
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

LLM-FIRST SEARCH: SELF-GUIDED EXPLORATION
OF THE SOLUTION SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable improvements in reasoning
and planning through increased test-time compute, often by framing problem-solving as
a search process. While methods like Monte Carlo Tree Search (MCTS) have proven
effective in some domains, their reliance on fixed exploration hyperparameters limits their
adaptability across tasks of varying difficulty, rendering them impractical or expensive
in certain settings. In this paper, we propose LLM-First Search (LFS), a novel LLM
Self-Guided Search method that removes the need for pre-defined search strategies by em-
powering the LLM to autonomously control the search process via self-guided exploration.
Rather than relying on external heuristics or hardcoded policies, the LLM evaluates whether
to pursue the current search path or explore alternative branches based on its internal
scoring mechanisms. This enables more flexible and context-sensitive reasoning without
requiring manual tuning or task-specific adaptation. We evaluate LFS on Countdown and
Sudoku against three classic widely-used search algorithms, Tree-of-Thoughts’ Breadth
First Search (ToT-BFS), Best First Search (BestFS), and MCTS, each of which have been
used to achieve SotA results on a range of challenging reasoning tasks. We found that
LFS (1) performs better on more challenging tasks without additional tuning, (2) is more
computationally efficient compared to the other methods, especially when powered by a
stronger model, (3) scales better with stronger models, due to its LLM-First design, and
(4) scales better with increased compute budget. Our code will become publicly available
upon acceptance.

1 INTRODUCTION

The reasoning and planning capabilities of Large Language Models (LLMs) have advanced significantly
through increased test-time compute, akin to human System 2 thinking, slow and deliberate, versus fast,
intuitive System 1 thinking (Kahneman, 2011). Early prompting techniques such as Chain of Thought (CoT)
(Wei et al., 2022) enabled basic System 2 reasoning, but recent work reframes reasoning as a search problem
(Koh et al., 2024b; Ye et al., 2025), leveraging classic algorithms such as Beam Search (Lowerre, 1976), Depth-
and Breadth-First Search (DFS, BFS) (Knuth, 1998; Moore, 1959), Best-First Search (Hart et al., 1968), and
Monte Carlo Tree Search (MCTS) (Coulom, 2006; Kocsis & Szepesvári, 2006). MCTS augmented with
LLMs has proven effective across domains (Toma et al., 2021; Koh et al., 2024a; Zhou et al., 2023b) and is
widely adopted. These systems often integrate LLM world models, reward/value estimators, self-consistency,
self-refinement, multi-agent debate, and memory modules to achieve state-of-the-art (SotA) results (Hao
et al., 2023; Zhou et al., 2023a; Murthy et al., 2023; Yu et al., 2024; Li et al., 2024; Gao et al., 2024; Qi
et al., 2024; Di Zhang et al., 2024). A key limitation of MCTS is its sensitivity to the exploration-exploitation
trade-off controlled by the exploration constant C (Coulom, 2006; Kocsis & Szepesvári, 2006). Although
hyperparameter tuning (Bischl et al., 2023) can optimise performance for a specific task, a fixed C cannot

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

:)

Start

:(

MCTS: fixed handcrafted exploration

Start

:(

ToT-BFS: under-explores

:)

Start

:(

BestFS: over-exploits

:)

Start

:(

LFS: adaptive LLM-guided exploration

Jump to new
node to explore

Visited Node

Unexplored node

Selection and
Backpropagation

Filtered out node

Suboptimal
decision

Figure 1: Illustrative comparison of search strategies. This figure visualises how different methods expand
the search tree during reasoning. Tree of Thought Breadth-First Search (TOT-BFS) risks prematurely
discarding promising paths due to rigid filtering criteria. Best-First Search (BESTFS) tends to over-exploit
high-scoring nodes based on early estimations, potentially overlooking better long-term solutions. Monte
Carlo Tree Search (MCTS) relies heavily on a fixed exploration constant, which can lead to either excessive
exploration or over-commitment to suboptimal paths. In contrast, our proposed method, LLM-First Search
(LFS), removes the need for hand-tuned hyperparameters and handcrafted heuristics. Instead, it repurposes
the LLM to both act and evaluate, enabling dynamic, model-guided decisions about whether to pursue the
current reasoning path or explore alternatives. This tight integration between evaluation and exploration
leads to more adaptive and efficient reasoning. A full search tree for both MCTS and LFS can be found in
Appendix Section H. For clarity, the small circles (white and yellow) attached to the visited nodes refer the
nodes’ neighbours. Additionally, the dotted arrows refer to the edges that have not been traversed.

adapt to varying problem difficulties or LLM capabilities. Over-exploration hampers performance on simpler
tasks where the LLM has strong priors, while under-exploration limits success on harder problems needing
broader search (Dam et al., 2024; Sironi & Winands, 2021). This longstanding issue (Ruijl et al., 2013; Wang
et al., 2020) parallels findings in Large Reasoning Models, which may overthink simple tasks due to excessive
reliance on System 2 thinking (Ji et al., 2025; Zhang et al., 2025), analogous to MCTS’s over-exploration
from too high an exploration constant.

In this paper, we introduce LLM-First Search (LFS), a novel approach that eliminates the need for manually
tuned exploration hyperparameters, handcrafted heuristics, and traditional search algorithms. Building on
recent MCTS extensions (Hao et al., 2023; Zhou et al., 2023a) and methods placing LLMs at the core of
self-improvement (Zhang et al., 2023), LFS puts the LLM in control of the search process. Unlike MCTS,
which relies on fixed exploration schedules, LFS lets the model autonomously decide whether to continue
along the current path or explore alternatives based on its own evaluation, enabling adaptive, integrated
exploration. A high-level depiction of how LFS works and how it overcomes the shortfalls of MCTS, as
well as other well-established search algorithms, can be seen in Figure 1. We validate LFS on two reasoning

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

tasks, Countdown and Sudoku, showing competitive or superior performance with greater flexibility and
adaptability than static search methods. Our main contributions are: (1) introducing LLM-First Search,
a novel method that reimagines classical search by allowing the LLM itself to drive exploration, decision-
making, and evaluation, removing the need for predefined search algorithms, (2) propose a fully LLM-guided
scoring and selection mechanism, where the LLM evaluates whether the current search path is promising
and dynamically decides to continue on this path or explore alternative paths, removing the need for manually
tuned exploration hyperparameters, and (3) demonstrate, through experiments on Countdown and Sudoku,
that LFS achieves competitive or superior performance relative to other popular search algorithms, while
also demonstrating greater efficiency, adaptability to task complexity, and scalability with increased model
strength and compute budget.

2 PRELIMINARIES

2.1 PROBLEM SETTING

Markov Decision Process. We consider problems that can be formulated as Markov Decision Processes
(MDPs) (Bellman, 1957), where an agent interacts with an environment over a sequence of discrete time steps
to achieve a goal. Formally, an MDP is defined by a tuple (S,A, P,R, γ), where the agent observes a state
s ∈ S, selects an action a ∈ A, transitions to a new state s′ ∼ T (· | s, a), and receives a reward R(s, a).

LLM Agents. LLM agents are autonomous decision-making systems powered by large language models.
Given an MDP, the LLM serves as a policy πθ : S × T → A parameterised by θ, where πθ(at | st, T)
denotes the likelihood of taking action at conditioned on the current state st and task T , to maximise the
expected reward. These agents leverage language as a unified interface to perform environment understanding,
reasoning and planning, and ultimately action execution (Wang et al., 2023; Mei et al., 2024; Huang et al.,
2024). In our formulation, the LLM agent is provided with a natural language task description, the text
description of the current state, and a list of valid next actions. The agent selects an action from this list, after
which the environment deterministically transitions to a new state. This process is repeated until a terminal
state is reached, at which point a reward is provided based on task success (e.g. win or lose). The specific
MDP instantiations and prompts used for our two benchmark tasks, Countdown and Sudoku, are described in
Section 5.2.

3 RELATED WORK

To enable models to reason more deeply and deliberately, researchers have developed a range of strategies,
which we have broadly categorised as: (1) Single-Shot Reasoning, which elicits reasoning in a single prompt;
(2) Iterative and Reflective Reasoning, which refines outputs through multiple steps; and (3) Structured
Search-Based Reasoning, which treats reasoning as a search process. We briefly cover the first two, with a
primary focus on the third, where our method lies.

Single-Shot Reasoning. Chain-of-Thought (CoT) prompting (Wei et al., 2022) encourages step-by-step
reasoning via demonstrations, later simplified by minimal prompts like “think step by step,” which elicit
similar behaviour without examples (Zhang et al., 2022). Building on these foundations, several adaptations
of these works have been explored (Kojima et al., 2022; Wang & Zhou, 2024; Xu et al., 2025). Recently, a
“wait” token to slow down reasoning was introduced (Muennighoff et al., 2025), though it requires fine-tuning
and is not purely an inference-time approach. Single-shot prompting has also been used to elicit more complex
behaviours such as meta-in-context learning (Coda-Forno et al., 2023) and in-context distillation of algorithms
like MCTS (Sel et al., 2023; Nie et al., 2024). While these methods have been effective on simpler tasks, they
are inherently non-iterative and struggle to adapt to more complex tasks (Wang et al., 2022; Yao et al., 2023b;
Madaan et al., 2023; Shinn et al., 2023).

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Reflective and Interactive Reasoning. To go beyond linear reasoning, iterative and feedback-driven
techniques have been proposed. A simple and widely used extension is self-consistency (Wang et al., 2022),
which samples multiple CoT outputs and selects the most consistent answer. ReAct (Yao et al., 2023b)
combines reasoning steps with task-specific actions and incorporates feedback to guide future steps. Other
works refine LLM outputs through self-reflection or external feedback (Madaan et al., 2023; Shinn et al.,
2023; Monea et al., 2024). Multi-agent debate frameworks (Du et al., 2023; Eo et al., 2025) further enhance
reasoning by simulating dialogues between LLM agents to converge on a better final answer. However, these
methods typically result in shallow exploration and lack explicit backtracking, limiting their ability to perform
structured reasoning over long horizons or systematically explore multiple solution paths (Xie et al., 2023;
Yao et al., 2023a; Koh et al., 2024b; Hao et al., 2023; Zhou et al., 2023a).

Structured Search-Based Reasoning. A growing line of work treats reasoning as a search problem, using
classic search algorithms to guide LLMs through the task’s search space, greatly improving the LLM’s ability
to solve complex reasoning and planning tasks. For example, Xie et al. (2023) proposes a stochastic beam
search that samples and selects among multiple candidates at each step. Tree-of-Thoughts (ToT) (Yao et al.,
2023a) introduces breadth-first and depth-first expansions of CoT-style reasoning, decoupling next-action
selection and state value estimation. Several extensions have been proposed (Besta et al., 2024; Bi et al.,
2024), though ToT remains the most prominent. Other works incorporate more advanced algorithms like
Best-First Search (Koh et al., 2024b) and Monte Carlo Tree Search (MCTS) (Hao et al., 2023; Zhou et al.,
2023a; Yu et al., 2024; Li et al., 2024; Gao et al., 2024; Qi et al., 2024; Di Zhang et al., 2024; Misaki et al.,
2025). For example, RAP (Hao et al., 2023) uses MCTS with LLMs serving as a world model and a novel
reward function composed of action likelihood and confidence, self-evaluation, and task-specific heuristics.
LATS (Zhou et al., 2023a) extends RAP by incorporating environment feedback and reflective evaluation.
More recent works integrate additional prompting strategies, such as reflection (Yu et al., 2024; Li et al., 2024;
Gao et al., 2024) and multi-agent debate (Yu et al., 2024), for further performance gains. REX (Murthy et al.,
2023) augments MCTS by allowing the LLM to perform multiple search steps, selection, expansion, and
simulation, in a single response. The resulting actions are assigned rewards that are then backpropagated
through each generated action. AB-MCTS (Misaki et al., 2025) introduces a novel node "GEN-node"
which is a possible child for all nodes in the tree, which, if selected, prompts the LLM to create additional
branches. While these methods have demonstrated strong performance, they are fundamentally built on
traditional search algorithms that often rely on carefully tuned hyperparameters and handcrafted heuristics,
limiting adaptability and requiring re-tuning for new tasks (Gao et al., 2024), rendering them impractical
or very expensive for real use cases. Most recent works in this area represent incremental improvements to
the base LLM-augmented variants of classic search algorithms, often incorporating additional prompting
strategies like reflection or debate. Intelligent Go-Explore (IGE) (Lu et al., 2024) represents an important
step in this direction, showing that LLMs can successfully drive exploration and achieving strong results on
challenging benchmarks. However, IGE enforces fixed beam width and depth via static parameters, which
limits adaptability across tasks. By contrast, our method removes such bounds entirely, allowing the LLM to
decide dynamically when to backtrack or extend its search, thereby enabling truly self-guided exploration and
reasoning. This shift addresses a core weakness of prior approaches while remaining compatible with, and
likely to benefit from, incremental enhancements such as reflection or debate.

4 LLM-FIRST SEARCH (LFS)

In this section, we introduce LLM-First Search (LFS), a method that empowers language models to self-
guide their own search process by autonomously exploring and evaluating states and actions, enabling flexible,
context-sensitive reasoning without manual tuning or task-specific adaptation. Specifically, given a task that
can be initialised as a MDP, the LLM continuously interacts with the task environment, performing two key
operations; (1) Explore, where it decides whether to continue along the current path or explore alternatives,
and (2) Evaluate, where it estimates the value of each available action at the current state. We were able to

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

show that LLMs can effectively internalise and manage this process on their own, matching or exceeding the
performance of traditional methods. The operations are detailed in the following paragraphs, with a high-level
overview of LFS provided in Appendix Section B Algorithm 1.

Exploration Decision. At each step, given the current state st and available actionsAt, the agent is prompted
with an exploration prompt Pexplore(st,At) (the exact prompt can be seen in Appendix Section E) to decide
whether to exploit the current path or to explore an alternative. If the agent chooses to exploit, it proceeds to
the evaluation step using the actions in At. Otherwise, if the agent opts to explore, it pops the highest-value
node from the priority queue Q:

(s′t,A′
t)← pop(Q),

and proceeds to the evaluation step using the new state s′t and corresponding actions A′
t. This dynamic allows

the agent to balance short-term commitment with broader exploration based entirely on its own internal
judgment.

Evaluate. At each step, given a state st ∈ S , a set of available actions At = {a1t , . . . , akt }, and an evaluation
prompt Peval(st,At) (the exact prompt can be seen in Appendix Section E), the LLM is prompted to estimate
the value V (ait | st) for each action, representing its utility or promise of leading to a high-reward solution.
The best action is then selected:

a∗t = At

[
argmax

i
Vi

]
where {Vi}|At|

i=1 = Peval(st,At)

and executed, while all other candidate actions are added to a priority queueQ sorted by their estimated value.
This structure enables efficient retrieval of high-potential alternatives in future exploration steps.

5 EXPERIMENTS

5.1 BASELINES

To ensure a fair comparison, all methods are evaluated using the same task setup and prompting format. We
isolate the core effect of each search strategy by excluding incremental enhancements such as self-consistency,
reflection, and debate, which are known to improve performance across many LLM-augmented approaches.
Each method is tested with two models, GPT-4o and o3-mini (through the OpenAI API (OpenAI, 2024),
with the configurations detailed in Appendix Section D), to assess performance across different model scales.
We compare our approach against several strong LLM-augmented search baselines widely adopted in the
literature. See Appendix Section B for baseline details.

Three-of-Thoughts Breadth-First Search (ToT-BFS). Adapted from the setup in Tree-of-Thoughts (ToT)
(Yao et al., 2023a), ToT-BFS expands a subset of child nodes up to a fixed depth. At each level, the LLM
estimates the value of all child states, and only the top-k states (with k = 5) are retained for further expansion.
This process continues until a predefined maximum search depth is reached. Note that while ToT describe a
DFS implementation, in our preliminary experiments, we found that DFS did not perform sufficiently (similar
findings in (Yu et al., 2024)) and was therefore not considered further. In further support of this decision, in
the ToT paper, they use countdown to test the BFS variant.

Best-First Search (BestFS). Following the approach in Tree Search for Language model Agents (Koh et al.,
2024b), BestFS uses the LLM to estimate the value of the current state, which is then added to a priority
queue. The next state to expand is selected greedily by popping the highest value from the queue. This
process repeats until a solution is found or the search budget is exhausted.

Monte Carlo Tree Search (MCTS). Based on implementations from RAP (Hao et al., 2023) and LATS
(Zhou et al., 2023a) and inspired by AlphaGo (Silver et al., 2016), we use PUCT to guide the MCTS algorithm.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

Specifically, at each step, the LLM is used to (1) estimate a prior distribution over available actions at a
given state, and (2) estimate the value of a leaf state after an action is simulated (the specific prompts used to
elicit these behaviours can be found in Appendix Section E). These estimations are then integrated into the
PUCT selection formula to balance exploration and exploitation. We performed a hyperparameter sweep over
different exploration constants C ∈ {0.5, 1.0, 2.5}. The specifics of this can be found in Appendix Section F.
We noted that C = 0.5 performed similarly to C = 1.0 in Countdown, but outperformed C = 1.0 in Sudoku
(4x4), resulting in C = 0.5 achieving the best AUP.

5.2 TASKS

We evaluate our method and the baselines on two widely used reasoning and planning benchmarks: Count-
down and Sudoku. They are widely adopted in the literature as reliable testbeds for evaluating structured
reasoning with LLMs (Yao et al., 2023a; Zhou et al., 2023a; Ye et al., 2024; Seely et al., 2025). These
benchmarks are particularly suitable for our evaluation for two key reasons: (1) Scalability, both Countdown
and Sudoku allow for fine-grained control over difficulty, enabling evaluation across a spectrum of task
complexities; and (2) Complementarity: Countdown offers a shallower search space with fewer steps, but
selecting the correct action is often more challenging, even for humans. Conversely, Sudoku involves a much
deeper search space with many more decision points, though it tends to be more intuitive for human solvers.
Together, these benchmarks provide a balanced and comprehensive evaluation of search strategies across
fundamentally different reasoning challenges. A more detailed discussion of the branching factors and widths
of the two benchmarks can be found in Appendix Section C.

5.2.1 COUNTDOWN

Countdown (Wikipedia contributors, 2024) generalises the classic Game of 24 (Yao et al., 2023a; Zhou et al.,
2023a) and has become a challenging benchmark for evaluating LLM search due to its high branching factor
and large combinatorial search space (Gandhi et al., 2024; Ye et al., 2024). The goal is to reach a target
number t using arithmetic operations (+,−,×,÷) applied to a list of numbers n = [n1, n2, . . . , nl], where
each number can be used at most once. For example, given n = [1, 2, 3, 4, 5] and t = 10, a valid sequence is:
5 + 4 = 9, 3− 2 = 1, 9 + 1 = 10, 1× 10 = 10.

Setup. Following prior work (Yao et al., 2023a; Ye et al., 2024), we evaluate three difficulty levels with input
lengths l ∈ {3, 5, 7} and target t sampled uniformly from [10, 100]. Each environment state si is a 4-tuple
si = (t, ni, oi, Ai), where t is the fixed target, ni is the current number set, oi the operation history, and Ai

the available actions. Each action a ∈ Ai applies an arithmetic operation to two distinct numbers nj , nk ∈ ni,
producing a new number and modifying the set. The agent must find a sequence of actions that transforms n
into t. This setup naturally fits the MDP formalism: S is the space of number-operation configurations, A(s)
the valid actions in state s, transitions modify the number set and operations based on the selected action, and
the episode terminates on success or exhaustion of valid actions. The reward is 1 if the target is reached, and
0 otherwise. Prompting details are provided in Appendix Section E.

5.2.2 SUDOKU

Sudoku is a constraint satisfaction puzzle played on an ℓ× w grid. The objective is to fill each cell with a
value from a finite set N = {1, 2, . . . , ℓ×w} such that each value appears exactly once in every row, column,
and subgrid. While the classic version uses a 9× 9 grid with 3× 3 subgrids, we generalise to arbitrary grid
sizes, making Sudoku a rich, scalable benchmark for reasoning and search in structured environments.

Setup. We evaluate agents on two grid configurations: a 4 × 4 board (with 2 × 2 subgrids) and a more
challenging 6× 6 board (with 2× 3 subgrids). Each environment state si is defined as si = (Bi, Ai), where
Bi ∈ Σℓ×w is the current board and Ai the set of valid actions. Each action a ∈ Ai is a tuple (x, y, v)

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

assigning value v ∈ N to cell (x, y) without violating Sudoku constraints. Upon executing an action, the
board is updated and valid actions recomputed. Episodes terminate when all cells are filled and constraints
satisfied. As an MDP: S is the set of all valid partial boards, A(s) the set of valid (x, y, v) assignments,
transitions update the board, and reward is 1 if the final board satisfies all constraints, and 0 otherwise. See
Appendix Section E for details on prompts used.

5.3 EVALUATION

5.3.1 METRICS

We evaluate each method over n = 5 runs per game at temperature t = 0.0, due to the stochasticity of LMs
(Bender et al., 2021). Let wi,j,r ∈ {0, 1} indicate success of method j on game i in run r. The WinRate for
game i is

WinRatei,j = 1
n

n∑
r=1

wi,j,r,

with gamei,j considered solved if WinRatei,j > 0.5. Over all games G, we report:

WinRate∗j = 1
|G|

∑
i∈G

WinRatei,j , EfficiencyScorej =
WinRate∗j
Tokens∗j

,

where Tokens∗j is the average token usage of method j.

We compute 95% confidence intervals for WinRate∗j using the Wilson score interval (Wilson, 1927), preferred
over the normal approximation for small n, which we report in the figures in Appendix Section G.

5.3.2 PERFORMANCE PROFILES AND AUP SCORE

Following Dolan & Moré (2002); Roberts et al. (2023); Nathani et al. (2025), we compare methods using
performance profiles and their Area Under the Profile (AUP). For task set T and method set M, the
performance ratio is rt,m = max{ℓt,m′ : m′ ∈ M}/ℓt,m, where ℓt,m is the score of method m on task t.
The performance profile is

ρm(τ) = 1
|T | |{t ∈ T : log10(rt,m) ≤ τ}|,

giving the fraction of tasks where m is within τ (log-scaled) of the best method. The AUP is defined as
AUPm =

∫ τmax

1
ρm(τ) dτ , where τmax is the smallest value for which all ρm reach their maximum.

6 RESULTS AND ANALYSIS

6.1 TASK SPECIFIC

Countdown. In Table 1 we can see that in Countdown (Diff=3) all methods, except for TOT-BFS-GPT4O,
are capable of solving 100% of the problems. TOT-BFS-GPT4O lags behind due to the lack of backtracking,
compared to the other methods tested. Therefore, due to compute constraints, TOT-BFS-O3MINI is not tested.
Additionally, no methods are tested with o3-mini in Countdown (Diff=3), as it is already near saturation with
a weaker model. Following this, we can see that as we increase the difficulty of Countdown, TOT-BFS-
GPT4O’s WinRate drops drastically (72.64%) in comparison to BESTFS-GPT4O (50.53%), MCTS-GPT4O
(40.0%), and LFS-GPT4O (36.84%). In Countdown (Diff=5) all backtracking methods are able to achieve a
WinRate near or greater than 50%, with LFS-GPT4O marginally outperforming MCTS-GPT4O by 3.16%.
LFS-GPT4O’s improvement over the other methods increases even further in Countdown (Diff=7), beating
the next best method, MCTS-GPT4O, by a marked 14.74%, highlighting LFS’s ability to scale better

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Table 1: WinRate (%) of each method across all tasks, evaluated with GPT-4o and o3-mini. LFS achieves the
highest WinRates on all tasks for both models, except for Sudoku (4×4) when evaluated with GPT-4o.

Countdown Sudoku
Model Method Diff 3 Diff 5 Diff 7 4x4 6x6

GPT-4o

TOT-BFS 82.11 9.47 0.00 53.68 0.00
BESTFS 100 49.47 11.11 41.05 0.00
MCTS (C=0.5) 100 60.00 32.63 100 0.00
MCTS (C=1.0) 100 62.22 33.33 2.22 0.00
MCTS (C=2.5) 100 60.00 24.44 0.00 0.00
LFS (OURS) 100 63.16 47.37 96.84 2.22

o3-mini
BESTFS – 52.63 13.33 61.05 0.00
MCTS (C=0.5) – 69.47 41.05 90.53 4.21
LFS (OURS) – 70.53 78.95 96.84 25.26

Table 2: Area Under the Performance Profile (AUP), summarising the aggregate performance on all tasks.
LFS achieves the best AUP score for all combination of metric and model.

Metric Model TOT-BFS BESTFS MCTS (C=0.5) LFS (OURS)
WinRate GPT-4o 4.06 5.98 7.09 8.99

o3-mini – 4.23 6.00 7.20
EfficiencyScore GPT-4o 3.68 2.67 3.68 4.70

o3-mini – 3.24 5.61 7.20

as the task difficulty increases. Note that all methods achieve a higher WinRate when using o3-mini in both
Countdown (Diff=5) and Countdown (Diff=7), with LFS-O3MINI again outperforming MCTS-O3MINI,
especially in Countdown (Diff=7) by a significant 37.9%, indicating that LFS scales better with harder
problems. Interestingly, we can see that LFS’s performance gain when using o3-mini is 39.17% (average
% increase in WinRate over Countdown (Diff ∈ {5,7}), which is larger than the next best method, MCTS,
which has a performance gain of 20.79%. This shows that our method also scales better with stronger
models.

Sudoku. In Table 1 can see that in the simpler Sudoku (4x4), TOT-BFS-GPT4O again lags behind MCTS-
GPT4O and LFS-GPT4O, however, outperforms BESTFS-GPT4O. This highlights one of the major
drawbacks of BestFS, which is that it does not balance exploitation and exploration sufficiently, and in deeper
and wider problems, where this becomes more important, BestFS falls behind. In Sudoku (6x6), all methods
struggle to solve even a single game when using GPT-4o, with LFS-GPT4O being the only method to
achieve a WinRate greater that 0%, hinting as LFS’s ability to scale with difficult tasks. We can see
that in Sudoku (4x4) BESTFS-O3MINI improves its WinRate (which makes sense since it is biased to over
exploit, and is now guided by a stronger model), while LFS-O3MINI remains the same (likely due to it having
been already close to saturation). Notably, MCTS-O3MINI’s WinRate drops by 9.47%. This highlights a key
limitation of MCTS: its performance is sensitive to the exploration constant C, which often requires retuning
across tasks, difficulty levels, or base models, which is an expensive and impractical process. Lastly, we can
see that LFS-O3MINI’s WinRate increases markedly in Sudoku (6x6), by 23.04%, beating the next best
model, MCTS, by 21.05%, further highlighting LFS’s ability to scale better with stronger models.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

6.2 KEY TAKEAWAYS

Scalability and Improved Performance. We highlight in the above that a key benefit of LFS is that it
scales better as the difficulty of the problems increase, in contrast with BESTFS which does not balance
exploitation and exploration adequately and MCTS which requires tuning for each task/model. Furthermore,
LFS achieves a better WinRate, which again we highlight in the above discussion and can also be seen in
Table 2 which shows that LFS achieves the highest AUP values for WinRate, meaning that LFS has a
higher performance on aggregate over all the tasks for both models.

Scaling with Stronger Models. In the above analysis, we note that for Countdown (diff ∈ {5,7}), BESTFS,
MCTS, and LFS see an improvement in their performance when using a stronger model. LFS, however,
has a notably much larger performance increase when playing the most difficult version of Countdown. In
fact, it performs even better in Countdown (diff=7) than Countdown (diff=5). Interestingly, we note that
when using o3-mini, MCTS actually sees a decrease in performance in Sudoku (4x4) (we hypothesise that
this is due to o3-mini overestimating state values, which leads to poorer exploration), compared to BESTFS’
increase and LFS’ stability. In Sudoku (6x6), LFS again has a notably larger performance increase compared
to MCTS. All together, these results show that LFS scales better with a stronger model, compared to the
other methods.

Scaling with Increased Compute and Computational Efficiency. We found that as the token usage
increases, the total number of Countdown games won increases, with LFS distinctly outperforming the next
best method, MCTS. This can be seen in Figure 21 in the Appendix. This trend is particularly notable for
LFS with o3-mini since it scales better with a stronger model, and thus the gap between our method and the
others, increases. Note that due to compute limitations, we could not test each method for larger token limits,
but we can see that the gap between our method and the others is likely to continue to grow, if the current
trend continues. We can see a similar trend for the Sudoku games won in Figure 21 in the Appendix, however
less prominent due to the WinRate saturation for the simpler Sudoku version and the poorer performance for
the harder Sudoku. Lastly, not only does our method scale better with compute, it is more computationally
efficient. We can see this in Table 2, where LFS achieves the highest AUP score for EfficiencyScore, which
as discussed in Section 5.3, represents the models’ computational efficiency.

7 CONCLUSION

In this paper, we introduced LLM-First Search (LFS), a novel approach to reasoning and planning that
places the language model itself at the core of the search process. Unlike traditional search methods such
as MCTS, BestFS, or BFS, which rely on external heuristics, fixed traversal strategies, or carefully tuned
hyperparameters, LFS empowers the LLM to autonomously determine whether to continue down a path or
explore elsewhere in the tree, using only its internal reasoning and planning capabilities, which we term
Self-Guided Search. Through experiments on two complementary benchmarks, Countdown and Sudoku, we
demonstrated that LFS offers several key advantages: (1) stronger performance on harder instances without
task-specific tuning, (2) improved computational efficiency, particularly with more capable models, (3) better
scalability with model strength, and (4) greater responsiveness to increased compute budget. These findings
validate LFS as a flexible, LLM-centric framework that not only outperforms classic search methods but also
adapts more naturally to varying task complexity and compute budgets. By unifying decision-making and
evaluation within the LLM itself, LFS reimagines the role of search in LLM reasoning, not as a separate,
manually controlled process, but as an integrated, language-driven mechanism. This shift enables a more
general, adaptable, and efficient form of reasoning, offering a promising direction for scalable LLM-based
problem solving. While our evaluation was limited to a subset of tasks and models due to compute constraints,
it serves as a starting point for future work to extend LLM-First Search to more complex and realistic settings,
where its benefits in adaptive exploration and self-guided reasoning are likely to be even more pronounced.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY

We have taken care to make our work reproducible. The main text and appendix provide full implementation
details. Exact prompts and experimental configurations are included to enable replication of our results.
An open-source codebase with detailed instructions will be released upon acceptance, ensuring that all
experiments can be reproduced and extended by the community.

9 ACKNOWLEDGMENTS

This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under
grant number EP/S021566/1. We also gratefully acknowledge botBrains.io for providing compute credits that
enabled additional experiments to further strengthen our work.

REFERENCES

Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers
of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM conference on
fairness, accountability, and transparency, pp. 610–623, 2021.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving elaborate
problems with large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 17682–17690, 2024.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling test-time
compute for enhancing llm reasoning. arXiv preprint arXiv:2412.09078, 2024.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas,
Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter optimization: Foundations,
algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 13(2):e1484, 2023.

Julian Coda-Forno, Marcel Binz, Zeynep Akata, Matt Botvinick, Jane Wang, and Eric Schulz. Meta-in-context
learning in large language models. Advances in Neural Information Processing Systems, 36:65189–65201,
2023.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Tuan Dam, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. A unified perspective on value backup and
exploration in monte-carlo tree search. Journal of Artificial Intelligence Research, 81:511–577, 2024.

Xiaoshui Huang Di Zhang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level math-
ematical olympiad solutions via monte carlo tree self-refine with llama-3 8b: A technical report. arXiv
preprint arXiv:2406.07394, 8, 2024.

Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance profiles.
Mathematical programming, 91:201–213, 2002.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality
and reasoning in language models through multiagent debate. In Forty-first International Conference on
Machine Learning, 2023.

Sugyeong Eo, Hyeonseok Moon, Evelyn Hayoon Zi, Chanjun Park, and Heuiseok Lim. Debate only when
necessary: Adaptive multiagent collaboration for efficient llm reasoning. arXiv preprint arXiv:2504.05047,
2025.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and Noah D
Goodman. Stream of search (sos): Learning to search in language. arXiv preprint arXiv:2404.03683, 2024.

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu, and Lijie Wen.
Interpretable contrastive monte carlo tree search reasoning. arXiv preprint arXiv:2410.01707, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. arXiv preprint arXiv:2305.14992, 2023.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of minimum
cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv preprint
arXiv:2402.02716, 2024.

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Jia Xu, Linjian Mo, and Min Zhang. Test-time computing: from
system-1 thinking to system-2 thinking. arXiv preprint arXiv:2501.02497, 2025.

Daniel Kahneman. Thinking, fast and slow penguin books, 2011.

Donald E Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-Wesley
Professional, 1998.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference on
machine learning, pp. 282–293. Springer, 2006.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham Neubig,
Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal agents on
realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024a.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language model
agents. arXiv preprint arXiv:2407.01476, 2024b.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. Advances in neural information processing systems, 35:22199–22213,
2022.

Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruiming Tang, Yasheng Wang, Yong Yu, and Weinan
Zhang. Rethinkmcts: Refining erroneous thoughts in monte carlo tree search for code generation. arXiv
preprint arXiv:2409.09584, 2024.

Bruce T Lowerre. The harpy speech recognition system. Carnegie Mellon University, 1976.

Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant foundation
models. arXiv preprint arXiv:2405.15143, 2024.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback.
Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Kai Mei, Xi Zhu, Wujiang Xu, Wenyue Hua, Mingyu Jin, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang
Ge, and Yongfeng Zhang. Aios: Llm agent operating system. arXiv preprint arXiv:2403.16971, 2024.

Kou Misaki, Yuichi Inoue, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba. Wider or deeper?
scaling llm inference-time compute with adaptive branching tree search. arXiv preprint arXiv:2503.04412,
2025.

Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context reinforcement
learners. 2024.

Edward F Moore. The shortest path through a maze. In Proc. of the International Symposium on the Theory
of Switching, pp. 285–292. Harvard University Press, 1959.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling.
arXiv preprint arXiv:2501.19393, 2025.

Rithesh Murthy, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Le Xue, Weiran Yao, Yihao Feng, Zeyuan
Chen, Akash Gokul, Devansh Arpit, et al. Rex: Rapid exploration and exploitation for ai agents. arXiv
preprint arXiv:2307.08962, 2023.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens, Amar
Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, et al. Mlgym: A new framework and
benchmark for advancing ai research agents. arXiv preprint arXiv:2502.14499, 2025.

Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. Evolve: Evaluating
and optimizing llms for exploration. arXiv preprint arXiv:2410.06238, 2024.

OpenAI. Openai api. https://platform.openai.com/, 2024. Accessed: 2025-05-16.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reasoning makes
smaller llms stronger problem-solvers. arXiv preprint arXiv:2408.06195, 2024.

Nicholas Roberts, Samuel Guo, Cong Xu, Ameet Talwalkar, David Lander, Lvfang Tao, Linhang Cai,
Shuaicheng Niu, Jianyu Heng, Hongyang Qin, et al. Automl decathlon: Diverse tasks, modern methods,
and efficiency at scale. In NeurIPS 2022 Competition Track, pp. 151–170. PMLR, 2023.

Ben Ruijl, Jos Vermaseren, Aske Plaat, and Jaap van den Herik. Combining simulated annealing and monte
carlo tree search for expression simplification. arXiv preprint arXiv:1312.0841, 2013.

Jeffrey Seely, Yuki Imajuku, Tianyu Zhao, Edoardo Cetin, and Llion Jones. Sudoku-Bench. https:
//github.com/SakanaAI/Sudoku-Bench, 2025.

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Ruoxi Jia, and Ming Jin. Algorithm of thoughts: Enhancing
exploration of ideas in large language models. arXiv preprint arXiv:2308.10379, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing Systems,
36:8634–8652, 2023.

12

https://platform.openai.com/
https://github.com/SakanaAI/Sudoku-Bench
https://github.com/SakanaAI/Sudoku-Bench

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Chiara F Sironi and Mark HM Winands. Analysis of the impact of randomization of search-control parameters
in monte-carlo tree search. Journal of Artificial Intelligence Research, 72:717–757, 2021.

Alexandru-Iosif Toma, Hao-Ya Hsueh, Hussein Ali Jaafar, Riku Murai, Paul HJ Kelly, and Sajad Saeedi.
Pathbench: A benchmarking platform for classical and learned path planning algorithms. In 2021 18th
Conference on Robots and Vision (CRV), pp. 79–86. IEEE, 2021.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv preprint
arXiv:2305.16291, 2023.

Xiaoxue Wang, Yujie Qian, Hanyu Gao, Connor W Coley, Yiming Mo, Regina Barzilay, and Klavs F Jensen.
Towards efficient discovery of green synthetic pathways with monte carlo tree search and reinforcement
learning. Chemical science, 11(40):10959–10972, 2020.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. arXiv preprint
arXiv:2402.10200, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Wikipedia contributors. Countdown (game show). https://en.wikipedia.org/wiki/
Countdown_(game_show), 2024. Accessed: 2024-03-29.

Edwin B Wilson. Probable inference, the law of succession, and statistical inference. Journal of the American
Statistical Association, 22(158):209–212, 1927.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael Xie.
Self-evaluation guided beam search for reasoning. Advances in Neural Information Processing Systems,
36:41618–41650, 2023.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing less.
arXiv preprint arXiv:2502.18600, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree
of thoughts: Deliberate problem solving with large language models. Advances in neural information
processing systems, 36:11809–11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. Re-
act: Synergizing reasoning and acting in language models. In International Conference on Learning
Representations (ICLR), 2023b.

Guanghao Ye, Khiem Duc Pham, Xinzhi Zhang, Sivakanth Gopi, Baolin Peng, Beibin Li, Janardhan Kulkarni,
and Huseyin A Inan. On the emergence of thinking in llms i: Searching for the right intuition. arXiv
preprint arXiv:2502.06773, 2025.

13

https://en.wikipedia.org/wiki/Countdown_(game_show)
https://en.wikipedia.org/wiki/Countdown_(game_show)

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Beyond
autoregression: Discrete diffusion for complex reasoning and planning. arXiv preprint arXiv:2410.14157,
2024.

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng, Michel Galley, Jianfeng Gao, and Zhou Yu. Exact: Teach-
ing ai agents to explore with reflective-mcts and exploratory learning. arXiv preprint arXiv:2410.02052,
2024.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via models of human
notions of interestingness. arXiv preprint arXiv:2306.01711, 2023.

Wenyuan Zhang, Shuaiyi Nie, Xinghua Zhang, Zefeng Zhang, and Tingwen Liu. S1-bench: A sim-
ple benchmark for evaluating system 1 thinking capability of large reasoning models. arXiv preprint
arXiv:2504.10368, 2025.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in large
language models. arXiv preprint arXiv:2210.03493, 2022.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language agent
tree search unifies reasoning acting and planning in language models. arXiv preprint arXiv:2310.04406,
2023a.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou,
Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building autonomous agents.
arXiv preprint arXiv:2307.13854, 2023b.

APPENDIX TABLE OF CONTENTS

Section Page
Limitations and Future Work . 14

Additional Details of Search Baselines . 15

Task Discussion and Analysis . 18

Implementation Details . 19

Prompts . 19

Preliminary Investigation: MCTS Exploration Constant . 33

Additional Experiment Results . 38

Example Trees . 59

A LIMITATIONS AND FUTURE WORK

We evaluate our method, LLM-First- Search (LFS), on two standard reasoning benchmarks: Countdown
and Sudoku, commonly used in Large Language Model (LLM) research. These tasks offer (1) scalability,
allowing fine control over difficulty, and (2) complementarity, with Countdown featuring a shallow but
challenging search space, and Sudoku a deeper but more intuitive one. Together, they provide a balanced
testbed for search strategies across diverse reasoning challenges. However, these benchmarks lack some
complexities of real-world problems. Due to compute constraints, we limited our experiments to these tasks

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

and a fixed number of samples, restricting broader validation. LFS also assumes the ability to revert to
previous states, which may not hold in all environments. Additionally, while LFS is shown to excel with
stronger language models, we did not determine its sensitivity to weaker models. While our evaluation was
limited, it serves as a starting point for future work to extend LLM-First Search to more complex and realistic
settings, where its benefits in adaptive exploration and self-guided reasoning are likely to be even more
pronounced.

B ADDITIONAL DETAILS OF SEARCH BASELINES

B.1 LLM-FIRST SEARCH (LFS)

The LLM-First Search (LFS) is shown is summarised in Algorithm 1 below.

Algorithm 1 LLM-First Search (LFS)

1: Input: LLM πθ, Prompts Peval and Pexplore, Transition function T
2: Initialise s0, A0, Priority queue Q
3: {Vi}|A0|

i=1 = Peval(s0,A0, πθ)
4: a∗0 = A0 [argmaxi V0]
5: Q := Q∪ {a ∈ A0|a ̸= a∗0}
6: (s1,A1) ∼ T (· | s0, a∗0)
7: t = 1
8: while Token limit not exhausted do
9: if Pexplore(st,At, πθ) then

10: (s′t,A′
t)← pop(Q)

11: else
12: {Vi}|At|

i=1 = Peval(st,At, πθ)
13: a∗t = At [argmaxi Vi]
14: Q := Q ∪ {a ∈ At|a ̸= a∗t }
15: (s′t,A′

t) ∼ T (· | st′ , a∗t′)
16: end if
17: (st,At)← (s′t,A′

t)
18: t← t+ 1
19: end while
20: Return: (st,At)

B.2 TREE-OF-THOUGHT BREADTH-FIRST SEARCH (TOT-BFS)

In this section, we describe Tree-of-Thought Breadth-First Search (ToT-BFS), a method inspired by the
Tree-of-Thought framework. ToT-BFS performs uniform expansion from the current frontier: at each depth
level, it evaluates all current frontier nodes and expands the top-k according to their LLM-estimated value.
The method is summarised in Algorithm 2.

Frontier Filtering. At each iteration, the search maintains a set of current frontier nodes Ft =
{(s1t ,A1

t), . . . , (s
n
t ,An

t)} representing all active paths at the current depth. For each node, the LLM is
used to score the value of the state via a prompt Peval(s

i
t), returning an estimated utility V (sit). The top-k

nodes with the highest estimated value are selected for expansion:

F top
t = TopK(Ft, {V (sit)}),

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Algorithm 2 Tree of Thought Breadth-First Search (ToT-BFS)

1: Input: LLM πθ, Value prompt Peval, Transition function T , Beam width k
2: Initialise frontier F := {(s0,A0)}
3: while Token limit not exhausted do
4: Evaluate all frontier states: {Vi = Peval(si, πθ)}|F|

i=1
5: Select top-k states by value: F top ⊆ F with |Ftop| = k
6: (st,At)← F top

[
argmax(s,A)∈Ftop V (s)

]
7: if st is terminal then
8: break
9: end if

10: Initialise new frontier Fnew := ∅
11: for each (si,Ai) ∈ F top do
12: for each a ∈ Ai do
13: (s′,A′) ∼ T (· | si, a)
14: Fnew := Fnew ∪ {(s′,A′)}
15: end for
16: end for
17: F := Fnew

18: end while
19: Return: (st,At)

where each selected node is expanded by executing actions from Ai
t using the environment’s transition

function T . If the frontier node with the highest estimated value is terminal, the expansion ends, and the
terminal state is returned.

Frontier Expansion. Each selected frontier node (sit,Ai
t) is expanded, resulting in new states (st+1,At+1)

which are added to the new frontier. This process continues level by level, maintaining a breadth-first structure
that allows the model to explore multiple solution pathways in parallel.

B.3 BEST-FIRST SEARCH (BESTFS)

Algorithm 3 Best-First Search (BestFS)

1: Input: LLM πθ, Value prompt Peval, Transition function T
2: Initialise s0, A0, Priority queue Q
3: Evaluate current state: V0 = Pvalue(s0, πθ)
4: Q := Q∪ {(V0, s0,A0)}
5: while Token limit not exhausted do
6: (Vt, st,At)← pop(Q) ▷ Greedy selection by highest Vt

7: for at ∈ At do
8: (s′,A′) ∼ T (· | st, at)
9: V ′ = Pvalue(s

′, πθ)
10: Q := Q ∪ {(V ′, s′,A′)}
11: end for
12: end while
13: Return: (st,At)

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

In this section, we describe Best-First Search (BestFS), a strategy that expands the most promising nodes
first, based on their estimated value. Our implementation leverages an LLM to evaluate the value of states and
uses these estimates to drive the search greedily toward high-reward regions of the search space. BestFS does
not prompt the LLM to decide when to explore; rather, it always expands the node with the highest estimated
value from the priority queue. A high-level overview is provided in Algorithm 3.

LLM-Based Evaluation. The LLM is prompted using a value-estimation prompt Peval(s
′), to evaluate

the state s′ after taking action at ∈ At which returns a scalar estimate V ′ of the utility of s′. The tuple
{(V ′, s′,A′)} is then added to the priority queue Q. This is done for all at ∈ At.

Greedy Expansion. At each step, the algorithm pops the highest-ranked node (st,At) from the priority
queue Q:

(st,At)← pop(Q),
where Q is ordered by the estimated value of states as predicted by the LLM.

B.4 MONTE CARLO TREE SEARCH (MCTS)

Algorithm 4 LLM-guided Monte Carlo Tree Search (MCTS)

1: Input: LLM πθ, Prompts Pprior and Pvalue, Transition function T
2: Initialise root node s0
3: while Token limit not exhausted do
4: path← []
5: s← s0
6: while s is not leaf and not terminal do
7: a← PUCT(s) ▷ Uses visit counts and priors
8: path← path ∪ {(s, a)}
9: s← T (s, a)

10: end while
11: if s is leaf then
12: A ← actions(s)
13: {P (a | s)} ← Pprior(s,A, πθ)
14: V (s)← Pvalue(s, πθ)
15: Initialise state statistics: {P (a)}A, V (s), N(s)
16: end if
17: if is_solution(s) then
18: break
19: end if
20: Backpropagate V (s) along path
21: end while
22: Return: (s,A)

In our adaptation of Monte Carlo Tree Search (MCTS), we replace traditional simulation-based rollouts with
value and policy estimates provided directly by the LLM. Specifically, at each node, the LLM is prompted to
estimate (1) the value of the current state, and (2) the prior over the available actions, which are used by the
PUCT selection rule to guide the search. The resulting algorithm is outlined in Algorithm 4.

Search Tree and Node Structure. MCTS maintains a search tree where each node corresponds to a state s,
and stores the visit count N(s), total value W (s), and prior over actions {P (a | s)} (as returned by the LLM).

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Each edge stores a running estimate of Q(s, a) = W (s, a)/N(s, a). The tree is expanded progressively,
guided by the PUCT criterion:

a∗ = argmax
a

[
Q(s, a) + cpuct · π(a | s) ·

√
N(s)

1 +N(s, a)

]
,

where cpuct is the exploration constant controlling the trade-off between exploration and exploitation. This
selection rule encourages the algorithm to prioritise actions with either high expected value or low visitation
count, as informed by the LLM’s prior.

LLM-Based Evaluation. To avoid traditional rollout-based playouts, we leverage the LLM to provide
value and policy estimates directly at the leaf node. When a new leaf node is reached, we prompt the LLM
using a state-value prompt Pvalue(s) to obtain a scalar estimate V (s) of the state’s expected utility. We also
query an action-prior prompt Pprior(s,A) to estimate the prior distribution over actions. These values are then
backpropagated through the tree to update Q, W , and N values for all nodes along the visited path.

C TASK DISCUSSION AND ANALYSIS

We analyse the branching factor and number of states at a given depth d for our two benchmark tasks,
Countdown and Sudoku, demonstrating their complementary characteristics. This analysis supports the use
of these tasks as representative testbeds, with Countdown exhibiting a shallower but more complex decision
space and Sudoku presenting a deeper, broader search space, together providing a balanced evaluation of
search strategies.

Countdown. Starting with an initial list of n numbers, at each step the agent selects two distinct numbers
and applies one of four arithmetic operations (+,−,×,÷). The number of distinct pairs is

(
n
2

)
= n(n−1)

2 , and
each pair can be combined with 4 possible operations. Thus, the branching factor at the root (depth d = 0) is:

B0 = 4×
(
n

2

)
= 2n(n− 1).

After applying one operation, the list size decreases by 1, leaving n− 1 numbers. At depth d, the list size is
n− d, so the branching factor at depth d is:

Bd = 4×
(
n− d

2

)
= 2(n− d)(n− d− 1).

The number of distinct lists (states) exactly at depth d, denoted Ld, can be recursively computed as:

L0 = 1,

Ld = Ld−1 ×Bd−1 =

d−1∏
i=0

2(n− i)(n− i− 1).

Sudoku. In a Sudoku puzzle of size l × l, assume n empty cells initially. At each step, the agent fills one
empty cell with a valid number (up to l possibilities).

At depth d, there are n− d empty cells left, so the branching factor is:

Bd = (n− d)× l.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

The number of board states exactly at depth d is then:

L0 = 1,

Ld = Ld−1 ×Bd−1 =

d−1∏
i=0

(n− i)× l = ld ×
d−1∏
i=0

(n− i).

Analysis. Countdown features a relatively shallow search space with a maximum depth of n− 1, where n
is the initial length of numbers in the set. At each depth d, the branching factor is given by

2(n− d)(n− d− 1),

reflecting the number of possible pairs and arithmetic operations. Although the search depth is limited,
Countdown is often more challenging in terms of selecting the correct action due to the combinatorial nature
of valid operations.

In contrast, Sudoku involves a much deeper search space, with maximum depth equal to the initial number of
empty cells n. The branching factor at depth d is approximately

(n− d)× l,

where l is the board’s side length (e.g., 9 for a standard 9× 9 Sudoku). Here, the width of the search space
depends linearly on the number of remaining empty cells and the number of valid entries per cell, resulting in
a wide and deep search tree.

This contrast in search space structure, Countdown’s shallow but combinatorially complex branching versus
Sudoku’s deep and broadly branching tree, makes these benchmarks complementary, providing a thorough
evaluation of search strategies under diverse reasoning challenges.

D IMPLEMENTATION DETAILS

We utilised the OpenAI API to access both the GPT-4o and o3-mini language models. We set key parameters
while leaving others at their default values. The temperature was fixed at 0.0 to produce deterministic outputs
and reduce randomness. We set max_tokens to 16,384 to allow sufficiently long responses for complex,
multi-step reasoning tasks. A timeout of 300 seconds was enforced to limit API call duration and prevent
excessively long requests. Lastly, the o3-mini model was configured to operate at a "low" reasoning_effort.

E PROMPTS

This section presents the exact prompts used in our experiments. These prompts were designed to guide
the language model in performing evaluations, making exploration decisions, or generating actions during
search. These prompts play a crucial role in enabling LLM-First Search and the other baselines to operate
under comparable conditions, ensuring that differences in performance arise from the methods themselves
rather than discrepancies in task formulation. Note that variables enclosed in curly braces (e.g., {state},
{actions}) indicate Python variables used for string formatting (this will be visible in the accompanying
open-source code). Lastly, for clarity, we use colour to distinguish different components of the prompts: (1)
Green: Task-specific instructions or rules, (2) Red: System-level instructions that define the model’s role or
behaviour, and (3) Blue: User-level queries or task inputs.

E.1 COUNTDOWN

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Countdown Game Rules

You’re playing the Countdown Numbers Game. Let me explain the rules and how to solve it:
Game Rules:

1. You are given a set of numbers and a target number to reach.

2. You can only use each number once.

3. You must combine numbers using only four operations: addition (+), subtraction (-), multiplication (*),
and division (/).

4. Division is only allowed when it results in a whole number (no fractions or decimals).

5. You can only combine two numbers at a time to create a new number.

6. After each operation, the original numbers are removed, and the result is added to your available
numbers.

7. You win when you have exactly one number left that matches the target.

For example, with target 50 and numbers [39, 66, 33, 13]:
State 0 Target: 50
Operations: []
Available Numbers: [39, 66, 33, 13]
Action 0 Operation: ’39 + 13 = 52’
State 1 (After performing 39 + 13 = 52)
Target: 50
Operations: [’39 + 13 = 52’]
Available Numbers: [66, 33, 52]
Action 1 Operation: ’66 / 33 = 2’
State 2 (After performing 66 / 33 = 2)
Target: 50
Operations: [’39 + 13 = 52’, ’66 / 33 = 2’]
Available Numbers: [52, 2]
Action 2 Operation: ’52 - 2 = 50’
State 3 (After performing 52 - 2 = 50)
Target: 50
Operations: [’39 + 13 = 52’, ’66 / 33 = 2’, ’52 - 2 = 50’]
Available Numbers: [50]
Game won!

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Action Prior System Instruction and User Request

System Instruction

−−−−−−−−−−−−− Insert game rules here −−−−−−−−−−−−−

Important considerations when assigning probabilities to operations:
1. Target Progress: How much closer the operation gets to the target

• Operations resulting in numbers exactly at or very close to target should receive higher
scores

• Operations creating useful intermediate numbers should be favored

2. Number Creation: The utility of the resulting number

• Creating small, flexible numbers (1-10) can be valuable
• Creating numbers that are factors of the target
• Creating numbers that offer efficient pathways to the target

3. Available Number Management: How the operation affects the number pool

• Operations that use less useful numbers while preserving useful ones
• Operations that create a more workable set of available numbers
• Avoiding operations that result in unusable large numbers

4. Mathematical Strategy: Using operations optimally

• Using division to create useful small numbers
• Using multiplication for larger adjustments toward the target
• Using addition/subtraction for precise movements toward the target

Your task is to evaluate the possible actions in the current state, scoring them based on how likely they
are to help you achieve the target value. The scores should form a probability distribution over the
actions.
Example State Sequence State 0 Target: 50
Operations: []
Available Numbers: [39, 66, 33, 13]
Action 0 Operation: ’39 + 13 = 52’
State 1 (After performing 39 + 13 = 52)
Target: 50
Operations: [’39 + 13 = 52’]
Available Numbers: [66, 33, 52]
Action 1 Operation: ’66 / 33 = 2’
State 2 (After performing 66 / 33 = 2)
Target: 50
Operations: [’39 + 13 = 52’, ’66 / 33 = 2’]
Available Numbers: [52, 2]
Example Possible Operations: {0: ’52 + 2 = 54’, 1: ’52 - 2 = 50’, 2: ’52 * 2 = 104’, 3: ’52 / 2 = 26’}
Example Final Answer

{"operation_scores" : {”0” : 0.15, ”1” : 0.35, ”2” : 0.35, ”3” : 0.15}}

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

User Request

Current State and Action sequence {current_sequence}
Possible Operations: {action_list}
What are the scores for each action/operation? Assign a probability to each possible operation based on
how likely it is to lead to the target number.
Your response must include a valid JSON object, enclosed in a boxed, with an operation_scores
field containing a dictionary mapping operation keys to scores, formatted as follows:

{"operation_scores" :< dictionary_of_scores >}

Replace <dictionary_of_scores> with a dictionary mapping operation keys to scores that must
sum to 1.0.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

Estimate Node Value System Instruction and User Request

System Instruction

−−−−−−−−−−−−− Insert game rules here −−−−−−−−−−−−−

Important factors to consider when estimating state value:

1. Proximity to Target: How close the current numbers are to the target

• States with numbers exactly equal to or close to the target are more valuable
• States with numbers that can be easily combined to reach the target have higher value

2. Available Number Quality: How useful the remaining numbers are

• Having small numbers (1-10) increases flexibility
• Having numbers that are factors or multiples of target numbers is valuable
• Having complementary numbers that work well together

3. State Progress: How much progress has been made

• Number of operations performed so far
• Reduction in the total number of available numbers
• Quality of the operations performed so far

4. Potential for Success: Overall likelihood of reaching the target

• Presence of clear pathways to the target
• Absence of unusable or problematic numbers
• Balance between large and small numbers

Your task is to estimate the value of the current state and possible operations by determining the
likelihood of reaching the target number from it. The score should range from 0 to 1.
For example:
Example State Sequence
State 0 Target: 50
Operations: []
Available Numbers: [39, 66, 33, 13]
Action 0 Operation: ’39 + 13 = 52’
State 1 (After performing 39 + 13 = 52)
Target: 50
Operations: [’39 + 13 = 52’]
Available Numbers: [66, 33, 52]
Action 1 Operation: ’66 / 33 = 2’
State 2 (After performing 66 / 33 = 2)
Target: 50
Operations: [’39 + 13 = 52’, ’66 / 33 = 2’]
Available Numbers: [52, 2]
Example Possible Operations: [’52 + 2 = 54’, ’52 - 2 = 50’, ’52 * 2 = 104’, ’52 / 2 = 26’]
Example Final Answer

{"state_value_estimation" : 1.0}

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

User Request

Current State and Action sequence {current_sequence}
Possible Operations: {action_list}
Given the current state and the possible operations, estimate the value of the current state, ranging from
0-1, where 1 means it’s certain to reach the target number and 0 means it’s impossible.
Your response must include a valid JSON object, enclosed in a boxed, with a
state_value_estimation field, formatted as follows:

{"state_value_estimation" :< value >}

Replace <value> with your estimated probability (between 0 and 1) of reaching the target from this
state.

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

Move Values Estimation System Instruction and User Request

System Instruction

−−−−−−−−−−−−− Insert game rules here −−−−−−−−−−−−−

Important considerations when evaluating possible operations:

1. Target Progress: How much each operation moves toward the target

• Operations that result in numbers close to the target
• Operations that create useful intermediate numbers for future steps

2. Number Creation: The strategic value of the resulting number

• Creating small, useful numbers (1-10) for fine adjustments
• Creating numbers that are easily combinable with others
• Creating numbers that are factors or related to the target

3. Operation Strategy: How the operation affects solution paths

• Using division to create useful small numbers
• Using multiplication to make larger jumps toward the target
• Using addition/subtraction for precise adjustments

4. Future Potential: How an operation affects future possibilities

• Operations that open up multiple future paths
• Operations that eliminate problematic numbers
• Operations that maintain flexibility in the number set

Your task is to evaluate each possible operation and assign a value between 0 and 1 to each, where 1
means the operation is extremely likely to lead to solving the puzzle and 0 means it’s very unlikely to be
helpful.
For example:
Example State Sequence
State 0 Target: 50
Operations: []
Available Numbers: [39, 66, 33, 13]
Action 0 Operation: ’39 + 13 = 52’
State 1 (After performing 39 + 13 = 52)
Target: 50
Operations: [’39 + 13 = 52’]
Available Numbers: [66, 33, 52]
Example Possible Operations: {0: ’52 + 66 = 118’, 1: ’52 - 33 = 19’, 2: ’66 - 33 = 33’, 3: ’66 / 33 = 2’}
Example Final Answer

{"operation_values" : {”0” : 0.3, ”1” : 0.6, ”2” : 0.5, ”3” : 0.9}}

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

User Request

Current State and Action sequence {current_sequence}
Possible Operations: {action_list}
Evaluate each possible operation and assign a value between 0 and 1 to each, where 1 means the
operation is extremely likely to lead to solving the puzzle and 0 means it’s very unlikely to be helpful.
Your response must include a valid JSON object, enclosed in a boxed, with an operation_values
field containing a dictionary mapping operation keys to values between 0 and 1, formatted as follows:

{"operation_values" :< dictionary_of_values >}

Replace <dictionary_of_values> with a dictionary mapping operation keys to values between
0 and 1.

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

Exploration Decision System Instruction and User Request

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

System Instruction

−−−−−−−−−−−−− Insert game rules here −−−−−−−−−−−−−

Important considerations when deciding whether to explore or continue:

1. Current Path Quality: How promising the current path appears

• Presence of numbers close to the target
• Quality and usefulness of available numbers
• Clear pathways to reach the target from current numbers

2. Current Path Issues: Signs the current path may be problematic

• Numbers far from the target with no clear way to combine them
• Repeated patterns or circular operations
• No beneficial operations remaining

3. Exploration Value: Potential benefit of trying other paths

• Number of operations already performed on current path
• Quality of alternative unexplored paths
• Diminishing returns on current path

4. Decision Confidence: Certainty about current path viability

• Clear evidence current path cannot reach target
• Presence of obviously better unexplored paths
• Risk assessment of continuing vs exploring

Your task is to decide whether to continue with the current state or to visit an unexplored state. Before
deciding, carefully consider the current sequence of states and actions, as well as the available operations.
Only choose to explore if you are certain that the current path cannot reach the target number and that
switching to a new path is the best use of time.
For example:
Example State and Action sequence
State 0 Target: 50
Operations: []
Available Numbers: [39, 66, 33, 13]
Action 0 Operation: ’39 + 13 = 52’
State 1 (After performing 39 + 13 = 52)
Target: 50
Operations: [’39 + 13 = 52’]
Available Numbers: [66, 33, 52]
Action 1 Operation: ’66 / 33 = 2’
State 2 (After performing 66 / 33 = 2)
Target: 50
Operations: [’39 + 13 = 52’, ’66 / 33 = 2’]
Available Numbers: [52, 2]
Example Possible Operations: {0: ’52 + 2 = 54’, 1: ’52 - 2 = 50’, 2: ’52 * 2 = 104’, 3: ’52 / 2 = 26’}
Example Final Answer

{"explore" : false}

28

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

User Request

Current State and Action sequence {current_sequence}
Possible Operations: {action_list}
Consider the current sequence of states and actions and the available operations. Reason through your
options step by step and determine whether continuing with the current state or exploring a new state is
the most optimal decision.
Your response must include a valid JSON object, enclosed in a boxed, with an explore field, where
the value must be either true (to explore a new state) or false (to continue with the current state),
formatted as follows:

{"explore" :< boolean >}

Replace <boolean> with either true or false.

E.2 SUDOKU

Sudoku Game Rules

You are helping solve Sudoku puzzles using a tree-based search approach. Sudoku is a puzzle where you fill a
grid with numbers 1 through {grid_size} so that each row, column, and box has no repeated numbers.
For this {grid_size} × {grid_size} Sudoku grid, the boxes are {box_width} × {box_height} in size. Each
row, column, and box must contain all numbers from 1 to {grid_size} without repetition. This means:

1. Each row must contain each number from 1 to {grid_size} exactly once

2. Each column must contain each number from 1 to {grid_size} exactly once

3. Each {box_width} × {box_height} box must contain each number from 1 to {grid_size} exactly
once

These constraints create a logical puzzle where placing a number in a cell immediately restricts what numbers
can be placed in other cells in the same row, column, and box.
Board Structure:

• The Sudoku board is a {grid_size}×{grid_size} grid divided into {box_width}×{box_height}
boxes

• Rows are numbered 0 to {grid_size_minus_one} from top to bottom

• Columns are numbered 0 to {grid_size_minus_one} from left to right

• Each cell is identified by its (row, column) coordinates

• Empty cells appear as periods (.) in the board representation

• Board state is represented as a nested list where board[row][column] gives the value at that
position

When solving a Sudoku puzzle, we explore different possible number placements. Each step involves selecting
an empty cell and placing a valid number in it. As we make selections, the set of valid moves for remaining cells
may change.

29

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

Action Prior System Instruction and User Request

System Instruction

−−−−−−−−−−−−− Insert game rules here −−−−−−−−−−−−−

Important considerations when evaluating possible actions:
1. How actions might create naked singles or hidden singles in other cells

2. Actions targeting cells with few remaining alternatives

3. How actions may constrain multiple other cells simultaneously

4. How actions contribute to a balanced distribution of numbers across the board

5. Whether actions might lead to contradictions or cells with no legal moves

Your task is to evaluate the possible actions in the current state, scoring them based on how likely they
are to help solve the Sudoku puzzle. The scores should form a probability distribution over the actions
(sum to 1.0) and be returned as a dictionary mapping action indices to scores.
Example {grid_size} × {grid_size} Sudoku Board
{example_board}
Example Possible Actions
{example_prior_actions}
Example Final Answer

{"operation_scores" : {example_operation_scores}}

User Request

Current {grid_size} × {grid_size} Sudoku Board
{current_board}
Possible Actions
{action_list}
Evaluate each action based on how it creates constraints, identifies singles, minimizes branching, and
maintains a balanced distribution of numbers as described in your instructions.
Assign a probability to each possible action based on how likely it is to lead to a solution of the Sudoku
puzzle. The scores should sum to 1.0, representing a probability distribution over the actions.
Your response must include a valid JSON object, enclosed in a boxed, with an operation_scores
field containing a dictionary mapping action indices to scores, formatted as follows:

{"operation_scores" :< dictionary_of_scores >}

Replace <dictionary_of_scores>with a dictionary mapping action indices to scores that MUST
sum to 1.0.

30

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

Node Value System Instruction and User Request

System Instruction

−−−−−−−−−−−−− Insert game rules here −−−−−−−−−−−−−

Important considerations when estimating the value of a board state:
1. Factors that may indicate higher likelihood of success:

• The number of cells with few possible remaining values

• Whether all cells have at least one possible legal value

• How close rows, columns, and boxes are to completion

• The presence of obvious next moves such as naked or hidden singles

2. Factors that may indicate lower likelihood of success:

• The presence of cells with zero possible legal values (contradictions)

• Many cells having numerous possible values (high uncertainty)

• Limited constraints between remaining empty cells

• Patterns that typically lead to unsolvable states

Your task is to estimate the value of the current board state by determining the likelihood of solving the
puzzle from this position. The score should range from 0 to 1.
Example {grid_size} × {grid_size} Sudoku Board
{example_board}
Example Possible Actions
{example_value_actions}
Example Final Answer

{"state_value_estimation" : 0.75}

User Request

Current {grid_size} × {grid_size} Sudoku Board
{current_board}
Possible Actions
{action_list}
Given the current board state and the possible actions, estimate the value of the current state. Consider
factors like the number of cells with few possible values, whether there are contradictions, and whether
there are obvious next moves as described in your instructions.
Provide a value ranging from 0–1, where 1 means it’s certain to reach a solution and 0 means it’s
impossible.
Your response must include a valid JSON object, enclosed in a boxed, with a
state_value_estimation field, formatted as follows:

{"state_value_estimation" :< value >}

Replace <value> with your estimated probability (between 0 and 1) of solving the puzzle from this
state.

31

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

Explore Decision System Instruction and User Request

System Instruction

−−−−−−−−−−−−− Insert game rules here −−−−−−−−−−−−−

Important considerations when determining whether to continue with the current board state or
explore a new state:

1. The presence of naked singles or hidden singles in the current board state

2. Whether the current board state contains contradictions or cells with no valid moves

3. The level of certainty in the remaining cells (many vs. few possible values)

4. Whether the board shows signs of making progress or appears to be in a deadlock

Your task is to decide whether to continue with the current board state or to visit an unexplored board
state. Before deciding, carefully consider the current board and the available actions. Only choose to
explore if you are certain that the current board state cannot lead to a solution and that switching to a
new board state is the best use of time.
Example {grid_size} × {grid_size} Sudoku Board {example_board}
Example Possible Moves {example_explore_actions}
Example Final Answer

{"explore" : false}

User Request

Current {grid_size} × {grid_size} Sudoku Board {current_board}
Possible Moves {empty_cells}
Consider the current board state and the available actions. Evaluate whether the current state has
promising moves like naked singles or hidden singles, or if it shows signs of contradictions or deadlocks
as described in your instructions.
Reason through your options step by step and determine whether continuing with the current state or
exploring a new state is the most optimal decision.
Respond with true if you should explore a new board state, or false if you should continue with the
current one.
Your response must include a valid JSON object, enclosed in a boxed, with an explore field, where
the value must be either true (to explore a new board state) or false (to continue with the current board
state), formatted as follows:

{"explore" :< boolean >}

Replace <boolean> with either true or false.

32

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Under review as a conference paper at ICLR 2026

Move Value Estimation System Instruction and User Request

System Instruction

−−−−−−−−−−−−− Insert game rules here −−−−−−−−−−−−−

Important considerations when evaluating possible moves:
1. Constraint Propagation: How each move affects future possibilities

• Whether the move creates naked singles or hidden singles
• How the move constrains other cells in the same row, column, and box

2. Strategic Value: The quality of the move in solving the puzzle

• Whether the move targets cells with few remaining possibilities
• Whether the move maintains flexibility in other cells
• Whether the move creates a balanced distribution of numbers

3. Future Impact: How the move affects future solving paths

• Whether the move opens up multiple solving techniques
• Whether the move might lead to contradictions
• Whether the move maintains good solving options

Your task is to evaluate each possible move and assign a value between 0 and 1 to each, where 1 means
the move is extremely likely to lead to solving the puzzle and 0 means it’s very unlikely to be helpful.
Example {grid_size} × {grid_size} Sudoku Board {example_board}
Example Possible Moves {example_moves}
Example Final Answer

{"move_values" : {”0” : 0.8, ”1” : 0.5, ”2” : 0.3, . . . }}

User Request

Current {grid_size} × {grid_size} Sudoku Board {current_board}
Possible Moves {moves_list}
Evaluate each possible move and assign a value between 0 and 1 to each, where 1 means the move is
extremely likely to lead to solving the puzzle and 0 means it’s very unlikely to be helpful.
Your response must include a valid JSON object, enclosed in a boxed, with a move_values field
containing a dictionary mapping move indices to values between 0 and 1, formatted as follows:

{"move_values" :< dictionary_of_values >}

Replace <dictionary_of_values> with a dictionary mapping move indices to values between 0
and 1.

F PRELIMINARY INVESTIGATION: MCTS EXPLORATION CONSTANT

We performed a hyperparameter sweep over different exploration constants C ∈ {0.5, 1.0, 2.5}. Due to
computational constraints, we limited this sweep to the three Countdown variants and the simpler Sudoku

33

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

Under review as a conference paper at ICLR 2026

variant, using GPT-4o as the underlying model. As shown in Figures 4, 5, and 6, the setting c = 2.5
consistently underperforms, while c = 0.5 and c = 1.0 perform similarly, with c = 0.5 slightly outperforming
c = 1.0 in Countdown (difficulty 5). The largest performance gap appears in the Sudoku (4x4) task (Figure 7),
where c = 0.5 significantly outperforms higher values. This is likely due to Sudoku’s deeper solution space,
where higher c-values lead to over-exploration. The overall trend is further confirmed by the performance
profiles in Figures 2 and 3, which show c = 0.5 achieving the best trade-off between performance and
efficiency. Based on these results, we adopt c = 0.5 as the default value in subsequent experiments.

100 101

Performance Ratio ()

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
ac

tio
n

of
 Ta

sk
s

Win Rate Profile
Model: gpt-4o

MCTS(c=0.5) (AUP: 7.200)
MCTS(c=1.0) (AUP: 5.387)
MCTS(c=2.5) (AUP: 5.305)

Figure 2: Performance profiles of MCTS across different exploration constants (c ∈ {0.5, 1.0, 2.5}), evaluated
using WinRate across all tasks with GPT-4o. The profiles illustrate the proportion of tasks where each c value
is within a given performance ratio of the best. Area Under the Profile (AUP) is displayed for each curve.
Notably, c = 0.5 achieves the highest AUP, indicating superior overall performance.

34

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Under review as a conference paper at ICLR 2026

100 101

Performance Ratio ()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Fr

ac
tio

n
of

 Ta
sk

s

Win Rate / Token Usage Profile
Model: gpt-4o

MCTS(c=0.5) (AUP: 7.157)
MCTS(c=1.0) (AUP: 5.377)
MCTS(c=2.5) (AUP: 5.246)

Figure 3: Performance profiles of MCTS across different exploration constants (c ∈ {0.5, 1.0, 2.5}), evaluated
using WinRate per token ratio (efficiency) across all tasks with GPT-4o. The profiles indicate the proportion
of tasks where each c value achieves a given efficiency ratio relative to the best. Area Under the Profile (AUP)
is shown for each curve. As with overall WinRate, c = 0.5 yields the highest AUP, demonstrating superior
efficiency.

35

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Under review as a conference paper at ICLR 2026

MCTS(c=0.5) MCTS(c=1.0) MCTS(c=2.5)
Methods

0

25

50

75

100

125

150

175

200

225
W

in
 R

at
e

(%
)

100.0%
[100.0,
100.0]

100.0%
[100.0,
100.0]

100.0%
[100.0,
100.0]

Win Rate
Token Usage

0

2000

4000

6000

8000

10000

12000

To
ke

n
Us

ag
e

9289
[5091,
13487] *7683*

[4349,
11017]

7717
[4542,
10891]

Win Rate and Token Usage for Countdown (diff=3)
Model: gpt-4o

Figure 4: WinRate and token usage for MCTS on the Countdown task (difficulty 3) using GPT-4o. Both
metrics are reported across different exploration constants (c = 0.5, 1.0, 2.5), with all configurations
successfully solving all instances. Notably, c = 0.5 uses the most tokens. Values in “*” denote the mean, and
square brackets “[]” represent the 95% confidence interval.

MCTS(c=0.5) MCTS(c=1.0) MCTS(c=2.5)
Methods

0

20

40

60

80

100

120

140

W
in

 R
at

e
(%

)

66.7%
[30.4,
100.0]

62.2%
[25.0,
99.5]

60.0%
[22.3,
97.7]

Win Rate
Token Usage

0

100000

200000

300000

400000

500000

600000

700000

800000

To
ke

n
Us

ag
e

509110
[214354,
803866]

528327
[244164,
812491]

567471
[274662,
860279]

Win Rate and Token Usage for Countdown (diff=5)
Model: gpt-4o

Figure 5: WinRate and token usage for MCTS on the Countdown task (difficulty 5) using GPT-4o. Results
are shown for exploration constants c = 0.5, 1.0, and 2.5. See that c = 0.5 achieves the best WinRate while
also using the fewest tokens on average. Values in “*” denote the mean, and square brackets “[]” represent
the 95% confidence interval.

36

1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

Under review as a conference paper at ICLR 2026

MCTS(c=0.5) MCTS(c=1.0) MCTS(c=2.5)
Methods

0

10

20

30

40

50

60

70
W

in
 R

at
e

(%
)

33.3%
[0.0,
69.6]

33.3%
[0.0,
69.6]

24.4%
[0.0,
57.5]

Win Rate
Token Usage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

To
ke

n
Us

ag
e

1e6

819425
[671140,
967710]

811620
[655029,
968210]

908451
[798172,
1000000]

Win Rate and Token Usage for Countdown (diff=7)
Model: gpt-4o

Figure 6: WinRate and token usage for MCTS on the Countdown task (difficulty 7) using GPT-4o. Results
are shown for exploration constants c = 0.5, 1.0, and 2.5. Both c = 0.5 and c = 1.0 achieve equal win rates,
with c = 1.0 using marginally fewer tokens on average. Values in “*” denote the mean, and square brackets
“[]” represent the 95% confidence interval.

MCTS(c=0.5) MCTS(c=1.0) MCTS(c=2.5)
Methods

0

25

50

75

100

125

150

175

200

225

W
in

 R
at

e
(%

)

100.0%
[100.0,
100.0]

2.2%
[0.0,
13.6]

0.0%
[0.0,
0.0]

Win Rate
Token Usage

0

20000

40000

60000

80000

100000

120000

140000

To
ke

n
Us

ag
e

36580
[34411,
38748]

99685
[97195,
100000]

100865
[100693,
100000]

Win Rate and Token Usage for Sudoku (width=2, height=2)
Model: gpt-4o

Figure 7: WinRate and token usage for MCTS on the Sudoku (4×4) task using GPT-4o. Results are shown for
exploration constants c = 0.5, 1.0, and 2.5. Only c = 0.5 successfully solves all games, and it does so with
significantly lower token usage compared to the other c values, which struggle to solve any. Values in “*”
denote the mean, and square brackets “[]” represent the 95% confidence interval.

37

1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785

Under review as a conference paper at ICLR 2026

G ADDITIONAL EXPERIMENT RESULTS

Below, we present detailed experimental results across all Countdown and Sudoku variants. The subsections
are organized as follows: performance profiles G.1, Countdown results G.2, Sudoku results G.3, cumulative
wins G.4, and tree size analyses G.5.

G.1 PERFORMANCE PROFILES

100 101

Performance Ratio ()

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Ta

sk
s

Win Rate Profile
Model: gpt-4o

ToT-BFS (AUP: 4.057)
BESTFS (AUP: 6.204)
MCTS(c=0.5) (AUP: 7.098)
LFS (AUP: 8.994)

Figure 8: Performance profiles (WinRate) across all variants of Countdown and Sudoku tasks for methods
ToT-BFS, BestFS, MCTS, and LFS, evaluated with GPT-4o. LFS achieves the highest Area Under Profile
(AUP) value, indicating superior overall WinRate.

38

1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832

Under review as a conference paper at ICLR 2026

100 101

Performance Ratio ()

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Fr

ac
tio

n
of

 Ta
sk

s

Win Rate / Token Usage Profile
Model: gpt-4o

ToT-BFS (AUP: 3.676)
BESTFS (AUP: 2.670)
MCTS(c=0.5) (AUP: 3.544)
LFS (AUP: 4.704)

Figure 9: Performance profiles (WinRate per Token Ratio) across all variants of Countdown and Sudoku
tasks for methods ToT-BFS, BestFS, MCTS, and LFS, evaluated with GPT-4o. Among these, LFS achieves
the highest Area Under Profile (AUP) value, indicating it provides the best balance between WinRate and
token efficiency.

39

1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879

Under review as a conference paper at ICLR 2026

100 101

Performance Ratio ()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Fr

ac
tio

n
of

 Ta
sk

s

Win Rate Profile
Model: o3-mini

BESTFS (AUP: 4.234)
MCTS(c=0.5) (AUP: 6.004)
LFS (AUP: 7.200)

Figure 10: Performance profiles (WinRate) across all variants of Countdown and Sudoku tasks for methods
BestFS, MCTS, and LFS, evaluated with o3-mini. Among these, LFS achieves the highest Area Under
Profile (AUP) value, demonstrating superior overall performance.

40

1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926

Under review as a conference paper at ICLR 2026

100 101

Performance Ratio ()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Fr

ac
tio

n
of

 Ta
sk

s

Win Rate / Token Usage Profile
Model: o3-mini

BESTFS (AUP: 3.244)
MCTS(c=0.5) (AUP: 5.617)
LFS (AUP: 7.200)

Figure 11: Performance profiles (WinRate per Token Ratio) across all variants of Countdown and Sudoku
tasks for methods BestFS, MCTS, and LFS, evaluated with o3-mini. LFS achieves the highest Area Under
Profile (AUP) value, indicating the best efficiency-performance trade-off among the methods.

fewe

41

1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973

Under review as a conference paper at ICLR 2026

G.2 COUNTDOWN RESULTS

GPT-4O RESULTS

ToT
-BFS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

20

40

60

80

100

120

140

W
in

 R
at

e
(%

) *82.1%*
[63.6,
100.0]

100.0%
[100.0,
100.0]

100.0%
[100.0,
100.0]

100.0%
[100.0,
100.0]

Win Rates for Countdown (diff=3)
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

(a) Win rates for difficulty 3.

ToT
-BFS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

5000

10000

15000

20000

To
ke

n
Us

ag
e

8348
[8235,
8461]

11087
[8444,
13730]

10671
[7455,
13886]

9903
[8169,
11638]

Token Usage for Countdown (diff=3)
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

(b) Token usage for difficulty 3.

Figure 12: WinRate and token usage for different methods (ToT-BFS, BestFS, MCTS, and LFS) on the
Countdown task (difficulty 3) using GPT-4o. (a) WinRate; (b) Token Usage. ToT-BFS was the only method
that did not solve all instances, while the other three methods successfully solved all tasks. Among these
three, LFS used the fewest tokens, indicating the best efficiency. Values in “*” denote the mean, and square
brackets “[]” represent the 95% confidence interval.

42

1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

Under review as a conference paper at ICLR 2026

ToT
-BFS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

20

40

60

80

100

120
W

in
 R

at
e

(%
)

9.5%
[0.0,
23.6]

49.5%
[25.4,
73.6]

60.0%
[36.4,
83.6]

63.2%
[39.9,
86.4]

Win Rates for Countdown (diff=5)
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

(a) Win rates for difficulty 5.

ToT
-BFS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

To
ke

n
Us

ag
e

1e6

28863
[28616,
29110]

700147
[543768,
856527] *569730*

[384774,
754687]

508522
[332344,
684699]

Token Usage for Countdown (diff=5)
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

(b) Token usage for difficulty 5.

Figure 13: WinRate and token usage for different methods (ToT-BFS, BestFS, MCTS, and LFS) on the
Countdown task (difficulty 5) using GPT-4o. (a) WinRate; (b) Token Usage. LFS marginally outperforms the
next best method, MCTS, while also using fewer tokens, indicating both higher effectiveness and efficiency.
Values in “*” denote the mean, and square brackets “[]” represent the 95% confidence interval.

43

2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067

Under review as a conference paper at ICLR 2026

ToT
-BFS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

20

40

60

80

100
W

in
 R

at
e

(%
)

0.0%
[0.0,
0.0]

11.1%
[0.0,
35.3]

32.6%
[10.0,
55.2]

47.4%
[23.3,
71.4]

Win Rates for Countdown (diff=7)
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

(a) Win rates for difficulty 7.

ToT
-BFS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

To
ke

n
Us

ag
e

1e6

55672
[54780,
56564]

983297
[958772,
1000000] *821404*

[723330,
919478]

737174
[620191,
854158]

Token Usage for Countdown (diff=7)
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

(b) Token usage for difficulty 7.

Figure 14: WinRate and Token Usage for different methods (ToT-BFS, BestFS, MCTS, and LFS) on the
Countdown task (difficulty 7) using GPT-4o. (a) WinRate; (b) Token Usage. The performance gap between
MCTS and LFS widens as difficulty increases, with LFS maintaining higher efficiency by using fewer tokens.
Values in “*” denote the mean, and square brackets “[]” represent the 95% confidence interval.

44

2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114

Under review as a conference paper at ICLR 2026

O3-MINI RESULTS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

20

40

60

80

100

120

W
in

 R
at

e
(%

)

52.6%
[28.6,
76.7]

69.5%
[47.3,
91.7]

70.5%
[48.6,
92.5]

Win Rates for Countdown (diff=5)
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

(a) Win rates for Countdown (difficulty 5).

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0.0

0.2

0.4

0.6

0.8

1.0

1.2

To
ke

n
Us

ag
e

1e6

656260
[492951,
819568] *480216*

[301174,
659258]

451792
[265429,
638154]

Token Usage for Countdown (diff=5)
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

(b) Token usage for Countdown (difficulty 5).

Figure 15: WinRate and Token Usage for different methods (BestFS, MCTS, and LFS) on the Countdown
task (difficulty 5) using o3-mini. (a) WinRate; (b) Token Usage. The performance trends closely mirror
those observed with GPT-4o: LFS marginally outperforms MCTS while also using fewer tokens, indicating
stronger efficiency. Values in “*” denote the mean, and square brackets “[]” represent the 95% confidence
interval.

45

2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161

Under review as a conference paper at ICLR 2026

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

20

40

60

80

100

120

140
W

in
 R

at
e

(%
)

13.3%
[0.0,
39.5]

41.1%
[17.3,
64.8]

78.9%
[59.3,
98.6]

Win Rates for Countdown (diff=7)
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

(a) Win rates for Countdown (difficulty 7).

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

To
ke

n
Us

ag
e

1e6

955818
[889575,
1000000]

708961
[558894,
859028] *498280*

[376326,
620233]

Token Usage for Countdown (diff=7)
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

(b) Token usage for Countdown (difficulty 7).

Figure 16: WinRate and Token Usage for different methods (BestFS, MCTS, and LFS) on the Countdown
task (difficulty 7) using o3-mini. (a) WinRate; (b) Token Usage. The performance gap between MCTS
and LFS widens as task difficulty increases, mirroring results with GPT-4o, with LFS maintaining higher
efficiency through lower token usage. Values in “*” denote the mean, and square brackets “[]” represent
the 95% confidence interval.

46

2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208

Under review as a conference paper at ICLR 2026

G.3 SUDOKU RESULTS

GPT-4O RESULTS

ToT
-BFS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

20

40

60

80

100

120

140

W
in

 R
at

e
(%

)

53.7%
[29.7,
77.7] *41.1%*

[17.3,
64.8]

100.0%
[100.0,
100.0]

96.8%
[88.4,
100.0]

Win Rates for Sudoku (width=2, height=2)
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

(a) Win rates for Sudoku 4× 4.

ToT
-BFS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

20000

40000

60000

80000

100000

120000

140000

To
ke

n
Us

ag
e

69715
[67433,
71997]

75716
[62305,
89127]

34674
[32697,
36651]

39069
[35999,
42138]

Token Usage for Sudoku (width=2, height=2)
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

(b) Token usage for Sudoku 4× 4.

Figure 17: WinRate and Token Usage on the Sudoku 4 × 4 task using GPT-4o. (a) WinRate; (b) Token
Usage. Results are shown for ToT-BFS, BestFS, MCTS, and LFS. MCTS marginally outperforms LFS in
both WinRate and token efficiency, while ToT-BFS and BestFS lag significantly behind. Values in “*” denote
the mean, and square brackets “[]” represent the 95% confidence interval.

47

2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255

Under review as a conference paper at ICLR 2026

ToT
-BFS

MCTS
(c=

0.5
)

LFS

Methods

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
W

in
 R

at
e

(%
)

0.0%
[0.0,
0.0]

0.0%
[0.0,
0.0]

2.2%
[0.0,
13.6]

Win Rates for Sudoku (width=2, height=3)
Model: gpt-4o

ToT-BFS
MCTS(c=0.5)
LFS

(a) Win rates for Sudoku 6× 6.

ToT
-BFS

MCTS
(c=

0.5
)

LFS

Methods

0

100000

200000

300000

400000

500000

600000

700000

800000

To
ke

n
Us

ag
e

119447
[115253,
123640]

500657
[500503,
500000]

494131
[479955,
500000]

Token Usage for Sudoku (width=2, height=3)
Model: gpt-4o

ToT-BFS
MCTS(c=0.5)
LFS

(b) Token usage for Sudoku 6× 6.

Figure 18: WinRate and Token Usage on the Sudoku 6 × 6 task using GPT-4o. (a) WinRate; (b) Token
Usage. Results are shown for ToT-BFS, MCTS, and LFS. All methods fail to solve any instances, except LFS,
which successfully solves a single game. Despite the overall difficulty. Values in “*” denote the mean, and
square brackets “[]” represent the 95% confidence interval.

48

2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302

Under review as a conference paper at ICLR 2026

O3-MINI RESULTS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

20

40

60

80

100

120

140

W
in

 R
at

e
(%

)

61.1%
[37.5,
84.6]

90.5%
[76.4,
100.0]

96.8%
[88.4,
100.0]

Win Rates for Sudoku (width=2, height=2)
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

(a) WinRate

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

20000

40000

60000

80000

100000

120000

To
ke

n
Us

ag
e *74699*

[69086,
80312]

70710
[68549,
72871]

64463
[62932,
65995]

Token Usage for Sudoku (width=2, height=2)
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

(b) Token Usage

Figure 19: WinRate and Token Usage on the Sudoku 4× 4 task using o3-mini. (a) WinRate; (b) Token
Usage. Results are shown for BestFS, MCTS, and LFS. Unlike the GPT-4o setting, LFS now outperforms
MCTS in both WinRate and token efficiency, highlighting that our method scales more effectively with
stronger models. Values in “*” denote the mean, and square brackets “[]” represent the 95% confidence
interval.

49

2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349

Under review as a conference paper at ICLR 2026

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

10

20

30

40

50

60

W
in

 R
at

e
(%

)

0.0%
[0.0,
0.0]

4.2%
[0.0,
13.9]

25.3%
[4.3,
46.2]

Win Rates for Sudoku (width=2, height=3)
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

(a) WinRate

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

100000

200000

300000

400000

500000

600000

700000

800000

To
ke

n
Us

ag
e

503282
[502639,
500000]

496296
[490256,
500000] *431064*

[405232,
456896]

Token Usage for Sudoku (width=2, height=3)
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

(b) Token Usage

Figure 20: WinRate and Token Usage on the Sudoku 6× 6 task using o3-mini. (a) WinRate; (b) Token
Usage. Results are shown for BestFS, MCTS, and LFS. The trend from the 4× 4 variant continues, with LFS
significantly outperforming MCTS in both accuracy and token efficiency. This indicates that LFS scales more
effectively with stronger models and handles more difficult tasks more robustly. Values in “*” denote the
mean, and square brackets “[]” represent the 95% confidence interval.

50

2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396

Under review as a conference paper at ICLR 2026

G.4 CUMULATIVE WINS

We provide detailed results illustrating the cumulative wins achieved by different methods as the token budget
increases for both Countdown and Sudoku games. As shown in Figures 21a and 21b, the total number of
Countdown games won steadily rises with higher token usage, with LFS clearly outperforming the next best
method, MCTS. This performance gap is especially pronounced for the stronger o3-mini model (Figure 21b),
indicating that LFS scales more effectively with model strength. Although compute limitations prevented
testing at larger token budgets, the current trend suggests this gap would continue to widen. A similar but less
prominent pattern can be observed for Sudoku (Figures 21c and 21d), where WinRate saturation on simpler
Sudoku variants and overall lower performance on harder variants temper the advantage.

51

2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443

Under review as a conference paper at ICLR 2026

104 105 106

Token Usage (log scale)

0

25

50

75

100

125

150

175

200

Cu
m

ul
at

iv
e

Nu
m

be
r o

f W
in

s
Cumulative Wins vs Token Usage for Countdown

Model: gpt-4o
ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

(a) Cumulative wins in Countdown with increasing token
budget (GPT-4o)

104 105 106

Token Usage (log scale)

0

20

40

60

80

100

120

140

Cu
m

ul
at

iv
e

Nu
m

be
r o

f W
in

s

Cumulative Wins vs Token Usage for Countdown
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

(b) Cumulative wins in Countdown with increasing token
budget (o3-mini)

105

Token Usage (log scale)

0

15

30

45

60

75

90

Cu
m

ul
at

iv
e

Nu
m

be
r o

f W
in

s

Cumulative Wins vs Token Usage for Sudoku
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

(c) Cumulative wins in Sudoku with increasing token budget
(GPT-4o).

105

Token Usage (log scale)

0

15

30

45

60

75

90

105

120
Cu

m
ul

at
iv

e
Nu

m
be

r o
f W

in
s

Cumulative Wins vs Token Usage for Sudoku
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

(d) Cumulative wins in Sudoku with increasing token budget
(o3-mini).

Figure 21: Cumulative wins across varying token budgets for Countdown and Sudoku games using different
methods. Panels (a) and (b) show Countdown results for GPT-4o and o3-mini models respectively, highlighting
the superior scalability of LFS over MCTS, particularly with the stronger model. Panels (c) and (d) display
cumulative Sudoku wins, where the performance gap is less pronounced due to WinRate saturation and
increased task difficulty.

G.5 TREE SIZE

We report the average tree sizes generated by each method across different levels of difficulty for both the
Countdown and Sudoku domains, using the GPT-4o and o3-mini models. In the Countdown setting, we
observe that LFS consistently constructs smaller or equal-sized trees compared to MCTS. A similar pattern
emerges in the Sudoku tasks, across both the 4× 4 and 6× 6 grid configurations. These results illustrate the
efficiency of LFS’s guided exploration strategy, which avoids the over-exploration characteristic of MCTS,
and maintains performance even as problem complexity increases.

52

2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490

Under review as a conference paper at ICLR 2026

ToT
-BFS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

5

10

15

20

25

30

35

40

Tr
ee

 S
ize

26
[26,
27]

29
[26,
32]

20
[19,
22]

20
[19,
22]

Tree Size for Countdown (diff=3)
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

Figure 22: Average tree size for Countdown (difficulty 3) using GPT-4o.

ToT
-BFS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

500

1000

1500

2000

2500

3000

3500

Tr
ee

 S
ize

190
[188,
191]

2,559
[2,327,
2,792]

1,308
[1,125,
1,490]

1,299
[1,100,
1,498]

Tree Size for Countdown (diff=5)
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

Figure 23: Average tree size for Countdown (difficulty 5) using GPT-4o.

53

2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

ToT
-BFS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

2000

4000

6000

8000

10000

12000

Tr
ee

 S
ize

623
[617,
629]

8,958
[8,293,
9,623]

2,467
[2,293,
2,642]

2,939
[2,687,
3,191]

Tree Size for Countdown (diff=7)
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

Figure 24: Average tree size for Countdown (difficulty 7) using GPT-4o.

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

500

1000

1500

2000

2500

3000

Tr
ee

 S
ize

2,141
[1,915,
2,368]

1,179
[990,

1,368]
1,080
[896,

1,265]

Tree Size for Countdown (diff=5)
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

Figure 25: Average tree size for Countdown (difficulty 5) using o3-mini.

54

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584

Under review as a conference paper at ICLR 2026

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

2000

4000

6000

8000

10000
Tr

ee
 S

ize
7,988
[7,259,
8,717]

2,253
[2,017,
2,489]

1,923
[1,678,
2,168]

Tree Size for Countdown (diff=7)
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

Figure 26: Average tree size for Countdown (difficulty 7) using o3-mini.

ToT
-BFS

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

100

200

300

400

500

Tr
ee

 S
ize

378
[371,
386]

398
[349,
446]

107
[104,
109]

95
[89,
101]

Tree Size for Sudoku (width=2, height=2)
Model: gpt-4o

ToT-BFS
BESTFS
MCTS(c=0.5)
LFS

Figure 27: Average tree size for Sudoku (2× 2) using GPT-4o.

55

2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631

Under review as a conference paper at ICLR 2026

ToT
-BFS

MCTS
(c=

0.5
)

LFS

Methods

0

250

500

750

1000

1250

1500

1750

Tr
ee

 S
ize

928
[898,
958]

1,352
[1,307,
1,397]

916
[869,
963]

Tree Size for Sudoku (width=2, height=3)
Model: gpt-4o

ToT-BFS
MCTS(c=0.5)
LFS

Figure 28: Average tree size for Sudoku (2× 3) using GPT-4o.

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

50

100

150

200

Tr
ee

 S
ize

167
[154,
180]

103
[101,
106]

97
[96,
99]

Tree Size for Sudoku (width=2, height=2)
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

Figure 29: Average tree size for Sudoku (2× 2) using o3-mini.

56

2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678

Under review as a conference paper at ICLR 2026

BES
TFS

MCTS
(c=

0.5
)

LFS

Methods

0

500

1000

1500

2000

2500

Tr
ee

 S
ize

1,978
[1,943,
2,012]

801
[779,
824] *487*

[467,
506]

Tree Size for Sudoku (width=2, height=3)
Model: o3-mini

BESTFS
MCTS(c=0.5)
LFS

Figure 30: Average tree size for Sudoku (2× 3) using o3-mini.

57

2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725

Under review as a conference paper at ICLR 2026

58

2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772

Under review as a conference paper at ICLR 2026

H EXAMPLE TREES
Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 6
0,

 3
7,

 4
, 5
2,

 4
, 5
9]

O
pe
ra
tio
ns
: [
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 4
, 4
, 5
9,

 8
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
4,

 4
, 5
9,

 8
, 2
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
37
-3
5=
2'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 5
9,

 8
, 1
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4/
4=
1'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 4
, 5
9,

 1
2]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 4
, 5
9,

 2
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 4
, 5
9,

 2
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
4,

 4
, 5
9,

 1
0]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
37
-3
5=
2'
, '
8+
2=
10
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 1
0,

 1
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
37
-3
5=
2'
, '
8+
2=
10
',
'4
/4
=
1'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
4,

 5
9,

 1
4]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
37
-3
5=
2'
, '
8+
2=
10
',
'4
+
10
=
14
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
4,

 5
9,

 6
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
37
-3
5=
2'
, '
8+
2=
10
',
'1
0-
4=
6'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
4,

 5
9,

 1
4]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
37
-3
5=
2'
, '
8+
2=
10
',
'4
+
10
=
14
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
4,

 5
9,

 6
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
37
-3
5=
2'
, '
8+
2=
10
',
'1
0-
4=
6'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 1
0]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
37
-3
5=
2'
, '
8+
2=
10
',
'4
+
10
=
14
',
'1
4-
4=
10
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 1
0]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
37
-3
5=
2'
, '
8+
2=
10
',
'4
+
10
=
14
',
'1
4-
4=
10
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
49
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
37
-3
5=
2'
, '
8+
2=
10
',
'4
+
10
=
14
',
'1
4-
4=
10
',
'5
9-
10
=
49
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 1
0]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
37
-3
5=
2'
, '
8+
2=
10
',
'1
0-
4=
6'
, '
4+
6=
10
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
49
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
37
-3
5=
2'
, '
8+
2=
10
',
'1
0-
4=
6'
, '
4+
6=
10
',
'5
9-
10
=
49
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 8
, 1
, 2
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4/
4=
1'
, '
37
-3
5=
2'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 5
9,

 9
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4/
4=
1'
, '
8+
1=
9'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 2
, 9
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4/
4=
1'
, '
37
-3
5=
2'
, '
8+
1=
9'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 1
, 1
0]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4/
4=
1'
, '
37
-3
5=
2'
, '
8+
2=
10
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 9
, 2
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4/
4=
1'
, '
8+
1=
9'
, '
37
-3
5=
2'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 1
1]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4/
4=
1'
, '
8+
1=
9'
, '
37
-3
5=
2'
, '
9+
2=
11
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
4,

 5
9,

 1
2,

 2
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
',
'3
7-
35
=
2'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 5
9,

 8
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
',
'1
2-
4=
8'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 5
9,

 3
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
',
'1
2/
4=
3'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 2
, 8
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
',
'3
7-
35
=
2'
, '
12
-4
=
8'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
4,

 5
9,

 1
0]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
',
'3
7-
35
=
2'
, '
12
-2
=
10
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 1
4]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
',
'3
7-
35
=
2'
, '
12
-2
=
10
',
'4
+
10
=
14
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 3
, 2
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
',
'1
2/
4=
3'
, '
37
-3
5=
2'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 3
, 2
4]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
',
'1
2/
4=
3'
, '
59
-3
5=
24
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 5
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
',
'1
2/
4=
3'
, '
37
-3
5=
2'
, '
3+
2=
5'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
3,

 1
3]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
',
'1
2/
4=
3'
, '
59
-3
5=
24
',
'3
7-
24
=
13
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 8
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
',
'1
2/
4=
3'
, '
59
-3
5=
24
',
'2
4/
3=
8'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
10
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
4+
8=
12
',
'1
2/
4=
3'
, '
59
-3
5=
24
',
'3
7-
24
=
13
',
'1
3-
3=
10
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 5
9,

 6
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4+
2=
6'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 5
9,

 8
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4*
2=
8'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 6
, 2
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4+
2=
6'
, '
37
-3
5=
2'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 8
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4+
2=
6'
, '
37
-3
5=
2'
, '
6+
2=
8'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 1
2]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4+
2=
6'
, '
37
-3
5=
2'
, '
6*
2=
12
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
51
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4+
2=
6'
, '
37
-3
5=
2'
, '
6+
2=
8'
, '
59
-8
=
51
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 8
, 2
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4*
2=
8'
, '
37
-3
5=
2'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 1
0]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4*
2=
8'
, '
37
-3
5=
2'
, '
8+
2=
10
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 5
9,

 6
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4+
2=
6'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 5
9,

 8
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4*
2=
8'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 6
, 2
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4+
2=
6'
, '
37
-3
5=
2'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 6
, 2
4]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4+
2=
6'
, '
59
-3
5=
24
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
59
, 8
, 2
]

O
pe
ra
tio
ns
: [
'6
0-
52
=
8'
, '
8/
4=
2'
, '
4*
2=
8'
, '
37
-3
5=
2'
]

(a) MCTS search
tree

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 6
0,

 3
7,

 4
, 5
2,

 4
, 5
9]

O
pe
ra
tio
ns
: [
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 6
0,

 3
7,

 4
, 4
, 7
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
60
, 3
7,

 4
, 4
, 5
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 6
0,

 3
7,

 4
, 3
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
7-
4=
3'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 4
, 5
, 1
5]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
60
/4
=
15
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 4
, 5
, 1
5]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
60
/4
=
15
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
60
, 3
7,

 4
, 9
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
4+
5=
9'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
60
, 3
7,

 4
, 1
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
5-
4=
1'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
60
, 3
7,

 4
, 9
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
4+
5=
9'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
60
, 3
7,

 4
, 1
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
5-
4=
1'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 4
, 1
0]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
60
/4
=
15
',
'1
5-
5=
10
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
10
, 3
3]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
60
/4
=
15
',
'1
5-
5=
10
',
'3
7-
4=
33
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 1
5,

 1
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
60
/4
=
15
',
'5
-4
=
1'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 5
, 1
1]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
60
/4
=
15
',
'1
5-
4=
11
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 4
, 1
0]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
60
/4
=
15
',
'1
5-
5=
10
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 1
6]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
60
/4
=
15
',
'5
-4
=
1'
, '
15
+
1=
16
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 6
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
60
/4
=
15
',
'1
5-
4=
11
',
'1
1-
5=
6'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 1
4]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
60
/4
=
15
',
'1
5-
5=
10
',
'4
+
10
=
14
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
60
, 3
7,

 5
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
4+
5=
9'
, '
9-
4=
5'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
60
, 3
7,

 5
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
5-
4=
1'
, '
4+
1=
5'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
37
, 1
2]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
5-
4=
1'
, '
4+
1=
5'
, '
60
/5
=
12
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
25
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
5-
4=
1'
, '
4+
1=
5'
, '
60
/5
=
12
',
'3
7-
12
=
25
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
60
, 3
7,

 5
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
4+
5=
9'
, '
9-
4=
5'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
60
, 3
7,

 5
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
35
/7
=
5'
, '
5-
4=
1'
, '
4+
1=
5'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 6
0,

 3
7,

 1
2]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
7-
4=
3'
, '
4*
3=
12
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 6
0,

 3
7,

 1
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
7-
4=
3'
, '
4-
3=
1'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
35
, 3
7,

 5
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
7-
4=
3'
, '
4*
3=
12
',
'6
0/
12
=
5'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
5,

 2
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
7-
4=
3'
, '
4*
3=
12
',
'6
0/
12
=
5'
, '
37
-3
5=
2'
]

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
10
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
7-
4=
3'
, '
4*
3=
12
',
'6
0/
12
=
5'
, '
37
-3
5=
2'
, '
5*
2=
10
']

Ta
rg
et
: 1
0

A
va
ila
bl
e
N
um
be
rs
: [
60
, 1
, 2
]

O
pe
ra
tio
ns
: [
'5
9-
52
=
7'
, '
7-
4=
3'
, '
4-
3=
1'
, '
37
-3
5=
2'
]

(b) LFS search tree

Figure 31: Example search trees generated for a Countdown game (difficulty = 7) using (a) Monte Carlo
Tree Search (MCTS) and (b) Limited-Depth Forward Search (LFS). The MCTS tree is noticeably wider,
illustrating its tendency for over-exploration compared to the more focused LFS tree.

59

2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819

Under review as a conference paper at ICLR 2026

Figure 31 shows example search trees generated for a Countdown game with difficulty level 7. Subfigure (a)
depicts the tree produced by MCTS, while subfigure (b) shows the tree from LFS. Notice that the MCTS tree
is considerably wider, reflecting its tendency to over-explore the search space. In contrast, the LFS tree is
more focused and narrower, indicating a more targeted exploration strategy. This comparison highlights the
differences in exploration behaviour between the two methods on the same problem instance.

60

	Introduction
	Preliminaries
	Problem Setting

	Related Work
	LLM-First Search (LFS)
	Experiments
	Baselines
	Tasks
	Countdown
	Sudoku

	Evaluation
	Metrics
	Performance Profiles and AUP Score

	Results and Analysis
	Task Specific
	Key Takeaways

	Conclusion
	Reproducibility
	Acknowledgments
	Limitations and Future Work
	Additional Details of Search Baselines
	LLM-First Search (LFS)
	Tree-of-Thought Breadth-First Search (ToT-BFS)
	Best-First Search (BestFS)
	Monte Carlo Tree Search (MCTS)

	Task Discussion and Analysis
	Implementation Details
	Prompts
	Countdown
	Sudoku

	Preliminary Investigation: MCTS Exploration Constant
	Additional Experiment Results
	Performance Profiles
	Countdown Results
	Sudoku Results
	Cumulative Wins
	Tree Size

	Example Trees

