Under review as a conference paper at ICLR 2026

LLM-FIRST SEARCH: SELF-GUIDED EXPLORATION
OF THE SOLUTION SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable improvements in reasoning
and planning through increased test-time compute, often by framing problem-solving as
a search process. While methods like Monte Carlo Tree Search (MCTS) have proven
effective in some domains, their reliance on fixed exploration hyperparameters limits their
adaptability across tasks of varying difficulty, rendering them impractical or expensive
in certain settings. In this paper, we propose LLM-First Search (LFS), a novel LLM
Self-Guided Search method that removes the need for pre-defined search strategies by em-
powering the LLM to autonomously control the search process via self-guided exploration.
Rather than relying on external heuristics or hardcoded policies, the LLM evaluates whether
to pursue the current search path or explore alternative branches based on its internal
scoring mechanisms. This enables more flexible and context-sensitive reasoning without
requiring manual tuning or task-specific adaptation. We evaluate LFS on Countdown and
Sudoku against three classic widely-used search algorithms, Tree-of-Thoughts’ Breadth
First Search (ToT-BFS), Best First Search (BestFS), and MCTS, each of which have been
used to achieve SotA results on a range of challenging reasoning tasks. We found that
LFS (1) performs better on more challenging tasks without additional tuning, (2) is more
computationally efficient compared to the other methods, especially when powered by a
stronger model, (3) scales better with stronger models, due to its LLM-First design, and
(4) scales better with increased compute budget. Our code will become publicly available
upon acceptance.

1 INTRODUCTION

The reasoning and planning capabilities of Large Language Models (LLLMs) have advanced significantly
through increased test-time compute, akin to human System 2 thinking, slow and deliberate, versus fast,
intuitive System I thinking (Kahneman, [2011). Early prompting techniques such as Chain of Thought (CoT)
(Wei et al.| [2022)) enabled basic System 2 reasoning, but recent work reframes reasoning as a search problem
(Koh et al.,2024b; |Ye et al.,2025)), leveraging classic algorithms such as Beam Search (Lowerre, |1976)), Depth-
and Breadth-First Search (DFS, BFS) (Knuth, [1998; Moore, [1959), Best-First Search (Hart et al., [1968), and
Monte Carlo Tree Search (MCTS) (Coulom, [2006; [Kocsis & Szepesvari, 2006). MCTS augmented with
LLMs has proven effective across domains (Toma et al., 2021} |Koh et al., [2024a}; |Zhou et al., 2023b) and is
widely adopted. These systems often integrate LLM world models, reward/value estimators, self-consistency,
self-refinement, multi-agent debate, and memory modules to achieve state-of-the-art (SotA) results (Hao
et al., [2023; |Zhou et al., 2023a; Murthy et al.l [2023; |Yu et al., 2024 [Li et al.| [2024; |Gao et al., 2024} Q1
et al., [2024} D1 Zhang et al.| [2024). A key limitation of MCTS is its sensitivity to the exploration-exploitation
trade-off controlled by the exploration constant C' (Coulom) [2006}, [Kocsis & Szepesvari, [2006)). Although
hyperparameter tuning (Bischl et al., [2023)) can optimise performance for a specific task, a fixed C' cannot



Under review as a conference paper at ICLR 2026

~ I
K[ ToT-BFS: under-explores ]\ /[ BestFS: over-exploits ]\ () Visited Node
17 ‘S;"j Ji“‘"ﬁ Unexplored node

Suboptimal

! h j decision
l*‘ﬁ jo/rto/o (4] (4] Jié—l (4] rlj l O Filtlerefj out node
o 00 F\ 2N (e Szicﬁ'ri::g:non

l*iiﬁ O ( —l
(( l Jump to new
/\ node to explorej

e}

®

L
\a ! ) /

Figure 1: Illustrative comparison of search strategies. This figure visualises how different methods expand
the search tree during reasoning. Tree of Thought Breadth-First Search (TOT-BFS) risks prematurely
discarding promising paths due to rigid filtering criteria. tends to over-exploit
high-scoring nodes based on early estimations, potentially overlooking better long-term solutions. Monte
Carlo Tree Search (M CTS) relies heavily on a fixed exploration constant, which can lead to either excessive
exploration or over-commitment to suboptimal paths. In contrast, our proposed method, LIL.M-First Search
(LFS), removes the need for hand-tuned hyperparameters and handcrafted heuristics. Instead, it repurposes
the LLM to both act and evaluate, enabling dynamic, model-guided decisions about whether to pursue the
current reasoning path or explore alternatives. This tight integration between evaluation and exploration
leads to more adaptive and efficient reasoning. A full search tree for both MCTS and LFS can be found in
Appendix Section [H] For clarity, the small circles (white and yellow) attached to the visited nodes refer the
nodes’ neighbours. Additionally, the dotted arrows refer to the edges that have not been traversed.

adapt to varying problem difficulties or LLM capabilities. Over-exploration hampers performance on simpler
tasks where the LLM has strong priors, while under-exploration limits success on harder problems needing
broader search (Dam et al, 2024} [Sironi & Winands| [2021). This longstanding issue (Ruijl et al.} 2013} [Wang
2020) parallels findings in Large Reasoning Models, which may overthink simple tasks due to excessive
reliance on System 2 thinking (J1 et all,[2025} [Zhang et al.| [2025]), analogous to MCTS’s over-exploration
from too high an exploration constant.

In this paper, we introduce LLM-First Search (LFS), a novel approach that eliminates the need for manually
tuned exploration hyperparameters, handcrafted heuristics, and traditional search algorithms. Building on
recent MCTS extensions (Hao et al.| 2023} [Zhou et al., 20234) and methods placing LLMs at the core of
self-improvement (Zhang et al.,|2023)), LFS puts the LLM in control of the search process. Unlike MCTS,
which relies on fixed exploration schedules, LES lets the model autonomously decide whether to continue
along the current path or explore alternatives based on its own evaluation, enabling adaptive, integrated
exploration. A high-level depiction of how LFS works and how it overcomes the shortfalls of MCTS, as
well as other well-established search algorithms, can be seen in Figure [T} We validate LFS on two reasoning




Under review as a conference paper at ICLR 2026

tasks, Countdown and Sudoku, showing competitive or superior performance with greater flexibility and
adaptability than static search methods. Our main contributions are: (1) introducing LLM-First Search,
a novel method that reimagines classical search by allowing the LLM itself to drive exploration, decision-
making, and evaluation, removing the need for predefined search algorithms, (2) propose a fully LLM-guided
scoring and selection mechanism, where the LLM evaluates whether the current search path is promising
and dynamically decides to continue on this path or explore alternative paths, removing the need for manually
tuned exploration hyperparameters, and (3) demonstrate, through experiments on Countdown and Sudoku,
that LFS achieves competitive or superior performance relative to other popular search algorithms, while
also demonstrating greater efficiency, adaptability to task complexity, and scalability with increased model
strength and compute budget.

2 PRELIMINARIES

2.1 PROBLEM SETTING

Markov Decision Process. We consider problems that can be formulated as Markov Decision Processes
(MDPs) (Bellman, [1957)), where an agent interacts with an environment over a sequence of discrete time steps
to achieve a goal. Formally, an MDP is defined by a tuple (S, A, P, R, ), where the agent observes a state
s € S, selects an action a € A, transitions to a new state s’ ~ T'(- | s, a), and receives a reward R(s, a).

LLM Agents. LLM agents are autonomous decision-making systems powered by large language models.
Given an MDP, the LLM serves as a policy mp : S x T — A parameterised by 6, where 7 (as | s¢,T)
denotes the likelihood of taking action a; conditioned on the current state s; and task 7, to maximise the
expected reward. These agents leverage language as a unified interface to perform environment understanding,
reasoning and planning, and ultimately action execution (Wang et al.} 2023 |Mei et al., 2024} [Huang et al.,
2024). In our formulation, the LLM agent is provided with a natural language task description, the text
description of the current state, and a list of valid next actions. The agent selects an action from this list, after
which the environment deterministically transitions to a new state. This process is repeated until a terminal
state is reached, at which point a reward is provided based on task success (e.g. win or lose). The specific
MDP instantiations and prompts used for our two benchmark tasks, Countdown and Sudoku, are described in
Section

3 RELATED WORK

To enable models to reason more deeply and deliberately, researchers have developed a range of strategies,
which we have broadly categorised as: (1) Single-Shot Reasoning, which elicits reasoning in a single prompt;
(2) Iterative and Reflective Reasoning, which refines outputs through multiple steps; and (3) Structured
Search-Based Reasoning, which treats reasoning as a search process. We briefly cover the first two, with a
primary focus on the third, where our method lies.

Single-Shot Reasoning. Chain-of-Thought (CoT) prompting (Wei et al., 2022) encourages step-by-step
reasoning via demonstrations, later simplified by minimal prompts like “think step by step,” which elicit
similar behaviour without examples (Zhang et al.,2022). Building on these foundations, several adaptations
of these works have been explored (Kojima et al., [2022; |Wang & Zhoul, 2024} | Xu et al.,2025)). Recently, a
“wait” token to slow down reasoning was introduced (Muennighoff et al.|[2025)), though it requires fine-tuning
and is not purely an inference-time approach. Single-shot prompting has also been used to elicit more complex
behaviours such as meta-in-context learning (Coda-Forno et al.l[2023)) and in-context distillation of algorithms
like MCTS (Sel et al., [2023} Nie et al.,|2024). While these methods have been effective on simpler tasks, they
are inherently non-iterative and struggle to adapt to more complex tasks (Wang et al., 2022} [Yao et al.| 2023b;
Madaan et al., {2023} [Shinn et al., 2023)).



Under review as a conference paper at ICLR 2026

Reflective and Interactive Reasoning. To go beyond linear reasoning, iterative and feedback-driven
techniques have been proposed. A simple and widely used extension is self-consistency (Wang et al., 2022),
which samples multiple CoT outputs and selects the most consistent answer. ReAct (Yao et al., [2023b)
combines reasoning steps with task-specific actions and incorporates feedback to guide future steps. Other
works refine LLM outputs through self-reflection or external feedback (Madaan et al.,|2023; [Shinn et al.|
2023 [Monea et al.,[2024). Multi-agent debate frameworks (Du et al., 2023} |[Eo et al.| [2025) further enhance
reasoning by simulating dialogues between LLM agents to converge on a better final answer. However, these
methods typically result in shallow exploration and lack explicit backtracking, limiting their ability to perform
structured reasoning over long horizons or systematically explore multiple solution paths (Xie et al.| 2023},
Yao et al., 2023a; |[Koh et al., [2024b; [Hao et al.,[2023; |Zhou et al., [2023al).

Structured Search-Based Reasoning. A growing line of work treats reasoning as a search problem, using
classic search algorithms to guide LLMs through the task’s search space, greatly improving the LLM’s ability
to solve complex reasoning and planning tasks. For example, Xie et al.|(2023) proposes a stochastic beam
search that samples and selects among multiple candidates at each step. Tree-of-Thoughts (ToT) (Yao et al.,
2023a) introduces breadth-first and depth-first expansions of CoT-style reasoning, decoupling next-action
selection and state value estimation. Several extensions have been proposed (Besta et al., [2024; Bi et al.|
2024), though ToT remains the most prominent. Other works incorporate more advanced algorithms like
Best-First Search (Koh et al.l|2024b) and Monte Carlo Tree Search (MCTS) (Hao et al.l|2023; Zhou et al.,
2023aj |Yu et al.| 2024; [Li et al.| 2024} |Gao et al.} [2024; Qi et al., 2024} |Di Zhang et al.| 2024} Misaki et al.}
2025)). For example, RAP (Hao et al.,[2023)) uses MCTS with LLMs serving as a world model and a novel
reward function composed of action likelihood and confidence, self-evaluation, and task-specific heuristics.
LATS (Zhou et al., [2023a) extends RAP by incorporating environment feedback and reflective evaluation.
More recent works integrate additional prompting strategies, such as reflection (Yu et al.| [2024; L1 et al., 2024;
Gao et al.| 2024) and multi-agent debate (Yu et al., 2024, for further performance gains. REX (Murthy et al.|
2023)) augments MCTS by allowing the LLM to perform multiple search steps, selection, expansion, and
simulation, in a single response. The resulting actions are assigned rewards that are then backpropagated
through each generated action. AB-MCTS (Misaki et al.l [2025) introduces a novel node "GEN-node"
which is a possible child for all nodes in the tree, which, if selected, prompts the LLM to create additional
branches. While these methods have demonstrated strong performance, they are fundamentally built on
traditional search algorithms that often rely on carefully tuned hyperparameters and handcrafted heuristics,
limiting adaptability and requiring re-tuning for new tasks (Gao et al.| [2024), rendering them impractical
or very expensive for real use cases. Most recent works in this area represent incremental improvements to
the base LLM-augmented variants of classic search algorithms, often incorporating additional prompting
strategies like reflection or debate. Intelligent Go-Explore (IGE) (Lu et al., [2024) represents an important
step in this direction, showing that LLMs can successfully drive exploration and achieving strong results on
challenging benchmarks. However, IGE enforces fixed beam width and depth via static parameters, which
limits adaptability across tasks. By contrast, our method removes such bounds entirely, allowing the LLM to
decide dynamically when to backtrack or extend its search, thereby enabling truly self-guided exploration and
reasoning. This shift addresses a core weakness of prior approaches while remaining compatible with, and
likely to benefit from, incremental enhancements such as reflection or debate.

4 LLM-FIRST SEARCH (LFS)

In this section, we introduce LLM-First Search (LFS), a method that empowers language models to self-
guide their own search process by autonomously exploring and evaluating states and actions, enabling flexible,
context-sensitive reasoning without manual tuning or task-specific adaptation. Specifically, given a task that
can be initialised as a MDP, the LLM continuously interacts with the task environment, performing two key
operations; (1) Explore, where it decides whether to continue along the current path or explore alternatives,
and (2) Evaluate, where it estimates the value of each available action at the current state. We were able to



Under review as a conference paper at ICLR 2026

show that LLMs can effectively internalise and manage this process on their own, matching or exceeding the
performance of traditional methods. The operations are detailed in the following paragraphs, with a high-level
overview of LFS provided in Appendix Section [B] Algorithm I]

Exploration Decision. At each step, given the current state s; and available actions .4;, the agent is prompted
with an exploration prompt Pexplore(3t7 A;) (the exact prompt can be seen in Appendix Section to decide
whether to exploit the current path or to explore an alternative. If the agent chooses to exploit, it proceeds to
the evaluation step using the actions in A;. Otherwise, if the agent opts to explore, it pops the highest-value
node from the priority queue Q:
(5;7 A;) + pop(Q),

and proceeds to the evaluation step using the new state s} and corresponding actions .4;. This dynamic allows
the agent to balance short-term commitment with broader exploration based entirely on its own internal
judgment.

Evaluate. At each step, given a state s; € S, a set of available actions A; = {a},...,aF}, and an evaluation
prompt Pey.(s¢, A¢) (the exact prompt can be seen in Appendix Section []E:]), the LLM is prompted to estimate
the value V (al | s;) for each action, representing its utility or promise of leading to a high-reward solution.
The best action is then selected:

ay = Ay {arg max Vi]
where {Vi}ﬁil = Pevai(t, At)

and executed, while all other candidate actions are added to a priority queue Q sorted by their estimated value.
This structure enables efficient retrieval of high-potential alternatives in future exploration steps.

5 EXPERIMENTS

5.1 BASELINES

To ensure a fair comparison, all methods are evaluated using the same task setup and prompting format. We
isolate the core effect of each search strategy by excluding incremental enhancements such as self-consistency,
reflection, and debate, which are known to improve performance across many LL.M-augmented approaches.
Each method is tested with two models, GPT-40 and 03-mini (through the OpenAl API (OpenAl, 2024),
with the configurations detailed in Appendix Section D), to assess performance across different model scales.
We compare our approach against several strong LL.M-augmented search baselines widely adopted in the
literature. See Appendix Section [B]for baseline details.

Three-of-Thoughts Breadth-First Search (ToT-BFS). Adapted from the setup in Tree-of-Thoughts (ToT)
(Yao et al.,|2023a), ToT-BFS expands a subset of child nodes up to a fixed depth. At each level, the LLM
estimates the value of all child states, and only the top-k states (with k = 5) are retained for further expansion.
This process continues until a predefined maximum search depth is reached. Note that while ToT describe a
DFS implementation, in our preliminary experiments, we found that DFS did not perform sufficiently (similar
findings in (Yu et al.| 2024))) and was therefore not considered further. In further support of this decision, in
the ToT paper, they use countdown to test the BFS variant.

Best-First Search (BestFS). Following the approach in Tree Search for Language model Agents (Koh et al.|
2024b)), BestFS uses the LLM to estimate the value of the current state, which is then added to a priority
queue. The next state to expand is selected greedily by popping the highest value from the queue. This
process repeats until a solution is found or the search budget is exhausted.

Monte Carlo Tree Search (MCTS). Based on implementations from RAP (Hao et al., 2023) and LATS
(Zhou et al.,|2023a)) and inspired by AlphaGo (Silver et al.,|2016), we use PUCT to guide the MCTS algorithm.



Under review as a conference paper at ICLR 2026

Specifically, at each step, the LLM is used to (1) estimate a prior distribution over available actions at a
given state, and (2) estimate the value of a leaf state after an action is simulated (the specific prompts used to
elicit these behaviours can be found in Appendix Section [E)). These estimations are then integrated into the
PUCT selection formula to balance exploration and exploitation. We performed a hyperparameter sweep over
different exploration constants C' € {0.5,1.0,2.5}. The specifics of this can be found in Appendix Section[ﬂ
We noted that C' = 0.5 performed similarly to C' = 1.0 in Countdown, but outperformed C' = 1.0 in Sudoku
(4x4), resulting in C' = 0.5 achieving the best AUP.

5.2 TASKS

We evaluate our method and the baselines on two widely used reasoning and planning benchmarks: Count-
down and Sudoku. They are widely adopted in the literature as reliable testbeds for evaluating structured
reasoning with LLMs (Yao et al., [2023a; Zhou et al., [2023a; |Ye et al., [2024; |Seely et al.|, [2025). These
benchmarks are particularly suitable for our evaluation for two key reasons: (1) Scalability, both Countdown
and Sudoku allow for fine-grained control over difficulty, enabling evaluation across a spectrum of task
complexities; and (2) Complementarity: Countdown offers a shallower search space with fewer steps, but
selecting the correct action is often more challenging, even for humans. Conversely, Sudoku involves a much
deeper search space with many more decision points, though it tends to be more intuitive for human solvers.
Together, these benchmarks provide a balanced and comprehensive evaluation of search strategies across
fundamentally different reasoning challenges. A more detailed discussion of the branching factors and widths
of the two benchmarks can be found in Appendix Section

5.2.1 COUNTDOWN

Countdown (Wikipedia contributors), [2024) generalises the classic Game of 24 (Yao et al.,2023a};|Zhou et al.,
2023a)) and has become a challenging benchmark for evaluating LLM search due to its high branching factor
and large combinatorial search space (Gandhi et al., 2024} Ye et al., 2024)). The goal is to reach a target
number ¢ using arithmetic operations (4, —, X, =) applied to a list of numbers n = [n1,ng, ..., n;], where
each number can be used at most once. For example, given n = [1,2, 3,4, 5] and ¢ = 10, a valid sequence is:
5+4=9,3-2=1,9+1=10,1x 10 = 10.

Setup. Following prior work (Yao et al., [2023a;|Ye et al.,2024), we evaluate three difficulty levels with input
lengths [ € {3,5,7} and target ¢ sampled uniformly from [10, 100]. Each environment state s; is a 4-tuple
s; = (t,n4,0;, A;), where t is the fixed target, n; is the current number set, o; the operation history, and 4;
the available actions. Each action a € A; applies an arithmetic operation to two distinct numbers n;, ny € n;,
producing a new number and modifying the set. The agent must find a sequence of actions that transforms n
into ¢. This setup naturally fits the MDP formalism: S is the space of number-operation configurations, A(s)
the valid actions in state s, transitions modify the number set and operations based on the selected action, and
the episode terminates on success or exhaustion of valid actions. The reward is 1 if the target is reached, and
0 otherwise. Prompting details are provided in Appendix Section [E]

5.2.2 SUDOKU

Sudoku is a constraint satisfaction puzzle played on an ¢ x w grid. The objective is to fill each cell with a
value from a finite set N = {1,2,...,¢ X w} such that each value appears exactly once in every row, column,
and subgrid. While the classic version uses a 9 x 9 grid with 3 x 3 subgrids, we generalise to arbitrary grid
sizes, making Sudoku a rich, scalable benchmark for reasoning and search in structured environments.

Setup. We evaluate agents on two grid configurations: a 4 x 4 board (with 2 x 2 subgrids) and a more
challenging 6 x 6 board (with 2 x 3 subgrids). Each environment state s; is defined as s; = (B;, A;), where
B; € ¥Y* is the current board and A; the set of valid actions. Each action a € A, is a tuple (z,y, v)



Under review as a conference paper at ICLR 2026

assigning value v € N to cell (z,y) without violating Sudoku constraints. Upon executing an action, the
board is updated and valid actions recomputed. Episodes terminate when all cells are filled and constraints
satisfied. As an MDP: S is the set of all valid partial boards, A(s) the set of valid (x, y,v) assignments,
transitions update the board, and reward is 1 if the final board satisfies all constraints, and O otherwise. See
Appendix Section [E] for details on prompts used.

5.3 EVALUATION
5.3.1 METRICS

We evaluate each method over n = 5 runs per game at temperature ¢ = 0.0, due to the stochasticity of LMs
(Bender et al., [2021). Let w; j,, € {0, 1} indicate success of method j on game ¢ in run r. The WinRate for
game ¢ is

n
WinRatei,j :% E Wy, 5,1,
r=1

with game; ; considered solved if WinRate; ; > 0.5. Over all games G, we report:

WinRate;
Tokensj )

. * _ 1 . . _
WinRate = & ZWmRatei,j, EfficiencyScore; =
i€g
where Tokens;f is the average token usage of method j.

We compute 95% confidence intervals for WinRate;f using the Wilson score interval (Wilson, |1927), preferred
over the normal approximation for small n, which we report in the figures in Appendix Section[G}

5.3.2 PERFORMANCE PROFILES AND AUP SCORE

Following |Dolan & Moré|(2002); [Roberts et al.| (2023)); Nathani et al.|(2025), we compare methods using
performance profiles and their Area Under the Profile (AUP). For task set 7" and method set M, the
performance ratio is 7y ,, = max{¢; ,,» : m' € M}/, ,,,, where ¢, ,, is the score of method m on task ¢.
The performance profile is

pm(T) = ﬁ I{t = T N loglo(rt7m) S T}|?

giving the fraction of tasks where m is within 7 (log-scaled) of the best method. The AUP is defined as

AUP,, = fm"" Pm (T) d7, where T,y is the smallest value for which all p,,, reach their maximum.

6 RESULTS AND ANALYSIS

6.1 TASK SPECIFIC

Countdown. In Table[I|we can see that in Countdown (Diff=3) all methods, except for TOT-BFS-GPT40,
are capable of solving 100% of the problems. TOT-BFS-GPT40 lags behind due to the lack of backtracking,
compared to the other methods tested. Therefore, due to compute constraints, TOT-BFS-03MINTI is not tested.
Additionally, no methods are tested with 03-mini in Countdown (Diff=3), as it is already near saturation with
a weaker model. Following this, we can see that as we increase the difficulty of Countdown, TOT-BFS-
GPT40’s WinRate drops drastically (72.64%) in comparison to BESTFS-GPT40 (50.53%), MCTS-GPT40
(40.0%), and LFS-GPT40 (36.84%). In Countdown (Diff=5) all backtracking methods are able to achieve a
WinRate near or greater than 50%, with LFS-GPT40 marginally outperforming MCTS-GPT40 by 3.16%.
LFS-GPT40’s improvement over the other methods increases even further in Countdown (Diff=7), beating
the next best method, MCTS-GPT40, by a marked 14.74 %, highlighting LFS’s ability to scale better



Under review as a conference paper at ICLR 2026

Table 1: WinRate (%) of each method across all tasks, evaluated with GPT-40 and o3-mini. LFS achieves the
highest WinRates on all tasks for both models, except for Sudoku (4x4) when evaluated with GPT-4o.

Countdown Sudoku
Model  Method Diff 3 Diff5 Diff7 4x4 6x6
ToT-BFS 82.11 9.47 0.00 53.68 0.00

100 4947 11.11 41.05 0.00

GPT-40 oS (c=0.5) 100 60.00 32.63 100  0.00
MCTS (c=1.0) 100 6222 3333 222 0.0

MCTS (c=2.5) 100  60.00 2444 000 0.0

LFS (OURS) 100 6316 4737 9684 222

— 5263 1333 6105 0.00

o3-mini  MCTS (c=0.5) - 6947 41.05 9053 421
LFS (OURS) - 70.53 78.95 96.84 25.26

Table 2: Area Under the Performance Profile (AUP), summarising the aggregate performance on all tasks.
LFES achieves the best AUP score for all combination of metric and model.

Metric Model ToT-BFS MCTS (c=0.5) LFS (OURS)

WinRate GPT-40 4.06 5.98 7.09 8.99
03-mini - 423 6.00 7.20

EfficiencyScore  GPT-40 3.68 2.67 3.68 4.70
03-mini - 3.24 5.61 7.20

as the task difficulty increases. Note that all methods achieve a higher WinRate when using 03-mini in both
Countdown (Diff=5) and Countdown (Diff=7), with LFS-03MINI again outperforming MCTS-03MINI,
especially in Countdown (Diff=7) by a significant 37.9 %, indicating that LFS scales better with harder
problems. Interestingly, we can see that LFS’s performance gain when using 03-mini is 39.17% (average
% increase in WinRate over Countdown (Diff € {5,7}), which is larger than the next best method, MCTS,
which has a performance gain of 20.79%. This shows that our method also scales better with stronger
models.

Sudoku. In Table|I|can see that in the simpler Sudoku (4x4), TOT-BFS-GPT40 again lags behind MCTS-
GPT40 and LFS-GPT40, however, outperforms BESTFS-GPT40. This highlights one of the major
drawbacks of BestFS, which is that it does not balance exploitation and exploration sufficiently, and in deeper
and wider problems, where this becomes more important, BestFS falls behind. In Sudoku (6x6), all methods
struggle to solve even a single game when using GPT-40, with LFS-GPT40 being the only method to
achieve a WinRate greater that 0%, hinting as LFS’s ability to scale with difficult tasks. We can see
that in Sudoku (4x4) BESTFS-03MINI improves its WinRate (which makes sense since it is biased to over
exploit, and is now guided by a stronger model), while LFS-03MINI remains the same (likely due to it having
been already close to saturation). Notably, MCTS-03MINI’s WinRate drops by 9.47%. This highlights a key
limitation of MCTS: its performance is sensitive to the exploration constant C', which often requires retuning
across tasks, difficulty levels, or base models, which is an expensive and impractical process. Lastly, we can
see that LFS-03MINI’s WinRate increases markedly in Sudoku (6x6), by 23.04 %, beating the next best
model, MCTS, by 21.05%, further highlighting LFS’s ability to scale better with stronger models.



Under review as a conference paper at ICLR 2026

6.2 KEY TAKEAWAYS

Scalability and Improved Performance. We highlight in the above that a key benefit of LFS is that it
scales better as the difficulty of the problems increase, in contrast with BESTFS which does not balance
exploitation and exploration adequately and MCTS which requires tuning for each task/model. Furthermore,
LFS achieves a better WinRate, which again we highlight in the above discussion and can also be seen in
Table [2] which shows that LFS achieves the highest AUP values for WinRate, meaning that LFS has a
higher performance on aggregate over all the tasks for both models.

Scaling with Stronger Models. In the above analysis, we note that for Countdown (diff € {5,7}), BESTFS,
MCTS, and LFS see an improvement in their performance when using a stronger model. LFS, however,
has a notably much larger performance increase when playing the most difficult version of Countdown. In
fact, it performs even better in Countdown (diff=7) than Countdown (diff=5). Interestingly, we note that
when using 03-mini, MCTS actually sees a decrease in performance in Sudoku (4x4) (we hypothesise that
this is due to 03-mini overestimating state values, which leads to poorer exploration), compared to BESTFS’
increase and LFS’ stability. In Sudoku (6x6), LFS again has a notably larger performance increase compared
to MCTS. All together, these results show that LFS scales better with a stronger model, compared to the
other methods.

Scaling with Increased Compute and Computational Efficiency. We found that as the token usage
increases, the total number of Countdown games won increases, with LFS distinctly outperforming the next
best method, MCTS. This can be seen in Figure 2]in the Appendix. This trend is particularly notable for
LFS with o03-mini since it scales better with a stronger model, and thus the gap between our method and the
others, increases. Note that due to compute limitations, we could not test each method for larger token limits,
but we can see that the gap between our method and the others is likely to continue to grow, if the current
trend continues. We can see a similar trend for the Sudoku games won in Figure [21)in the Appendix, however
less prominent due to the WinRate saturation for the simpler Sudoku version and the poorer performance for
the harder Sudoku. Lastly, not only does our method scale better with compute, it is more computationally
efficient. We can see this in Table 2 where LFS achieves the highest AUP score for EfficiencyScore, which
as discussed in Section[5.3] represents the models’ computational efficiency.

7 CONCLUSION

In this paper, we introduced LLM-First Search (LFS), a novel approach to reasoning and planning that
places the language model itself at the core of the search process. Unlike traditional search methods such
as MCTS, BestFS, or BFS, which rely on external heuristics, fixed traversal strategies, or carefully tuned
hyperparameters, LFS empowers the LLM to autonomously determine whether to continue down a path or
explore elsewhere in the tree, using only its internal reasoning and planning capabilities, which we term
Self-Guided Search. Through experiments on two complementary benchmarks, Countdown and Sudoku, we
demonstrated that LFS offers several key advantages: (1) stronger performance on harder instances without
task-specific tuning, (2) improved computational efficiency, particularly with more capable models, (3) better
scalability with model strength, and (4) greater responsiveness to increased compute budget. These findings
validate LFS as a flexible, LLM-centric framework that not only outperforms classic search methods but also
adapts more naturally to varying task complexity and compute budgets. By unifying decision-making and
evaluation within the LLM itself, LFS reimagines the role of search in LLM reasoning, not as a separate,
manually controlled process, but as an integrated, language-driven mechanism. This shift enables a more
general, adaptable, and efficient form of reasoning, offering a promising direction for scalable LLM-based
problem solving. While our evaluation was limited to a subset of tasks and models due to compute constraints,
it serves as a starting point for future work to extend LLM-First Search to more complex and realistic settings,
where its benefits in adaptive exploration and self-guided reasoning are likely to be even more pronounced.



Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY

We have taken care to make our work reproducible. The main text and appendix provide full implementation
details. Exact prompts and experimental configurations are included to enable replication of our results.
An open-source codebase with detailed instructions will be released upon acceptance, ensuring that all
experiments can be reproduced and extended by the community.

9 ACKNOWLEDGMENTS

This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under
grant number EP/S021566/1. We also gratefully acknowledge botBrains.io for providing compute credits that
enabled additional experiments to further strengthen our work.

REFERENCES

Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers
of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM conference on
fairness, accountability, and transparency, pp. 610-623, 2021.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving elaborate
problems with large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 17682—-17690, 2024.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling test-time
compute for enhancing 1lm reasoning. arXiv preprint arXiv:2412.09078, 2024.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas,
Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter optimization: Foundations,
algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 13(2):e1484, 2023.

Julian Coda-Forno, Marcel Binz, Zeynep Akata, Matt Botvinick, Jane Wang, and Eric Schulz. Meta-in-context
learning in large language models. Advances in Neural Information Processing Systems, 36:65189-65201,
2023.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72-83. Springer, 2006.

Tuan Dam, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. A unified perspective on value backup and
exploration in monte-carlo tree search. Journal of Artificial Intelligence Research, 81:511-577, 2024.

Xiaoshui Huang Di Zhang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level math-
ematical olympiad solutions via monte carlo tree self-refine with llama-3 8b: A technical report. arXiv
preprint arXiv:2406.07394, 8, 2024.

Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance profiles.
Mathematical programming, 91:201-213, 2002.

10



Under review as a conference paper at ICLR 2026

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality
and reasoning in language models through multiagent debate. In Forty-first International Conference on
Machine Learning, 2023.

Sugyeong Eo, Hyeonseok Moon, Evelyn Hayoon Zi, Chanjun Park, and Heuiseok Lim. Debate only when
necessary: Adaptive multiagent collaboration for efficient llm reasoning. arXiv preprint arXiv:2504.05047,
2025.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and Noah D
Goodman. Stream of search (sos): Learning to search in language. arXiv preprint arXiv:2404.03683, 2024.

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu, and Lijie Wen.
Interpretable contrastive monte carlo tree search reasoning. arXiv preprint arXiv:2410.01707, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. arXiv preprint arXiv:2305.14992, 2023.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of minimum
cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100-107, 1968.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv preprint
arXiv:2402.02716, 2024.

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Jia Xu, Linjian Mo, and Min Zhang. Test-time computing: from
system-1 thinking to system-2 thinking. arXiv preprint arXiv:2501.02497, 2025.

Daniel Kahneman. Thinking, fast and slow penguin books, 2011.

Donald E Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-Wesley
Professional, 1998.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In European conference on
machine learning, pp. 282-293. Springer, 2006.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham Neubig,
Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal agents on
realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024a.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language model
agents. arXiv preprint arXiv:2407.01476, 2024b.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. Advances in neural information processing systems, 35:22199-22213,
2022.

Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruiming Tang, Yasheng Wang, Yong Yu, and Weinan
Zhang. Rethinkmcts: Refining erroneous thoughts in monte carlo tree search for code generation. arXiv
preprint arXiv:2409.09584, 2024.

Bruce T Lowerre. The harpy speech recognition system. Carnegie Mellon University, 1976.
Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant foundation

models. arXiv preprint arXiv:2405.15143, 2024.

11



Under review as a conference paper at ICLR 2026

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback.
Advances in Neural Information Processing Systems, 36:46534-46594, 2023.

Kai Mei, Xi Zhu, Wujiang Xu, Wenyue Hua, Mingyu Jin, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqgiang
Ge, and Yongfeng Zhang. Aios: Llm agent operating system. arXiv preprint arXiv:2403.16971, 2024.

Kou Misaki, Yuichi Inoue, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba. Wider or deeper?
scaling llm inference-time compute with adaptive branching tree search. arXiv preprint arXiv:2503.04412,
2025.

Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context reinforcement
learners. 2024.

Edward F Moore. The shortest path through a maze. In Proc. of the International Symposium on the Theory
of Switching, pp. 285-292. Harvard University Press, 1959.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time scaling.
arXiv preprint arXiv:2501.19393, 2025.

Rithesh Murthy, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Le Xue, Weiran Yao, Yihao Feng, Zeyuan
Chen, Akash Gokul, Devansh Arpit, et al. Rex: Rapid exploration and exploitation for ai agents. arXiv
preprint arXiv:2307.08962, 2023.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens, Amar
Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, et al. Mlgym: A new framework and
benchmark for advancing ai research agents. arXiv preprint arXiv:2502.14499, 2025.

Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. Evolve: Evaluating
and optimizing llms for exploration. arXiv preprint arXiv:2410.06238, 2024.

OpenAl. Openai api. https://platform.openai.com/} 2024. Accessed: 2025-05-16.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reasoning makes
smaller 1lms stronger problem-solvers. arXiv preprint arXiv:2408.06195, 2024.

Nicholas Roberts, Samuel Guo, Cong Xu, Ameet Talwalkar, David Lander, Lvfang Tao, Linhang Cai,
Shuaicheng Niu, Jianyu Heng, Hongyang Qin, et al. Automl decathlon: Diverse tasks, modern methods,
and efficiency at scale. In NeurIPS 2022 Competition Track, pp. 151-170. PMLR, 2023.

Ben Ruijl, Jos Vermaseren, Aske Plaat, and Jaap van den Herik. Combining simulated annealing and monte
carlo tree search for expression simplification. arXiv preprint arXiv:1312.0841, 2013.

Jeffrey Seely, Yuki Imajuku, Tianyu Zhao, Edoardo Cetin, and Llion Jones. Sudoku-Bench. https:
//github.com/SakanaAl/Sudoku—-Bench, 2025.

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Ruoxi Jia, and Ming Jin. Algorithm of thoughts: Enhancing
exploration of ideas in large language models. arXiv preprint arXiv:2308.10379, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing Systems,
36:8634-8652, 2023.

12


https://platform.openai.com/
https://github.com/SakanaAI/Sudoku-Bench
https://github.com/SakanaAI/Sudoku-Bench

Under review as a conference paper at ICLR 2026

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484-489, 2016.

Chiara F Sironi and Mark HM Winands. Analysis of the impact of randomization of search-control parameters
in monte-carlo tree search. Journal of Artificial Intelligence Research, 72:717-757, 2021.

Alexandru-Iosif Toma, Hao-Ya Hsueh, Hussein Ali Jaafar, Riku Murai, Paul HJ Kelly, and Sajad Saeedi.
Pathbench: A benchmarking platform for classical and learned path planning algorithms. In 20217 18th
Conference on Robots and Vision (CRV), pp. 79-86. IEEE, 2021.

Guanzhi Wang, Yugqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv preprint
arXiv:2305.16291, 2023.

Xiaoxue Wang, Yujie Qian, Hanyu Gao, Connor W Coley, Yiming Mo, Regina Barzilay, and Klavs F Jensen.
Towards efficient discovery of green synthetic pathways with monte carlo tree search and reinforcement
learning. Chemical science, 11(40):10959-10972, 2020.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. arXiv preprint
arXiv:2402.10200, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824-24837, 2022.

Wikipedia contributors. Countdown (game show). https://en.wikipedia.org/wiki/
Countdown_ (game_show), 2024. Accessed: 2024-03-29.

Edwin B Wilson. Probable inference, the law of succession, and statistical inference. Journal of the American
Statistical Association, 22(158):209-212, 1927.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael Xie.
Self-evaluation guided beam search for reasoning. Advances in Neural Information Processing Systems,
36:41618-41650, 2023.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing less.
arXiv preprint arXiv:2502.18600, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree
of thoughts: Deliberate problem solving with large language models. Advances in neural information
processing systems, 36:11809-11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. Re-
act: Synergizing reasoning and acting in language models. In International Conference on Learning
Representations (ICLR), 2023b.

Guanghao Ye, Khiem Duc Pham, Xinzhi Zhang, Sivakanth Gopi, Baolin Peng, Beibin Li, Janardhan Kulkarni,
and Huseyin A Inan. On the emergence of thinking in llms i: Searching for the right intuition. arXiv
preprint arXiv:2502.06773, 2025.

13


https://en.wikipedia.org/wiki/Countdown_(game_show)
https://en.wikipedia.org/wiki/Countdown_(game_show)

Under review as a conference paper at ICLR 2026

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Beyond
autoregression: Discrete diffusion for complex reasoning and planning. arXiv preprint arXiv:2410.14157,
2024.

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng, Michel Galley, Jianfeng Gao, and Zhou Yu. Exact: Teach-
ing ai agents to explore with reflective-mcts and exploratory learning. arXiv preprint arXiv:2410.02052,
2024.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via models of human
notions of interestingness. arXiv preprint arXiv:2306.01711, 2023.

Wenyuan Zhang, Shuaiyi Nie, Xinghua Zhang, Zefeng Zhang, and Tingwen Liu. S1-bench: A sim-
ple benchmark for evaluating system 1 thinking capability of large reasoning models. arXiv preprint
arXiv:2504.10368, 2025.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in large
language models. arXiv preprint arXiv:2210.03493, 2022.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language agent
tree search unifies reasoning acting and planning in language models. arXiv preprint arXiv:2310.04406,
2023a.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou,
Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building autonomous agents.
arXiv preprint arXiv:2307.13854, 2023b.

APPENDIX TABLE OF CONTENTS

Section Page
Limitations and Future Workl ........................................................ 14
Additional Details of Search Baselines| ............................................... E
Task Discussion and Analysis| ....................................................... E
Implementation Details| ............................................................. B
Prompts| .......................................................................... B
Preliminary Investigation: MCTS Exploration Constan£| ............................... g
Additional Experiment Results| ...................................................... g
EXampPle Trees| . ..ottt e e e e e 5

A LIMITATIONS AND FUTURE WORK

We evaluate our method, LLM-First- Search (LFS), on two standard reasoning benchmarks: Countdown
and Sudoku, commonly used in Large Language Model (LLM) research. These tasks offer (1) scalability,
allowing fine control over difficulty, and (2) complementarity, with Countdown featuring a shallow but
challenging search space, and Sudoku a deeper but more intuitive one. Together, they provide a balanced
testbed for search strategies across diverse reasoning challenges. However, these benchmarks lack some
complexities of real-world problems. Due to compute constraints, we limited our experiments to these tasks

14



Under review as a conference paper at ICLR 2026

and a fixed number of samples, restricting broader validation. LFS also assumes the ability to revert to
previous states, which may not hold in all environments. Additionally, while LFS is shown to excel with
stronger language models, we did not determine its sensitivity to weaker models. While our evaluation was
limited, it serves as a starting point for future work to extend LLM-First Search to more complex and realistic
settings, where its benefits in adaptive exploration and self-guided reasoning are likely to be even more
pronounced.

B ADDITIONAL DETAILS OF SEARCH BASELINES

B.1 LLM-FIRST SEARCH (LFS)

The LLM-First Search (LFS) is shown is summarised in Algorithm[I]below.

Algorithm 1 LLM-First Search (LFS)

1: Input: LLM 7y, Prompts P,,q; and P,;0re, Transition function T

2: Initialise sq, Ao, Priority queue Q

{Vi}i2y' = Poa(s0, Ao, mo)

ay = Ag [arg max; Vo]
Q:=QU{a € Agla # af}
(s1,A1) ~T'(- | 50, a5)

t=1

while Token limit not exhausted do
9: if Peypiore(St, Ar, mg) then

10: (st,At) < pop(Q)

11: else

12: {V}'f‘a = Peva(st, At, mp)
13: y = Ay [arg max; V]

14: Q::QU{CLGAACL#CL;‘}
15: (s, Ay) ~T(- | spr,al)

16: end if

17: (St, At) — (S;, A;)

18: t+—t+1

19: end while

20: Return: (s;,.A;)

A

B.2 TREE-OF-THOUGHT BREADTH-FIRST SEARCH (TOT-BFS)

In this section, we describe Tree-of-Thought Breadth-First Search (ToT-BF'S), a method inspired by the
Tree-of-Thought framework. ToT-BFS performs uniform expansion from the current frontier: at each depth
level, it evaluates all current frontier nodes and expands the top-k according to their LLM-estimated value.
The method is summarised in Algorithm 2]

Frontier Filtering. At each iteration, the search maintains a set of current frontier nodes F; =
{(st, A}), ..., (s%, A?)} representing all active paths at the current depth. For each node, the LLM is
used to score the value of the state via a prompt Pay(s?), returning an estimated utility V' (s¢). The top-k
nodes with the highest estimated value are selected for expansion:

]_—tOP = TopK(Fy, {V(Si)})’

15



Under review as a conference paper at ICLR 2026

Algorithm 2 Tree of Thought Breadth-First Search (ToT-BFS)

1: Input: LLM 7y, Value prompt P.y,, Transition function 7', Beam width &
2: Initialise frontier F := {(s¢,40)}
3: while Token limit not exhausted do

4: Evaluate all frontier states: {V; = Peya (s, Wg)}‘iill
5:  Select top-k states by value: F'P C F with |F,p| = k
6: (s, Ay) = F'oP [argmax (s aye Fron V (5)]

7: if s; is terminal then

8: break

9: end if

10 Initialise new frontier Fy,cq, 1= 0

11:  foreach (s;, A;) € F'°P do

12 for each a € A; do

13: (s, A) ~T(] s4,a)

14: Frew = Fnew U{(s, A)}

15: end for

16: end for

17: F = Frew
18: end while
19: Return: (s;, A;)

where each selected node is expanded by executing actions from A! using the environment’s transition
function T'. If the frontier node with the highest estimated value is terminal, the expansion ends, and the
terminal state is returned.

Frontier Expansion.  Each selected frontier node (s, .A?) is expanded, resulting in new states (s;41, A1)
which are added to the new frontier. This process continues level by level, maintaining a breadth-first structure
that allows the model to explore multiple solution pathways in parallel.

B.3 BEST-FIRST SEARCH (BESTFS)

Algorithm 3 Best-First Search (BestFS)

Input: LLM 7y, Value prompt Py, Transition function T’
Initialise sg, Ag, Priority queue Q
Evaluate current state: Vo = Pyae(So0, 79)
Q= QU {(Va, 50, Ao)}
while Token limit not exhausted do
(Wi, 8¢, Ar) < pop(Q) > Greedy selection by highest V;
for a; € A; do
(s, A') ~T(- | 5, a¢)
VI = Pvalue(sla 7T6)
Q:=9u{(V', s, A}
end for
: end while
: Return: (s, A;)

B A ol e

—_—— =
w20

16



Under review as a conference paper at ICLR 2026

In this section, we describe Best-First Search (BestFS), a strategy that expands the most promising nodes
first, based on their estimated value. Our implementation leverages an LLM to evaluate the value of states and
uses these estimates to drive the search greedily toward high-reward regions of the search space. BestFS does
not prompt the LLM to decide when to explore; rather, it always expands the node with the highest estimated
value from the priority queue. A high-level overview is provided in Algorithm 3]

LLM-Based Evaluation. The LLM is prompted using a value-estimation prompt Py, (s’), to evaluate
the state s” after taking action a; € A; which returns a scalar estimate V"’ of the utility of s’. The tuple
{(V',s', A’)} is then added to the priority queue Q. This is done for all a; € A;.

Greedy Expansion. At each step, the algorithm pops the highest-ranked node (s, .A;) from the priority
queue Q:
(st, At) < pop(Q),

where Q is ordered by the estimated value of states as predicted by the LLM.

B.4 MONTE CARLO TREE SEARCH (MCTS)

Algorithm 4 LL.M-guided Monte Carlo Tree Search (MCTS)

1: Input: LLM 79, Prompts Pprior and Pyyjue, Transition function T°
2: Initialise root node s
3: while Token limit not exhausted do

4 path + ||

5: S 4+ 50

6: while s is not leaf and not terminal do

7 a < PUCT(s) > Uses visit counts and priors
8: path < path U {(s,a)}

9: s« T(s,a)
10: end while
11: if s is leaf then

12: A < actions(s)

13: {P(a|s)} < Ppioe(s, A, mp)

14: V(s) < Poane(s,m0)

15: Initialise state statistics: {P(a)}*, V (s), N(s)
16: end if

17: if is_solution(s) then

18: break

19: end if

20: Backpropagate V (s) along path
21: end while
22: Return: (s, A)

In our adaptation of Monte Carlo Tree Search (MCTS), we replace traditional simulation-based rollouts with
value and policy estimates provided directly by the LLM. Specifically, at each node, the LLM is prompted to
estimate (1) the value of the current state, and (2) the prior over the available actions, which are used by the
PUCT selection rule to guide the search. The resulting algorithm is outlined in Algorithm 4]

Search Tree and Node Structure. MCTS maintains a search tree where each node corresponds to a state s,
and stores the visit count N (s), total value W (s), and prior over actions { P(a | s)} (as returned by the LLM).

17



Under review as a conference paper at ICLR 2026

Each edge stores a running estimate of Q(s,a) = W(s,a)/N(s,a). The tree is expanded progressively,
guided by the PUCT criterion:

N(s)

a® = argmax | Q(s, a) + cpuer - 7(a |5)- 1+ N(s,a)|’

where ¢y is the exploration constant controlling the trade-off between exploration and exploitation. This
selection rule encourages the algorithm to prioritise actions with either high expected value or low visitation
count, as informed by the LLM’s prior.

LLM-Based Evaluation. To avoid traditional rollout-based playouts, we leverage the LLM to provide
value and policy estimates directly at the leaf node. When a new leaf node is reached, we prompt the LLM
using a state-value prompt P, (s) to obtain a scalar estimate V (s) of the state’s expected utility. We also
query an action-prior prompt Py (s, A) to estimate the prior distribution over actions. These values are then
backpropagated through the tree to update @, W, and N values for all nodes along the visited path.

C TASK DISCUSSION AND ANALYSIS

We analyse the branching factor and number of states at a given depth d for our two benchmark tasks,
Countdown and Sudoku, demonstrating their complementary characteristics. This analysis supports the use
of these tasks as representative testbeds, with Countdown exhibiting a shallower but more complex decision
space and Sudoku presenting a deeper, broader search space, together providing a balanced evaluation of
search strategies.

Countdown. Starting with an initial list of n numbers, at each step the agent selects two distinct numbers

and applies one of four arithmetic operations (+, —, X, <). The number of distinct pairs is (Z) = @, and

each pair can be combined with 4 possible operations. Thus, the branching factor at the root (depth d = 0) is:
By =4 x (Z) = 2n(n — 1).

After applying one operation, the list size decreases by 1, leaving n — 1 numbers. At depth d, the list size is
n — d, so the branching factor at depth d is:

By =4x (ngd> =2(n—d)(n—d—1).

The number of distinct lists (states) exactly at depth d, denoted L4, can be recursively computed as:
Lo=1,

d—1
Lg=Lg-1 x Bgy = [[ 2(n—i)(n—i—1).
=0

Sudoku. In a Sudoku puzzle of size [ x [, assume n empty cells initially. At each step, the agent fills one
empty cell with a valid number (up to [ possibilities).
At depth d, there are n — d empty cells left, so the branching factor is:

Bd:(n—d)xl.

18



Under review as a conference paper at ICLR 2026

The number of board states exactly at depth d is then:

Lo =1,
d-1 d—1

Li=La1x By =[[(n—i)x1=1"x[[(n—1).
=0 1=0

Analysis. Countdown features a relatively shallow search space with a maximum depth of n — 1, where n
is the initial length of numbers in the set. At each depth d, the branching factor is given by

2(n —d)(n—d— 1),

reflecting the number of possible pairs and arithmetic operations. Although the search depth is limited,
Countdown is often more challenging in terms of selecting the correct action due to the combinatorial nature
of valid operations.

In contrast, Sudoku involves a much deeper search space, with maximum depth equal to the initial number of
empty cells n. The branching factor at depth d is approximately

(n—d) xI,

where [ is the board’s side length (e.g., 9 for a standard 9 x 9 Sudoku). Here, the width of the search space
depends linearly on the number of remaining empty cells and the number of valid entries per cell, resulting in
a wide and deep search tree.

This contrast in search space structure, Countdown’s shallow but combinatorially complex branching versus
Sudoku’s deep and broadly branching tree, makes these benchmarks complementary, providing a thorough
evaluation of search strategies under diverse reasoning challenges.

D IMPLEMENTATION DETAILS

We utilised the OpenAl API to access both the GPT-40 and 03-mini language models. We set key parameters
while leaving others at their default values. The temperature was fixed at 0.0 to produce deterministic outputs
and reduce randomness. We set max_tokens to 16,384 to allow sufficiently long responses for complex,
multi-step reasoning tasks. A timeout of 300 seconds was enforced to limit API call duration and prevent
excessively long requests. Lastly, the 03-mini model was configured to operate at a "low" reasoning_effort.

E PROMPTS

This section presents the exact prompts used in our experiments. These prompts were designed to guide
the language model in performing evaluations, making exploration decisions, or generating actions during
search. These prompts play a crucial role in enabling LLM-First Search and the other baselines to operate
under comparable conditions, ensuring that differences in performance arise from the methods themselves
rather than discrepancies in task formulation. Note that variables enclosed in curly braces (e.g., { state},
{actions}) indicate Python variables used for string formatting (this will be visible in the accompanying
open-source code). Lastly, for clarity, we use colour to distinguish different components of the prompts: (1)
Green: Task-specific instructions or rules, (2) Red: System-level instructions that define the model’s role or
behaviour, and (3) Blue: User-level queries or task inputs.

E.1 COUNTDOWN

19



Under review as a conference paper at ICLR 2026

Countdown Game Rules

You’re playing the Countdown Numbers Game. Let me explain the rules and how to solve it:
Game Rules:

1. You are given a set of numbers and a target number to reach.
2. You can only use each number once.

3. You must combine numbers using only four operations: addition (+), subtraction (-), multiplication (*),
and division (/).

4. Division is only allowed when it results in a whole number (no fractions or decimals).
5. You can only combine two numbers at a time to create a new number.

6. After each operation, the original numbers are removed, and the result is added to your available
numbers.

7. You win when you have exactly one number left that matches the target.

For example, with target 50 and numbers [39, 66, 33, 13]:
State 0 Target: 50

Operations: []

Available Numbers: [39, 66, 33, 13]

Action 0 Operation: *39 + 13 =52’

State 1 (After performing 39 + 13 = 52)

Target: 50

Operations: ['39 + 13 = 52]

Available Numbers: [66, 33, 52]

Action 1 Operation: '66 /33 =2’

State 2 (After performing 66 /33 = 2)

Target: 50

Operations: ['39 + 13 =52,766/33 =2"]

Available Numbers: [52, 2]

Action 2 Operation: ’52 - 2 = 50°

State 3 (After performing 52 - 2 = 50)

Target: 50

Operations: ['39 + 13 =52",°66/33=2","52-2=50"]
Available Numbers: [50]

Game won!

20



Under review as a conference paper at ICLR 2026

Action Prior System Instruction and User Request

System Instruction

Important considerations when assigning probabilities to operations:
1. Target Progress: How much closer the operation gets to the target

» Operations resulting in numbers exactly at or very close to target should receive higher
scores

* Operations creating useful intermediate numbers should be favored
2. Number Creation: The utility of the resulting number

¢ Creating small, flexible numbers (1-10) can be valuable
* Creating numbers that are factors of the target
* Creating numbers that offer efficient pathways to the target

3. Available Number Management: How the operation affects the number pool

 Operations that use less useful numbers while preserving useful ones
* Operations that create a more workable set of available numbers
¢ Avoiding operations that result in unusable large numbers

4. Mathematical Strategy: Using operations optimally

» Using division to create useful small numbers
» Using multiplication for larger adjustments toward the target
» Using addition/subtraction for precise movements toward the target

Your task is to evaluate the possible actions in the current state, scoring them based on how likely they
are to help you achieve the target value. The scores should form a probability distribution over the
actions.

Example State Sequence State ( Target: 50

Operations: []

Available Numbers: [39, 66, 33, 13]

Action 0 Operation: *39 + 13 =52’

State 1 (After performing 39 + 13 = 52)

Target: 50

Operations: [’39 + 13 =52’]

Available Numbers: [66, 33, 52]

Action 1 Operation: '66 /33 =2’

State 2 (After performing 66 / 33 = 2)

Target: 50

Operations: ['39 + 13 =52,766 /33 =2"]

Available Numbers: [52, 2]

Example Possible Operations: {0: 52 +2=54,1:°52-2=50",2: 52 %#2=104",3:’52/2 =26’}
Example Final Answer

‘{”operation_scores" {707 : 0.15,71” : 0.35,72” : 0.35,”3" :0.15}}\

21



Under review as a conference paper at ICLR 2026

User Request

Current State and Action sequence {current_sequence}

Possible Operations: {action_list}

What are the scores for each action/operation? Assign a probability to each possible operation based on
how likely it is to lead to the target number.

Your response must include a valid JSON object, enclosed in a boxed, with an operation_scores
field containing a dictionary mapping operation keys to scores, formatted as follows:

’ {"operation_scores" :< dictionary_of_scores >} ‘

Replace <dictionary_of_scores> with a dictionary mapping operation keys to scores that must
sum to 1.0.

22



Under review as a conference paper at ICLR 2026

Estimate Node Value System Instruction and User Request

System Instruction

Important factors to consider when estimating state value:
1. Proximity to Target: How close the current numbers are to the target

» States with numbers exactly equal to or close to the target are more valuable
« States with numbers that can be easily combined to reach the target have higher value

2. Available Number Quality: How useful the remaining numbers are

¢ Having small numbers (1-10) increases flexibility
* Having numbers that are factors or multiples of target numbers is valuable
* Having complementary numbers that work well together

3. State Progress: How much progress has been made

¢ Number of operations performed so far
* Reduction in the total number of available numbers
* Quality of the operations performed so far

4. Potential for Success: Overall likelihood of reaching the target

» Presence of clear pathways to the target
* Absence of unusable or problematic numbers
* Balance between large and small numbers

Your task is to estimate the value of the current state and possible operations by determining the
likelihood of reaching the target number from it. The score should range from O to 1.
For example:

Example State Sequence

State 0 Target: 50

Operations: []

Available Numbers: [39, 66, 33, 13]

Action 0 Operation: *39 + 13 =52’

State 1 (After performing 39 + 13 = 52)

Target: 50

Operations: [’39 + 13 = 52’]

Available Numbers: [66, 33, 52]

Action 1 Operation: *66 /33 =2’

State 2 (After performing 66 /33 =2)

Target: 50

Operations: ['39 + 13 =52,°66/33 =2"]

Available Numbers: [52, 2]

Example Possible Operations: ['52 +2 =54",52-2=150",°52 *2=104","52/2 =26’]
Example Final Answer

’ {"state_value_estimation" : 1.0} ‘

23



Under review as a conference paper at ICLR 2026

User Request

Current State and Action sequence {current_sequence}

Possible Operations: {action_list}

Given the current state and the possible operations, estimate the value of the current state, ranging from
0-1, where 1 means it’s certain to reach the target number and 0 means it’s impossible.

Your response must include a valid JSON object, enclosed in a boxed, with a
state_value_estimation field, formatted as follows:

‘ {"state_value_estimation" :< value >} ‘

Replace <value> with your estimated probability (between 0 and 1) of reaching the target from this
state.

24



Under review as a conference paper at ICLR 2026

Move Values Estimation System Instruction and User Request

System Instruction

Important considerations when evaluating possible operations:
1. Target Progress: How much each operation moves toward the target

* Operations that result in numbers close to the target
» Operations that create useful intermediate numbers for future steps

2. Number Creation: The strategic value of the resulting number

¢ Creating small, useful numbers (1-10) for fine adjustments
» Creating numbers that are easily combinable with others
¢ Creating numbers that are factors or related to the target

3. Operation Strategy: How the operation affects solution paths

» Using division to create useful small numbers
» Using multiplication to make larger jumps toward the target
» Using addition/subtraction for precise adjustments

4. Future Potential: How an operation affects future possibilities

* Operations that open up multiple future paths
* Operations that eliminate problematic numbers
¢ Operations that maintain flexibility in the number set

Your task is to evaluate each possible operation and assign a value between 0 and 1 to each, where 1
means the operation is extremely likely to lead to solving the puzzle and 0 means it’s very unlikely to be
helpful.

For example:

Example State Sequence

State 0 Target: 50

Operations: []

Available Numbers: [39, 66, 33, 13]

Action 0 Operation: *39 + 13 =52’

State 1 (After performing 39 + 13 = 52)

Target: 50

Operations: ['39 + 13 =52’]

Available Numbers: [66, 33, 52]

Example Possible Operations: {0: °52 + 66 = 118’, 1: °52-33 =19,2: 66 - 33 =33",3: °66/33=2"}
Example Final Answer

‘{"operation_values" :{70”:0.3,717 : 0.6,72” : 0.5,”3" :0.9}}\

25



Under review as a conference paper at ICLR 2026

User Request

Current State and Action sequence {current_sequence}

Possible Operations: {action_list}

Evaluate each possible operation and assign a value between 0 and 1 to each, where 1 means the
operation is extremely likely to lead to solving the puzzle and 0 means it’s very unlikely to be helpful.
Your response must include a valid JSON object, enclosed in a boxed, with an operation_values
field containing a dictionary mapping operation keys to values between 0 and 1, formatted as follows:

‘ {"operation_values" :< dictionary_of_values >} ‘

Replace <dictionary_of_values> with a dictionary mapping operation keys to values between
0 and 1.

26



Under review as a conference paper at ICLR 2026

Exploration Decision System Instruction and User Request

27



Under review as a conference paper at ICLR 2026

System Instruction

Important considerations when deciding whether to explore or continue:
1. Current Path Quality: How promising the current path appears

* Presence of numbers close to the target
¢ Quality and usefulness of available numbers
¢ Clear pathways to reach the target from current numbers

2. Current Path Issues: Signs the current path may be problematic

e Numbers far from the target with no clear way to combine them
* Repeated patterns or circular operations
* No beneficial operations remaining

3. Exploration Value: Potential benefit of trying other paths

* Number of operations already performed on current path
¢ Quality of alternative unexplored paths
¢ Diminishing returns on current path

4. Decision Confidence: Certainty about current path viability

* Clear evidence current path cannot reach target
* Presence of obviously better unexplored paths
» Risk assessment of continuing vs exploring

Your task is to decide whether to continue with the current state or to visit an unexplored state. Before
deciding, carefully consider the current sequence of states and actions, as well as the available operations.
Only choose to explore if you are certain that the current path cannot reach the target number and that
switching to a new path is the best use of time.

For example:

Example State and Action sequence

State 0 Target: 50

Operations: []

Available Numbers: [39, 66, 33, 13]

Action 0 Operation: *39 + 13 =52’

State 1 (After performing 39 + 13 = 52)

Target: 50

Operations: [’39 + 13 =52’]

Available Numbers: [66, 33, 52]

Action 1 Operation: *66 /33 =2’

State 2 (After performing 66 / 33 = 2)

Target: 50

Operations: ['39 + 13 =52,°66/33 =2"]

Available Numbers: [52, 2]

Example Possible Operations: {0: °52 +2 =154,1:’52-2=50,2: ’52 *2=104",3:°52/2 =26’}
Example Final Answer

‘ {"explore" : false} ‘

28



Under review as a conference paper at ICLR 2026

User Request

Current State and Action sequence {current_sequence}

Possible Operations: {action_list}

Consider the current sequence of states and actions and the available operations. Reason through your
options step by step and determine whether continuing with the current state or exploring a new state is
the most optimal decision.

Your response must include a valid JSON object, enclosed in a boxed, with an explore field, where
the value must be either true (to explore a new state) or false (to continue with the current state),
formatted as follows:

‘ {"explore" :< boolean >} ‘

Replace <boolean> with either true or false.

E.2 SuDOKU

Sudoku Game Rules

You are helping solve Sudoku puzzles using a tree-based search approach. Sudoku is a puzzle where you fill a
grid with numbers 1 through {grid_size} so that each row, column, and box has no repeated numbers.
For this {grid_size} x {grid_size} Sudoku grid, the boxes are {box_width} x {box_height} in size. Each
row, column, and box must contain all numbers from 1 to {grid_size} without repetition. This means:

1. Each row must contain each number from 1 to {grid_size} exactly once
2. Each column must contain each number from 1 to {grid_size} exactly once

3. Each {box_width} x {box_height} box must contain each number from 1 to {grid_size} exactly
once

These constraints create a logical puzzle where placing a number in a cell immediately restricts what numbers
can be placed in other cells in the same row, column, and box.
Board Structure:

* The Sudoku board is a {grid_size} x {grid_size} grid divided into {box_width} x {box_height}
boxes

» Rows are numbered 0 to {grid_size_minus_one} from top to bottom
 Columns are numbered 0 to {grid_size_minus_one} from left to right
* Each cell is identified by its (row, column) coordinates

* Empty cells appear as periods (.) in the board representation

* Board state is represented as a nested list where board[row] [column] gives the value at that
position

When solving a Sudoku puzzle, we explore different possible number placements. Each step involves selecting
an empty cell and placing a valid number in it. As we make selections, the set of valid moves for remaining cells
may change.

29



Under review as a conference paper at ICLR 2026

Action Prior System Instruction and User Request

System Instruction

Important considerations when evaluating possible actions:
1. How actions might create naked singles or hidden singles in other cells
2. Actions targeting cells with few remaining alternatives
3. How actions may constrain multiple other cells simultaneously
4. How actions contribute to a balanced distribution of numbers across the board
5. Whether actions might lead to contradictions or cells with no legal moves

Your task is to evaluate the possible actions in the current state, scoring them based on how likely they
are to help solve the Sudoku puzzle. The scores should form a probability distribution over the actions
(sum to 1.0) and be returned as a dictionary mapping action indices to scores.

Example {grid_size} x {grid_size} Sudoku Board

{example_board}

Example Possible Actions

{example_prior_actions}

Example Final Answer

‘ {"operation_scores" : {example_operation_scores}} ‘

\. J

User Request

Current {grid_size} x {grid_size} Sudoku Board

{current_board}

Possible Actions

{action_list}

Evaluate each action based on how it creates constraints, identifies singles, minimizes branching, and
maintains a balanced distribution of numbers as described in your instructions.

Assign a probability to each possible action based on how likely it is to lead to a solution of the Sudoku
puzzle. The scores should sum to 1.0, representing a probability distribution over the actions.

Your response must include a valid JSON object, enclosed in a boxed, with an operation_scores
field containing a dictionary mapping action indices to scores, formatted as follows:

’ {"operation_scores" :< dictionary_of_scores >} ‘

Replace <dictionary_of_scores> with adictionary mapping action indices to scores that MUST
sum to 1.0.

30



Under review as a conference paper at ICLR 2026

Node Value System Instruction and User Request

Important considerations when estimating the value of a board state:
1. Factors that may indicate higher likelihood of success:

¢ The number of cells with few possible remaining values

* Whether all cells have at least one possible legal value

* How close rows, columns, and boxes are to completion

* The presence of obvious next moves such as naked or hidden singles
2. Factors that may indicate lower likelihood of success:

* The presence of cells with zero possible legal values (contradictions)

¢ Many cells having numerous possible values (high uncertainty)

¢ Limited constraints between remaining empty cells

* Patterns that typically lead to unsolvable states

Your task is to estimate the value of the current board state by determining the likelihood of solving the
puzzle from this position. The score should range from O to 1.

Example {grid_size} x {grid_size} Sudoku Board

{example_board}

Example Possible Actions

{example_value_actions}

Example Final Answer

‘ {"state_value_estimation" : 0.75} ‘

User Request

Current {grid_size} x {grid_size} Sudoku Board

{current_board}

Possible Actions

{action_list}

Given the current board state and the possible actions, estimate the value of the current state. Consider
factors like the number of cells with few possible values, whether there are contradictions, and whether
there are obvious next moves as described in your instructions.

Provide a value ranging from 0-1, where 1 means it’s certain to reach a solution and 0 means it’s
impossible.

Your response must include a valid JSON object, enclosed in a boxed, with a
state_value_estimation field, formatted as follows:

‘ {"state_value_estimation" :< value >} ‘

Replace <value> with your estimated probability (between 0 and 1) of solving the puzzle from this
state.




Under review as a conference paper at ICLR 2026

Explore Decision System Instruction and User Request

System Instruction

Important considerations when determining whether to continue with the current board state or
explore a new state:

1. The presence of naked singles or hidden singles in the current board state

2. Whether the current board state contains contradictions or cells with no valid moves
3. The level of certainty in the remaining cells (many vs. few possible values)

4. Whether the board shows signs of making progress or appears to be in a deadlock

Your task is to decide whether to continue with the current board state or to visit an unexplored board
state. Before deciding, carefully consider the current board and the available actions. Only choose to
explore if you are certain that the current board state cannot lead to a solution and that switching to a
new board state is the best use of time.

Example {grid_size} x {grid_size} Sudoku Board {example_board}

Example Possible Moves {exzample_explore_actions}

Example Final Answer

{"explore" : false}
| |

. J

User Request

Current {grid_size} x {grid_size} Sudoku Board {current_board}

Possible Moves {empty_cells}

Consider the current board state and the available actions. Evaluate whether the current state has
promising moves like naked singles or hidden singles, or if it shows signs of contradictions or deadlocks
as described in your instructions.

Reason through your options step by step and determine whether continuing with the current state or
exploring a new state is the most optimal decision.

Respond with true if you should explore a new board state, or false if you should continue with the
current one.

Your response must include a valid JSON object, enclosed in a boxed, with an explore field, where
the value must be either true (to explore a new board state) or false (to continue with the current board
state), formatted as follows:

‘ {"explore" :< boolean >} ‘

Replace <boolean> with either true or false.

32



Under review as a conference paper at ICLR 2026

Move Value Estimation System Instruction and User Request

System Instruction

Important considerations when evaluating possible moves:
1. Constraint Propagation: How each move affects future possibilities

¢ Whether the move creates naked singles or hidden singles
* How the move constrains other cells in the same row, column, and box

2. Strategic Value: The quality of the move in solving the puzzle

e Whether the move targets cells with few remaining possibilities
* Whether the move maintains flexibility in other cells
* Whether the move creates a balanced distribution of numbers

3. Future Impact: How the move affects future solving paths

¢ Whether the move opens up multiple solving techniques
¢ Whether the move might lead to contradictions
* Whether the move maintains good solving options

Your task is to evaluate each possible move and assign a value between 0 and 1 to each, where 1 means
the move is extremely likely to lead to solving the puzzle and 0 means it’s very unlikely to be helpful.
Example {grid_size} x {grid_size} Sudoku Board {example_board}

Example Possible Moves {exzample_moves}

Example Final Answer

‘ {"move_values" : {"0” : 0.8,”71” : 0.5,72” : 0.3,...}} ‘

Current {grid_size} x {grid_size} Sudoku Board {current_board}

Possible Moves {moves_list}

Evaluate each possible move and assign a value between 0 and 1 to each, where 1 means the move is
extremely likely to lead to solving the puzzle and 0 means it’s very unlikely to be helpful.

Your response must include a valid JSON object, enclosed in a boxed, with amove_values field
containing a dictionary mapping move indices to values between 0 and 1, formatted as follows:

‘ {"move_values" :< dictionary_of_values >} ‘

Replace <dictionary_of_values> with a dictionary mapping move indices to values between 0
and 1.

F PRELIMINARY INVESTIGATION: MCTS EXPLORATION CONSTANT

We performed a hyperparameter sweep over different exploration constants C' € {0.5,1.0,2.5}. Due to
computational constraints, we limited this sweep to the three Countdown variants and the simpler Sudoku

33



Under review as a conference paper at ICLR 2026

variant, using GPT-40 as the underlying model. As shown in Figures @] [5] and [6] the setting ¢ = 2.5
consistently underperforms, while ¢ = 0.5 and ¢ = 1.0 perform similarly, with ¢ = 0.5 slightly outperforming
¢ = 1.0 in Countdown (difficulty 5). The largest performance gap appears in the Sudoku (4x4) task (Figure[7),
where ¢ = 0.5 significantly outperforms higher values. This is likely due to Sudoku’s deeper solution space,
where higher c-values lead to over-exploration. The overall trend is further confirmed by the performance
profiles in Figures 2] and [3] which show ¢ = 0.5 achieving the best trade-off between performance and
efficiency. Based on these results, we adopt ¢ = 0.5 as the default value in subsequent experiments.

Win Rate Profile

Model: gpt-40
0.81
0.7
% 0.6 O o o o o o o o
\©
‘G
c 0.5
K]
-t
(o)
© 0.41
[T
0.31 —e— MCTS(c=0.5) (AUP: 7.200)
—m— MCTS(c=1.0) (AUP: 5.387)
0.2 —4— MCTS(c=2.5) (AUP: 5.305)
10° 10!

Performance Ratio (1)

Figure 2: Performance profiles of MCTS across different exploration constants (¢ € {0.5,1.0, 2.5}), evaluated
using WinRate across all tasks with GPT-40. The profiles illustrate the proportion of tasks where each c value
is within a given performance ratio of the best. Area Under the Profile (AUP) is displayed for each curve.
Notably, ¢ = 0.5 achieves the highest AUP, indicating superior overall performance.

34



Under review as a conference paper at ICLR 2026

Win Rate / Token Usage Profile

Model: gpt-40
0.8 r—m—e———-——p——
0.7
0.6 i - - - L 3 L 3 L 3 L 3
Y,
(%]
@ 0.5
bS]
c 0.4
o
503
0.
i
0.2
o1 —e— MCTS(c=0.5) (AUP: 7.157)
' —8— MCTS(c=1.0) (AUP: 5.377)
0.0 —&— MCTS(c=2.5) (AUP: 5.246)

10° 10!
Performance Ratio (1)

Figure 3: Performance profiles of MCTS across different exploration constants (¢ € {0.5,1.0,2.5}), evaluated
using WinRate per token ratio (efficiency) across all tasks with GPT-40. The profiles indicate the proportion
of tasks where each c value achieves a given efficiency ratio relative to the best. Area Under the Profile (AUP)
is shown for each curve. As with overall WinRate, ¢ = 0.5 yields the highest AUP, demonstrating superior

efficiency.

35



Under review as a conference paper at ICLR 2026

200

100

Win Rate (%)

~
w

50

25

Win Rate and Token Usage for Countdown (diff=3)

Model: gpt-40
Win Rate
Token Usage 112000
*9289%
[5091,
10000
13487] 7683+ 77175
[4349, [4542, %’-,
*100.0%* *100.0%+ _11017] +100.0%+ 0891 (8000 @
[100.0, [100.0, [100.0, )
100.0] 100.0] 100.0] c
r6000 ¢
e
4000
t2000
Lo
MCTS(c=0.5) MCTS(c=1.0) MCTS(c=2.5)
Methods

Figure 4: WinRate and token usage for MCTS on the Countdown task (difficulty 3) using GPT-40. Both

metrics are reported across different exploration constants (c

0.5, 1.0, 2.5), with all

configurations

successfully solving all instances. Notably, ¢ = 0.5 uses the most tokens. Values in “*” denote the mean, and

square brac

140
120
100

80

60

Win Rate (%)

40

20

kets “ [ 1" represent the 95% confidence interval.

Win Rate and Token Usage for Countdown (diff=5)

Model: gpt-40
3 Win Rate
Token Usage
*567471*
*528327* [274662,
*509110%*
1214354, [244164, 860279]

812491]

8038661

*66.7%*

[30.4, *60.0%*
100.0] [22.3,
97.7]
MCTS(c=0.5) MCTS(c=1.0) MCTS(c=2.5)
Methods

800000
700000

600000
()
500000 &
(%]

)

400000 ¢

Toke

300000

200000

100000

0

Figure 5: WinRate and token usage for MCTS on the Countdown task (difficulty 5) using GPT-40. Results
are shown for exploration constants ¢ = 0.5, 1.0, and 2.5. See that ¢ = 0.5 achieves the best WinRate while
also using the fewest tokens on average. Values in “*” denote the mean, and square brackets “ [ ]” represent
the 95% confidence interval.

36



Under review as a conference paper at ICLR 2026

Win Rate and Token Usage for Countdown (diff=7)

Model: gpt-40
le6
70{|=3 Win Rate
©Zz2 Token Usage 1.2
60 *908451*
"819425¢ “811620" iooo000) [0
50 [671140, [655029,
= 967710] 968210] [
S 08
o *33.3%%* *33.3%* ]
=40 [0.0, [0.0, ]
o 69.6] 69.6] c
p *24.4%* 060
£ 30 35
= =
20 0.4
10 0.2
0 0.0
MCTS(c=0.5) MCTS(c=1.0) MCTS(c=2.5)
Methods

Figure 6: WinRate and token usage for MCTS on the Countdown task (difficulty 7) using GPT-40. Results
are shown for exploration constants ¢ = 0.5, 1.0, and 2.5. Both ¢ = 0.5 and ¢ = 1.0 achieve equal win rates,
with ¢ = 1.0 using marginally fewer tokens on average. Values in “*” denote the mean, and square brackets
“ [ 1" represent the 95% confidence interval.

Win Rate and Token Usage for Sudoku (width=2, height=2)

Model: gpt-40
225
1 Win Rate 140000
200 Token Usage
175 *99685* *100865* 120000
[97195, [100693,
100000] 100000]

_.150 100000
S g
o *100.0%* @
g1 (100.0, 80000 3
&2 100.0] c
< 100 8
2 *36580% 60000 ©

75 [34411,

387481 40000
50
25 *2.2%* *0.0%* 20000
[0.0,
0 0.0] 0
MCTS(c=0.5) MCTS(c=1.0) MCTS(c=2.5)
Methods

Figure 7: WinRate and token usage for MCTS on the Sudoku (4x4) task using GPT-40. Results are shown for
exploration constants ¢ = 0.5, 1.0, and 2.5. Only ¢ = 0.5 successfully solves all games, and it does so with
significantly lower token usage compared to the other ¢ values, which struggle to solve any. Values in “*”
denote the mean, and square brackets ™ [ ]” represent the 95% confidence interval.

37



Under review as a conference paper at ICLR 2026

G ADDITIONAL EXPERIMENT RESULTS

Below, we present detailed experimental results across all Countdown and Sudoku variants. The subsections
are organized as follows: performance profiles Countdown results Sudoku results[G.3] cumulative
wins [G.4] and tree size analyses|[G.3]

G.1 PERFORMANCE PROFILES

Win Rate Profile

Model: gpt-40
1.0
0.8
9]
a2
(9]
ﬁ 0.6 —C—
“
o
C
=l
S 0.4 -0 0—¢"
@©
i
02 —e— ToT-BFS (AUP: 4.057)
BESTFS (AUP: 6.204)
—A— MCTS(c=0.5) (AUP: 7.098)
0.0l o—uo —0— LFS (AUP: 8.994)

10° 101
Performance Ratio (1)

Figure 8: Performance profiles (WinRate) across all variants of Countdown and Sudoku tasks for methods

ToT-BFS, BestFS, MCTS, and LFS, evaluated with GPT-40. LFS achieves the highest Area Under Profile
(AUP) value, indicating superior overall WinRate.

38



Under review as a conference paper at ICLR 2026

Win Rate / Token Usage Profile

Model: gpt-40
0.61|—e— ToT-BFS (AUP: 3.676) ¢ ¢ g
BESTFS (AUP: 2.670)
0.51 |=*— MCTS(c=0.5) (AUP: 3.544)
—o— LFS (AUP: 4.704)
9 = -
X 0.4 e A& &
©
G
c 0.3
o
)
(&}
©02{ &—
[
0.1
0.0{ &—
10° 10

Performance Ratio (1)

Figure 9: Performance profiles (WinRate per Token Ratio) across all variants of Countdown and Sudoku
tasks for methods ToT-BFS, BestFS, MCTS, and LFS, evaluated with GPT-40. Among these, LFS achieves
the highest Area Under Profile (AUP) value, indicating it provides the best balance between WinRate and

token efficiency.

39



Under review as a conference paper at ICLR 2026

Win Rate Profile
Model: 03-mini

0.8 & & & & & & & & = =
0.7
0.6 = = - -
(%]
%
@ 0.5
G
< 0.4 = -
°
T 0.3
Q0.
i
0.2
01 BESTFS (AUP: 4.234)
' —#— MCTS(c=0.5) (AUP: 6.004)
0.0l —+— LFS (AUP: 7.200)
10° 101

Performance Ratio (T)
Figure 10: Performance profiles (WinRate) across all variants of Countdown and Sudoku tasks for methods

BestFS, MCTS, and LFS, evaluated with 03-mini. Among these, LFS achieves the highest Area Under
Profile (AUP) value, demonstrating superior overall performance.

40



Under review as a conference paper at ICLR 2026

Win Rate / Token Usage Profile
Model: 03-mini

©
[oe]
)
»
»
»

o
N

°
(o)}
[ ]
[ ]

o
U

©
~
| |
| |

Fraction of Tasks
o
w

©
[N)

BESTFS (AUP: 3.244)
—#— MCTS(c=0.5) (AUP: 5.617)
—&— LFS (AUP: 7.200)

o
il

o
o

10° 101
Performance Ratio (1)

Figure 11: Performance profiles (WinRate per Token Ratio) across all variants of Countdown and Sudoku
tasks for methods BestFS, MCTS, and LFS, evaluated with 03-mini. LFS achieves the highest Area Under
Profile (AUP) value, indicating the best efficiency-performance trade-off among the methods.

fewe

41



1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973

Under review as a conference paper at ICLR 2026

G.2 COUNTDOWN RESULTS

GPT-40 RESULTS

Win Rates for Countdown (diff=3)

Model: gpt-40
1401 mmm ToT-BFS
BESTFS
1201 L *100.0%* *100.0%* *100.0%*
B MCTS(c=0.5) [100.0, [100.0, [100.0,
. mm LFS 100.0] 100.0] 100.0]
X 100+ 163.6,
- 100.0]
3 801
©
o
£ 60y
=
40
20+
0,
S ~ S
PN o N
& 7
&
S
Methods
(a) Win rates for difficulty 3.
Token Usage for Countdown (diff=3)
Model: gpt-40
== ToT-BFS
200001 BESTFS
= MCTS(c=0.5)
o . LFS
© 15000 1087
3 [8444, *[lff5751* *9903*
2 * . 13730] ’ [8169,
- 8348 13886]
@ [8235, 11638]
X 8461]
=
) N
s é“‘o o? \36)
< g
<
Methods

(b) Token usage for difficulty 3.

Figure 12: WinRate and token usage for different methods (ToT-BFS, BestFS, MCTS, and LFS) on the
Countdown task (difficulty 3) using GPT-40. (a) WinRate; (b) Token Usage. ToT-BFS was the only method
that did not solve all instances, while the other three methods successfully solved all tasks. Among these
three, LFS used the fewest tokens, indicating the best efficiency. Values in “*” denote the mean, and square
brackets “ [ ]” represent the 95% confidence interval.

42



1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

Under review as a conference paper at ICLR 2026

Win Rates for Countdown (diff=5)

Model: gpt-40
120{ I ToT-BFS
BESTFS
100{ Mmm MCTS(c=0.5)
. . LFS
L gof *63.2%*
i "t
g *49 5%% 83.6] 86.41
© .6]
o 601 [25.4,
o 73.6]
= 40l
9, 59%%*
| [0.0,
20 23.6]
o I
&£ é\“% O &
/\é ¥ \('//
é‘o
=
Methods
(a) Win rates for difficulty 5.
Token Usage for Countdown (diff=5)
Model: gpt-40
1e6
1.4 I ToT-BFS
1.2 BESTFS
' m MCTS(c=0.5)
010 B LFS
o *700147*
G 0.8 1543768, *569730%
2 8565271 (204774 508522+
Loe 754687] [332344,
o 684699]
|_
0.4
*28863*
0.2 [28616,
29110]
0.0
. & é{') & &
oS & é(,,\@//
=
Methods

(b) Token usage for difficulty 5.

Figure 13: WinRate and token usage for different methods (ToT-BFS, BestFS, MCTS, and LFS) on the
Countdown task (difficulty 5) using GPT-40. (a) WinRate; (b) Token Usage. LFS marginally outperforms the
next best method, MCTS, while also using fewer tokens, indicating both higher effectiveness and efficiency.
Values in “*” denote the mean, and square brackets ™ [ ] represent the 95% confidence interval.

43



Under review as a conference paper at ICLR 2026

2021 Win Rates for Countdown (diff=7)
2022 Model: gpt-40

2023
2024 100 = ToT-BFS
2025 BESTFS

80+ mm MCTS(c=0.5)
2026 mm LFS

2027

2028

2029

2030

2031 *11.1%*
201 [0.0,

2032 *0.0%* 35.3]

[0.0,

2033 0.0]

2034 123 o

203 ’\9(( 2

5 s &

2036

2037 Methods

2038

2039

2040

2041 le6

2042 1.6 = ToT-BFS

2043 1.4 BESTFS
mm MCTS(c=0.5)
2044 1.2 *983297* . LFS

958772,
o £000000] *821404*
2046

[723330, *737174*

919478] 1620191,
2047 c 0.8 854158]
2048 2 0.6

2049

2050 *55672%
0.2 [54780,
2051 56564]

- |
2052 0.0

*47.4%*
60 [23.3,
71.4]

*32.6%*

Win Rate (%)

401

(a) Win rates for difficulty 7.

Token Usage for Countdown (diff=7)
Model: gpt-40

Usage
=
o

<& & 9 &
2053 & & e N
2054 &

<~
2055 Methods
2056

2057 (b) Token usage for difficulty 7.

“use Figure 14: WinRate and Token Usage for different methods (ToT-BFS, BestFS, MCTS, and LFS) on the

2059 Countdown task (difficulty 7) using GPT-40. (a) WinRate; (b) Token Usage. The performance gap between
2080 MCTS and LFS widens as difficulty increases, with LES maintaining higher efficiency by using fewer tokens.

2061 Values in “*” denote the mean, and square brackets ™ [ ] represent the 95% confidence interval.
2062

2063
2064
2065
2066
2067

44



2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114

Under review as a conference paper at ICLR 2026

03-MINI RESULTS

Win Rates for Countdown (diff=5)
Model: 03-mini

= BESTFS
1209 B MCTS(c=0.5)
= LFS
100]
;\3 *69.5%* *70.5%*
2 80 [47.3, [48.6,
'E') *52.6%* 91.7] 92.5]
©
o [28.6,
c 60 76.71
=
401
201
o N &
Q)Q’ \(//
&
<
Methods

(a) Win rates for Countdown (difficulty 5).

Token Usage for Countdown (diff=5)
Model: 03-mini

1e6
== BESTFS
1.2 mm MCTS(c=0.5)
= LFS
1.0
)
*656260*
§0-8 [492951,
> 819568] *480216* *451792%
Sos [301174, (265429,
2 659258] 638154]
0.4
0.2
0.0
&Q") Q(?\ \36)
& g
< C{o\
A\
Methods

(b) Token usage for Countdown (difficulty 5).

Figure 15: WinRate and Token Usage for different methods (BestFS, MCTS, and LFS) on the Countdown
task (difficulty 5) using o3-mini. (a) WinRate; (b) Token Usage. The performance trends closely mirror
those observed with GPT-40: LFS marginally outperforms MCTS while also using fewer tokens, indicating
stronger efficiency. Values in “*” denote the mean, and square brackets ™ [ ]” represent the 95% confidence
interval.

45



2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161

Under review as a conference paper at ICLR 2026

Win Rates for Countdown (diff=7)
Model: 03-mini

140+ i BESTFS
| B MCTS(c=0.5)
120 s LFS
< 100+ *78.9%%*
® [59.3,
< 8ol 98.6]
©
-4
- 601 *41.1%*
=
401 *13,3%%*
20+
0,
(:)(((9 Q(?\ \36)
¥ o
&
=
Methods

(a) Win rates for Countdown (difficulty 7).

Token Usage for Countdown (diff=7)
Model: 03-mini

1e6
1.6 [ BESTFS
1.4 B MCTS(c=0.5)
’ . LFS
1.2 *955818%
g [889575,
®1.0 1000000]
0w *708961*
= (558894,
goe 8590281 *498280*
[376326,
206 620233]
0.4
0.2
0.0
& o N
& 7
Q) é(,)\‘v
=
Methods

(b) Token usage for Countdown (difficulty 7).

Figure 16: WinRate and Token Usage for different methods (BestFS, MCTS, and LFS) on the Countdown
task (difficulty 7) using 03-mini. (a) WinRate; (b) Token Usage. The performance gap between MCTS
and LFS widens as task difficulty increases, mirroring results with GPT-40, with LFS maintaining higher
efficiency through lower token usage. Values in “*” denote the mean, and square brackets “ [ ] " represent
the 95% confidence interval.

46



2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208

Under review as a conference paper at ICLR 2026

G.3 SUDOKU RESULTS

GPT-40 RESULTS

Win Rates for Sudoku (width=2, height=2)

Model: gpt-40
140 mmm ToT-BFS
BESTFS 100,05+
1201 mmm MCTS(c=0.5) 11000, i
3 1001 LFS 100.01 100.0]
=
] |
E 80 53, 7%*
29.7,
£ 60 [77.71 *‘[‘11-71;/"*
= 64.8]
40
20+
o 5 ) N o
& 2 s s
<8 Q& 69
&
S
Methods
(a) Win rates for Sudoku 4 x 4.
Token Usage for Sudoku (width=2, height=2)
Model: gpt-40
140000 I ToT-BFS
BESTFS
120000 m MCTS(c=0.5)
. LFS
¢ 100000 *75716%
g *69715% [62305,
S 80000 [;317;9373]' 89127]
C
(]
X 60000 *39069*
IS *34674* [35999,
[32697, 42138]
40000 36651]
20000

0

Figure 17: WinRate and Token Usage on the Sudoku 4 x 4 task using GPT-40. (a) WinRate; (b) Token
Usage. Results are shown for ToT-BFS, BestFS, MCTS, and LFS. MCTS marginally outperforms LFS in
both WinRate and token efficiency, while ToT-BFS and BestFS lag significantly behind. Values in “*” denote

~
&€ 5 N
& 4
) 6‘(’\
<~
Methods

(b) Token usage for Sudoku 4 x 4.

the mean, and square brackets “ [ ]” represent the 95% confidence interval.

47



2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233

Under review as a conference paper at ICLR 2026

Win Rates for Sudoku (width=2, height=3)

Model: gpt-40

20.01

=R e
NN
u o w

Win Rate (%)
=
o
o

5.04

2.59

0.0

*0.0%*
[0.0,
0.0]

*0.0%*
[0.0,
0.0]

Em ToT-BFS
m MCTS(c=0.5)
s LFS

*2.2%*
[0.0,
13.6]

800000
700000

600000
Q

2y
&é
RO

/0?)\
(’/
’a
Q\Q
Methods

\3‘9

(a) Win rates for Sudoku 6 x 6.

Token Usage for Sudoku (width=2, height=3)
Model: gpt-40

Em ToT-BFS
s MCTS(c=0.5)
Bm LFS

*500657*
[500503,
500000]

*494131*
[479955,
500000]

(=)
2934 © 500000

2235
2236
2237
2238
2239
2240 0
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255

)
c 400000
[}

v

€ 300000
*119447*
[115253,
123640]

200000
100000

N
3 &

& o
46( ¢f
C@
=
Methods

(b) Token usage for Sudoku 6 x 6.

Figure 18: WinRate and Token Usage on the Sudoku 6 x 6 task using GPT-40. (a) WinRate; (b) Token
Usage. Results are shown for ToT-BFS, MCTS, and LFS. All methods fail to solve any instances, except LFS,
which successfully solves a single game. Despite the overall difficulty. Values in “*” denote the mean, and
square brackets “ [ ]” represent the 95% confidence interval.

48



2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302

Under review as a conference paper at ICLR 2026

03-MINI RESULTS

Win Rates for Sudoku (width=2, height=2)
Model: 03-mini

1401 @ BESTFS
B MCTS(c=0.5)

1201 mmm LFs Y - *?36{38?’*
— 100 [76.4, 100.0]
$ 100 100.0] :
Q a0l *61.1%

& 90 [37.5,
o 84.6]
£ 604
=

40

20

%) N o
PN /0‘9 NS
"% <
) 6\(,\
=
Methods
(a) WinRate
Token Usage for Sudoku (width=2, height=2)
Model: 03-mini
i BESTFS
120000 B MCTS(c=0.5)
mm LFS
100000 74699+
) *70710%
> [69086, * «
(68549, 64463
®© 80000 80312] 72871] [62932,
o 65995]
g 60000
V4
°
40000
20000
0
& o &
& 4
‘27 é@\
=
Methods
(b) Token Usage

Figure 19: WinRate and Token Usage on the Sudoku 4 x 4 task using 03-mini.

interval.

49

(a) WinRate; (b) Token
Usage. Results are shown for BestFS, MCTS, and LFS. Unlike the GPT-40 setting, LFS now outperforms
MCTS in both WinRate and token efficiency, highlighting that our method scales more effectively with
stronger models. Values in “*” denote the mean, and square brackets “ [ ]” represent the 95% confidence



2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349

Under review as a conference paper at ICLR 2026

Win Rates for Sudoku (width=2, height=3)
Model: 03-mini

BESTFS

60 B MCTS(c=0.5)

= LFS

50
X
3 40
'8 *25.3%*
©
o 4.3,
£ 30 46.2]
=

20

*4.2%*
*0.0%*
10 [0.0?
0.0]
0 5 N -
S o? N
< 4
2 (’)\
&
\
Methods
(a) WinRate
Token Usage for Sudoku (width=2, height=3)
Model: 03-mini

800000 BESTFS

700000 = [/ch;TS(c=o.5)

600000 *503282* 496296+
S [5(?5(?0309 ] 1490256, *431064*
& 500000 > ] 5000001 1405232,
g 456896]
< 400000
]
VA
12 300000

200000

100000

0 o N -
A g N
& 6\6\0
A\
Methods
(b) Token Usage

Figure 20: WinRate and Token Usage on the Sudoku 6 x 6 task using c3-mini. (a) WinRate; (b) Token
Usage. Results are shown for BestFS, MCTS, and LFS. The trend from the 4 x 4 variant continues, with LFS
significantly outperforming MCTS in both accuracy and token efficiency. This indicates that LFS scales more
effectively with stronger models and handles more difficult tasks more robustly. Values in “*” denote the
mean, and square brackets “ [ ]” represent the 95% confidence interval.

50



Under review as a conference paper at ICLR 2026

G.4 CUMULATIVE WINS

We provide detailed results illustrating the cumulative wins achieved by different methods as the token budget
increases for both Countdown and Sudoku games. As shown in Figures and 21D} the total number of
Countdown games won steadily rises with higher token usage, with LFS clearly outperforming the next best
method, MCTS. This performance gap is especially pronounced for the stronger 03-mini model (Figure 2T},
indicating that LFS scales more effectively with model strength. Although compute limitations prevented
testing at larger token budgets, the current trend suggests this gap would continue to widen. A similar but less
prominent pattern can be observed for Sudoku (Figures and [21d), where WinRate saturation on simpler
Sudoku variants and overall lower performance on harder variants temper the advantage.

51



Under review as a conference paper at ICLR 2026

Cumulative Wins vs Token Usage for Countdown Cumulative Wins vs Token Usage for Countdown
Model: gpt-40 Model: 03-mini
—e— ToT-BFS o a0 BESTFS
BESTFS £ 150l | 7™ MCTS(c=0.5)

—+— MCTS(c=0.5) s —— LFS

—— LFS 8100
()
Q
€ 80
=]
=2
o 60
2
& 40
3
£ 2
O

0
10* 10° 108 104 10° 10°
Token Usage (log scale) Token Usage (log scale)

(a) Cumulative wins in Countdown with increasing token (b) Cumulative wins in Countdown with increasing token

budget (GPT-40) budget (03-mini)
Cumulative Wins vs Token Usage for Sudoku Cumulative Wins vs Token Usage for Sudoku
Model: gpt-40 Model: 03-mini
120

90| |—®— TOT-BFS ¢ " BESTFS
= BESTFS € 105) | —m— MCTS(c=0.5)
= 75| |~ MCTS(c=0.5) 2 ool |+ LFs
° —— LFS °
gﬁo g 75
£ & ’ E o0
=45 =
g3o g 45
© ©
o S 30
Ei1s € 15
O o

0 0

105 105
Token Usage (log scale) Token Usage (log scale)

(c) Cumulative wins in Sudoku with increasing token budget (d) Cumulative wins in Sudoku with increasing token budget
(GPT-40). (03-mini).

Figure 21: Cumulative wins across varying token budgets for Countdown and Sudoku games using different
methods. Panels (a) and (b) show Countdown results for GPT-40 and 03-mini models respectively, highlighting
the superior scalability of LFS over MCTS, particularly with the stronger model. Panels (c) and (d) display
cumulative Sudoku wins, where the performance gap is less pronounced due to WinRate saturation and
increased task difficulty.

G.5 TREE SIZE

We report the average tree sizes generated by each method across different levels of difficulty for both the
Countdown and Sudoku domains, using the GPT-40 and 03-mini models. In the Countdown setting, we
observe that LFS consistently constructs smaller or equal-sized trees compared to MCTS. A similar pattern
emerges in the Sudoku tasks, across both the 4 x 4 and 6 x 6 grid configurations. These results illustrate the
efficiency of LFS’s guided exploration strategy, which avoids the over-exploration characteristic of MCTS,
and maintains performance even as problem complexity increases.

52



Under review as a conference paper at ICLR 2026

2444 Tree Size for Countdown (diff=3)
2445 Model: gpt-40

“aae 40 mm ToT-BFS
2447 [ BESTFS
2448 3 B MCTS(c=0.5)
2449 30 , s LFS

2450

2451

2452 15

2453 10

2454

2455

2456 & & S N

2457 &/\"\

2458 Methods

2459

2460 Figure 22: Average tree size for Countdown (difficulty 3) using GPT-4o.

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474 Tree Size for Countdown (diff=5)

2475 Model: gpt-40

2476 3500 = ToT-BFS

2477 3000 *2,559% [0 BESTFS
12,327, mE MCTS(c=0.5)

2478 2500 2,792] . LFS

2479

2480

2481

2482 1000

2483

2484

2485 0

2486

2487

2488 Methods

2489
2490 Figure 23: Average tree size for Countdown (difficulty 5) using GPT-40.

* 0%
[19,
22]

Tree Size
NN

*1,299%
[1,100,
1,498]

Tree Size
- N
w o
o o
o o

500

53



2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

12000

10000

8000

6000

Tree Size

4000

2000

Model: gpt-40

Tree Size for Countdown (diff=7)

*2,467*
[2,293,
2,642]

Q)

Q-

e
=
Methods

B ToT-BFS
[0 BESTFS
B MCTS(c=0.5)
s LFS

Figure 24: Average tree size for Countdown (difficulty 7) using GPT-4o.

Model: 03-mini

Tree Size for Countdowrj (diff=5)

3000

2500

2000

Tree Size
=
w
o
o

1000

500

*2,141*
[1,915,
2,368]

*1,179*
[990,
1,368]

Methods

[ BESTFS
s MCTS(c=0.5)
B LFS

*1,080*
[896,
1,265]

Figure 25: Average tree size for Countdown (difficulty 5) using 03-mini.

54




2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584

Under review as a conference paper at ICLR 2026

Tree Size for Countdown (diff=7)
Model: 03-mini

e BESTFS
10000 B MCTS(c=0.5)
m LFS
8000
(]
N
6000
(]
L
'_
4000 v *1,923+
[2,017, [1’678
2000 2,489] 2,168]
0 o > o
& Q<? N
Q?) (,//
& &
=
Methods
Figure 26: Average tree size for Countdown (difficulty 7) using 03-mini.
Tree Size for Sudoku (width=2, height=2)
Model: gpt-40
B ToT-BFS
500 e BESTFS
m MCTS(c=0.5)
400 B LFS
(V]
N
@ 300
(V)
£
200
100

Methods

Figure 27: Average tree size for Sudoku (2 x 2) using GPT-4o.

55



2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631

Under review as a conference paper at ICLR 2026

Tree Size for Sudoku (width=2, height=3)

Model: gpt-40
1750 — ToT-BFS
*1,352% =
1500 ) mm MCTS(c=0.5)
1,397] = LFS
1250
5 1865,
N ’
n 1000 963]
o
= 750
500
250
0 2 N )
& S0 N
7
<9 ¢
C{O
<
Methods
Figure 28: Average tree size for Sudoku (2 x 3) using GPT-4o.
Tree Size for Sudoku (width=2, height=2)
Model: 03-mini
[ BESTFS
200 *167% m MCTS(c=0.5)
. LFS
o 150
N
(%]
(V)
£ 100
50

Methods

Figure 29: Average tree size for Sudoku (2 x 2) using 03-mini.

56



2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678

Under review as a conference paper at ICLR 2026

2500

2000

Tree Size
= =
o w
o o
o o

500

Tree Size for Sudoku (width=2, height=3)
Model: 03-mini

*1,978*
[1,943,
2,012]

/Q?)
(,/
&
e\(/
Methods

[ BESTFS
B MCTS(c=0.5)
B LFS

Figure 30: Average tree size for Sudoku (2 x 3) using 03-mini.

57




2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725

Under review as a conference paper at ICLR 2026

58



Under review as a conference paper at ICLR 2026

H EXAMPLE TREES

Torg 10

1| [operions: rwsz-v,'»n—:\wvw»l—ﬂ‘ ‘Wm—:z—'r.wbr.wﬂ—u‘.wvrﬂ‘ ‘np-mrmm,ww,wrm.:s—n

59

(a) MCTS search
tree (b) LFS search tree

Figure 31: Example search trees generated for a Countdown game (difficulty = 7) using (a) Monte Carlo
Tree Search (MCTS) and (b) Limited-Depth Forward Search (LFS). The MCTS tree is noticeably wider,
illustrating its tendency for over-exploration compared to the more focused LFS tree.



Under review as a conference paper at ICLR 2026

Figure [31] shows example search trees generated for a Countdown game with difficulty level 7. Subfigure (a)
depicts the tree produced by MCTS, while subfigure (b) shows the tree from LFS. Notice that the MCTS tree
is considerably wider, reflecting its tendency to over-explore the search space. In contrast, the LFS tree is
more focused and narrower, indicating a more targeted exploration strategy. This comparison highlights the
differences in exploration behaviour between the two methods on the same problem instance.

60



	Introduction
	Preliminaries
	Problem Setting

	Related Work
	LLM-First Search (LFS)
	Experiments
	Baselines
	Tasks
	Countdown
	Sudoku

	Evaluation
	Metrics
	Performance Profiles and AUP Score


	Results and Analysis
	Task Specific
	Key Takeaways

	Conclusion
	Reproducibility
	Acknowledgments
	Limitations and Future Work
	Additional Details of Search Baselines
	LLM-First Search (LFS)
	Tree-of-Thought Breadth-First Search (ToT-BFS)
	Best-First Search (BestFS)
	Monte Carlo Tree Search (MCTS)

	Task Discussion and Analysis
	Implementation Details
	Prompts
	Countdown
	Sudoku

	Preliminary Investigation: MCTS Exploration Constant
	Additional Experiment Results
	Performance Profiles
	Countdown Results
	Sudoku Results
	Cumulative Wins
	Tree Size

	Example Trees

