
Democratizing RL Research by Reusing Prior Computation

Due to the generality of reinforcement learning (RL), the prevailing trend in deep RL research is to
develop agents that can efficiently learn tabula rasa, that is without any existing knowledge including
prior computational work such as existing datasets, learned policies, LLMs etc. Unfortunately,
the inefficiency of tabula rasa RL typically excludes the majority of the RL community outside
certain resource-rich labs from tackling computationally-demanding problems. For example, the
quintessential benchmark of training a typical deep RL agent on 50 Atari games in Arcade Learning
Environment (ALE) [6] for 200M frames costs 1000+ GPU days, excluding all but a handful of
labs [22]. Furthermore, while learning tabula rasa works well for small-scale research domains such
as Atari or MuJoCo, it is the exception rather than the norm for solving larger-scale problems [e.g.,
3, 4, 9, 19, 20, 24, 25]. Large-scale RL systems often need to function for long periods of time and
continually experience new data; restarting them from scratch to incorporate system or design (e.g.,
algorithmic or architectural changes) may require weeks if not months of computation, and there
may be millions of data points to re-process – this makes the tabula rasa approach impractical. Thus,
as deep RL research move towards more complex and challenging benchmarks, the computational
barrier to entry in RL research would be even substantially higher.

To address the inefficiencies of tabula rasa RL and unlock deep RL research for the masses, we
present reincarnating RL (RRL) as an alternative research workflow or a class of problems the RL
community should focus on. RRL seeks to maximally leverage prior computational work, such as
learned network weights and collected data, to accelerate training across design iterations of an RL
agent or when moving from one agent to another. In RRL, agents need not be trained tabula rasa,
except for initial forays into new problems. For example, imagine a researcher who has trained an
agent A1 for a long time (e.g., weeks), but now this or another researcher wants to experiment with
better architectures or RL algorithms. While the tabula rasa workflow requires re-training another
agent from scratch, reincarnating RL provides the more viable option of transferring A1 to another
agent and training this agent further, or simply fine-tuning A1. While areas such as offline RL,
imitation learning, transfer in RL etc focus on developing methods to leverage prior computation,
contrary to RRL, such areas don’t strive to change how we do RL research by incorporating such
methods as a part of our workflow. For example, we still mostly train ALE agents from scratch.

RRL can democratize research by allowing the broader community to tackle complex RL problems
without requiring excessive computational resources. As a consequence, RRL can also help avoid the
risk of researchers overfitting to conclusions from small-scale RL problems. Furthermore, RRL can
enable a benchmarking paradigm where researchers continually improve and update existing trained
agents, especially on problems where improving performance has real-world impact (e.g., balloon
navigation [7], chip design [20], tokamak control [12]). Furthermore, a common real-world RL use
case will likely be in scenarios where prior computational work is available (e.g., existing deployed RL
policies), making RRL important to study. However, beyond some ad hoc large-scale reincarnation
efforts with limited applicability (existing approaches can not be used for RRL when switching to
arbitrary architectures or transferring policies to value / model-based agents), the community has not
focused much on studying reincarnating RL as a research problem in its own right. To this end, we
argue for developing general-purpose RRL approaches as opposed to prior ad hoc solutions.

Different RRL problems can be instantiated depending on how the prior computational work is
provided: logged datasets, learned policies, pretrained models, representations, etc. As a step towards
developing broadly applicable RRL approaches, we present a case study on how reincarnating RL
can democratize research on ALE, one of the most widely studied RL benchmark. We’ll discuss
several avenues for future work such as enabling workflows that can incorporate knowledge provided
in a form other than a policy, such as pretrained models, representations or LLMs, developing
better methods for PVRL, and being able to utilize several sources of prior computation (multiple
suboptimal teachers, LLMs etc). Furthermore, we believe that reincarnating RL would be especially
important for continued progress in building embodied agents in open-ended domains [5]. As Newton
put it “If I have seen further it is by standing on the shoulders of giants”, we argue that reincarnating
RL can substantially accelerate progress in deep RL by building on prior computational work, as
opposed to always redoing this work from scratch.
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Figure 1: A reincarnating RL workflow on ALE. The plots show Interquartile mean [2] normalized scores
over training, computed using 50 seeds, aggregated across 10 Atari games. The vertical separators correspond
to loading network weights and replay buffer for fine-tuning while offline pre-training on replay buffer using
QDagger for reincarnation. Shaded regions show 95% confidence intervals. We assign a score of 1 to DQN
(Adam) trained for 400M frames and 0 to a random agent. (Panel 1) Tabula rasa Nature DQN [21] nearly
converges in performance after training for 200M environment frames. (Panel 2) Reincarnation via fine-tuning
Nature DQN with a reduced learning rate leads to 50% higher IQM with only 1M additional frames (leftmost
point). Furthermore, fine-tuning Nature DQN while switching from RMSProp to Adam matches the perfor-
mance of DQN (Adam) trained from scratch for 400M frames, using only 20M frames. (Panel 3) A modern
ResNet (Impala-CNN [14]) with a better algorithm (Rainbow [17]) outperforms further fine-tuning n-step DQN.
Reincarnated Impala-CNN Rainbow outperforms tabula rasa Impala-CNN Rainbow throughout training and
requires only 50M frames to nearly match its performance at 100M frames. See Section .

Case Study on ALE: Democratizing Research via Reincarnating RL

As Mnih et al. [21]’s development of Nature DQN established the tabula rasa workflow on ALE, we
demonstrate how iterating on ALE agents’ design can be significantly accelerated using a reincarnating
RL workflow, starting from Nature DQN, in Figure 1. For each game, training Nature DQN requires
about 3-5 days on a single GPU using the Dopamine library [10]. Although Nature DQN used
RMSProp, Adam yields better performance than RMSProp [1, 22]. While we can train another
DQN agent from scratch with Adam, fine-tuning Nature DQN with Adam and 3-step returns, with a
reduced learning rate, matches the performance of this tabula rasa DQN trained for 400M frames,
using a 20 times smaller sample and compute budget (Panel 2 in Figure 1). As such, on a P100 GPU,
fine-tuning only requires training for a few hours rather than a week needed for tabula rasa RL. Given
this fine-tuned DQN, fine-tuning it further results in diminishing returns with additional frames due
to being constrained to use the 3-layer convolutional neural network (CNN) with the DQN algorithm.

Let us now consider how one might use a more general reincarnation approach to improve on
fine-tuning, by leveraging architectural and algorithmic advances since DQN, without the sample
complexity of training from scratch (Panel 3 in Figure 1). Specifically, using QDagger(̃a specific
algorithm for reincarnating RL) to transfer the fine-tuned DQN, we reincarnate Impala-CNN Rainbow
that combines Dopamine Rainbow [17], which incorporates distributional RL [8], prioritized replay
[23] and n-step returns, with an Impala-CNN architecture [14], a deep ResNet with 15 convolutional
layers. Tabula rasa Impala-CNN Rainbow outperforms fine-tuning DQN further within 25M frames.
Reincarnated Impala-CNN Rainbow quickly outperforms its teacher policy within 5M frames and
maintains superior performance over its tabula rasa counterpart throughout training for 50M frames.
To catch up with the performance of this reincarnated agent’s performance, the tabula rasa Impala-
CNN Rainbow requires additional training for 50M frames (48 hours on a P100 GPU). Overall,
these results indicate how past research on ALE could have been accelerated by incorporating a
reincarnating RL approach to designing agents, instead of always re-training agents from scratch.

Takeaway: Reincarnating RL could positively impact society by reducing the computational burden
on researchers and is more environment friendly than tabula rasa RL. For example, reincarnating
RL allow researchers to train super-human Atari agents on a single GPU within a span of few hours
as opposed to training for a few days. Additionally, reincarnating RL is more accessible to the
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wider research community, as researchers without sufficient compute resources can build on prior
computational work from resource-rich groups, and even improve upon them using limited resources.
Furthermore, this democratization could directly improve RL applicability for practical applications,
as most businesses that could benefit from RL often cannot afford the expertise to design in-house
solutions.

Reproducibility, Comparisons and Generalizability
Scientific Comparisons. Fairly comparing reincarnation approaches entails using the exactly same
computational work and workflow. To enable this, it would be beneficial if the researchers can release
model checkpoints and the data generated (at least the final replay buffers), in addition to open-source
code for their trained RL agents. Indeed, to allow others to use the same reincarnation setup as our
work, we have already open-sourced DQN (Adam) agent checkpoints and the final replay buffer at
gs://rl_checkpoints.

Generalizability. The generalizable findings in reincarnating RL would be about comparing algorith-
mic efficacy given access to existing computational work on a task. As such, the performance ranking
of reincarnation algorithms is likely to remain consistent across different teachers. Practitioners
can use the findings from reincarnating RL to try to improve on an existing deployed RL policy (as
opposed to being restricted to running tabula rasa RL).

Reproducibility. Reproducibility from scratch is challenging in RRL as it would require details
of the generation of the prior computational work (e.g., teacher policies), which may itself has
been obtained via reincarnating RL. As reproducibility from scratch involves reproducing existing
computational work, it could be more expensive than training tabula rasa, which beats the purpose of
doing reincarnation. Furthermore, reproducibility from scratch is also difficult in NLP and computed
vision, where existing pretrained models (e.g.,, GPT-3) are rarely, if ever, reproduced / re-trained
from scratch but almost always used as-is. Despite this difficulty, pretraining-and-fine-tuning is a
dominant paradigm in NLP and vision [e.g., 11, 13, 16, 18], and we believe that a similar difficulty in
RRL should not prevent researchers from investigating and studying this important class of problems.
Instead, we expect that RRL research would build on open-sourced prior computational work. Akin
to NLP and vision, where typically a small set of pretrained models are used in research, we believe
that research on developing better reincarnating RL methods can also possibly converge to a small set
of open-sourced models / data on a given benchmark, e.g., the agents and data we released on Atari
or the 25, 000 trained Atari agents released by Gogianu et al. [15], concurrent to this work.
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