
attribution map, by computing the average at each pixel. This allows us comparing our method with
other explanation methods, where the goal is to explore if the causal mechanisms lead to extract
better explanations. We compared the visual explanations generated by our method with the ones
generated by other explanation methods such as: Saliency (Simonyan et al. (2014)), Occlus (Zeiler
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Figure 4: Global explanations and comparison between digits 3 and 8 using 100 samples. (a) and
(b) show the frequency of causal filters causal filters in conv1 and conv2 layers, respectively. (c)
and (d) show the frequency of causal parameters in fully connected layers. The x-axis indicate the
indices of causal parameters.

Figure 5: Causal parameters corresponding to the true class for LeNet when tested on negative sam-
ples. The figure on the right shows the original predictions of the model (before) and the corrected
one

& Fergus (2014)), IG (Sundararajan et al. (2017)) and DeepLift (??). We also wanted to include
the popular LRP (Binder et al. (2016)) method, however, this method doesn’t work on complex
architectures such as ResNet because the method doesn’t handle the skip connections. Figure 6
shows results on MNIST digits using LeNet model. Comparing the explanations generated for
digits 3 and 8, we can see that other methods don’t provide informative explanations to recognize
the digit 3 from 8. Our method shows the effects of the causal filters which explain the difference
between digits through their shapes. In Fig. 7 we show causal explanations of ResNet18 model on
arbitrary classes of ImageNet. Our method captures visual explanations from all layers. The causal
filters capture different meaningful concepts (semantics) at multiple levels of hierarchy. We show
here results from some layers and illustrate further details in Appendix C.

4 RELATED WORK

The work on explaining deep neural networks keep rising by the machine learning community be-
cause of the difficulties of computing robust explanations from these black box models. Many
methods have been proposed by the community. In this paper, we focus on explanation methods of
post-hoc models which are related to our research problem.

Local and Global Explanations. The main forms of explanations split into these two categories
(Doshi-Velez & Kim (2017); Das & Rad (2020)). Global explanations aim at explaining and sum-
marizing the behaviour of the model, for instance the mechanism underlying a classification model,
over a group of instances (data points). Local explanations focus on a local data point under scrutiny.
They capture explanations from a single instance and search the parts of input data that are most
relevant for model’s prediction. Rule-based methods and decision trees have been used to cap-
ture global explanations approximating the DNN models (Letham et al. (2015); Craven & Shavlik
(1995)). These techniques are also used to capture local explanations by approximating the de-
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Figure 6: Visual attributions from different methods. Comparison of visual explanations between 3
and 8 digits. Our method generates visual explanations by integrating the response of the mediators
corresponding to the causal filters in each conv layer.

Figure 7: Visualizations and qualitative comparisons. (a) Examples of ImageNet classes. (b) Visual
effects (explanations) of causal parameters of some hidden layers of ResNet18. (c) Saliency maps
obtained by attribution-based methods.

cision boundary around a local data input with linear classifiers (Ribeiro et al. (2016); Montavon
et al. (2017)). Saliency maps (Simonyan et al. (2014); Binder et al. (2016); Selvaraju et al. (2017a);
Shrikumar et al. (2017)) are attribution-based methods that describe the relevance of local feature
input (e.g., image pixels) on model’s output. The explanations of input-output relation for a post-hoc
model are generated by one of two different techniques. A backproagation, which rely on class gra-
dients (Selvaraju et al. (2017a); Sundararajan et al. (2017)), and perturbations technique, which use
random counterfactual instances (Burns et al. (2020)) or partial substitution of local features (Zeiler
& Fergus (2014)) to capture the relevance of such variations on prediction. Although, these meth-
ods are significant contributions in DNN interpretability, the explanations can be summerized by
finding a correlation between input features or concepts and model output. We believe that robust
explanations for complex DNN models require the language of causal reasoning and cause-effect
relations.

Causality for Black Box Explanations. Structural causal models (SCMs) (Pearl (2009); Peters
et al. (2017)) have been recently proposed for extracting local explanations from post-hoc models.
These methods focus on local input-output relations by extracting causal explanations from inter-
ventions applied on feature space of input data (Chattopadhyay et al. (2019); Schwab & Karlen), or
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on the latent space of generative models (Harradon et al. (2018); Goyal et al. (2019); O’Shaughnessy
et al. (2020)). Our work is different as we focus on the model itself as a mechanism to capture global
and local explanations from the pieces of knowledge encoded in its parameter space during the phase
of training.A prior work (Narendra et al. (2018)) has used features importance as a way to extract
most and least important filters in a CNN. They used linear regression to transform the vector-valued
features to real-valued ones on which interventions where applied to estimate the effect of variance
of filters response. Compared to them, our method is fundamentally different. It is not limited to
CNN and does not rely on features transformations to extract causal filters as this is highly sensitive
to noise and confounding errors. We focus on interventions on the parameter space, and provide
a fundamental framework on searching global and local mechanisms to explain the behaviour of
post-hoc DNN models.

5 CONCLUSION AND DISCUSSIONS

Causality has become an important player in the deep learning field and more particularly, in aspect
related to explainability, robustness fairness and bias (Kusner et al. (2017); Kilbertus et al. (2017);
Zhang et al. (2021)). In this work, we focused on DNN explanations. We introduced a novel method
to capture explanations for post-hoc DNN models which quantify cause-effect relations between
model prediction and its parameters. We started our method by constructing the causal diagram that
generally describes a post-hoc model. The proposed causal graph is generic as it can be used to cap-
ture the effects of interventions on features space, or on parameters space. We then proposed a new
algorithm (interventional black box explanations) to capture the effect of parameters on output both
locally and globally. Our method is model-agnostic because it does not require specific architecture.
We demonstrated that it works on simple architectures, such as LeNet, and complex one including
skip connections between structured layers (blocks). Although, in this work we focused on classifi-
cation architectures, our method can be easily generalized to other architectures like object detection
and NLP models. This will be one of the next steps of our future work.

Recently, work on DNN explanations considered logic forms of explanations (Mu & Andreas
(2020)). Logic explanations search relations between concept (semantic) neurons in the DNN to
generate natural language expressions for model interpretability. These methods limit their explana-
tions to the last hidden layers of the network because of their expensive computational cost. Other
limitations that might affect the robustness of explanations in these methods is the presence of some
low quality neurons in the network. Our framework can be used as a basic block for these methods.
We can use our approach to first capture the causal filters and the corresponding responses (features),
then generate logic explanations that expand to all hidden layers in the network.
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A APPENDIX

A.1 DETAILS FOR PROPOSITION 1

To proof Proposition 1, we show in Fig. 8 a toy example of an MLP network with a 1 hidden layer
containing 2 units with variables u1 and u2, one output (a simple linear function) y and one scalar
input x. We start by the direct effect (w1

1, w
1
2)→ y. Since we have only one class, then K = 1. We

consider that do(w1
1) has effect on y and changed the prediction. Then, a causal path exists between

u1 and y. Since the intervention values α = 0, this leads to

y = u1 × w1
1 + u2 × w1

2, ỹ = u2 × w1
2 (w1

1 = 0) (3)

We also have
y = x× w1

1 × w1
0 + x× w1

2 × w2
0, ỹ = x× w1

2 × w2
0 (4)

From equation (4), and the fact that we know w1
1 has a significant effect e, we then got

e = y − ỹ = x× w1
1 × w1

0 (5)

The important information flows from input x to y through the mediator u1, and w1
0 is the selected

intervention variable for the effects of the parameters l0 on y. It is easy to see this on an input of
two variables (x1, x2). In this case the parameters W 1

0 = (w11
0 , w

21
0 ) are the selected interventions

variables.

A.2 DETAILS FOR PROPOSITION 2

In causal graphs (DAG) (Ay & Polani (2008)), the measure of information flow is defined by the
Kullback–Leibler divergence which is related to mutual information, and used to quantify the causal
effects between disjoint subsets of nodes. Our case is similar as we search to compare the prediction
probability of the post-hoc DNN P (y|X) with the probability resulted form interventions on W ,
P (y|do(W ),X). The output is obtained by feedforward the effects of intervention variables to the
output. To capture the amount of information related to the action do(Ki ) in the hidden layer li, we
used Kullback–Leibler divergence which provides the result in (2).
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Figure 8: A toy example. MLP with one hidden layer, one input and a linear output

B APPENDIX

Our method applied to ResNet18 trained on MNIST dataset. The model achieved almost perfect
performance on all digits of the MNIST test set. The average performance was 99%, so it was
rare to find negative samples on which the model wrongly predicted the class. We found only one
negative sample corresponding to digit 8, and no negative samples for digit 3. Fig. 9 illustrates
explanations computed from two selected convolution layers. We show in a human interpretable
way what are the causes for a wrong prediction and what treatment can fix it.

Figure 9: Using causal explanations to correct wrong predictions of ResNet18 for MNIST exmaple.

C APPENDIX

More visualization details from all hidden convolution layers of ResNet18 on ImageNet classes
mentioned in Section 3.3.

12



Under review as a conference paper at ICLR 2022

Figure 10: Visualization of causal effects in all convolution layers for the class object Dalmatien.

Figure 11: Visualization of causal effects in all convolution layers for the class object Merle.
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Figure 12: Visualization of causal effects in all convolution layers for the class object Roslein.

Figure 13: Visualization of causal effects in all convolution layers for the class object Butterfly.
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