
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SWEPO: SIMULTANEOUS WEIGHTED PREFERENCE OP-
TIMIZATION FOR GROUP CONTRASTIVE ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Direct Preference Optimization (DPO) has proven effective in aligning large lan-
guage models with human preferences but is often constrained to pairwise compar-
isons – overlooking additional positive and negative responses that are commonly
available in real-world settings. We propose Simultaneous Weighted Preference
Optimization (SWEPO), which incorporates multiple responses per query and
prioritizes those that deviate most from the average reward. This deviation-based
weighting focuses training on the most informative outliers, akin to a built-in
curriculum. Theoretically, we prove that such multi-preference sampling lowers
alignment bias, bounding the expected deviation from the true acceptable-response
distribution at a rate of O

(
1√
k

)
. Empirically, SWEPO outperforms state-of-the-art

baselines on the Ultra-Feedback dataset and demonstrates substantial improve-
ments over DPO and InfoNCA, yielding boosts of up to∼ 4% on length-controlled
win-rate on AlpacaEval.

1 INTRODUCTION

Large language models (LLMs) are becoming integral to various applications that demand safe,
reliable, and contextually appropriate outputs (Liu et al., 2023b; Ouyang et al., 2022; Christiano
et al., 2017). To ensure these models operate in line with human values, alignment mechanisms
such as Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017) and direct
preference-based methods (Rafailov et al., 2024; Xu et al., 2024b) have been adopted. However,
alignment remains difficult: human values are complex and heterogeneous, and even small misalign-
ments can lead to undesired or harmful outputs (Wang et al., 2023). This underscores a pressing need
for more robust alignment strategies—both in theoretical grounding and practical efficacy.

A popular approach for alignment is Direct Preference Optimization (DPO), which views human
feedback as pairs of positive (preferred) and negative (disfavored) responses (Rafailov et al., 2024).
While this pairwise paradigm simplifies training, it often discards additional responses that might
be available in the data, thereby overlooking a wealth of potentially informative signals. Relying
on only one positive versus one negative can induce alignment bias due to sample-specific quirks
(Zhang et al., 2024; Cui et al., 2024; Tao et al., 2024). Moreover, comparing only two responses fails
to capture the full spectrum of acceptable or unacceptable qualities that might exist for each query.

In reality, many scenarios intrinsically provide multiple candidate responses per query. For example,
a single prompt may be answered by several annotators, each producing a distinct response (Liu et al.,
2024b). Alternatively, one could generate multiple completions from a single LLM via different
sampling seeds, or collect responses from multiple LLMs and aggregate the feedback (Cui et al.,
2023). Some queries also naturally admit multiple correct answers, especially in open-ended or
creative tasks (Yang et al., 2024). In such cases, restricting oneself to a single pairwise comparison
not only discards valuable data but also risks overfitting to narrow definitions of what constitutes a
“good” (or “bad”) response, corresponding to a better understanding of the full reward preference
distribution over the response space.

Moving from pairwise to multi-preference optimization is more than an incremental data usage
improvement—it can systematically reduce alignment bias. As we show theoretically (Section
5), incorporating k positive and k negative responses per query shrinks the expected gap between
learned preferences and the true acceptable-response distribution at an order of O(1/

√
k). Intuitively,

viewing multiple positive or negative samples helps identify recurring signals of quality (e.g., factual
correctness, safety) or shortfalls (e.g., toxicity, hallucinations), stabilizing the learned alignment
beyond any single example’s idiosyncrasies (Bengio et al., 2009).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Simultaneous Weighted
Preference Optimization

1) Group the accepted responses
which have rating over the mean,
weighted by their deviation over
the mean.

2) Group the rejected responses
which have rating under the
mean, weighted by deviation from
mean.

3) Simultaneously, maximize the
probability of the accepted group,
while minimizing the probability
of the rejected group through a
Bradley-Terry style loss.

Query from
Dataset

Responses

Response 1

Response 2

Response 3

Response 4

Rating 1

Rating 2

Rating 3

Rating 4

High
Rating

Low
Rating

Mean
Rating

Weight for
Response 1 =

|Rating 1-mean|

Weight for
Response 2 =

|Rating 2-mean|

Weight for
Reponse 3 =

|Rating 3-mean| Weight for
Reponse 4 =

|Rating 4-mean|

Negative Group

Positive Group

Figure 1: The workflow shows how responses from a multi-preference dataset are used for alignment.
Each response (4 responses in the illustration) receives a rating, which is compared against the
mean. We then calculate weights based on the absolute difference between each rating and the
mean. Accepted responses (above mean) and rejected responses (below mean) are grouped separately,
with their respective weights determining their influence in the optimization process. The final
step employs a Bradley-Terry style loss function to simultaneously maximize the probability of the
accepted group while minimizing the probability of the rejected group.

To fully exploit these multi-response settings, we propose Simultaneous Weighted Preference Op-
timization (SWEPO). As illustrated in Figure 1, SWEPO groups all responses for a given query
into “accepted” (above-mean reward) and “rejected” (below-mean reward) categories (Cui et al.,
2023), then assigns larger weights to the most deviant responses. These weights are used in a group
contrastive loss that systematically boosts the probability of strongly positive responses while actively
suppressing strongly negative ones. This design effectively functions like a built-in curriculum,
letting the model learn most aggressively from outliers—either particularly good or particularly
poor responses—while still incorporating medium-quality responses more moderately (Graves et al.,
2017).

We validate SWEPO on real-world datasets where multiple responses per query are available, demon-
strating state-of-the-art results compared to both standard DPO and existing multi-preference baselines
(e.g., InfoNCA (Chen et al., 2024a)). Empirically, SWEPO significantly improves alignment metrics
on AlpacaEval, Arena-Hard, and MT-Bench, confirming that multi-sample preference learning is not
only theoretically justified but practically advantageous. The remainder of this paper is organized as
follows: Section 3 defines the core notations and problem setup, Section 4 describes SWEPO in detail,
Section 5 provides formal analysis of our approach, and Section 6.2 reports our experimental results.

1.1 OUR CONTRIBUTIONS

Our work provides three main contributions, detailed as follows:
1. Algorithmic Novelty: We propose a novel rating-aware multi-preference extension to Direct
Preference Optimization. Specifically, we introduce Simultaneous Weighted Preference Optimiza-
tion (SWEPO), which harnesses scalar rewards from multiple positive and negative responses per
query. By assigning higher weights to responses that deviate more from the mean reward score,
SWEPO effectively prioritizes the most informative outliers—akin to a built-in curriculum. This
design stands in contrast to standard DPO, which relies on a single pairwise comparison and does not
fully exploit the richer data distributions now accessible in modern preference datasets (see Section
4).

2. Theoretical Insights: We provide a rigorous analysis showing that our multi-preference opti-
mization approach systematically reduces alignment bias compared to pairwise-only methods. In
particular, we prove that sampling more positive and negative responses per query decreases the
expected deviation from the true distribution of acceptable outputs (Section 5.1). Additionally,
we compare SWEPO against InfoNCA (Chen et al., 2024a), offering a gradient-level examination
(Appendix C and D) that highlights how our weighted contrastive objective naturally pushes negative-
response probabilities to zero and maintains a curriculum-like focus on highly deviant samples.

3. State-of-the-Art Results: We validate SWEPO on multiple publicly recognized bench-
marks—AlpacaEval, Arena-Hard, and MT-Bench—using various base models (e.g., Mistral-7B

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

and Llama-3-8B). Our experiments consistently show state-of-the-art performance across raw and
length-controlled win-rate metrics. Compared to both DPO baselines and multi-reference methods
such as InfoNCA, our method achieves the top results in all evaluations (Table 1). These results
demonstrate that systematically leveraging multiple preferences via SWEPO yields markedly stronger
alignment with human-valued responses.

2 RELATED WORK

Here we give a short description of other preference optimization works and defer a more detailed
literature review to Appendix A. DPO (Rafailov et al., 2024) extends early works in RLHF (PPO,
TRPO) (Schulman et al., 2017) by incorporating a pairwise contrastive preference optimization.

Recent works extend pairwise preference optimization by incorporating diversified objectives or
streamlining reward modeling. For instance, KTO and TDPO target response-level and token-level
alignment without needing multiple positive samples per instruction (Ethayarajh et al., 2024; Zeng
et al., 2024), while RAFT (Dong et al., 2023) and RRHF (Yuan et al., 2023) use list-wise or rank-
based signals to refine preference supervision. Several methods (e.g., SPIN, CPO, ORPO, SimPO,
R-DPO, LD-DPO) remove or modify the reference model, add additional regularizers to address
length bias or data diversity, or unify preference optimization with supervised losses (Chen et al.,
2024b; Xu et al., 2024a; Hong et al., 2024; Meng et al., 2024; Park et al., 2024; Liu et al., 2024a).

Multi-preference Optimization (MPO) has been considered by InfoNCA (Chen et al., 2024a), and we
provide an alternative method for MPO. Both these works are enabled through the dataset provided
by Ultra-Feedback (Cui et al., 2023).

3 NOTATIONS AND PRELIMINARIES

In this section, we establish the notations and preliminaries necessary for our proposed weighted
multi-preference optimization method.
Let X denote the set of all possible queries, with x ∈ X representing a specific query. For each query
x, let Yx be the set of all potential responses. Our dataset D consists of N queries, where each query
x is associated with n responses {yi}ni=1 and corresponding reward scores {Si}ni=1.

The mean reward score for query x is calculated as:

Smean =
1

n

n∑
i=1

Si. (1)

The deviation of each response’s reward score from the mean is:
∆Si = Si − Smean. (2)

We partition the responses into positive and negative sets:

Y + = {yi | ∆Si > 0}, (3)

Y − = {yj | ∆Sj ≤ 0}. (4)

Weights are assigned based on the deviation, using an exponential function or a power function. For
positive responses (yi ∈ Y +):

w+
i = exp (α∆Si) or w+

i = (∆Si)
p
, (5)

and for negative responses (yj ∈ Y −):

w−
j = exp (α (−∆Sj)) or w−

j = (−∆Sj)
p
, (6)

where α > 0 is a scaling hyperparameter and p ∈ {0, 1, 2}.
The language model parameterized by θ provides the conditional probability Pθ(y | x) of generating
response y given query x. The logit or score function is:

sθ(y | x) = log

(
Pθ(y | x)
Pref(y | x)

)
(7)

= logPθ(y | x)− logPref(y | x). (8)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 Simultaneous Weighted Preference Optimization (SWEPO)
1: Input: Initial model parameters θ0, dataset D with n responses and reward scores per query,

scaling hyperparameter α, power p ∈ {0, 1, 2}, iterations T
2: Output: Optimized model parameters θT
3: Initialize θ ← θ0
4: for t = 1 to T do
5: for all query x ∈ D do
6: Compute Smean, deviations ∆Si, and partition responses into Y + and Y −

7: Assign weights: w+
i = (∆Si)

p, w−
j = (−∆Sj)

p

8: Compute scores:
sθ(y | x) = log (Pθ(y | x)− Pref(y | x))

9: Compute modified scores: s′θ(y | x) = sθ(y | x) + α∆S
10: end for
11: Compute loss:

Lweighted(θ)← − log

[∑
y∈Y + exp(s′θ(y|x))∑

y∈Y +∪Y − exp(s′θ(y|x))

]
12: Update model parameters: θ ← θ − η∇θLweighted(θ)
13: end for
14: return θ

Incorporating the weights into the probabilities, we have:

wi × exp (sθ(yi | x)) = exp (α∆Si + sθ(yi | x)) , (9)

which leads to the modified score:

s′θ(yi | x) = sθ(yi | x) + α∆Si. (10)

The weighted contrastive loss function is defined as:

Lweighted(θ) = − log

∑
y∈Y +

exp (s′θ(y | x))∑
y∈Y

exp (s′θ(y | x))
, (11)

where Y = Y + ∪ Y −.

4 ALGORITHM AND METHODOLOGY

We present the Simultaneous Weighted Preference Optimization (SWEPO) algorithm, which aligns the
language model with human preferences by incorporating multiple responses per query and weighting
them based on their deviation from the mean reward score.

4.1 ALGORITHM 1 DESCRIPTION.

Line 1 specifies the initial settings (model parameters, dataset, hyperparameters) and defines the
iteration budget. Line 2 clarifies that the goal is to return the updated parameters after training. Line
3 initializes the model from a chosen starting point, and line 4 begins the main optimization loop
over the specified number of iterations.

Within each iteration, line 5 loops through all queries in the dataset. Line 6 computes the mean
reward, identifies which responses exceed this mean, and partitions the responses into positive and
negative sets. Line 7 assigns weights to these responses by exponentiating their deviations from the
mean (with a chosen power) – this is often called the Advantage function in related literature. In
lines 8 and 9, we calculate and scale the log-score to measure how the model’s probability compares
against a reference, wherein the reference model is the same model at initialization. In, line 11 we
aggregate these measurements into the SWEPO loss, and line 12 updates the model parameters via a
gradient step. Finally, line 14 returns the optimized parameters.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

4.2 WEIGHT COMPUTATION AND MODIFIED SCORES

In the notations, we defined weights using an exponential function of the deviation ∆Si. Specifically,
the weight for each response is:

wi = exp (α∆Si) , (12)

for positive responses, and

wj = exp (α (−∆Sj)) , (13)

for negative responses.

By incorporating these weights into the loss function, we observe that:

wi × exp (sθ(yi | x)) = exp (α∆Si + sθ(yi | x)) . (14)

This demonstrates that weighting the probabilities is equivalent to adjusting the logits by adding the
scaled deviation. Thus, the modified score for each response becomes:

s′θ(yi | x) = sθ(yi | x) + α∆Si. (15)

4.3 GENERALIZATION WITH POWER P

In the algorithm, we generalize the weighting scheme by defining the weights as the p-th power of
the deviation:

w+
i = (∆Si)

p
, for yi ∈ Y +, (16)

w−
j = (−∆Sj)

p
, for yj ∈ Y −, (17)

where p ∈ {0, 1, 2}. This allows flexibility in modifying the impact of the deviation on the weights.
When p = 0, all weights are equal to 1, reducing the method to an unweighted loss.

5 THEORETICAL ANALYSIS

In this section, we provide theoretical insights into why incorporating multiple preferences per query,
as in our proposed SWEPO method, leads to better alignment with human values compared to methods
that rely on pairwise preferences, such as Direct Preference Optimization (DPO). We also differentiate
our SWEPO loss from the InfoNCA loss (Chen et al., 2024a) and discuss the implications for model
optimization.

5.1 BIAS REDUCTION THROUGH MULTIPLE PREFERENCES

A key motivation for using multiple preferences per query is to reduce alignment bias, which arises
when sampling a limited subset of responses from the distribution of acceptable and suboptimal
responses. We formalize this intuition by analyzing how the expected bias with respect to an attribute
decreases as the number of samples increases.

To analyze biases, we introduce an attribute function a(y) : Yx → R, which maps responses to real
numbers (e.g., response length, politeness).

The expected attribute value over the model’s distribution is defined as:

µθ = Ex∼X
[
Ey∼Pθ(·|x) [a(y)]

]
, (18)

where Pθ(· | x) is the model’s conditional distribution over responses given query x.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

The true expected attribute value over acceptable responses is:
µA = Ex∼X [Ey∼Ax [a(y)]] , (19)

where Ax is the distribution of acceptable responses for query x.

The bias with respect to attribute a is then defined as:

B(k) =
∣∣∣µ(k)

θ − µA

∣∣∣ , (20)

where µ(k)
θ is the expected attribute value under the model after training with k positive and k negative

samples per query.

5.1.1 ASSUMPTIONS

We make the following assumptions:

• Finite Variance: The attribute a(y) has finite variance over the acceptable response distribution
Ax for each query x, i.e., Vary∼Ax

[a(y)] = σ2
Ax

<∞.
• Independent Sampling: Responses are independently sampled from their respective distributions.
• Model Capacity: The model can represent the true distribution given sufficient data.
• Uniform Bounded Variance: There exists a constant σ2

max such that σ2
Ax
≤ σ2

max for all x ∈ X .

Theorem 1. Under the stated assumptions, the expected bias E[B(k)] decreases with the number of
samples k as

E[B(k)] ≤ C√
k
, (21)

where C = σmax is a constant depending on the maximum variance of a(y) over acceptable responses.

Proof Sketch. The proof relies on the Central Limit Theorem and the fact that the standard error of
the mean decreases with the square root of the number of samples. For each query x, the sample mean
of the attribute over the k positive responses converges to the true mean µAx

at a rate proportional to
1/
√
k. Averaging over all queries, we obtain the bound on E[B(k)]. □

Corollary 1. As k →∞, the expected bias E[B(k)] approaches zero:

lim
k→∞

E[B(k)] = 0. (22)

Takeaway: Sampling multiple (y+, y−) pairs per query x, rather than single pairwise comparisons,
enables better convergence to the true acceptable response distribution by averaging out sample-
specific artifacts. This multi-sample approach improves robustness by allowing the model to identify
consistent patterns of desirability across the response space rather than overfitting to individual
sample characteristics, and this leads to a more consistent and stable model alignment.

We provide a deep-dive into this proof in Appendix B. Furthermore, Appendix C provides a com-
prehensive comparison between the Group Contrastive Loss and InfoNCA Loss, including detailed
gradient analyses, and Appendix D offers a characterization of stationary points for both the InfoNCA
and Weighted Contrastive Loss functions. We now offer two take-aways from our theorems.

Our loss function drives multiple undesirable response probabilities towards 0: Intuitively,
as the probabilities of the negative samples approach zero, the weighted contributions of negative
samples to both the numerator and denominator in Lweighted become negligible. The loss function
simplifies to:

Lweighted = − log

∑

i∈Y +

wie
sθ(yi|x)

K∑
j=1

wjesθ(yj |x)

 ≈ − log

∑

i∈Y +

wie
sθ(yi|x)∑

j∈Y +

wjesθ(yj |x)

 = − log 1 = 0.

This indicates that the loss (which is non-negative) vanishes when the model assigns negligible
probabilities to negative samples, resulting in a model that is trained to avoid generating negative
outputs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Method

Mistral-Base (7B) Llama-3-Base (8B)
AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench

LC (%) WR (%) WR (%) GPT-4 LC (%) WR (%) WR (%) GPT-4
SFT 8.4 6.2 1.3 6.3 6.2 4.6 3.3 6.6
DPO 16.59 13.76 12.7 6.71 16.87 14.06 18.5 7.71
DPOx3 14.86 11.7 8.8 6.93 16.27 13.13 13.7 7.5
InfoNCA 14.76 10.79 9.7 7.04 15.89 12.9 14.8 7.56
SWEPO-1-vs-k (p = 0) 15.16 11.45 10.1 7.1 17.3 13.46 15.9 7.57
SWEPO-dynamic (p = 0) 18.35 14.37 13.2 7.18 18.36 15.06 18.4 7.53
SWEPO-dynamic (p = 1) 20.32 14.94 12.8 7.25 18.89 15.26 18.1 7.61
SWEPO-dynamic (p = 2) 18.04 13.91 11.8 7.19 20.09 15.63 18.5 7.77

Table 1: Comparison of preference optimization methods on AlpacaEval, Arena-Hard and MT-Bench
benchmarks. LC-WR represents length-controlled win rate, and WR represents raw win rate. Best
results are in bold, second-best are underlined. Our method (SWEPO) achieves SOTA performance
across all metrics, with different variants achieving either best or second-best results consistently.

Weights create a Curriculum: In our loss function, the gradients are weighted by the weights wi

assigned to them. Therefore the high weight negative examples have probability sent to 0 first and
later the lower weight ones. This has parallels with curriculum learning wherein, models are first
exposed to more informative examples, gradually moving towards less informative ones. This serves
as a built-in curriculum, guiding the model to focus gradients to the most instructive examples (high
weight) examples first.

These theoretical insights provide strong justification for our proposed SWEPO method over traditional
pairwise preference optimization methods. By using multiple weighted preferences, we achieve a
more nuanced and effective alignment with human preferences.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Model and Training Settings: For our experiments, we utilized the Ultrafeedback Dataset Cui
et al. (2023), an instruction-following dataset annotated by GPT-4, containing approximately 64,000
instructions. Each instruction includes four responses generated by different language models, with
GPT-4 assigning scalar scores on a scale of 0 to 10 for each response. Previous research has shown a
strong correlation between these GPT-4 ratings and human annotations, establishing their reliability
as a cost-effective alternative to human feedback.

Based on these scalar scores, we categorized the responses into two sets: chosen responses and
rejected responses. This categorization was determined using the mean of the scalar scores. Responses
scoring above the mean were classified as chosen, while the remaining responses were categorized as
rejected.

Our training process aligns with the methodology outlined in Zephyr Tunstall et al. (2023). Initially,
we fine-tune a base model, such as mistralai/Mistral-7B-v0.1 or meta-llama/Meta-Llama-3-8B,
using the UltraChat-200k dataset Ding et al. (2023) to create a supervised fine-tuned (SFT) model.
Subsequently, we apply preference optimization to the UltraFeedback dataset Cui et al. (2023), which
consists of four answers per query. This approach ensures a high degree of transparency since the SFT
models are derived from publicly available datasets. We applied our proposed preference optimization
method, SWEPO, which consists of four configurations:1.) SWEPO-1-vs-k (p=0) 2.) SWEPO-dynamic
(p=0) 3.) SWEPO-dynamic (p=1) and 4.) SWEPO-dynamic (p=2)

These configurations were designed to harness scalar scores effectively and improve model alignment.
Our findings suggest that these setups significantly enhance performance, placing our models among
the top contenders on the Alpaca leaderboard.

Evaluation Benchmarks: We evaluate our models using three widely recognized open-ended
instruction-following benchmarks: MT-Bench Zheng et al. (2023), AlpacaEval 2, and Arena-Hard
v0.1 Zheng et al. (2023). These benchmarks test the models’ conversational versatility across a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0 0.25 0.5 1.0
Temperature

12

15

18

21

LC
 (%

)

DPO
InfoNCA
SWEPO

0 0.25 0.5 1.0
Temperature

10

12

14

16

W
R

 (%
)

DPO
InfoNCA
SWEPO

Figure 2: Effect of Sampling Temperature on Different Preference-Optimization Approaches for
Mistral-Base (7B) on the AlpacaEval 2 Benchmark: (a) Length-Controlled Win Rate (LC) and (b)
Overall Win Rate (WR).

0 20 40 60 80
Training Steps

500

450

400

350

300

Su
m

m
at

io
n

Lo
g

Pr
ob

ab
ili

tie
s

DPO
SWEPO A0
DPOx3

0 20 40 60 80
Training Steps

600

500

400

300

DPO
SWEPO A1
SWEPO A2
SWEPO A3
DPOx3

Figure 3: We highlight Avg. Perplexity per batch 1
B

∑B
b=1

∑nb

i=1 log pb,i for a.) Top-most Responses
b.) Rest of the Responses for DPO, DPOx3 and SWEPO. We note that the while SWEPO decreases
the probability of the chosen (top-rated) response, more than DPO, it also decreases the probability
of negative responses. Furthermore, unlike running DPO three times (DPOx3), we get a separation
between the post-training probabilities for the responses, based on their rating.

broad range of queries and are broadly utilized in the research community. AlpacaEval2 Dubois et al.
(2024) includes 805 questions derived from five datasets, while MT-Bench spans eight categories
with a total of 80 questions. Arena-Hard, a recently updated version of MT-Bench, focuses on 500
well-defined technical problem-solving queries. Scores are reported based on the evaluation protocols
of each benchmark. For AlpacaEval2, both the raw win rate (WR) and the length-controlled win rate
(LC) are reported, with LC specifically designed to mitigate biases related to model verbosity. For
Arena-Hard, the win rate is reported relative to a baseline model. For MT-Bench, the average score is
calculated using evaluations by GPT-4 as judge. For decoding details, we generate responses using
both greedy decoding and multinomial sampling with temperatures of 0.2, 0.5, and 1.0. To address
potential biases introduced by multinomial sampling at varying temperatures, we generate responses
three times for each setting at different seed and average their performance across the datasets. We
provide details regarding baselines in Appendix E

6.2 EXPERIMENTAL RESULTS

Method LC (%) WR (%) Var (LC) Var (WR)
DPO 14.86 12.71 1.96 1.32
SWEPO 20.32 14.94 0.096 0.11

Table 2: We sampled the datasets for DPO by
changing seeds on Binarized Ultrafeedback dataset
(Cui et al., 2023). The dataset for SWEPO stays
the same as all the responses are considered. The
variance on SWEPO is due to temperature sampling
for the judge on AlpacaEval 2.0.

SWEPO outperforms baseline preference-
based methods: The results of our ablation
study demonstrate that our proposed methods
consistently outperform all baseline preference
models. Specifically, our methods exhibit a sig-
nificant performance improvement by achiev-
ing of 20.32% and 20.09% LC (%) and 14.94%
and 15.63% WR (%) for mistral and llama re-
spectively in the AlpacaEval2 benchmark when
compared to the best-performing preference
baseline, DPO. This substantial improvement
underscores the effectiveness of our approach,
SWEPO, which leverages its ability to fully exploit all the information available in the dataset. The
enhanced utilization of score signals enables SWEPO to achieve superior performance, highlighting
the importance of comprehensive information integration in preference-based models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

SWEPO vs. InfoNCA on Multi-preference Data We implemented the InfoNCA Chen et al.
(2024a) baseline under our custom settings, adhering to the hyperparameters specified in their original
method. The primary difference lies in the finetuning approach: while InfoNCA utilizes QLoRA, we
opted for full finetuning of their model.
Using this approach and from table 1, we observed that SWEPO outperforms InfoNCA on downstream
datasets such as AlpacaEval2, MTBench and Arena-Hard. This result underscores the significance of
SWEPO and its clear advantage over InfoNCA.

2 3 4
K

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
ta

ge
 (%

)

15.96
16.67

20.32

12.56 12.95

14.94

LC (%)
WR (%)

Table 3: Performance variation of
SWEPO-Dynamic (p = 1) for Mistral-
Base (7B) with different numbers of re-
sponses (K).

Robustness of SWEPO to Response Selection To ana-
lyze the robustness of DPO and SWEPO to response selec-
tion, we evaluate the variance in performance in Mistral-
Base (7B). As shown in Table 2, DPO demonstrates sig-
nificant variability, with a variance of 1.96 in LC (%) and
1.32 in WR (%), caused by random sampling of rejected
responses. This indicates DPO’s sensitivity to sampling
choices, potentially leading to inconsistent alignment per-
formance.In contrast, SWEPO achieves consistent results
across all evaluations, with very small variance in both LC
(%) and WR (%). By leveraging all responses, Key take-
away SWEPO eliminates randomness in rejected response
selection, ensuring robust performance.

Importance of Suboptimal Responses: Suboptimal re-
sponses are also important. Previous practices always
ensure selecting the responses with highest scalar score
when constructing preference data. The assumption be-
hind this strategy is that the dataset’s best-performing response determines the upper limit of alignment
performance.However, our experiments contradict this assumption. Results in table 1 indicate that
extra suboptimal responses can also be advantageous for policy training. Specifically, we observe
consistent performance improvements when increasing the number of data responses from K = 2 to K
= 4 for SWEPO as shown in Figure 3.

Contrasting Many Positive Responses with Many Negative Responses vs. One Positive Re-
sponse with Many Negative Responses: In this ablation study, we analyze the difference between
contrasting multiple positive responses with multiple negative responses and contrasting a single
positive response against all negative responses. Considering only one positive response in a one-
vs-all-negative framework may lead to an incomplete representation, as other responses with high
positive scores could also contribute meaningful signals. Treating these high-scoring responses as
negatives may distort the learning process and hinder model performance. The same has been demon-
strated in table 1 and we are getting significant improvement in performance over one-vs-all-negative
framework.
Key Takeaway: By incorporating multiple positive responses, we better account for nuanced
variations and alignments in the data, leading to more robust and generalizable model behavior.
This approach ensures that all positively relevant responses are effectively utilized rather than being
misclassified as negatives.

Effect of Logit Weighting on Group Contrastive Loss: In this ablation study, we explore the
impact of weighting logits using two approaches: (1) the absolute deviation of scalar scores, and
(2) the squared deviation of scalar scores from the mean score value. These weighting schemes are
compared against unweighted logits in the context of group contrastive loss.
Our results in table 1 demonstrate a substanial performance improvement with the introduction of
logit weighting. In the AlpacaEval2 benchmark, the SWEPO-based weighting scheme outperforms
unweighted group contrastive loss, achieving an improvement of 1.98% and 1.73% in LC-WR
and 0.57% and 0.57% in WR for Mistral-Base (8B) and Llama-3-Base (8B) . This highlights
the effectiveness of incorporating deviation-based weighting mechanisms to enhance the model’s
capability in aligning scores with a contrastive loss objectives.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
human preferences. In International Conference on Artificial Intelligence and Statistics, pp.
4447–4455. PMLR, 2024.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Huayu Chen, Guande He, Lifan Yuan, Ganqu Cui, Hang Su, and Jun Zhu. Noise contrastive alignment
of language models with explicit rewards. arXiv preprint arXiv:2402.05369, 2024a.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024b.

Pengyu Cheng, Yifan Yang, Jian Li, Yong Dai, and Nan Du. Adversarial preference optimization.
arXiv preprint arXiv:2311.08045, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Justin Cui, Wei-Lin Chiang, Ion Stoica, and Cho-Jui Hsieh. Or-bench: An over-refusal benchmark
for large language models. arXiv preprint arXiv:2405.20947, 2024.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In international conference on machine learning, pp.
1311–1320. Pmlr, 2017.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 11170–11189, 2024.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 133–142,
2002.

Dahyun Kim, Yungi Kim, Wonho Song, Hyeonwoo Kim, Yunsu Kim, Sanghoon Kim, and Chanjun
Park. sdpo: Don’t use your data all at once. arXiv preprint arXiv:2403.19270, 2024.

Tassilo Klein and Moin Nabi. Contrastive perplexity for controlled generation: An application in
detoxifying large language models. arXiv preprint arXiv:2401.08491, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Jie Liu, Zhanhui Zhou, Jiaheng Liu, Xingyuan Bu, Chao Yang, Han-Sen Zhong, and Wanli Ouyang.
Iterative length-regularized direct preference optimization: A case study on improving 7b language
models to gpt-4 level. arXiv preprint arXiv:2406.11817, 2024a.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu Liu.
Statistical rejection sampling improves preference optimization. arXiv preprint arXiv:2309.06657,
2023a.

Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo, Hao Cheng, Yegor
Klochkov, Muhammad Faaiz Taufiq, and Hang Li. Trustworthy llms: a survey and guideline for
evaluating large language models’ alignment. arXiv preprint arXiv:2308.05374, 2023b.

Yang Liu, Jiahuan Cao, Chongyu Liu, Kai Ding, and Lianwen Jin. Datasets for large language
models: A comprehensive survey. arXiv preprint arXiv:2402.18041, 2024b.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
free reward. arXiv preprint arXiv:2405.14734, 2024.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
pp. 2, 2000.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Ryan Park, Rafael Rafailov, Stefano Ermon, and Chelsea Finn. Disentangling length from quality in
direct preference optimization. arXiv preprint arXiv:2403.19159, 2024.

Biqing Qi, Pengfei Li, Fangyuan Li, Junqi Gao, Kaiyan Zhang, and Bowen Zhou. Online dpo: Online
direct preference optimization with fast-slow chasing. arXiv preprint arXiv:2406.05534, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training
with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei Huang, Yongbin Li, and Houfeng Wang.
Preference ranking optimization for human alignment. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 18990–18998, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Rowland,
Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot. Generalized
preference optimization: A unified approach to offline alignment. arXiv preprint arXiv:2402.05749,
2024.

Yan Tao, Olga Viberg, Ryan S Baker, and René F Kizilcec. Cultural bias and cultural alignment of
large language models. PNAS nexus, 3(9):pgae346, 2024.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? a theoretical
perspective. Advances in Neural Information Processing Systems, 36:76006–76032, 2023.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of LLM
performance in machine translation. ArXiv, abs/2401.08417, 2024a.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. arXiv preprint
arXiv:2404.10719, 2024b.

Joshua C Yang, Marcin Korecki, Damian Dailisan, Carina I Hausladen, and Dirk Helbing. Llm
voting: Human choices and ai collective decision making. arXiv preprint arXiv:2402.01766, 2024.

Weizhe Yuan, Ilia Kulikov, Ping Yu, Kyunghyun Cho, Sainbayar Sukhbaatar, Jason Weston, and Jing
Xu. Following length constraints in instructions. arXiv preprint arXiv:2406.17744, 2024.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:
Rank responses to align language models with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023.

Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level
direct preference optimization. arXiv preprint arXiv:2404.11999, 2024.

Xuanchang Zhang, Wei Xiong, Lichang Chen, Tianyi Zhou, Heng Huang, and Tong Zhang. From
lists to emojis: How format bias affects model alignment. arXiv preprint arXiv:2409.11704, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

SUPPLEMENTARY MATERIALS

These supplementary materials provide additional details, derivations, and experimental results for
our paper. The appendix is organized as follows:

• Section A presents a detailed overview of related literature starting from the broader RLHF
literature, before moving on to multi-preference optimization and our dataset.

• Section B presents a detailed bias analysis, demonstrating how incorporating multiple preferences
reduces alignment bias.

• Section C provides a comprehensive comparison between the Group Contrastive Loss and InfoNCA
Loss, including detailed gradient analyses.

• Section D offers a thorough characterization of stationary points for both the InfoNCA and
Weighted Contrastive Loss functions.

• Section E describes the baselines used for comparison in our experimental evaluations, including
various DPO implementations and alternative approaches.

• Section F provides the implementation details of the reward loss computation, including the actual
code used in our experiments.

A RELATED WORK

We will start this literature survey with a high level overview of the RLHF literature and then going
deeper into the area of preference, and then multi-preference optimization relevant to our work.

Broader RLHF Literature: Reinforcement Learning through Human feedback (RLHF) has emerged
as a robust alignment algorithm for language models. The area broadly started of with works like
Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO) (Schulman,
2015; Schulman et al., 2017) which extend direct RL based methods by constraining the update space
to within a trusted region and clipping policy updates to prevent instability respectively. Building
upon earlier policy gradient methods (Sutton et al., 1999), PPO has been successfully applied to
alignment tasks in Reinforcement Learning from Human Feedback (RLHF), allowing language
models to produce outputs aligned with human preferences (Ziegler et al., 2019; Ouyang et al., 2022).
Its simplicity and efficiency make it a standard approach for fine-tuning large-scale models. Prior to
PPO, Trust Region Policy Optimization (TRPO) (Schulman, 2015) introduced constraints to improve
learning stability, influencing the development of PPO. Early applications of policy gradient methods
in natural language processing (Ranzato et al., 2015) demonstrated the potential of reinforcement
learning for language model training.

Preference Optimization: Direct Preference Optimization (DPO) simplifies the alignment of lan-
guage models by optimizing a contrastive loss directly over paired preference data, bypassing the
intermediate step of reward modeling (Rafailov et al., 2024). Unlike RLHF, DPO does not require
explicit reward functions, making it computationally efficient and suitable for limited preference
datasets. Recent extensions of DPO, such as Identity Preference Optimization (IPO) (Azar et al.,
2024), self-play preference optimization (Wu et al., 2024), preference ranking optimization (Song
et al., 2024), rejection sampling optimization (Liu et al., 2023a), and generalized preference optimiza-
tion (Tang et al., 2024) are amongst the other recent works improve on the DPO method.

Beyond the foundational pairwise approaches and their direct extensions, numerous recent works have
proposed methods that adapt or refine DPO-like strategies, often eliminating the need for separate
reward modeling or reference models.

Alternative Approaches Without Full Reward Modeling. Ethayarajh et al. (2024) propose
KTO, a framework inspired by prospect theory that directly learns whether a response is globally

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

desirable or undesirable, thereby removing the requirement of having multiple positive examples
per instruction. Zeng et al. (2024) focus on token-level alignment in TDPO, imposing forward
KL divergence constraints for each token rather than solely for the final output. This fine-grained
approach can mitigate the mode-collapse issues sometimes observed in sequence-level alignment.
Meanwhile, Dong et al. (2023) introduce a list-wise method called RAFT, where the model finetunes
on the best response from each sampled set of k candidates, iteratively converging toward an optimal
subset policy. By contrast, Yuan et al. (2023) center on rank-based supervision through RRHF,
which combines a rank loss with standard supervised signals to ensure the model maintains stronger
probabilities on higher-ranked (i.e., better) responses and less on suboptimal responses.

Enhancing DPO with Additional Objectives and Training Schemes. Other works further modify
or reinterpret the DPO loss to incorporate new constraints or to remove the need for a reference
model. Chen et al. (2024b) propose SPIN, which treats the model as part of a two-player adversarial
game, obviating separate reward modeling by training with a discriminator that distinguishes human
from machine responses. CPO (Xu et al., 2024a) reworks the DPO objective by removing the
reference-model term and adding a behavior cloning regularizer. Similarly, ORPO (Hong et al.,
2024) folds preference optimization into a negative log-likelihood objective via an odds-ratio penalty,
thereby unifying supervised fine-tuning (SFT) and preference training. In SimPO, Meng et al. (2024)
remove the reference model and incorporate a length normalization to address verbosity issues that
can skew preference data. Likewise, R-DPO (Park et al., 2024) and LD-DPO (Liu et al., 2024a)
specifically tackle length bias by injecting additional regularizers or by explicitly separating length-
based preferences from other factors. For instance, LD-DPO modifies the training set to handle
length constraints, preventing performance drops on standard benchmarks while mitigating length
exploitation in preference tasks.

Refining Training Regimens for Preference Data. A final family of works emphasizes how
training procedures or data usage can be systematically improved. For instance, Kim et al. (2024)
propose sDPO, a step-wise learning method partitioning preference data to stabilize training. IRPO
(Pang et al., 2024) enhances chain-of-thought reasoning by incorporating a negative log-likelihood
term for the chosen solution path, thus nudging LLMs toward robust multi-step reasoning. OFS-DPO
(Qi et al., 2024) trains two LoRA modules at different paces—one faster, one slower—to sustain
gradient momentum and to adapt more efficiently. Lastly, Yuan et al. (2024) tackle verbosity with
LIFT-DPO, an approach that augments preference data with length-control instructions, ensuring
that the model does not exploit response length to inflate its preference scores.

Multi-Preference Optimization: Traditional preference optimization methods, like DPO, consider
pairwise comparisons. However, datasets such as UltraFeedback (Cui et al., 2023) highlight the
necessity of multi-preference optimization. Multi-preference methods, such as InfoNCA (Chen et al.,
2024a), leverage all available positive and negative responses simultaneously, reducing alignment bias
and better approximating the true preference distribution. These methods mitigate limitations inherent
to pairwise approaches by incorporating the diversity of acceptable and suboptimal responses. Earlier
works in search have also used multiple user preferences to optimize models in various applications
such as search (Joachims, 2002).

Reward Modeling in Preferences: Reward modeling is essential for translating qualitative human
feedback into quantitative metrics that guide AI behavior optimization. Traditional methods, such as
Reinforcement Learning from Human Feedback (RLHF), utilize reward models trained on human
annotations to inform policy updates (Christiano et al., 2017; Stiennon et al., 2020). Early approaches
like inverse reinforcement learning (Ng et al., 2000) and apprenticeship learning (Abbeel & Ng,
2004) demonstrated the feasibility of inferring reward functions from observed behaviors. Recent
advancements have diversified reward modeling techniques. For instance, the Adversarial Preference
Optimization (APO) framework employs adversarial training to adapt reward models to the evolving
generation distribution of language models (Cheng et al., 2023).

Noise Contrastive Estimation and InfoNCA: Contrastive learning, particularly methods like
InfoNCE (Oord et al., 2018), maximizes mutual information between positive samples while discrim-
inating against negatives. In the language domain, Klein & Nabi (2024) leverage a perplexity-based
contrastive objective to reduce toxic language generation while preserving the model’s overall utility.
InfoNCA adapts these principles for preference optimization, aligning responses with scalar rewards
through noise-contrastive estimation (Chen et al., 2024a). Despite its strengths, InfoNCA can overem-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

phasize less informative negative samples, which motivates methods like SWEPO that dynamically
weigh responses based on deviation from the mean reward.

UltraFeedback Dataset: The UltraFeedback dataset (Cui et al., 2023) is a significant advancement
in preference-based training resources. It comprises GPT-4 annotated feedback for over 64,000
instructions, including scalar reward evaluations. UltraFeedback has been pivotal in developing
models like UltraLM-13B-PPO and UltraRM, which achieve state-of-the-art performance across
benchmarks such as AlpacaEval. This dataset’s granularity enables advanced preference optimization
methods like SWEPO to leverage diverse response quality levels effectively.

B BIAS ANALYSIS:

In the first part of this section section, we analyze how the number of positive and negative examples
per query, k, affects the bias with respect to an attribute a(y). We provide a formal theorem
establishing the relationship between bias and k, followed by a corollary discussing the behavior as
k →∞.

The reason for this analysis is to show that multi-preference sampling of accepted and rejected
answers from a distribution is better than using a single sample as DPO does. The more accepted and
rejected samples you have, the lower the bias, provably.

B.1 ASSUMPTIONS

We make the following assumptions:

1. Attribute Function: Let a(y) : Yx → R be an attribute function mapping responses to real
numbers (e.g., response length).

2. Finite Variance: The attribute a(y) has finite variance over the acceptable response distri-
bution Ax for each query x, i.e., Vary∼Ax [a(y)] = σ2

Ax
<∞.

3. Independent Sampling: Responses are independently sampled from their respective distri-
butions.

4. Model Capacity: The model can represent the true distribution given sufficient data.
5. Uniform Bounded Variance: There exists a constant σ2

max such that σ2
Ax
≤ σ2

max for all
x ∈ X .

B.2 BIAS DEFINITION

The bias with respect to attribute a is defined as:

B(k) =
∣∣∣µ(k)

θ − µA

∣∣∣ , (23)

where:

• µ
(k)
θ is the expected attribute value under the model after training with k positive and k

negative samples per query.
• µA = Ex∼X [µAx], with µAx = Ey∼Ax [a(y)].

B.3 MAIN BIAS RESULT

Theorem 2. Under the stated assumptions, the expected bias E[B(k)] decreases with the number of
samples k as:

E[B(k)] ≤ C√
k
, (24)

where C = σmax is a constant depending on the maximum variance of a(y) over the acceptable
responses.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Proof. For each query x, consider the sample mean of the attribute over the k positive responses:

a(k)x =
1

k

k∑
i=1

a(y+x,i), y+x,i ∼ Ax. (25)

Since the y+x,i are independent and identically distributed samples from Ax, the expected value and

variance of a(k)x are:

E
[
a(k)x

]
= µAx

, (26)

Var
(
a(k)x

)
=

σ2
Ax

k
≤ σ2

max

k
. (27)

Using the fact that for any random variable Z with finite variance, the expected absolute deviation
from its mean satisfies:

E [|Z − E[Z]|] ≤
√

Var[Z], (28)

we have:

E
[∣∣∣a(k)x − µAx

∣∣∣] ≤
√

σ2
Ax

k
≤ σmax√

k
. (29)

Averaging over all queries x ∈ X :

Ex

[∣∣∣a(k)x − µAx

∣∣∣] ≤ σmax√
k

. (30)

Since µ
(k)
θ = Ex

[
a
(k)
x

]
and µA = Ex [µAx

], the expected bias is:

E[B(k)] =
∣∣∣µ(k)

θ − µA

∣∣∣ = ∣∣∣Ex

[
a(k)x − µAx

]∣∣∣ (31)

≤ Ex

[∣∣∣a(k)x − µAx

∣∣∣] ≤ σmax√
k

. (32)

Thus, the expected bias decreases with k as 1√
k

.

Corollary 2. As k →∞, the expected bias E[B(k)] approaches zero:

lim
k→∞

E[B(k)] = 0. (33)

Implications This theorem establishes a quantitative relationship between the bias B(k) and the
number of samples k. It shows that incorporating multiple positive and negative responses per
query reduces the bias with respect to attribute a(y) at a rate proportional to 1/

√
k. As k increases,

the model’s expected attribute value converges to the true expected attribute value over acceptable
responses, leading to better alignment with human preferences.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

C DIFFERENTIATING THE GROUP CONTRASTIVE LOSS FROM INFONCE LOSS

In this subsection, we compare our proposed weighted contrastive loss function with the InfoNCA
loss function. We present both loss functions, derive their gradients rigorously, and characterize their
stationary points. Based on this characterization, we discuss the properties of the convergence points
in terms of what the models learn and their alignment with human preferences.

C.1 DEFINITIONS OF LOSS FUNCTIONS

InfoNCA Loss Function The InfoNCA loss function is defined as:

LInfoNCA = −
K∑
i=1

ptarget
i log pmodel

i ,

where ptarget
i represents the target probability for the i-th response, calculated as

ptarget
i =

er(x,yi)/α∑K
j=1 e

r(x,yj)/α
,

and pmodel
i denotes the model’s predicted probability for the i-th response, given by

pmodel
i =

esθ(yi|x)∑K
j=1 e

sθ(yj |x)
.

In this context, x is the instruction or prompt provided to the model, and {yi}Ki=1 represents a set
of K responses generated for the instruction x. The term r(x, yi) is the reward associated with
the response yi, while sθ(yi | x) = log (Pθ(yi | x)/Pref(yi | x)) is the score for response yi. The
parameter α serves as a temperature parameter that controls the influence of the reward, and K is the
total number of responses considered for the instruction x.

Weighted Contrastive Loss Function Our proposed weighted contrastive loss function is expressed
as:

Lweighted = − log

∑

i∈Y +

wie
sθ(yi|x)

K∑
j=1

wjesθ(yj |x)

 ,

where Y + is the set of positive responses with rewards above the mean, defined as Y + = {yi | Si >
Smean}. Each response yi is assigned a weight wi = eαδi , where δi is the deviation of the reward
score Si from the mean reward score Smean. Specifically, δi = Si − Smean for responses in Y + and
δi = Smean − Si for responses not in Y +. The mean reward score Smean is calculated as

Smean =
1

K

K∑
j=1

Sj ,

where K is the total number of responses for the query x. The term sθ(yi | x) denotes the model’s
logit for response yi, and α is a scaling hyperparameter that controls the influence of the deviation δi.

C.2 GRADIENT ANALYSIS

To understand how each loss function influences the model during training, we derive the gradients
with respect to the model logits sθ(yi | x) for both methods.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Gradient of InfoNCA Loss
Lemma 1. The gradient of the InfoNCA loss with respect to the model logits sθ(yi | x) is:

∂LInfoNCA

∂sθ(yi | x)
= pmodel

i − ptarget
i . (34)

Proof. The InfoNCA loss is:

LInfoNCA = −
K∑

k=1

ptarget
k log pmodel

k . (35)

Our goal is to compute ∂LInfoNCA
∂sθ(yi|x) .

Since ptarget
k does not depend on sθ(yi | x) (the rewards are constants with respect to the model

parameters), the derivative only affects the terms involving pmodel
k .

First, express log pmodel
k explicitly:

log pmodel
k = sθ(yk | x)− log

 K∑
j=1

esθ(yj |x)

 . (36)

Now, compute the derivative of log pmodel
k with respect to sθ(yi | x):

∂ log pmodel
k

∂sθ(yi | x)
=

∂sθ(yk | x)
∂sθ(yi | x)

− ∂

∂sθ(yi | x)
log

 K∑
j=1

esθ(yj |x)

 . (37)

Compute each term separately.

First term:

∂sθ(yk | x)
∂sθ(yi | x)

= δik, (38)

where δik is the Kronecker delta, equal to 1 if i = k and 0 otherwise.

Second term:

Let Z =
∑K

j=1 e
sθ(yj |x). Then,

∂

∂sθ(yi | x)
logZ =

1

Z

∂Z

∂sθ(yi | x)
. (39)

Compute ∂Z
∂sθ(yi|x) :

∂Z

∂sθ(yi | x)
= esθ(yi|x). (40)

Therefore,

∂

∂sθ(yi | x)
logZ =

esθ(yi|x)

Z
= pmodel

i . (41)

Putting it all together:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

∂ log pmodel
k

∂sθ(yi | x)
= δik − pmodel

i . (42)

Now, compute the gradient of the loss:

∂LInfoNCA

∂sθ(yi | x)
= −

K∑
k=1

ptarget
k

∂ log pmodel
k

∂sθ(yi | x)
(43)

= −
K∑

k=1

ptarget
k

(
δik − pmodel

i

)
(44)

= −

(
ptarget
i − pmodel

i

K∑
k=1

ptarget
k

)
. (45)

Since
∑K

k=1 p
target
k = 1, we have:

K∑
k=1

ptarget
k = 1 =⇒

K∑
k=1

ptarget
k = 1. (46)

Therefore,

∂LInfoNCA

∂sθ(yi | x)
= −

(
ptarget
i − pmodel

i · 1
)
= pmodel

i − ptarget
i . (47)

Gradient of Weighted Contrastive Loss
Lemma 2. The gradient of the weighted contrastive loss with respect to the model logits sθ(yi | x)
is:

∂Lweighted

∂sθ(yi | x)
= pweighted

i − ppos
i (48)

where:

pweighted
i =

wie
sθ(yi|x)∑K

j=1 wjesθ(yj |x)
, ppos

i =
wie

sθ(yi|x)∑
k∈Y + wkesθ(yk|x)

· Iyi∈Y + , (49)

and Iyi∈Y + is the indicator function, equal to 1 if yi ∈ Y + and 0 otherwise.

Proof. Let us denote:

A =
∑

k∈Y +

wke
sθ(yk|x), Z =

K∑
j=1

wje
sθ(yj |x). (50)

The weighted contrastive loss is:

Lweighted = − log

(
A

Z

)
= − logA+ logZ. (51)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Compute the derivative with respect to sθ(yi | x):

∂Lweighted

∂sθ(yi | x)
= − 1

A

∂A

∂sθ(yi | x)
+

1

Z

∂Z

∂sθ(yi | x)
. (52)

Compute ∂A
∂sθ(yi|x) :

∂A

∂sθ(yi | x)
= wie

sθ(yi|x) · Iyi∈Y + . (53)

Compute ∂Z
∂sθ(yi|x) :

∂Z

∂sθ(yi | x)
= wie

sθ(yi|x). (54)

Substitute back into the gradient:

∂Lweighted

∂sθ(yi | x)
= − 1

A
wie

sθ(yi|x) · Iyi∈Y + +
1

Z
wie

sθ(yi|x) (55)

= wie
sθ(yi|x)

(
1

Z
−

Iyi∈Y +

A

)
. (56)

Recognize that:

pweighted
i =

wie
sθ(yi|x)

Z
, ppos

i =
wie

sθ(yi|x)

A
· Iyi∈Y + . (57)

Therefore:

∂Lweighted

∂sθ(yi | x)
= pweighted

i − ppos
i . (58)

Since ppos
i = 0 when yi /∈ Y +, we have:

∂Lweighted

∂sθ(yi | x)
=

{
pweighted
i − ppos

i , if yi ∈ Y +,

pweighted
i − 0 = pweighted

i , if yi ∈ Y −.
(59)

However, this suggests that the gradient is always positive for negative examples. In other words,
given wi and Z are positive, esθ(yi|x) keeps increasing. But note that sθ(yi | x) = − log (Pθ(yi | x)).
Hence 1

Pθ(yi|x) keeps increasing implying that Pθ(yi | x) keeps decreasing. i.e. at the stationary
point, Pθ(yi | x)→ 0 for all negative examples, yi ∈ Y −.

Now let us examine the positive examples. The gradient simplifies to wie
sθ(yi|x)

(
1
Z −

1
A

)
. Since

Z ≥ A, 1
Z ≤

1
A . Hence the gradient term with respect to sθ(yi | x) is negative. Notice that

esθ(yi|x) = 1
Pθ(yi|x) . A negative gradient implies that 1

Pθ(yi|x) decreases, implying that Pθ(yi | x)
increases for all positive examples yi ∈ Y +.

We now provide the gradients directly in terms of Pθ(yj | x) instead of the scores sθ(yj | x), for easy
interpretibility in terms of the probabilities.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Lemma 3. Let the weighted contrastive loss be defined as:

Lweighted = − log

(
V

U

)
= − log V + logU,

where

U =

K∑
j=1

ujPθ(yj | x), V =
∑
i∈Y +

uiPθ(yi | x),

and
ui =

wi

Pref(yi | x)
,

with wi = eαδi , Pθ(yi | x) being the model probability for response yi, and Pref(yi | x) being the
reference model probability.

Then, the gradient of the weighted contrastive loss with respect to Pθ(yi | x) is given by:

• For positive examples (yi ∈ Y +):

∂Lweighted

∂Pθ(yi | x)
= ui

(
1

U
− 1

V

)
, (60)

• For negative examples (yi /∈ Y +):

∂Lweighted

∂Pθ(yi | x)
=

ui

U
. (61)

Proof. Using the score function sθ(yi | x) = log
(

Pθ(yi|x)
Pref(yi|x)

)
, we have esθ(yi|x) =

Pθ(yi | x)
Pref(yi | x)

.

The weighted contrastive loss becomes:

Lweighted = − log

∑
i∈Y +

wie
sθ(yi|x)

K∑
j=1

wje
sθ(yj |x)

 = − log

∑
i∈Y +

wi
Pθ(yi | x)
Pref(yi | x)

K∑
j=1

wj
Pθ(yj | x)
Pref(yj | x)

 = − log

(
V

U

)
,

where ui =
wi

Pref(yi | x)
, V =

∑
i∈Y + uiPθ(yi | x), and U =

∑K
j=1 ujPθ(yj | x).

We compute the gradient of Lweighted with respect to Pθ(yi | x):
∂Lweighted

∂Pθ(yi | x)
= − 1

V
· ∂V

∂Pθ(yi | x)
+

1

U
· ∂U

∂Pθ(yi | x)
.

Case 1: For yi ∈ Y +:
∂V

∂Pθ(yi | x)
= ui,

∂U

∂Pθ(yi | x)
= ui.

Thus,
∂Lweighted

∂Pθ(yi | x)
= −ui

V
+

ui

U
= ui

(
1

U
− 1

V

)
.

Case 2: For yi /∈ Y +:
∂V

∂Pθ(yi | x)
= 0,

∂U

∂Pθ(yi | x)
= ui.

Thus,
∂Lweighted

∂Pθ(yi | x)
= 0 +

ui

U
=

ui

U
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Corollary 3. The sign of the gradient indicates the optimization direction:

• For positive examples (yi ∈ Y +), since V ≤ U , we have
1

U
− 1

V
≤ 0. Therefore, the

gradient
∂Lweighted

∂Pθ(yi | x)
≤ 0, and minimizing Lweighted involves increasing Pθ(yi | x).

• For negative examples (yi /∈ Y +), the gradient
∂Lweighted

∂Pθ(yi | x)
> 0, and minimizing Lweighted

involves decreasing Pθ(yi | x).

Proof. As established in the lemma:

For positive examples (yi ∈ Y +): Since V =
∑

i∈Y + uiPθ(yi | x) and U = V +
∑

j /∈Y + ujPθ(yj |

x), it follows that V ≤ U and thus
1

U
− 1

V
≤ 0.

Therefore, the gradient:
∂Lweighted

∂Pθ(yi | x)
= ui

(
1

U
− 1

V

)
≤ 0.

A negative gradient indicates that increasing Pθ(yi | x) will decrease Lweighted. Hence, to minimize
the loss, we should increase Pθ(yi | x) for positive examples.

For negative examples (yi /∈ Y +): The gradient is:

∂Lweighted

∂Pθ(yi | x)
=

ui

U
> 0,

since ui > 0 and U > 0. A positive gradient indicates that decreasing Pθ(yi | x) will decrease
Lweighted. Therefore, to minimize the loss, we should decrease Pθ(yi | x) for negative examples.

D CHARACTERIZATION OF STATIONARY POINTS

We now characterize the stationary points of both loss functions.

D.1 STATIONARY POINTS OF THE INFONCA LOSS FUNCTION

Theorem 3. For the InfoNCA loss, the stationary points occur when:

pmodel
i = ptarget

i , ∀i ∈ {1, . . . ,K}. (62)

Proof. Stationary points are defined by the condition:

∂LInfoNCA

∂sθ(yi | x)
= 0, ∀i. (63)

From the gradient:

∂LInfoNCA

∂sθ(yi | x)
= pmodel

i − ptarget
i , (64)

setting the gradient to zero yields:

pmodel
i = ptarget

i , ∀i. (65)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Remark 1. This stationary point is suboptimal because pmodel
i expands to:

pmodel
i =

elogPθ(yi|x)−logPref(yi|x)∑K
j=1 e

logPθ(yj |x)−logPref(yj |x)

Rather than equating the soft-max of the difference between logPθ(yi|x) and logPref(yi|x) to ptarget
i ,

optimality may require directly setting logPθ(y|x) to match the softmax of the target scores.

D.2 STATIONARY POINTS OF THE WEIGHTED CONTRASTIVE LOSS UNDER SIMPLIFYING
ASSUMPTIONS

Lemma 4. Consider the weighted contrastive loss function in a simplified scenario with the following
conditions: There are N+ positive examples, each with weight w+, and N− negative examples,
each with weight w−. All positive examples have the same score s(t) at iteration t, and all negative
examples have the same score s(t) at iteration t. Then, the update rule for the score s(t) of the positive
examples at iteration t+ 1 is given by

s(t+1) = s(t) + η

(
N−w−

N+(N+w+ +N−w−)

)
, (66)

where η is the learning rate.

Proof. Let Y + denote the set of positive examples and Y − the set of negative examples, with N+

and N− examples respectively for a total of K = N+ +N− examples. With weights w+ and w−

assigned to positive and negative examples respectively, and logits s(t) for both classes at timestep t,
the weighted contrastive loss function is defined as:

Lweighted(θ) = − log

∑

i∈Y +

wie
si

K∑
j=1

wjesj

 , (67)

where wi = w+ and si = s(t) for i ∈ Y +, and wj = w− and sj = s(t) for j ∈ Y −.

Compute the numerator A and the denominator Z of the loss function:

A =
∑
i∈Y +

wie
si = N+w+es

(t)

, (68)

Z =

K∑
j=1

wje
sj = N+w+es

(t)

+N−w−es
(t)

= es
(t)

(N+w+ +N−w−). (69)

For positive examples i ∈ Y +, the weighted probability pweighted
i and the positive probability ppos

i are:

pweighted
i =

w+es
(t)

Z
=

w+

N+w+ +N−w− , (70)

ppos
i =

w+es
(t)

A
=

w+

N+w+
=

1

N+
. (71)

The gradient of the loss with respect to s(t) for positive examples is:

∂Lweighted

∂s(t)
= pweighted

i − ppos
i =

w+

N+w+ +N−w− −
1

N+
. (72)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

To simplify this expression, we find a common denominator D = N+(N+w+ +N−w−):

∂Lweighted

∂s(t)
=

w+N+ − (N+w+ +N−w−)

D
(73)

=
w+N+ −N+w+ −N−w−

N+(N+w+ +N−w−)
(74)

=
−N−w−

N+(N+w+ +N−w−)
. (75)

The update rule for s(t) is then:

s(t+1) = s(t) − η
∂Lweighted

∂s(t)
= s(t) + η

(
N−w−

N+(N+w+ +N−w−)

)
. (76)

This completes the proof.

Corollary 4. Assuming the initial scores are zero (s(0) = 0), the score s(t) of the positive examples
at iteration t is given by

s(t) = tη

(
N−w−

N+(N+w+ +N−w−)

)
. (77)

Proof. From the update rule established in the lemma,

s(t+1) = s(t) + c, (78)

where

c = η

(
N−w−

N+(N+w+ +N−w−)

)
. (79)

Since s(0) = 0, we have

s(1) = s(0) + c = c, (80)

s(2) = s(1) + c = 2c, (81)
... (82)

s(t) = tc. (83)

Substituting c back into the expression, we obtain

s(t) = tη

(
N−w−

N+(N+w+ +N−w−)

)
. (84)

Corollary 5. In the special case where there is one positive example (N+ = 1) and one negative
example (N− = 1), and the weights are w+ = w− = 1 (as in Direct Preference Optimization), the
score s(t) at iteration t is:

s(t) =
ηt

2
. (85)

Proof. Substituting N+ = N− = 1 and w+ = w− = 1 into the expression for s(t):

s(t) = tη

(
1× 1

1× (1× 1 + 1× 1)

)
(86)

= tη

(
1

1× (1 + 1)

)
(87)

= tη

(
1

2

)
(88)

=
ηt

2
. (89)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Lemma 5. Consider the general case where positive examples may have different weights w+
i , and

each positive example i has its own score s
(t)
i at iteration t. Assuming initial scores s(0)i = 0 for all

positive examples, the score s
(t)
i of positive example i at iteration t, up to a linear approximation, is

given by

s
(t)
i = tηw+

i

(
B0

A0Z0

)
, (90)

where A0 =
∑

k∈Y + w+
k , B0 =

∑
j∈Y − w−

j , Z0 = A0 +B0, and η is the learning rate.

Proof. At iteration t = 0, the initial scores are s
(0)
i = 0 for all i ∈ Y +. The sums are:

A0 =
∑

k∈Y +

w+
k e

s
(0)
k =

∑
k∈Y +

w+
k = W+, (91)

B0 =
∑
j∈Y −

w−
j e

s
(0)
j =

∑
j∈Y −

w−
j = W−. (92)

The total sum is Z0 = A0 +B0 = W+ +W−.

The gradient for each positive example i at t = 0 is:

∂Lweighted

∂s
(0)
i

= −w+
i e

s
(0)
i

(
B0

A0Z0

)
= −w+

i

(
B0

A0Z0

)
. (93)

The update rule is:

s
(1)
i = s

(0)
i − η

∂Lweighted

∂s
(0)
i

= ηw+
i

(
B0

A0Z0

)
. (94)

Assuming that the term B0

A0Z0
remains approximately constant over iterations (which holds when η is

small and changes in s
(t)
i are small), the score at iteration t is:

s
(t)
i = tηw+

i

(
B0

A0Z0

)
. (95)

Remark 2. The approximation assumes that At, Bt, and Zt remain close to their initial values A0,
B0, and Z0 over the iterations considered, and the score values remain small. This is reasonable for
small learning rates η and a limited number of iterations t.

D.3 STATIONARY POINTS OF THE WEIGHTED CONTRASTIVE LOSS

We now analyze the stationary points of our weighted contrastive loss function.

Lemma 6. For the weighted contrastive loss function, the stationary point occurs when the probabili-
ties of the negative samples approach zero, i.e.,

Pθ(yi | x)→ 0 for all yi ∈ Y −. (96)

Proof. From Lemma ??, the gradient of the weighted contrastive loss with respect to the model logits
sθ(yi | x) is:

∂Lweighted

∂sθ(yi | x)
=

{
pweighted
i − ppos

i , if yi ∈ Y +,

pweighted
i , if yi ∈ Y −.

(97)

At a stationary point, the gradient must be zero for all yi. Consider the negative samples yi ∈ Y −.
Setting the gradient to zero yields:

∂Lweighted

∂sθ(yi | x)
= pweighted

i = 0. (98)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Since pweighted
i is the normalized weighted probability of yi, given by:

pweighted
i =

wie
sθ(yi|x)∑K

j=1 wjesθ(yj |x)
, (99)

and wi > 0, the only way for pweighted
i to be zero is if esθ(yi|x) = 0, which implies:

sθ(yi | x)→ −∞ =⇒ Pθ(yi | x)→ 0 for yi ∈ Y −. (100)

Similarly, for positive samples yi ∈ Y +, the gradient is:

∂Lweighted

∂sθ(yi | x)
= pweighted

i − ppos
i = 0. (101)

This implies:
pweighted
i = ppos

i . (102)

Since the probabilities of the negative samples approach zero, the denominator in pweighted
i becomes:

K∑
j=1

wje
sθ(yj |x) ≈

∑
k∈Y +

wke
sθ(yk|x). (103)

Therefore, pweighted
i ≈ ppos

i , satisfying the condition for the gradient to be zero for positive samples.

Thus, at the stationary point, the probabilities of the negative samples approach zero.

Remark 3. When the probabilities of the negative samples approach zero, the scores sθ(yi | x) for
yi ∈ Y − tend to −∞. Since:

esθ(yi|x) =
Pθ(yi | x)
Pref(yi | x)

→ 0, (104)

the weighted contributions of the negative samples to the numerator and denominator of Lweighted
become negligible.

Consequently, the numerator and denominator of Lweighted become equal:

∑
i∈Y +

wie
sθ(yi|x) ≈

K∑
j=1

wje
sθ(yj |x). (105)

Therefore:

Lweighted = − log

∑

i∈Y +

wie
sθ(yi|x)

K∑
j=1

wjesθ(yj |x)

 ≈ − log 1 = 0. (106)

This implies that the loss vanishes when the probabilities of the negative samples approach zero,
indicating that the model has successfully minimized the loss by focusing entirely on the positive
responses.

E BASELINES USED FOR COMPARISON

When dealing with reward datasets where each instruction has more than two K > 2 responses, one
common approach is to convert the data into pairwise preferences and then apply preference opti-
mization techniques such as Direct Preference Optimization (DPO). Several strategies can be adopted
for this purpose, each offering distinct trade-offs in terms of dataset richness and computational
overhead.One straightforward method, as implemented by Zephyr Tunstall et al. (2023), involves
selecting the response with the highest reward and pairing it with a randomly chosen response from
the remaining responses for each instruction. Another variant involves pairing the highest-rewarded

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

response with the lowest-rewarded response for each instruction, ensuring a clear distinction between
preferences.Additionally, alternative baselines can be explored to enhance performance by incorpo-
rating more suboptimal responses during training. By applying DPO to combinations of responses,
we can significantly expand the preference dataset and potentially achieve improved optimization.
Two notable baselines in this context are:

DPOx
(
K
2

)
: In this approach, all possible pairwise combinations of

(
K
2

)
are generated, and DPO

is applied to the entire combinatorial dataset. This method ensures the model is exposed to a
comprehensive range of preference relationships, including those involving suboptimal responses.

DPOx(K − 1): Here, the response with the highest reward is paired individually with each of the
remaining (K − 1) responses. This strategy emphasizes the contrast between the top response and all
others, potentially reinforcing the model’s understanding of optimal preferences.

Other baselines, such as InfoNCA and NCA, suggest that naively applying DPO to combinations of
responses may lead to suboptimal performance. They leveraged Noise Contrastive Estimation (NCE)
to bridge the gap in handling reward datasets explicitly annotated with scalar evaluations. According
to their findings, the theoretical guarantees they provide ensure convergence, which is not guaranteed
when applying DPO in this manner.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

F REWARD LOSS COMPUTATION

In this section we provide the actual code used to compute the reward losses.

import torch

def swepo_loss(pi_logps , ref_logps , rewards , beta , alpha , weight_type):
"""
pi_logps: policy logprobs for K responses , shape (Batch_Size , K)
ref_logps: reference logprobs for K responses , shape (Batch_Size , K)
rewards: reward labels for K responses , shape (Batch_Size , K)
beta: Temperature parameter for the SWEPO loss
alpha: rating weight
norm: weighting scheme for the reward score (0 or 1 or 2)
"""

logits = pi_logps - ref_logps # Compute logits
rewards = rewards / alpha # Normalizing the reward value to logits

scale

mean_rewards = torch.mean(rewards , dim=-1)
if self.norm > 0:

weights = torch.abs(rewards - mean_rewards.reshape(-1, 1))
weights = torch.pow(weights , norm) * beta

else:
deviation_reward = 0

pos_mask = (rewards > mean_rewards.reshape(-1, 1)) * 1
neg_mask = torch.logical_not(pos_mask) * 1

eps = 1e-10
logits = (logits + weight) * beta
logits = logits - logits.max(dim=-1, keepdim=True)[0] # Stabilize

logits
softmax_val = torch.softmax(logits + eps , dim=-1)
pos_sum = torch.clamp(torch.sum(softmax_val * pos_mask , dim=-1), min=

eps)
neg_sum = torch.clamp(torch.sum(softmax_val * neg_mask , dim=-1), min=

eps)

losses = -1 * torch.log(pos_sum / (pos_sum + neg_sum + eps * 2))

return losses.mean()

28

	Introduction
	Our Contributions

	Related Work
	Notations and Preliminaries
	Algorithm and Methodology
	Algorithm 1 Description.
	Weight Computation and Modified Scores
	Generalization with Power p

	Theoretical Analysis
	Bias Reduction through Multiple Preferences
	Assumptions

	Experiments
	Experimental Setup
	Experimental Results

	Related Work
	Bias Analysis:
	Assumptions
	Bias Definition
	Main Bias Result

	Differentiating the Group Contrastive Loss from InfoNCE Loss
	Definitions of Loss Functions
	Gradient Analysis

	Characterization of Stationary Points
	Stationary Points of the InfoNCA Loss Function
	Stationary Points of the Weighted Contrastive Loss under Simplifying Assumptions
	Stationary Points of the Weighted Contrastive Loss

	Baselines Used for Comparison
	Reward Loss Computation

