
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Moonwalk: Inverse-Forward Differentiation

Anonymous authors
Paper under double-blind review

Abstract

Backpropagation is effective for gradient computation but can requires large mem-
ory, limiting scalability. This work explores forward-mode gradient computation
as an alternative in invertible networks and, more generally, ones with surjective
differentials (submersive networks), showing its potential to reduce the memory
footprint without substantial drawbacks. We introduce a novel technique based on
a vector-inverse-Jacobian product that accelerates the forward computation of gra-
dients compared to naı̈ve forward-mode methods while retaining their advantages
of memory reduction and preserving the fidelity of true gradients. Our method,
Moonwalk, has a time complexity linear in the depth of the network, unlike the
quadratic time complexity of naı̈ve forward, and empirically reduces computation
time by several orders of magnitude without allocating more memory. We fur-
ther accelerate Moonwalk by combining it with reverse-mode differentiation to
achieve time complexity comparable with backpropagation while significantly re-
ducing its memory footprint in some network architectures. Finally, we showcase
the robustness of our method across several architecture choices. Moonwalk is
the first forward-based method to compute true gradients in submersive networks
in computation time comparable to backpropagation and using significantly less
memory.

1 Introduction

In recent years, the evolution of deep learning models has been significantly influenced by the
advent of automatic differentiation (AD) packages (Paszke et al., 2019; Bradbury et al., 2018; Abadi
et al., 2015), facilitating expedited model construction and research. The most commonly used
differentiation algorithm is backpropagation (Backprop), which effectively addresses the challenge
of time-efficient gradient computation, but fails to tackle the issue of memory consumption (Gomez
et al., 2017; Chakrabarti & Moseley, 2019). The issue is that, during the construction and reversion of
the computation graph, Backprop retains the value of many intermediate computations (“activations”)
acquired during the forward execution phase, as needed for the backward phase. For large networks,
the memory footprint scales with the number of activations (Novikov et al., 2023) which can result
in significant memory overhead limiting the ability to scale neural networks.

An alternative to traditional Backprop is forward-mode gradient computation (Forward), a long-
established concept in training neural networks (Williams & Zipser, 1989) but one that remains less
widely adopted in practice due to its very high computation time. The notion of employing forward
differentiation has recently gained attention as a promising strategy for alleviating layer activation
memory constraints inherent in Backprop (Silver et al., 2021; Baydin et al., 2022; Fournier et al.,
2023). However, a primary drawback of forward gradient computation lies in its requirement to com-
pute full Jacobian matrices for every layer of the computation graph, proving more computationally
expensive than the vector-Jacobian products (vjp) used in Backprop.

To address this challenge, one potential approach involves projecting true gradients onto a subspace
and computing only these projections in forward-mode (Baydin et al., 2022). Some prior works
employ projections onto random subspaces, thereby introducing variance in gradient estimation
that limits applicability in large networks (Silver et al., 2021). Other works predict the gradient
direction based on auxiliary networks or past gradients and use it as a preferred projection subspace,
showing promise in reducing variance but to-date falling short of the end-to-end training accuracy
of Backprop (Fournier et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this work, we identify a novel mathematical identity in computing gradients of invertible networks
and, more generally, of networks whose layers have differentials that are everywhere surjective,
defined in section 3.1 as submersive networks. This identity allows significant savings in memory and
time when computing true gradients in forward-mode without projection. Our method, Moonwalk,
relies on the observation that, once we obtain the gradient of the objective with respect to just the input
of the first layer, we can efficiently compute the remaining gradients using a vector-inverse-Jacobian
product (vijp) operator in forward-mode. To our knowledge, Moonwalk is the first forward-mode
differentiation method that can outperform Backprop in both time and memory requirements when
computing true gradients in submersive networks.

Moonwalk computes gradients in two phases. In the first phase, it computes the gradient of the
objective (the loss) with respect to the first layer’s input. In the second phase, Moonwalk uses this input
gradient in a forward pass to obtain each layer’s parameters gradient through an operator involving
vijp with respect to the layer’s input, as well as vjp with respect to its parameters. Computing the input
gradient in the first phase can be done in two ways: pure-forward via forward-mode differentiation, by
computing the full Jacobian of just the input, which is typically much smaller than the Jacobian of the
entire network; and mixed-mode, by computing the input gradient in reverse-mode. Pure-forward
Moonwalk is significantly faster than full Forward differentiation, and potentially fast enough to
be worth the immense memory saving over Backprop, particularly when the dimensionality of the
input is small. When the input is high-dimensional, mixed-mode Moonwalk is preferred, greatly
accelerating the computation compared to full Forward at the cost of more memory than pure-forward
Moonwalk, but still less memory than full Backprop.

In summary, this work contributes two novel automatic differentiation methods for invertible and,
more generally, submersive networks that compute full gradients in forward-mode:

• Pure-forward Moonwalk, an entirely forward-mode method that significantly reduces the
time requirements of naı̈ve forward differentiation and is the first forward-mode method to
feasibly address the memory challenge of Backprop, being particularly fast when the input
dimension is very small; and

• Mixed-mode Moonwalk, a variant implementing the first phase of Moonwalk in reverse-
mode for further acceleration to achieve time complexity comparable with Backprop, while
maintaining a smaller memory footprint than Backprop.

2 Related Work

Reducing memory. Previous studies have used checkpointing to alleviate the memory footprint of
neural networks (Martens & Sutskever, 2012; Chen et al., 2016; Gruslys et al., 2016; Kumar et al.,
2019; Zhao et al., 2023). This technique reduces the memory consumption in a network withL layers
by a factor of

√
L through the selective storage of activations at intervals of

√
L layers and their

forward-mode recomputation between checkpoints occurs as they become needed during Backprop.
This can be viewed as an equivalent network with fewer layers whose Jacobian-vector products are
harder to compute, and our result applies equally to these networks as they scale up.

Invertible architectures. Recently, invertible (also known as reversible) architectures have gained
significant attention owing to their diverse applications in reducing memory (Gomez et al., 2017;
MacKay et al., 2018; Mangalam et al., 2022), enhancing learned representation (Jacobsen et al.,
2018), boosting performance (Kingma & Dhariwal, 2018), and generative modeling (Dinh et al.,
2014; Rezende & Mohamed, 2015). One key benefit of these architectures is the ability to avoid
storing activations altogether. When the input to each layer can be computed from its output using
the inverse function, several methods recompute activations backward during Backprop (Gomez
et al., 2017; MacKay et al., 2018; Mangalam et al., 2022). For example, Bulo et al. (2018) replaced
ReLU and batch normalization layers with invertible variants, reducing memory usage by up to
50%. Additionally, Jaderberg et al. (2017) used synthetic gradients for efficient activation storage,
leveraging pre-trained gradient estimators.

Forward propagation. The concept of learning neural network weights in a forward fashion has
been originally explored in the real-time recurrent learning (RTRL) algorithm (Williams & Zipser,
1989), similar to forward-mode AD. This idea becomes more attractive when directional derivatives
(effectively, gradient projections) are employed to eliminate the additional computation time of full

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

forward differentiation. However, this introduces noise into the gradients (Silver et al., 2021; Baydin
et al., 2022), which is coming from the random directions or imperfect gradient predictions used in
directional derivatives. To address the variance of the forward gradients, Ren et al. (2022) proposed
using local greedy loss functions and Fournier et al. (2023) employed local auxiliary networks
as the tangent vectors, but these efforts still vastly underperform true gradients in gradient-based
optimization.

3 Background

3.1 Notation

Consider a neural network fθ : Rn → Rk with L layers and parameters θ = {θi}i=1,...,L. Where
|θi| = di is a parameter of a layer. We will denote the output of layer i ∈ {1, ..., L} by xi =
fi(xi−1; θi) ∈ Rni , where x0 ∈ Rn is the input to the network. Let Jθ(xL) = J(fθ(x0)) be the
scalar loss function, whose gradient with respect to θ we wish to compute as part of a gradient-based
optimization algorithm.
Definition 1 (Submersion). A differentiable function f : Rn → Rk is a submersion if its differential
d f(x) is surjective for all x ∈ Rn.

Smooth submersions are useful in differential topology, where they are defined more generally
for differentiable maps between differentiable manifolds, but we focus on differentiable functions
between vector spaces, where the differential is simply right-multiplication by the k × n Jacobian
∂f/∂x. A submersion then has k ≤ n and a Jacobian that is surjective (right-invertible) for all inputs.
We call a neural network submersive if all its layers are submersions for any value of their parameters.
Note that invertible networks are all submersive, because invertible layers have invertible Jacobians,
but not all submersive networks are invertible.

Throughout the paper we refer to the Jacobian-vector product, the vector-Jacobian product, and the
vector-inverse-Jacobian product as jvp, vjp, and vijp, respectively, and define these operators as

jvp(f, θ, u) = (∂f/∂θ)u, (1)
vjp(f, θ, v) = v (∂f/∂θ) , and (2)

vijp(f, θ, v) = v (∂f/∂θ)
+
, (3)

where u is the tangent column vector, v is the cotangent row vector, (·)+ is any right-inverse, and the
Jacobian, taken here with respect to f ’s parameters θ, can instead be taken with respect to f ’s input x.
jvp and vjp are commonly used operators in AD frameworks, and we use their JAX implementation
jax.jvp and jax.vjp (Bradbury et al., 2018). vijp is implemented by calling jax.vjp with
invertible layers. For non-invertible submersions we define right inverse using SVD in appendix
(Algorithm) 7

3.2 Forward-Mode Gradients

Forward-mode differentiation is an alternative to Backprop for computing the gradients1

∂J

∂θi
=

∂J

∂xL

 i+1∏
j=L

∂xj
∂xj−1

 ∂xi
∂θi

. (4)

While Backprop computes the product in (4) from left to right, forward-mode computes it from right
to left. The suffix of the product can be computed during the forward execution of the function, such
that the activations xi need not be stored, unlike in Backprop. On the other hand, while the prefixes
are vectors of dimension n that can be computed using vjp, the suffixes are matrices of dimensions
n × d. Where d corresponds to parameter size, in general, every layer can have different di. To
avoid storing these matrices in memory, they are commonly computed column-by-column using
jvp, which increases the asymptotic time complexity of forward-mode by a factor of min(n, d)L
compared to Backprop (Table 1).

1We use the notation of row-vector gradients, which are more accurately called total derivatives.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.3 Projected Forward-Mode Gradients

Projected forward-mode gradients (Silver et al., 2021; Baydin et al., 2022) are the directional deriva-
tives computed in a forward fashion. For a unit-length tangent vector u ∈ Rd, the projection of
the gradient onto u has length jvp(J, θ, u) = ∂J

∂θ u, and the projected vector ∂J
∂θ uu

⊺ can be used
as the gradient estimator. The vector u is usually picked at random from a normal distribution or
predicted based on past gradients and showed to be a descend direction (Silver et al., 2021; Baydin
et al., 2022). Now the jvp can be computed recursively in forward-mode. Computing projected
forward-mode gradients, then, matches the asymptotic time complexity of Backprop (section 5) but
introduces some variance into the gradient estimator, which now depends on the choice of u.

4 Moonwalk

In order to benefit from the memory advantage of forward-mode gradient computation, while keeping
the time complexity similar to that of Backprop and avoiding the introduction of noisy gradients
through projection, we restrict our attention to the class of submersive neural networks, in which
the Jacobian of each layer with respect to its input is also guaranteed to be right-invertible. We can
rewrite each layer’s parameter gradient of the loss as

gi :=
∂J

∂θi
=

∂J

∂xi

∂xi
∂θi

=
∂J

∂xi

∂xi
∂x0

(
∂xi
∂x0

)+
∂xi
∂θi

(5)

=
∂J

∂x0

 1∏
j=i

∂xj
∂xj−1

+

∂xi
∂θi

(6)

=
∂J

∂x0

i∏
j=1

(
∂xj
∂xj−1

)+
∂xi
∂θi

. (7)

Given the input gradient ∂J
∂x0

, we can use (7) from left to right to compute the parameter gradient of
each layer in forward-mode. To this end, denote the activation gradient of layer i by

hi :=
∂J

∂xi
=

∂J

∂x0

i∏
j=1

(
∂xj
∂xj−1

)+

, (8)

for 1 ≤ i ≤ L, and the input gradient by h0 := ∂J
∂x0

. Then hi satisfies the forward recursion

hi = hi−1

(
∂xi
∂xi−1

)+

= vijp(fi, xi−1, hi−1), (9)

and from (7) we have

gi = hi
∂xi
∂θi

= vjp(fi, θi, hi). (10)

Assuming that we have the input gradient h0, we can construct the parameter gradient for each layer
on-the-fly by the two operators in equations (9) and (10) and store only hi ∈ Rni for the next layer’s
computation. The complete procedure is given in Algorithm 1 and illustrated in Figure 1c.

In the next two sections we describe the computation of h0 with either forward-mode or Backprop
and discuss the trade-offs of using each variant.

4.1 Pure-Forward Moonwalk

One way to obtain the input gradient h0 is to compute it element-by-element using a projected
forward-mode with a standard basis of tangent vectors. Specifically, h0,i, the i-th component of h0,
can be computed with jvp(J, x0, ei) with the i-th standard basis vector ei as the tangent vector. This
method thus uses forward-mode n times to construct h0.

Figure 1a shows the computation flow of h0 in this method. Note that, by computing h0 in forward-
mode, we avoid storing activations, and only store the components of h0 for later computations. On
the other hand, when the input dimension is large, this method takes infeasible time.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Moonwalk
for each gradient step with input x0 do

Compute h0 ← ∂J
∂x0

for i = 1, . . . , L do
xi ← fi(xi−1; θi)
hi ← vijp(fi, xi−1, hi−1)
gi ← vjp(fi, θi, hi)
Apply the gradient gi to θi

end for
end for

(a) Obtaining h0 with the Forward gradients (b) Computing h0 with Backprop

(c) Computing gradients in forward-mode given h0

Figure 1: The computation flow diagram of Moonwalk. For comparison, diagrams for Backprop and
Forward are in appendix Figure 5.

4.2 Mixed-Mode Moonwalk

Alternatively, we can use Backprop to compute h0. While it may seem counterintuitive that a
method including this phase could improve on full Backprop, the key insight is that only part of
the computation graph is downstream of x0. When using Backprop for h0, we can therefore avoid
storing activations computed from parameters θi independent of any xi. Another consideration, more
practical than principled, is that many Backprop implementations store all gradients before applying
any of them, even when the parameters are layer-wise disjoint and can be updated immediately during
Backprop and their gradients discarded. Here, in contrast, computing only the input gradient avoids
parameter gradients altogether. In many network architectures of interest, these distinctions lead to
significant memory savings in Backprop when only computing the input gradient. Figure 1b shows
the flow of this procedure.

Computing h0 via Backprop reduces the time complexity by a factor of up to n, if d = O(n),
compared to forward-mode (see Table 1), but may increase the memory footprint, which in the worst
case can now be as high as Backprop’s. However, depending on the network architecture, as analyzed
in the next section and demonstrated in Section 6.2, real-world architectures are often much better
than this worst case, leading to significant memory saving over Backprop. We also note that, when
a checkpointed implementation of Backprop can reduce the effective number of layers, mixed-mode
Moonwalk can use it as well.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 Complexity Analysis

While estimating the exact time and memory consumption of different methods for computing the
gradients hugely depends on the choice of the network’s architecture and the detailed implementation,
in this section, we will provide an asymptotic analysis, in terms of the main architectural parameters,
of the time and memory complexities of our methods and compare them with related previous
works (Table 1). We omit all methods’ linear dependence in time and memory on the mini-batch
size. We analyze the computational complexity of the following methods:

1. Backprop: Throughout the forward pass, all (checkpointed) activations are cached, and
subsequently, during a backward pass, gradients for each layer are computed using vjp.

2. Forward: During the forward pass, complete Jacobians for each layer are computed using
jvp. In practice, a separate forward pass is used for each column to reuse memory.

3. ProjForward: In Projected Forward (Baydin et al., 2022), parameter gradients projected in
a random or predicted direction are obtained using jvp concurrently with the forward pass.

4. RevBackprop: In Reversible Backprop (Gomez et al., 2017), no activations are stored
during the forward pass. In a subsequent backward pass, the output of each layer is used to
compute its input via the inverse function, as well as its parameter gradient via vjp.

5. Moonwalk: Initially, the input gradient is computed using Forward. Then parameter
gradients are obtained using vijp and vjp in a second forward pass (Section 4.1).

6. Mixed: Similar to Moonwalk, but the input gradient is computed using Backprop, to reduce
computation time at the expense of some memory impact (Section 4.2).

We evaluate time based on the standard cost of matrix multiplication, i.e. the product of their two
outer dimensions and shared inner dimension, without considering optimization tricks, sparse layers,
or other network structures. To evaluate memory, we defineMx,i to be the required memory to store
the necessary information to compute ∂xi

∂xi−1
, and Mθ,i the added memory to also compute ∂xi

∂θi
. For

simplicity, we assume that these values are the same across layers and omit the layer index. We
refer to memory consumption as the extra amount of memory needed to compute gradients without
reflecting the memory to store the parameters or gradients themselves after computation.

Memory complexity: For Backprop, we have to store activations required for both input and
parameter gradients for every layer, which results inO(MxL+MθL)memory complexity. For Mixed,
we only need to store Mx for every layer in the first phase, in order to compute the input gradient h0,
and then we can reuse Mθ in the second phase after computing each parameter gradient, for a total
memory complexity of O(MxL+Mθ). All other methods can discard activation information after
each layer, for a memory complexity of O(Mx +Mθ).

Memory complexity with checkpointing: In the case of Backprop with checkpointing, we will
have additional memory of O(cn), where c ≤ L is the number of checkpoints and n is a bound on
each layer’s size. Then, during backward, we must reconstruct each block of L/c layers and store
activations inO((Mx+Mθ)L/c) memory. The best trade-off, obtained at c = O(

√
(Mx +Mθ)L/n),

is O(
√
n(Mx +Mθ)L) memory. We can similarly apply checkpointing to the first phase of Mixed,

which has no need to store Mθ when reconstructing from a checkpoint, for overall memory of
O(
√
nMxL+Mθ). In that case, we still prefer Mixed when Mθ ≫Mx, although to a lesser extent

than without checkpointing: in the extreme case that layers are so complex that we should checkpoint
each one, nL = O(Mx +Mθ) and both Backprop and Mixed require O(Mx +Mθ) memory.

Time complexity for Backprop and RevBackprop: Backprop computation consists of computing
two vector-Jacobian products in each layer, vjp(fi, xi−1, hi) and vjp(fi, θi, hi), which accounts for
per-layer time complexity of O(n2) and O(nd), respectively, and for a total of O(n2L+ ndL) time.
RevBackprop additionally needs to evaluate the inverse function f−1

i (xi), which does not impact the
overall complexity in the terms we consider.

Time complexity for Forward and ProjForward: In Forward, each single parameter θj,ℓ in layer
j, of the total dL parameters, generates a pass to compute its gradient, in which we compute
jvp(fi, xi−1,

∂xi−1

∂θj,ℓ
) which has a complexity of O(n2) in each layer i > j for L layers, for a total of

O(n2dL2) time. ProjForward with tangent u = {ui}i=1,...,L is similar to Forward with just a single

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Asymptotic complexity and key characteristics of pure-forward Moonwalk, its mixed-mode
variant, and four existing methods, analyzed in Section 5. Stable: numerically stable; Forward:
computes gradients only during forward passes; Submersive: applicable to submersive networks.

Method Time Memory Stochastic Stable Forward Submersive
Backprop O(n2L+ ndL) O (MxL+MθL) ✗ ✓ ✗ ✓
Backprop
+ checkpoint O(n2L+ ndL) O(

√
n(Mx +Mθ)L) ✗ ✓ ✗ ✓

Forward O(n2dL2) O(Mx +Mθ) ✗ ✓ ✓ ✓
ProjForward O(n2L+ ndL) O(Mx +Mθ) ✓ ✓ ✓ ✓
RevBackprop O(n2L+ ndL) O(Mx +Mθ) ✗ ✗ ✗ ✗

Moonwalk O(n3L+ ndL) O(Mx +Mθ) ✗ ✓ ✓ ✓
Mixed O(n2L+ ndL) O(MxL+Mθ) ✗ ✓ ✗ ✓
Mixed
+ checkpoint O(n2L+ ndL) O(

√
nMxL+Mθ) ✗ ✓ ✗ ✓

2 4 6 8 10
Layers per block

1.5

2.0

2.5

3.0

M
ax

 m
em

or
y

us
ag

e
(G

B)

Memory usage with padding 5
Backprop
Forward
ProjForward
RevBackprop
Moonwalk
Mixed

2 4 6 8 10
Layers per block

5

10

15

M
ax

 m
em

or
y

us
ag

e
(G

B)

Memory usage with padding 15
Backprop
Forward
ProjForward
RevBackprop
Moonwalk
Mixed

Figure 2: Maximum allocated memory during training with a different number of layers per block.
(a) Input is padded from 32x32x5 to 32x32x8, (b) Input is padded from 32x32x3 to 32x32x18.

pass takingO(n2L) time, but in each layer accumulating jvp(fi, θi, ui), for a total ofO(n2L+ndL)
time, which coincides with the time complexity of Backprop.

Time complexity for Moonwalk and Mixed: The first phase of pure-forward Moonwalk computes
jvp(fi, xi−1,

∂xi−1

∂x0
eℓ) in each layer for each input element ℓ, for a total time complexity of O(n3L).

The second phase computes vijp(fi, xi−1, hi−1) and vjp(fi, θi, hi) in each layer for O(n2L+ ndL)
more, and a total of O(n3L + ndL) time. Mixed-mode replaces the first phase with Backprop for
just the input gradient, incurring time complexity O(n2L), in addition to O(n2L + ndL) for the
same second phase as in Moonwalk, for a total of O(n2L+ ndL) time complexity.

Table 1 summarizes the order of growth of time and memory in the methods we compare, and the
next section evaluates them empirically.

6 Experiments

6.1 Experimental Setup

Model and architecture. We adopt a modified RevNet architecture (Gomez et al., 2017) with three
blocks. Each block of the network consists of coupling layers that partition the input into two subsets
x1 and x2, and output

y1 = x1

y2 = x2 + F(x1).
(11)

The functionF can be any arbitrary function, not necessarily invertible. In our case, it is represented
by a series of convolutional layers, each followed by a ReLu activation (Agarap, 2018) and BatchNorm
(Ioffe & Szegedy, 2015) layers. The input to each layer can be reconstructed from it is output, without

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epoch

10 3

10 2

10 1

100

L2
 G

ra
d

er
ro

r

Grad error with activation function (tanh)

RevBackprop
Backprop
Mixed

0 20 40 60 80 100
Epoch

0.6

0.8

1.0

Tr
ai

n
ac

cu
ra

cy

Train accuracy with activation function (tanh)
RevBackprop
Backprop
Mixed

Figure 3: (a) Gradient error with activation function (tanh) on RevBackprop, Backprop, and Mixed
over 100 epochs, averaged over 20 runs. (b) Train accuracy of three models trained with RevBackprop,
Backprop, and Mixed gradient methods for 100 epochs, averaged over 20 runs.

2 4 6 8 10
Layers per block

10 1

101

103

105

Ti
m

e
(s

ec
on

ds
)

Computation Time per One Batch

Backprop
Forward
ProjForward
RevBackprop
Moonwalk
Mixed

Figure 4: Log-scale computation time per one batch for a different number of layers per block

the need to cache activations, by
x1 = y1

x2 = y2 −F(x1).
(12)

In our experiments, the network consists of three sequential blocks as depicted in 6. The number of
layers in each block is set in each experiment to one of {1, 3, 5, 10}. Following each block, we apply
an invertible down-sampling operator ψ, as proposed by (Jacobsen et al., 2018). The operator ψ
effectively divides the spatial dimensions into the channel dimension, resulting in a fourfold increase
in the feature-space dimension for each successive block.

First, we demonstrate that Forward is markedly more memory efficient than Backprop by measuring
the memory consumption of the network during the training of each minibatch. Second, we show
that Moonwalk is substantially faster than the Forward. By imposing constraints on the network
architecture, we substantially reduce the overall gradient computation time. Third, we illustrate that
Moonwalk can be combined with Backprop, further reducing the computation time while preserving
significant memory savings. Finally, we establish that Mixed exhibits greater robustness compared
to RevBackprop.

6.2 Memory reduction

For our first experiment, we pad the input size from 32x32x5 to 32x32x8. The results summarized
in Figure 7 suggest that the memory consumption of Backprop increases linearly with the number
of layers per block. Backprop necessitates the most substantial memory allocation among the
compared approaches, resulting in a twofold disparity at ten layers per block for Moonwalk, Mixed,
and RevBackprop. For ProjForward, the disparity is even larger at 2.4 times. The disparity growth
for Forward is a bit slower due to its initial compilation overhead. Additionally, it is noteworthy to
observe an initial compilation gap, resulting in increased memory utilization when the architecture
comprises only one layer per block. The memory footprint in Backprop scales with layer size, while
Forward memory growth is confined solely to the number of layers. This reduction is achieved by
discarding activations that are no longer needed for the forward pass. The resulting memory footprint
for Forward consists only of the memory allocated for the storage of gradient updates until they are
applied to the model parameters. Furthermore, we evaluated methods on another type of network,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

where we padded the input from 32x32x3 to the size of 32x32x18. In such cases, memory is mostly
dominated by MxL. Our demonstration in Figure 7 reveals that such architecture choice results
in an expanded disparity between Backprop and forward methods. Notably, Mixed experiences
an escalation in memory consumption as its allocation begins to be dominated by the activation
preserved for gradient computation of the input.

6.3 Computation Time

While Forward showcases a substantial reduction in memory usage, it encounters challenges in terms
of computation time (Figure 4). The approach demands a considerable amount of computation,
rendering it impractical in many scenarios. In contrast, Moonwalk significantly reduces computation
time, achieving efficiency up to several orders of magnitude compared to Forward. We evaluate all
methods using the same architecture, incorporating varying numbers of layers per block.

The results, illustrated in Figure 4, accentuate the notable efficiency gains achieved by Moonwalk.
In the case of six layers, Forward takes 1839 seconds per batch, whereas Moonwalk completes the
task in 67 seconds, representing a substantial 27-fold reduction in computing time. Extending the
analysis to a model with 60 layers, Forward demands more than 80000 seconds, while our method
accomplishes the same task in 700 seconds, manifesting a remarkable time reduction factor of 110.

These outcomes underscore the significant impact on training duration, revealing that employing
Moonwalk for training a full model on the CIFAR-10 dataset requires approximately five days—an
appreciable improvement over Forward, which necessitates around 300 days. By using Mixed
Moonwalk we can further reduce training of the full model to a few hours.

6.4 Time-Memory trade-off

While achieving noteworthy time reduction using Moonwalk, we can further optimize efficiency
by precomputing the gradients of the input, denoted as h0, in our method using backpropagation.
Although the memory reduction in this approach is constrained by the memory required for activa-
tions, it significantly decreases overall memory consumption compared to Backprop. Two pivotal
components contribute to this reduction:

Elimination of Activations Storage: We refrain from storing activations utilized in computing the
gradients of the weightsMθL. However, it is important to note that in this scenario, we are still bound
by the activations necessary for computing h0. In instances where input is padded to 32x32x8 (see
Figure 7), we do not incur a memory disadvantage compared to alternative methods. In scenarios
featuring larger input size 32x32x18, as depicted in Figure 7, a noticeable increase in memory usage
over Forward becomes apparent.

Sequential Memory Usage: There is no longer a need to store gradients and activations simultane-
ously, as Backprop does. After precomputing h0, we discard all activations, freeing up memory for
gradient computations.

In Figure 4, Mixed is only about twice as slow as Backprop. The primary advantage of this method
lies in its substantial time reduction compared to Forward.

6.5 Submersive Layers

Definition 2 (Linear Submersive Layer). A linear submersive layer is a fully connected linear layer
y = Wx, where W ∈ Rk×n with k ≤ n. Additionally, there exists a matrix W+ ∈ Rn×k such that
WW+ = I ∈ Rk×k.
Definition 3 (Stable Linear Submersive Layer). A stable linear submersive layer is a linear submer-
sive layer where the weight matrix W ∈ Rk×n is constrained to be upper triangular with ones on
its main diagonal.
Definition 4 (Stable Submersive 1D Convolution). A 1D convolution with the first weight fixed is a
convolutional operation defined as

y[i] =

K−1∑
k=0

wkx[i+ k],

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

where x is the input, y is the output, wk are the weights of the convolution kernel of size K. The
constraint w0 = 1 is imposed on the first weight of the kernel.

One of the key highlights of our method is its ability to work effectively with submersive networks.
Here, we expand further on this class of networks. The simplest case of a submersion layer is
a linear layer (Definition 3) with contracting dimensions, i.e., f(x) : Rn → Rk, where k ≤ n.
For this layer to qualify as a submersion, we require its Jacobian to be right-invertible. To ensure
numerical stability, we propose parametrizing such layers with ones on their main diagonal. This
parametrization enables a stable inversion algorithm based on Gaussian Elimination (Algorithm 6)
or SVD (Algorithm 7).

6.6 Experiments with Submersive Layers

To demonstrate Moonwalk’s applicability to submersive layers, we design an architecture composed
of submersive layers, where each linear layer is followed by a LeakyReLU activation function.
We highlight the key differences in computing ∇X between backpropagation and Moonwalk in
Algorithm 2 and Algorithm 3.

The primary distinction lies in memory requirements. During the computation of ∇X , Moonwalk
eliminates the need to store intermediate activations (z2, x) and gradients (∇W1,∇W2). Instead, it
only requires storing the LeakyReLU gradient (LeakyReLUGrad), represented as a binary matrix of
signs. This approach significantly reduces memory usage, requiring approximately 16 to 32 times
fewer bytes compared to storing activations in FP16 or FP32 precision.

Another critical difference is that Moonwalk requires ∇X to compute ∇W1 later, as outlined in
Algorithm 4. Finally, to validate the effectiveness of our method, we train a submersive network
on the CIFAR-10 dataset (Krizhevsky et al.). We did not explicitly measure memory consumption
for this experiment, as the overhead introduced by linear layers outweighs the memory differences
between the methods. However, for convolutional layers, the memory benefit of Moonwalk becomes
more apparent, as the gradients of the weights occupy roughly the same amount of memory as
activations.

To further support our approach, we include a plot of gradient error (Figure 8), demonstrating that
the weight matrices converge over a few examples, even with a batch size of 1.

7 Conclusion and Future work

The efficiency of memory utilization in Forward surpasses that of Backprop, thereby alleviating
the challenges associated with activation storage constraints. However, this enhanced memory effi-
ciency comes at a considerable computational cost, rendering Forward computationally impractical.
To address this limitation, we augmented Forward processing through the incorporation of invert-
ible networks. Our experimental findings reveal that our proposed method, Moonwalk, exhibits a
marked acceleration, surpassing Forward by several orders of magnitude. Furthermore, we proposed
an approach to mitigate the computational overhead associated with our method. By integrating
Backprop for the computation of input gradients, we achieved a substantial acceleration of overall
gradient computation.

In this paper, we restricted our attention to the class of invertible and submersive layers in order
to compute the gradients for the next layer given the previous one. Future work would study the
effect of using projected forward-mode gradients instead of the full forward-mode. Also, one could
investigate the class of neural networks composed of locally invertible layers to shed light on the
applicability of Moonwalk for a larger family of architectures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

Atılım Güneş Baydin, Barak A. Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients
without backpropagation, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Samuel Rota Bulo, Lorenzo Porzi, and Peter Kontschieder. In-place activated batchnorm for memory-
optimized training of dnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5639–5647, 2018.

Ayan Chakrabarti and Benjamin Moseley. Backprop with approximate activations for memory-
efficient network training. CoRR, abs/1901.07988, 2019. URL http://arxiv.org/abs/
1901.07988.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Louis Fournier, Stéphane Rivaud, Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon.
Can forward gradient match backpropagation?, 2023.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible
residual network: Backpropagation without storing activations. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf.

Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient
backpropagation through time. Advances in neural information processing systems, 29, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015.

Jörn-Henrik Jacobsen, Arnold WM Smeulders, and Edouard Oyallon. i-revnet: Deep invertible
networks. In International Conference on Learning Representations, 2018.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In Inter-
national conference on machine learning, pp. 1627–1635. PMLR, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

11

https://www.tensorflow.org/
http://github.com/google/jax
http://arxiv.org/abs/1901.07988
http://arxiv.org/abs/1901.07988
https://proceedings.neurips.cc/paper_files/paper/2017/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua Wang. Efficient rematerialization
for deep networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URLhttps://proceedings.neurips.cc/paper_files/paper/
2019/file/ffe10334251de1dc98339d99ae4743ba-Paper.pdf.

Matthew MacKay, Paul Vicol, Jimmy Ba, and Roger B Grosse. Reversible recurrent neural networks.
Advances in Neural Information Processing Systems, 31, 2018.

Karttikeya Mangalam, Haoqi Fan, Yanghao Li, Chao-Yuan Wu, Bo Xiong, Christoph Feichtenhofer,
and Jitendra Malik. Reversible vision transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10830–10840, 2022.

James Martens and Ilya Sutskever. Training deep and recurrent networks with hessian-free op-
timization. In Neural Networks: Tricks of the Trade: Second Edition, pp. 479–535. Springer,
2012.

Georgii Sergeevich Novikov, Daniel Bershatsky, Julia Gusak, Alex Shonenkov, Denis Valerievich
Dimitrov, and Ivan Oseledets. Few-bit backward: Quantized gradients of activation functions
for memory footprint reduction. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 26363–26381. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/novikov23a.html.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019.

Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with
local losses. In The Eleventh International Conference on Learning Representations, 2022.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
conference on machine learning, pp. 1530–1538. PMLR, 2015.

David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt. Learning by
directional gradient descent. In International Conference on Learning Representations, 2021.

Ronald J. Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural Computation, 1(2):270–280, 1989. doi: 10.1162/neco.1989.1.2.270.

Xunyi Zhao, Théotime Le Hellard, Lionel Eyraud, Julia Gusak, and Olivier Beaumont. Rockmate:
an efficient, fast, automatic and generic tool for re-materialization in pytorch, 2023. URL https:
//arxiv.org/abs/2307.01236.

12

http://www.cs.toronto.edu/~kriz/cifar.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/ffe10334251de1dc98339d99ae4743ba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/ffe10334251de1dc98339d99ae4743ba-Paper.pdf
https://proceedings.mlr.press/v202/novikov23a.html
https://proceedings.mlr.press/v202/novikov23a.html
https://arxiv.org/abs/2307.01236
https://arxiv.org/abs/2307.01236

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

8 Appendix

8.1 Data and Hyper-parameters.

We implement all methods using the JAX framework (Bradbury et al., 2018) and conduct experiments
on training a neural network on the CIFAR-10 dataset (Krizhevsky et al.). The experiments are
performed on an RTX A4500 GPU with a batch size of 512. Computation time is measured after jit-
compilation is completed. Memory consumption is tracked using the nvidia-smi utility every second,
with the maximum value recorded. Data preprocessing involves padding with zeros in the channel
dimension, expanding the input dimension from 32x32x3 to to one of {32x32x18,32x32x8}. We use
the Adam optimizer (Kingma & Ba, 2017) with a learning rate of 10−3, and we use an exponential
decay scheduler unless specified otherwise.

8.2 Numerical Stability

It is worth noting that RevBackprop (MacKay et al., 2018), while requiring a bijective network with
similar computation time, encounters challenges in terms of numerical stability. As demonstrated
by (Gomez et al., 2017) and (Jacobsen et al., 2018), invertible architectures with finite precision
encounter numerical instability issues, leading to divergence from true gradients and convergence
to a different local minimum than Backprop. In this study, we highlight that RevBackprop fails
to converge when an activation function is added to the output of the layer. Employing the same
network and dataloader for simultaneous training, Fig 3 illustrates that both Backprop and Mixed
achieve perfect accuracy, while RevBackprop fails to converge. This divergence is attributed to the
error accumulating with each update.

Fig 3 displays the gradient error estimation between the algorithm’s gradients and oracle gradients
at each step using the same parameters. The experiment reveals the accumulating error causing
the network weights to drift away from true gradients. Mixed exhibits more stable convergence
due to lower gradient error. Such disparity is a result of different approaches involved in gradient
computation. In order to compute the gradients, RevBackprop requires computing the inverse of
the function, which might be extremely unstable, as in the case with a tanh activation function. As
opposed to RevBackprop, Moonwalk and Mixed methods only require computing inverse-vector
Jacobian product and avoid computation of the inverse function itself. In some cases, as we have
shown with tanh, this tends to be the more stable approach to computing gradients. The impact of
”gradient drifting” in the reversible method becomes noticeable after 30 epochs.

8.3 Submersive Networks

Algorithm 2 Backpropagation
Require: W2,W1, x
Ensure: err,∇W1,∇W2

1: Store x {Forward Part}
2: z1 ← linear layer(W1, x)
3: z2 ← leaky relu(z1)
4: Store z2
5: Store LeakyReluGrad← where(z2 > 0, 0.01, 1)
6: z3 ← linear layer(W2, z2)
7: y hat← sum(z3) {Predicted output}
8: err← −2 · (y − y hat) {Backward Part}
9: ∇W2 ← (err · ones like(z3)) · z⊤2

10: Discard z2
11: ∇W1 ← err · (W2 · signs for grads) · x⊤
12: Discard x
13: Discard signs for grads
14: return err,∇W1,∇W2

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 3 Moonwalk∇X
Require: W2,W1, x
Ensure: Gradient of the input (∇X)

1: z1 ← linear layer(W1, x)
2: z2 ← leaky relu(z1)
3: Store LeakyReluGrad← where(z2 > 0, 0.01, 1)
4: z3 ← linear layer(W2, z2)
5: y hat← sum(z3) {Predicted output}
6: err← −2 · (y − y hat) {Backward Part}
7: res← (W2) · (W1 · signs for grads)
8: Discard LeakyReluGrad
9: return err · res.sum(0)

Algorithm 4 Moonwalk∇W1

Require: W2,W1, x,∇X
Ensure: Gradient with respect to W1

1: inv jacobian← inverse upper(W1)
2: z ← ∇X · inv jacobian
3: return z · x

Algorithm 5 Moonwalk∇W2

Require: W2,W1, x,∇X
Ensure: Gradient with respect to W2

1: inv jacobian← inverse upper(W1)
2: z ← ∇X · inv jacobian
3: z2 ← linear layer(W1, x)
4: z2 ← leaky relu(z2)
5: LeakyReluGrad← where(z2 > 0, 0.01, 1)

6: z ← z/LeakyReluGrad⊤
7: inv jacobian← inverse upper(W2)

⊤

8: z ← z · inv jacobian
9: return z · z2

Algorithm 6 Calculation of Right Inverse of Upper Triangular Matrix A

Require: A ∈ Rk×n (upper triangular matrix), k ≤ n
Ensure: Right inverse matrix B ∈ Rn×k

1: Initialize B ← 0n×k

2: Ik ← Identity matrix of size k × k
3: for i = k − 1 to 0 do
4: b← Ik[i, :] {Current row of identity matrix}
5: for j = i+ 1 to n− 1 do
6: b← b−A[i, j] ·B[j, :] {Subtract contribution of already solved rows}
7: end for
8: B[i, :]← b/A[i, i] {Solve for the current row of B}
9: end for

10: return B

Algorithm 7 Computation of the Pseudoinverse using SVD

Require: A ∈ Rk×n (matrix to compute the pseudoinverse)
Ensure: Pseudoinverse of A

1: Perform SVD: U, S, V ← svd(A)
2: return V TSUT

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

8.4 Implementation

We implement all methods using JAX Bradbury et al. (2018). Forward involves applying the
jax.jvp operator sequentially at each layer, with the number of applications corresponding to
the number of parameters in that layer. For each layer of the network, we define both forward
and inverse functions. To enhance computation speed, we flatten all layer parameters and create
an identity matrix used for projection. Utilizing a batched function map accelerates computation,
although it comes at the cost of an increased overall memory footprint for forward-based methods.
An alternative to mitigate the increased memory footprint is to compute the jax.jvp product one
by one without creating a large identity matrix. While this approach reduces the memory footprint,
it also significantly increases compilation time and affects overall computation, prohibiting the use
of jax.vmap in such scenarios. The depicted performance of Mixed in the following subsections
is not optimized, though it is already only twice as slow compared to Backprop. Some of the factors,
including data transfer between compiled and non-compiled environments, significantly affect its
performance. In theory, it might be possible to make it faster than Reversible.

8.5 Stochasticity of ProjForward

ProjForward demonstrates the most conservative memory usage; however, it stands as the sole
method not generating true gradients. Instead, it introduces variance in its estimation owing to the
adoption of an arbitrary random distribution for projecting the parameter space. However, it has
been substantiated to be advantageous in specific scenarios, particularly when a reliable estimate for
the gradient direction is available (Silver et al., 2021; Baydin et al., 2022; Fournier et al., 2023).

8.6 Architecture

(a) Backprop (b) Forward

(c) ProjForward

Figure 5: The computation flow diagram of Backprop, Forward, and ProjForward.

We present the architecture in Figure 6. The network comprises three main blocks (depicted in
green) and several sub-blocks, with each main block containing approximately 3 to 15 sub-blocks.
The input to the network is zero-padded to upscale the initial data. Each layer is constructed using an
affine coupling layer parameterized by stacked convolutional layers. With the following number of
channels 16,32,6 and with the kernel size of (3,3). Where each layer is followed by a ReLu activation
and BatchNorm.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Affine coupling Affine coupling

Figure 6: This figure illustrates the architecture of the model. The entire network consists of NK
blocks. Each inner block (denoted in blue) is followed by Ψ(x) is a downscaling operator, following
the definition in Jacobsen et al. (2018). Yellow blocks represent concatenation operations. F denotes
a block of stacked, non-invertible convolutional layers. The function Fpadding applies zero padding
to the input. The final projection is performed by the layer Fproj .

0 10 20 30 40 50 60
Epoch

0.10

0.15

Lo
ss

Cross Entropy loss
RevBackprop
Backprop
Mixed

2 4 6 8 10
Layers per block

0.01

0.02

0.03

Ti
m

e
(s

ec
on

ds
)

Computation Time per One Batch

Backprop
ProjForward
RevBackprop
Mixed

Figure 7: (a) Cross Entropy loss for different gradient methods with tanh activation over 60 epochs.
(b) Computation time per batch for a different number of layers per block.

0 20 40 60 80 100 120
Steps

0.005

0.000

0.005

0.010

0.015

G
ra

di
en

t
Er

ro
r

Gradient error over weights
Gradient Error
Standard Deviation

Figure 8: Gradient error θi for training a submersive network with linear layers and LeakyRelu with
batch size 1.

16

	Introduction
	Related Work
	Background
	Notation
	Forward-Mode Gradients
	Projected Forward-Mode Gradients

	Moonwalk
	Pure-Forward Moonwalk
	Mixed-Mode Moonwalk

	Complexity Analysis
	Experiments
	Experimental Setup
	Memory reduction
	Computation Time
	Time-Memory trade-off
	Submersive Layers
	Experiments with Submersive Layers

	Conclusion and Future work
	Appendix
	Data and Hyper-parameters.
	Numerical Stability
	Submersive Networks
	Implementation
	Stochasticity of ProjForward
	Architecture

