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ABSTRACT

Few-shot learning aims to learn representations that can tackle novel tasks given
a small number of examples. Recent studies show that task distribution plays
a vital role in the performance of the model. Conventional wisdom is that task
diversity should improve the performance of meta-learning. In this work, we
find evidence to the contrary; we study different task distributions on a myriad
of models and datasets to evaluate the effect of task diversity on meta-learning
algorithms. For this experiment, we train on multiple datasets, and with three
broad classes of meta-learning models - Metric-based (i.e., Protonet, Matching
Networks), Optimization-based (i.e., MAML, Reptile, and MetaOptNet), and
Bayesian meta-learning models (i.e., CNAPs). Our experiments demonstrate that
the effect of task diversity on all these algorithms follows a similar trend, and task
diversity does not seem to offer any benefits to the learning of the model. Further-
more, we also demonstrate that even a handful of tasks, repeated over multiple
batches, would be sufficient to achieve a performance similar to uniform sampling
and draws into question the need for additional tasks to create better models.

1 INTRODUCTION

It is widely recognized that humans can learn new concepts based on very little supervision, i.e.,
with few examples (or ”shots”), and generalize these concepts to unseen data as mentioned by Lake
et al. (2011). Recent advances in deep learning, on the other hand, have primarily relied on datasets
with large amounts of labeled examples, primarily due to overfitting concerns in low data regimes.
Although the development of better data augmentation and regularization techniques can alleviate
these concerns, many researchers now assume that future breakthroughs in low data regimes will
emerge from meta-learning, or ”learning to learn.” Here, we study the effect of task diversity in the
low data regime and its effect on various models. In this meta-learning setting, a model is trained
on a handful of labeled examples at a time under the assumption that it will learn how to correctly
project examples of different classes and generalize this knowledge to unseen labels at test time.
Although this setting is often used to illustrate the remaining gap between human capabilities and
machine learning, we could argue that the domain of meta-learning is still nascent. The domain of
task selection has remained virtually unexplored in this setting.

Conventional wisdom is that the performance of the model will improve as we train on more diverse
tasks. To test this hypothesis to its limits, we define various task samplers which either limit task
diversity by selecting a subset of overall tasks or improving task diversity using approaches such as
Determinantal Point Processes (DPPs) proposed by Macchi (1975).

Our contributions in this work are as follows:

• We show that, against conventional wisdom, task diversity does not significantly boost
performance in meta-learning. Instead, limiting task diversity and repeating the same tasks
over the training phase allows the model to obtain performances similar to models trained
on Uniform Sampler without any adverse effects.

• We also show that increasing task diversity using sophisticated samplers such as DPP or
Online Hard Task Mining (OHTM) Samplers do not significantly boost performance. In-
stead, the dynamic-DPP Sampler harms the model due to the increased task diversity.

• We empirically show that repeating tasks over the training phase can perform similarly
to a model trained on the Uniform Sampler, achieving similar performance with only a
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fragment of data. This key finding questions the need to increase the support set pool to
improve the model’s performance.

2 RELATED WORKS

Meta-learning formulations typically rely on episodic training, wherein an algorithm adapts to a
task, given its support set, to minimize the loss incurred on the query set. Meta-learning methods
differ in terms of the algorithms they learn, and can be broadly classified under four prominent
classes: Metric-based, Model-based, Optimization-based and Bayesian-based approaches. Metric-
based methods such as Koch et al. (2015); Vinyals et al. (2016); Snell et al. (2017); Sung et al. (2018)
operate on the core idea similar to nearest neighbors algorithm and kernel density estimation. These
methods are also called non-parametric approaches. Model-based methods such as Santoro et al.
(2016); Munkhdalai & Yu (2017) depend on a model designed specifically for fast learning, which
updates its parameters rapidly with a few training steps, achieved by its internal architecture or con-
trolled by another meta-learner model. Generic deep learning models learn through backpropagation
of gradients, which are neither designed to cope with a small number of training samples nor con-
verge within a few optimization steps. To address this, Optimization-based methods such as Ravi &
Larochelle (2016); Finn et al. (2017); Nichol et al. (2018) were proposed, which were better suited
to learn from a small number of samples. However, all the above approaches are deterministic and
are not the most suited for few-shot problems that are generally ambiguous. Hence, Bayesian-based
methods such as Yoon et al. (2018); Requeima et al. (2019) were proposed which helped address the
above issue.

Although research in meta-learning models has attracted much attention recently, the effect of task
diversity is virtually unexplored in the domain of meta-learning. However, task sampling and task
diversity have been more extensively studied in other closely related problems such as active learn-
ing. Active learning involves selecting unlabeled data items in order to improve an existing classifier.
Although most of the approaches in this domain are based on heuristics, there are few approaches
to sample a batch of samples for active learning. Ravi & Larochelle (2018) proposed an approach
to sample a batch of samples using a protonet as the backbone architecture. The model tries to
maximize the query set, given support set and unlabeled data. Other works such as Hsu et al. (2018)
proposed a framework named CACTUs, which samples tasks/examples using relatively simple task
construction mechanisms such as clustering embeddings. The unsupervised representations learned
via these samples lead to a good performance on various downstream human-specified tasks.

Although nascent, a few recent works aim to improve meta-learning by explicitly looking at the
task structure and relationships. Among these, Yin et al. (2019) proposed an approach to handle
the lack of mutual exclusiveness among different tasks through an information-theoretic regularized
objective. In addition, several popular meta-learning methods Lee et al. (2019); Snell et al. (2017)
improve the meta-test performance by changing the number of ways or shots of the sampled meta-
training tasks, thus increasing the complexity and diversity of the tasks. Other works such as Liu
et al. (2020a) proposed an approach to sample classes using class-pair-based sampling and class-
based sampling. The Class-pair based Sampler selects pairs of classes that confuse the model the
most. The class-based Sampler samples each class independently and does not consider the task’s
difficulty as a whole. Our OHTM sampler is similar to the Class-pair based Sampler. Other works
such as Liu et al. (2020b) propose to augment the set of possible tasks by augmenting the pre-
defined set of classes that generate the tasks with varying degrees of rotated inputs as new classes.
Other works such as Setlur et al. (2020) look at the structure and diversity of tasks specifically
through the lens of support set diversity, and show that, surprisingly, reducing diversity (by fixing
support set) not only maintains—but in many cases, significantly improves—the performance of
meta-learning. This experiment is very similar to our No Diversity Task Sampler if the size of the
support set is equal to the number of classes per task. However, in this work, we extend their work
on MetaOptNet, Protonet to many other models and a myriad of samplers to better understand task
diversity in meta-learning. To the best of our knowledge, we are the first to study the effect of task
diversity in meta-learning to this extent.
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Figure 1: Illustration of (a) the Uniform Sampler, (b) the No Diversity Task Sampler, and (c) the No
Diversity Batch Sampler.

3 BACKGROUND

Here, we review some of the fundamental ideas required to understand our few-shot learning exper-
iments better.

3.1 EPISODIC FEW-SHOT LEARNING

In episodic few-shot learning, an episode is represented as a K-way, N-shot classification problem
where N is the number of examples per class and K is the number of unique class labels. During
training, the data in each episode is provided as a support set S = {(x1,1, y1,1), ..., (xN,K , yN,K)}
where xi,j ∈ RD is the i-th instance of the j-th class, and yj ∈ {0, 1}K is its corresponding one-hot
labeling vector. Each episode aims to optimize a function f that classifies new instances provided
through a ”query” set Q, containing instances of the same class as S. This task is difficult because
N is typically very small (e,g, 1 to 10). The classes change every episode. The actual test set used to
evaluate a model does not contain classes seen in support sets during training. In the task-distribution
view, meta-learning is a general-purpose learning algorithm that can generalize across tasks and
ideally enable each new task to be learned better than the last. We can evaluate the performance of
ω over a distribution of tasks p(T ). Here we loosely define a task to be a dataset and loss function
T = {D,L}. Learning how to learn thus becomes:

min
ω

E
τ∼p(τ)

L(D;ω) (1)

whereL(D;ω) measures the performance of a model trained using ω on datasetD and p(τ) indicates
the task distribution. In this experiment, we extend this setting such that we vary the task diversity
in the train split to study the effects on test split, which remains to use uniform or random sampling
for tasks.

3.2 DETERMINANTAL POINT PROCESSES (DPPS)

A DPP is a probability distribution over subsets of a ground set Y , where we assume Y =
{1, 2, ..., N} and N = |Y|. An L-ensemble defines a DPP using a real, symmetric, and positive-
definite matrix L indexed by the elements of Y . The probability of sampling a subset Y = A ⊆ Y
can be written as:

P (Y = A) ∝ det LA, (2)

where LA := [Li,j ]i,j∈A is the restriction of L to the entries indexed by the elements of A. As L is
a positive semi-definite, there exists a d × N matrix Ψ such that L = ΨTΨ where d ≤ N . Using
this principle, we define the probability of sampling as:

P (Y = A) ∝ det LA = Vol2({Ψi}i∈A), (3)
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Figure 2: Illustration of (a) the No Diversity Task per Batch Sampler, and (b) the Single Batch
Uniform Sampler.

where the RHS is the squared volume of the parallelepiped spanned by {Ψi}i∈A. In Eq. 3, Ψi is
defined as the feature vector of element i, and each element Li,j in L is the similarity measured by
dot products between elements i and j. Hence, we can verify that a DPP places higher probabilities
on diverse sets because the more orthogonal the feature vectors are, the larger the volume paral-
lelepiped spanned by the feature vector is. In this work, these feature embeddings represent class
embeddings, which are derived using either a pre-trained protonet model or the model being trained
as discussed in Sec. 3.3.

In a DPP, the cardinality of a sampled subset, |A|, is random in general. A k-DPP is an extension
of the DPP proposed in the work of Kuhn et al. (2003), where the cardinality of subsets are fixed as
k (i.e., |A| =k). In this work, we use k-DPPs as an off-the-shelf implementation to retrieve classes
that represent a task used in the meta-learning step.

3.3 TASK SAMPLING

In this work, we experiment with eight distinct task samplers, each offering a different level of task
diversity. To demonstrate the task samplers, we use a 2-way classification problem with a meta-batch
size of 2 and denote each class with a unique alphabet from the Omniglot dataset.

Uniform Sampler This is the most widely used Sampler used in the setting of meta-learning. The
Sampler gives equal probability to every task and is intuitively a random sampler. An illustration of
this Sampler is shown in Figure 1.

No Diversity Task Sampler In this setting, we uniformly sample one set of the task at the begin-
ning and propagate the same task across all batches and meta-batches. Note that repeating the same
class over and over again does not simply repeat the same images/inputs as we episodically retrieve
different images for each class. An illustration of this Sampler is shown in Figure 1.

No Diversity Batch Sampler In this setting, we uniformly sample one set of tasks for batch one
and propagate the same tasks across all other batches. Furthermore, we shuffle these tasks to enforce
that the model does not overfit. An illustration of this Sampler is shown in Figure 1.

No Diversity Tasks per Batch Sampler In this setting, we uniformly sample one set of tasks for
a given batch and propagate the same tasks for all meta-batches. We then repeat this same principle
for sampling the next batch. Furthermore, we shuffle these tasks to enforce that the model does not
overfit. An illustration of this Sampler is shown in Figure 2.

Single Batch Uniform Sampler In this setting, we set the meta-batch size to one. This Sampler
is intuitively the same as no diversity task per batch sampler, without the repetition of tasks. This
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Figure 3: Illustration of (a) Online Hard Task Mining Sampler, (b) the Static DPP Sampler, and (c)
the Dynamic DPP Sampler.

Sampler would be an ideal ablation study for the repetition of tasks in the meta-learning setting. An
illustration of this Sampler is shown in Figure 2.

Online Hard Task Mining Sampler This setting is inspired by the works of Shrivastava et al.
(2016) where they proposed OHEM, which yielded significant boosts in detection performance on
benchmarks like PASCAL VOC 2007 and 2012. However, to reproduce OHEM for meta-learning,
we only apply the OHEM sampler for half the meta-batch size and uniform sampler for the remain-
ing half. This approach would allow us to involve many tasks and not restrict us to only known tasks.
Furthermore, to avoid OHEM in the initial stages, we sample tasks with a uniform sampler until the
buffer of tasks seen by the model becomes sufficiently big, say 50 in our case. An illustration of this
Sampler is shown in Figure 3.

Static DPP Sampler Determinantal Point Processes (DPP) have been used for several machine
learning problems such as the works of Kulesza & Taskar (2012). They have also been used in
other problems such as the active learning settings in the works of Bıyık et al. (2019) and mini-batch
sampling problems in the works of Zhang et al. (2019). These algorithms have also inspired other
works in active learning in the batch mode setting, such as Ravi & Larochelle (2018). In this setting,
we use DPP as an off-the-shelf implementation to sample tasks based on task embeddings. These
task embeddings are generated using our pre-trained protonet model. The DPP instance is used to
sample the most diverse tasks based on these embeddings and used for meta-learning. An illustration
of this Sampler is shown in Figure 3.

Dynamic DPP Sampler In this setting, we extend the previous sDPP setting such that the model
in training generates the task embeddings. The Sampler is motivated by the intuition that selecting
the most diverse tasks for a given model will help learn better. Furthermore, to avoid DPP in the
initial stages, we sample tasks with a uniform sampler until the model becomes sufficiently trained,
say 500 batches in our case. An illustration of this Sampler is shown in Figure 3.

4 EXPERIMENTS

The experiment aims to answer the following questions: (a) How does task diversity affect meta-
learning? (b) Do sophisticated samplers such as OHEM or DPP offer any significant boost in per-
formance? (c) Are there any rule of thumb or general good practices when it comes to sampling
tasks?

To make an exhaustive study on the effect of task diversity in meta-learning, we train on four
datasets: Omniglot Lake et al. (2011), miniImagenet Ravi & Larochelle (2016), tieredImageNet
Ren et al. (2018), and Meta-Dataset Triantafillou et al. (2019). With this selection of datasets, we
cover both simple datasets, such as Omniglot and miniImageNet, as well as the most difficult ones,
such as tieredImageNet and Meta-Dataset. We train three broad classes of meta-learning models on

5



Under review as a conference paper at ICLR 2022

MAML Reptile Protonet Matching Net. MetaOptNet CNAPs
60

70

80

90

100 ∗ ∗ ∗

A
cc
u
ra
cy

Omniglot 5-way 1-shot

MAML Reptile Protonet Matching Net. MetaOptNet CNAPs
20

40

60

30

50

70

∗
∗

∗

A
cc
u
ra
cy

miniImageNet 5-way 1-shot

Uniform No Diversity Task No Diversity Batch No Diversity Tasks/Batch Single OHTM s-DPP d-DPP

Figure 4: Average accuracy on Omniglot 5-way 1-shot & miniImageNet 5-way 1-shot, with 95%
confidence interval. All samplers are poorer than the Uniform Sampler and are statistically signifi-
cant (with a p-value p = 0.05). We use the symbol ∗ to represent the instances where the results are
not statistically significant and similar to the performance achieved by Uniform Sampler.
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Figure 5: Average accuracy on Omniglot 20-way 1-shot, with a 95% confidence interval. We denote
all samplers that are worse than the Uniform Sampler and are statistically significant (with a p-value
p = 0.05) with H, and those that are significantly better than the Uniform Sampler with N.

these datasets - Metric-based (i.e., Protonet, Matching Networks), Optimization-based (i.e., MAML,
Reptile, and MetaOptNet), and Bayesian meta-learning models (i.e., CNAPs). More details about
the datasets which were used in our experiments are discussed in App. A.1. More details about the
models and their hyperparameters are discussed in App. A.2. We created a common pool of 1024
randomly sampled held-out tasks to test every algorithm in our experiments to make an accurate
comparison. For all experiments, we assessed the statistical significance of our results based on a
paired-difference t-test, with a p-value p = 0.05.

4.1 RESULTS

In this section, we present the results of our experiments. Figure 4 presents the performance of the
six models on the Omniglot and miniImageNet under different task samplers in the 5-way 1-shot
setting. Table 2 in the Appendix presents the same results with higher precision.

We also reproduce our experiments on the 20-way 1-shot setting on the Omniglot dataset to establish
that these trends are shared across different settings. Figure 5 presents our performance of the mod-
els under this setting. Furthermore, the results on the 20-way 1-shot experiments are presented in
Table 3 in the Appendix with higher precision. To further establish our findings, we also present our
result on notoriously harder datasets such as tieredImageNet and Meta-Dataset. Figure 6 presents
the performance of the models on the tieredImageNet. Again, Table 2 in the Appendix presents the
same results with higher precision.
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Figure 6: Average accuracy on tieredImageNet 5-way 1-shot, Meta-Dataset Traffic Sign 5-way
1-shot & Meta-Dataset MSCOCO 5-way 1-shot, with a 95% confidence interval. We denote all
samplers that are worse than the Uniform Sampler and are statistically significant (with a p-value
p = 0.05) with H, and those that are significantly better than the Uniform Sampler with N.

Figure 6 presents the performance of the models on the Meta-Dataset Traffic Sign and Meta-Dataset
MSCOCO datasets. We only present the results on Traffic Sign and MSCOCO of the Meta-Dataset,
as these two sub-datasets are exclusively used for testing and are an accurate representation of the
generalization power of the models when trained with different levels of task diversity. Other results
on the Meta-Dataset are presented in Table 4. We empirically show that task diversity does not lead
to any significant boost in the performance of the models. In the subsequent section, we discuss
some of the other key findings from our work.

5 DISCUSSION

In this section, we discuss few empirical results from our experiments and shed light on some of the
key findings from our research.

Poor performance by NDT Sampler The lowest performance is consistently obtained by the
No Diversity Task Sampler, which is reasonable since the model only sees one task throughout its
training. What is fascinating is that just one task is sufficient for the model to reach a reasonably
decent performance in most cases. We do notice instances where NDT Sampler performs very well
on a few sub-datasets of the Meta-Dataset. This can be explained by the fact that the model has only
be trained for a single sub-dataset and has relatively less class variability (noise) when compared to
training on multiple sub-datasets.

Poor performance by Single Batch Uniform Sampler Consequently, the Single Batch Uni-
form Sampler does perform poorly on most datasets, including Omniglot, miniImageNet, and
tieredImageNet. This is reasonable since the model is trained on a tiny pool of the dataset. How-
ever, we notice instances where the Sampler performs very well on a few sub-datasets of the Meta-
Dataset. We hypothesize that training on fewer samples keeps the model unaware of the inherent
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class variability generated by training on diverse datasets and aids better performance in the case of
Meta-Dataset.

Disparity between Single Batch Uniform and NDTB Sampler Another exciting result is the
Disparity between Single Batch Uniform Sampler and No Diversity Tasks per Batch Sampler. As
mentioned earlier, the only difference between the two samplers is that tasks are repeated in the
latter. However, this repetition seems to offer a great deal of information to the model and allows
the model to perform on par with the Uniform Sampler. It might be possible that the Single Batch
Uniform Sampler obtains the performance observed by the No Diversity Tasks per Batch Sampler
if trained for enough epochs. However, it would be safe to comment that the convergence of the
model is significantly faster in the latter. Thus, repeating tasks might help speed up the convergence
of the model when we have a fixed and handful amount of data. However, the same is not valid for
models trained on Meta-Dataset. Although both samplers are trained over a similar pool of datasets,
the NDTB sampler sees more data and might lead to more inherent class variability generated by
training on diverse datasets. This might explain why repeating tasks leads to lower performance in
this case.

Disparity between s-DPP and d-DPP Sampler We also note that s-DPP and d-DPP samplers do
not offer any boost in performance when compared to the regular Uniform Sampler. Furthermore,
there seems to be a significant disparity between these two samplers. We believe that d-DPP, which
computes the most diverse tasks at regular intervals, harms the model with the diverse tasks since
we observe that the model’s performance degrades over epochs. For example, consider the scenario
where the model is trained on tasks involving dogs and tractors. This task is relatively easy to learn
and would not require the model to fine-tune a great deal. However, during test time, suppose our
task involves classifying cats and dogs; this would be a problem since the model has not learned the
intricacies of the two classes. Thus, diversity seems to do more harm than good in this case. The
best example of this is observed by Matching Networks in Omniglot 5-way 1-shot setting as shown
in Figure 10, where each instance of diverse sampling harms the model significantly.

Limitation of samplers with DPP backbone Samplers such as s-DPP and d-DPP, which use
DPP to sample diverse tasks, require task embeddings of every class in the dataset. Computing these
task embeddings, although intensive, might be sustainable for small datasets such as Omniglot,
miniImageNet, and tieredImageNet. However, computing the task embedding for every class of a
dataset as large as the Meta-Dataset is nearly impossible due to the time and memory constraints.
Hence, in our experiments on the Meta-Dataset, we do not run the model using the s-DPP and d-DPP
Sampler and only report the findings from the remaining samplers.

OHTM Sampler offers no significant performance boost The OHTM Sampler is quite sophisti-
cated since it regularly samples diverse tasks, as well as selects the most challenging tasks to improve
the model. It is needless to say; the model requires more computational power and time than the
Uniform Sampler. However, the OHTM Sampler offers no significant boost in performance when
compared to the Uniform Sampler in the case of Omniglot, miniImageNet, and tieredImageNet.
However, for Meta-Dataset, we notice that the OHTM Sampler sometimes leads to improved per-
formance. This finding is quite puzzling since the Sampler works similarly across all datasets and
does not address the inherent class variability generated from training on diverse datasets such as
the Meta-Dataset. The behavior of the OHTM Sampler on Meta-Datasets warrants further research.

Comparison between NDTB, NDB, and Uniform Sampler From our experiments, we also no-
tice that the No Diversity Tasks per Batch Sampler and No Diversity Batch Sampler are pretty similar
to the Uniform Sampler in terms of performance. This would suggest that the model trained on only
a data fragment can perform similarly to that trained on the Uniform Sampler.

Abnormal run of matching networks d-DPP (20-way 1-shot) In our run on the matching net-
works with the d-DPP Sampler under the 20-way 1-shot setting, we ran across a peculiar error.
The prototypes generated by the matching networks were sometimes not fit to be used by the d-
DPP Sampler to sample 20 unique classes. The reason is that the rank of the matrix generated
using the embeddings was lower than the required number of classes per task (i.e., 20). To create a
workaround for this sole experiment, we chose to sample 5 diverse classes at a time and append them
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to create the task. We hypothesize that the prototypes created by matching networks are unsuitable
for downstream tasks and warrant further research regarding this behavior.

Poor performance of MAML on Meta-Dataset In our experiments on Meta-Dataset, we notice
that MAML performs significantly worse than other models. Some of the reasons for this disparity of
performance when compared to Triantafillou et al. (2019) have been discussed in detail in Appendix
A.1. Furthermore, we hypothesize that the poor performance of MAML can be attributed to the way
its adaptation process works: MAML learns within episode weights of the model before adapting to
a set of new tasks via meta-update or outer loop update. This new task is again sampled from the pool
of tasks and is a different set of data altogether. In most cases, where the model is trained on only
one dataset, this intuition would make sense and lead to high-performing models. However, in the
case of Meta-Dataset, where the new set of tasks might be of entirely different datasets or domains,
this approach tends to do more harm to the model rather than aid. In the work of Triantafillou et al.
(2019), the authors adapted MAML such that it focuses on learning the within-episode initialization
θ of the embedding network so that it can be rapidly adapted for a new task. This allows the model
to learn from a variable number of ways and shots per episode.

Peculiar behavior with MetaOptNet model Compared to all other models, MetaOptNet seems
to be immune to the effects of task diversity to a great extent. The convergence of the model seems
to follow a general pattern and achieve similar performance across task distributions except for the
Single Batch Uniform Sampler and No Diversity Task sampler. Furthermore, we do not observe the
expected pattern of d-DPP Sampler, where the performance drops upon mining diverse tasks. We
present the convergence graph of the MetaOptNet model on Omniglot 5-way 1-shot run in Figure 11
in the Appendix with an added smoothing factor of 1.

General Trend From our experiments, we notice that there are generally two classes of samplers:
High Performing Samplers and Low Performing Samplers. The High Performing Samplers include
No Diversity Batch, No Diversity Tasks per Batch, Uniform, OHTM, and s-DPP Sampler. The Low
Performing Samplers include No Diversity Task, Single Batch Uniform, and d-DPP Sampler. This
trend is shared across all datasets and models. There are some perturbations in ranking within the
two classes, but the High Performing Samplers tend to perform better than the Low Performing
Samplers.

6 CONCLUSION

In this paper, we have studied the effect of task diversity in meta-learning. We have empirically
shown that task diversity does not lead to any significant boost in performance in meta-learning. In-
stead, limiting task diversity and repeating the same tasks over the training phase allows us to obtain
similar performances to the Uniform Sampler without any significant adverse effects. Furthermore,
We also show that sophisticated samplers such as OHEM or DPP samplers do not offer any signifi-
cant boost in performance. In contradiction, we notice that increasing task diversity using the d-DPP
Sampler hampers the performance of the meta-learning model. Our experiments using the NDTB
and NDB empirically show that a model trained on even a tiny data fragment can perform similarly
to a model trained using Uniform Sampler. This is a crucial finding since this questions the need
to increase the support set pool to improve the models’ performance. We believe that the experi-
ments we performed lay the roadwork to further research for the effect of task diversity domain in
meta-learning and lay some groundwork and rules of thumb for task sampling for meta-learning.

REPRODUCABILITY STATEMENT

In this paper, we work with four different datasets - Omniglot, miniImageNet, tieredImageNet and
Meta-Dataset. Additional details about setting up these datasets is available in Appendix A.1. Fur-
thermore, we experiment with six different models - MAML, Reptile, Protonet, Matching Networks,
MetaOptNet, and CNAPs. All these models were run after reproducing from their open-source
codes. Additional details about setting up these models are available in Appendix A.2.
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A APPENDIX

A.1 DATASETS

Omniglot, miniImageNet and tieredImageNet were extracted using pytorch-meta. The Meta-Dataset
was downloaded using the setup information from the official repository: https://github.
com/google-research/meta-dataset.

Omniglot Omniglot is a benchmark dataset proposed by Lake et al. (2011) for few-shot image
classification tasks. Omniglot dataset consists of 20 instances and 1623 characters from 50 different
alphabets. We experiment with both 5-way 1-shot and 2-way 1-shot in this work.

miniImageNet miniImageNet is another benchmark dataset proposed by Ravi & Larochelle
(2016) for few-shot image classification tasks. The miniImageNet dataset involves 64 training
classes, 12 validation classes, and 24 test classes. We run under the setting 5-way 1-shot for this
experiment.

tieredImageNet tieredImageNet is notorious as a difficult benchmark dataset proposed by Ren
et al. (2018). The tieredImageNet dataset is a larger subset of ILSVRC-12 with 608 classes (779,165
images) grouped into 34 higher-level nodes in the ImageNet human-curated hierarchy. This set of
nodes is partitioned into 20, 6, and 8 disjoint sets of training, validation, and testing nodes, and the
corresponding classes form the respective meta-sets. As argued in Ren et al. (2018), this split near
the root of the ImageNet hierarchy results in a more challenging yet realistic regime with test classes
that are less similar to training classes. We run under the setting 5-way 1-shot for this experiment.

Meta-Dataset Meta-Dataset is notorious as a difficult benchmark dataset proposed by Triantafil-
lou et al. (2019). The Meta-Dataset is much larger than any previous benchmark and is comprised
of multiple existing datasets. This invites research into how diverse data sources can be exploited by
a meta-learner and allows us to evaluate a more challenging generalization problem to new datasets
altogether. Specifically, Meta-Dataset leverages data from the following 10 datasets: ILSVRC-2012
(Russakovsky et al. (2015)), Omniglot (Lake et al. (2011)), Aircraft (Maji et al. (2013)), CUB-200-
2011 (Wah et al. (2011)), Describable Textures (Cimpoi et al. (2014)), Quick Draw (Jongejan et al.
(2016)), Fungi (Schroeder & Cui (2018)), VGG Flower (Nilsback & Zisserman (2008)), Traffic
Signs (Houben et al. (2013)) and MSCOCO (Lin et al. (2014)). There exist few classes with fewer
image samples than 16. This becomes an issue since we need 1 for training and 15 for testing. We
repeat some of the support images for these classes to make up for the lack of examples. Since the
number of such classes is minimal, we justify this use as this solution cannot significantly increase
the model’s performance. Furthermore, unlike previous experiments on this dataset which use a
variable number of ways and shots during training, we train with a fixed number of ways and shots.
Furthermore, unlike the works in Triantafillou et al. (2019), we do not perform any pre-training to
help aid the model. We believe these are the main attributions for the disparity of our performance.
However, since we are focused on the relative performance of the samplers for a given model, this
discrepancy would not affect our study of task diversity in any manner. We again run under the
setting 5-way 1-shot for this experiment.

A.2 MODELS

This section describes some of the models we used for our experiments and the hyperparameters
used for their training.

A.2.1 PROTOTYPICAL NETWORKS

Prototypical Networks proposed by Snell et al. (2017) constructs a prototype for each class and
then classifies each query example as the class whose prototype is ’nearest’ to it under Euclidean
distance. More concretely, the probability that a query example x∗ belongs to class k is defined as:

p(y∗ = k|x∗,S) =
exp(−‖g(x∗)− ck‖22)∑

k′∈{1,...,N} exp(−‖g(x∗)− ck′‖22)
(4)
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Where ck is the ’prototype’ for class k: the average embeddings of class k’s support examples.

HYPERPARAMETERS In our experiments on Omniglot and miniImageNet, and tieredImageNet
under a 5-way, 1-shot setting, we run the model for 100 epochs with a batch size of 32 and a meta-
learning rate of 0.001. We use an Adam optimizer to make gradient steps and a StepLR scheduler
with step size 0.4 and gamma 0.5. The same hyperparameters are used for training our model on
Omniglot under a 20-way 1-shot setting.

We use the same parameters as the miniImageNet to train our model on the Meta-Dataset under a
5-way 1-shot setting. However, we run with a batch size of 16 rather than 32 to accommodate the
extensive training period and memory constraints.

A.2.2 MATCHING NETWORKS

Matching Networks proposed by Vinyals et al. (2016) labels each query example as a cosine
distance-weighted linear combination of the support labels:

p(y∗ = k|x∗,S) =

|S|∑
i=1

α(x∗, xi)Φyi=k, (5)

where ΦA is the indicator function and α(x∗, xi) is the cosine similarity between g(x∗) and g(xi),
softmax normalized over all support examples xi, where 1 ≤ i ≤ |S|.
We had trouble reproducing the results from matching networks using cosine distance since the
convergence seemed to be slow and the final performance dependent on the random initializa-
tion. This is similar to what is observed by other repositories such as https://github.com/
oscarknagg/few-shot. Since we are focused on the relative performance of the samplers for
a given model, this discrepancy would not affect our study of task diversity in any manner.

HYPERPARAMETERS In our experiments on Omniglot, miniImageNet, and tieredImageNet under
a 5-way, 1-shot setting, we run the model for 100 epochs with a batch size of 32 and an Adam opti-
mizer with a meta-learning rate of 0.001 and a weight decay of 0.0001. The same hyperparameters
are used for training our model on Omniglot under a 20-way 1-shot setting.

We use the same parameters as the miniImageNet to train our model on the Meta-Dataset under a
5-way 1-shot setting. However, we run with a batch size of 16 rather than 32 to accommodate the
extensive training period and memory constraints.

A.2.3 MAML

MAML proposed by Finn et al. (2017) uses a linear layer parametrized by W and b on top of the
embedding function g(.; θ) and classifies a query example as:

p(y∗|x∗,S) = softmax (b′ + W′g(x∗; θ′)), (6)
where the output layer parameters W’ and b’ and the embedding function parameters θ′ are obtained
by performing a small number of within-episode training steps on the support set S, starting from
initial parameter values (b,W, θ).

HYPERPARAMETERS In our experiments on Omniglot, miniImageNet, and tieredImageNet under
a 5-way, 1-shot setting, we run the model for 150 epochs with a batch size of 32, with the Adam
optimizer with a meta-learning rate of 0.001, number of inner adaptations as 1, and step size 0.4.
For our experiments on Omniglot under the 20-way 1-shot setting, we set the step size of 0.1 and
the number of inner adaptations to 5, batch size of 16, and kept all other hyperparameters constant.

We use the same parameters as the miniImageNet to train our model on the Meta-Dataset under a
5-way 1-shot setting. However, we ran with a batch size of 16 rather than 32 and only trained for
100 epochs to accommodate the extensive training period and memory constraints.

A.2.4 REPTILE

Like MAML, Reptile proposed by Nichol et al. (2018) learns an initialization for the parameters of
a neural network model, such that when we optimize these parameters at test time, learning is fast -
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i.e., the model generalizes from a small number of test tasks. Reptile converges towards a solution φ
that is close (in Euclidean distance) to each task τ ’s manifold of optimal solutions. Let φ denote the
network initialization, and W = φ+ ∆φ denote the network weights after performing some sort of
update. LetW∗τ denote the set of optimal network weights for task τ . We want to find φ such that
the distance D(φ,W∗τ ) is small for all tasks:

min
φ

Eτ [
1

2
D(φ,W∗τ )2] (7)

The official repository seems to train the model with a 5-way 15-shot and test the model on a 5-way
1-shot. However, we do not consider this to be an accurate study for the effect of task diversity. In
our work, we train and test the model in a 5-way 1-shot setting to ensure fair and accurate comparison
with other models. We believe this to be the source of discrepancy in our performance scores. Since
we are focused on the relative performance of the samplers for a given model, this discrepancy
would not affect our study of task diversity in any manner.

HYPERPARAMETERS In our experiments on Omniglot and miniImageNet under a 5-way, 1-shot
setting, we run the model for 150 epochs with a batch size of 32, a learning rate of 0.01, a meta-
learning rate of 0.001, and a number of inner adaptations as 5. We use the SGD optimizer of
inner steps and Adam optimizer for the outer steps. For our experiments on tieredImageNet, we
change the number of inner adaptations to 10, keeping all other hyperparameters constant. For our
experiments on Omniglot under the 20-way 1-shot setting, we set the meta-learning rate to 0.0005
and the number of inner adaptations to 10 and kept all other hyperparameters constant. Furthermore,
we only run the model for 50 epochs due to the very high training time.

We use the same parameters as the tieredImageNet to train our model on the Meta-Dataset under a
5-way 1-shot setting. However, we run with a batch size of 16 rather than 32 to accommodate the
extensive training period and memory constraints.

A.2.5 CNAPS

Conditional Neural Adaptive Processes proposed by Requeima et al. (2019) is able to efficiently
solve new multi-class classification problems after an initial training phase. The proposed approach,
based on Conditional Neural Processes (CNPs) mentioned in Garnelo et al. (2018), adapts a small
number of task-specific parameters for each new task encountered at test time. These parameters are
conditioned on a set of training examples for the new task. They do not require any additional tuning
to adapt both the final classification layer and feature extraction process. This allows the model to
handle various input distributions. The CNPs construct predictive distributions given x∗ as:

p(y∗|x∗, θ,Dτ ) = p(y∗|x∗, θ,Ψτ = Ψφ(Dτ )), (8)

where θ are global classifer parameters shared across tasks, Ψτ are local task-specific parameters,
produced by a function Ψφ(.) that acts of Dτ . Ψφ(.) has another set of global parameters φ called
adaptation network parameters. θ and φ are the learnable parameters in the model.

HYPERPARAMETERS In all our experiments with CNAPs, we run the model for ten epochs with a
batch size of 16 and a meta-learning rate of 0.01.

A.2.6 METAOPTNET

MetaOptNet proposed by Lee et al. (2019) proposes a linear classifier as the base learner for a meta-
learning based approach for few-shot learning. The approach uses a linear support vector machine
(SVM) to learn a classifier given a set of labeled training examples. The generalization error is
computed on a novel set of examples from the same task. The objective is to learn an embedding
model φ that minimizes generalization (or test) error across tasks given a base learner A. Formally,
the learning objective is:

min
φ

ET [Lmeta(Dtest ; θ, φ), where θ = A(Dtest ;φ)]. (9)

The choice of base learner A has a significant impact on the above equation. The base learner
that computes θ = A(Dtest ;φ) has to be efficient since the expectation has to be computed over a
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distribution of tasks. This work considers base learners based on multi-class linear classifiers such
as SVM, where the base learner’s object is convex. Thus, the base learner can be simplified as:

θ = A(Dtest ;φ) = arg min
{wk}

min
ξi

1
2

∑
k ‖wk‖22 + C

∑
n ξn; subject to:

wyn .fφ(xn)−wk.fφ(xn) ≥ 1− δyn,k − ξn,∀n, k
(10)

where Dtrain = {(xn, yn)}, C is the regularization parameter and δ.,. is the Kronecker delta func-
tion.

Furthermore, the official repository seems to train the model with a 5-way 15-shot and test the
model on a 5-way 1-shot. However, we do not consider this to be an accurate study for the effect
of task diversity. In our work, we train and test the model in a 5-way 1-shot setting to ensure fair
and accurate comparison with other models. We believe this to be the source of discrepancy in our
performance scores. Since we are focused on the relative performance of the samplers for a given
model, this discrepancy would not affect our study of task diversity in any manner.

HYPERPARAMETERS In our experiments on Omniglot, miniImageNet and tieredImageNet under a
5-way, 1-shot setting, we run the model for 60 epochs with a batch size of 32 and a meta-learning rate
of 0.01. We use an SGD optimizer with a momentum of 0.9 and a weight decay of 0.0001 to make
gradient steps. We also use a LambdaLR scheduler to train our model. The same hyperparameters
are used for training our model on Omniglot under a 20-way 1-shot setting.

We use the same parameters as the miniImageNet to train our model on the Meta-Dataset under a
5-way 1-shot setting. However, we run with a batch size of 16 rather than 32 to accommodate the
extensive training period and memory constraints.

A.3 ADDITIONAL RESULTS

A.3.1 RESULTS ON REGRESSION

We further experiment on the few-shot regression regime to maintain our findings on classification.
For this problem, we trained on three few-shot regression datasets: (i) Sinusoid (Finn et al. (2017)),
(ii)Sinusoid & Line (Finn et al. (2018)), and (iii) Harmonic (Lacoste et al. (2018). Table 1 presents
our results using the mean square error metric on the 5-shot and 10-shot setting for all three datasets.
Figure 7 and Figure 8 presents our results on the Sinusoid dataset specifically for easier comparison.
For both MAML and Reptile, we use the same network, with two hidden layers, each of size 40.

HYPERPARAMETERS For both MAML and Reptile, we train the model for 150 epochs, and use
the same hyperparameters as Omniglot. Only in the case of MAML, we use a step size of 0.001 for
Sinusoid and Sinusoid & Line dataset, instead of the traditional 0.4.

Results We again observe that samplers that limit diversity, such as NDB, NDT/B samplers
achieve performances similar to the uniform sampler with no adverse effects. Astonishingly, we
also notice that the NDT sampler seems to outperform all other samplers in the regression domain.
Furthermore, similar to our previous findings, samplers that increase diversity, such as the OHTM
sampler, do not perform very well in this domain either, as shown in Figure 7 and Figure 8. We can-
not train using DPP-oriented samplers for regression since the data is continuous, and computing
features or representations for the entire range would be theoretically impossible.

A.3.2 RESULTS ON CLASSIFICATION

In this section, we present the results with higher precision from our earlier experiments in a Table 2
and Table 3. Subsequently, we also plot convergence curves to aid better visualizations of findings
mentioned earlier in Figure 10 and Figure 11. We also present the results of our models on the
Meta-Dataset in Table 4.

Statistical Results We compare the performance of different models to the Uniform Sampler. All
samplers are poorer than the Uniform Sampler and are statistically significant with a confidence
interval of 95%. We use the symbol † to represent the instances where the results are not statistically
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5-shot 10-shot
Dataset Sampler MAML Reptile MAML Reptile

Sinusoid

Uniform Sampler 0.94 ± 0.06 0.37 ± 0.04 0.50 ± 0.03 0.12 ± 0.01
No Diversity Task Sampler 0.79 ± 0.06 ‡ 0.35 ± 0.35 0.54 ± 0.04 † 0.12 ± 0.01 †
No Diversity Batch Sampler 0.77 ± 0.05 ‡ 0.37 ± 0.04 † 0.56 ± 0.04 ‡ 0.13 ± 0.01 †

No Diversity Tasks per Batch Sampler 0.92 ± 0.06 † 0.37 ± 0.04 † 0.52 ± 0.04 † 0.12 ± 0.01 †
Single Batch Uniform Sampler 1.94 ± 0.11 0.71 ± 0.06 1.39 ± 0.07 0.25 ± 0.02

OHTM Sampler 1.17 ± 0.08 0.84 ± 0.30 0.79 ± 0.05 0.38 ± 0.03

Sinusoid and Line

Uniform Sampler 4.08 ± 0.32 3.74 ± 3.07 2.78 ± 0.22 0.66 ± 0.13
No Diversity Task Sampler 3.91 ± 0.32 † 2.80 ± 0.30 † 2.70 ± 0.23 † 0.70 ± 0.13 †
No Diversity Batch Sampler 4.07 ± 0.34 † 2.18 ± 0.27 † 2.66 ± 0.22 † 0.69 ± 0.11 †

No Diversity Tasks per Batch Sampler 4.17 ± 0.37 † 2.82 ± 0.31 † 2.73 ± 0.22 † 0.55 ± 0.08 †
Single Batch Uniform Sampler 6.62 ± 0.57 † 5.52 ± 4.45 8.48 ± 0.94 1.19 ± 0.15

OHTM Sampler 4.43 ± 0.33 3.67 ± 0.51 3.36 ± 0.28 1.19 ± 0.15

Harmonic

Uniform Sampler 1.07 ± 0.07 1.20 ± 0.08 1.07 ± 0.07 1.05 ± 0.07
No Diversity Task Sampler 1.12 ± 0.07 † 1.22 ± 0.09 † 1.07 ± 0.07 † 1.07 ± 0.07 †
No Diversity Batch Sampler 1.11 ± 0.07 † 1.18 ± 0.09 † 1.03 ± 0.06 † 1.08 ± 0.07 †

No Diversity Tasks per Batch Sampler 1.14 ± 0.07 † 1.18 ± 0.08 † 1.05 ± 0.07 † 1.05 ± 0.07 †
Single Batch Uniform Sampler 1.19 ± 0.08 1.10 ± 0.08 † 1.06 ± 0.07 1.08 ± 0.07 †

OHTM Sampler 1.13 ± 0.08 1.18 ± 0.08 † 1.42 ± 0.15 1.10 ± 0.07 †

Table 1: Performance metric of our models on different task samplers in the few-shot regression
setting.
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Figure 7: Few-shot adaptation for the simple regression task on Sinusoid 5-shot dataset. The ground
truth is denoted by ” ”. The predicted output of MAML and Reptile are denoted by ” ” and
” ” respectively. The training points used for computing gradients is denoted by N.

significant and similar to the performance achieved by uniform Sampler. We only observe a few
cases where a sampler performs significantly better than the Uniform Sampler, which we represent
using the symbol ‡. To assess statistical significance, we used a paired-difference t-test, with a p-
value p = 0.05.

Comparisons with SBU Sampler Previously, we compared the performance of NDTB and SBU
samplers. However, due to the possibility of unfair comparisons, limited by the number of itera-
tions of the SBU sampler, we extend the SBU Sampler to propose two new samplers: (1) SBU-
unbounded sampler - This sampler is similar to the SBU sampler but is run for more iterations.
However, this sampler allows the model to be trained on more classes than our traditional SBU sam-
pler. Since this remains an unfair comparison, we use this as a higher bound/ideal performance and
propose a more appropriate sampler. (2) SBU-bounded sampler - This sampler is again similar
to the SBU sampler but ran for more iterations with a bounded pool of tasks, similar to the NDTB
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Figure 8: Few-shot adaptation for the simple regression task on Sinusoid 10-shot dataset. The
ground truth is denoted by ” ”. The predicted output of MAML and Reptile are denoted by ” ”
and ” ” respectively. The training points used for computing gradients is denoted by N.

sampler or the SBU sampler. Our results from these experiments are presented in Figure 9. Table 5
shows the same results with higher precision.

We notice that training for more iterations using samplers such as SBU-unbounded and SBU-
bounded leads to a boost in performance. However, we also observe that the NDTB sampler re-
mains to perform better in most cases. With this, we maintain our previous findings. Furthermore,
we also notice a peculiar behavior where the SBU-bounded sampler performs better than the SBU-
unbounded sampler in most cases. This finding is interesting because the SBU-unbounded sampler
has access to more data, and the model being trained should lead to better representations and per-
formance. However, we notice that repeating the tasks and fixing the number of classes achieves the
same performance with little to no adverse effects.

Dataset Sampler MAML Reptile Protonet Matching Networks MetaOptNet CNAPs

Omniglot

Uniform Sampler 98.38 ± 0.17 94.64 ± 0.32 97.82 ± 0.23 94.71 ± 0.39 98.04 ± 0.22 95.01 ± 0.35
No Diversity Task Sampler 85.46 ± 0.59 81.59 ± 0.57 84.55 ± 0.56 64.41 ± 0.74 84.15 ± 0.57 62.06 ± 0.83
No Diversity Batch Sampler 97.17 ± 0.25 93.83 ± 0.34 96.67 ± 0.27 76.10 ± 0.65 97.11 ± 0.26 91.07 ± 0.46

No Diversity Tasks per Batch Sampler 97.76 ± 0.20 94.55 ± 0.31 † 97.18 ± 0.25 93.97 ± 0.40 96.80 ± 0.27 90.84 ± 0.47
Single Batch Uniform Sampler 93.84 ± 0.37 92.60 ± 0.38 95.95 ± 0.31 92.98 ± 0.44 95.76 ± 0.31 75.86 ± 0.73

OHTM Sampler 97.74 ± 0.20 93.89 ± 0.34 97.22 ± 0.25 93.48 ± 0.43 96.12 ± 0.29 91.51 ± 0.47
s-DPP Sampler 97.61 ± 0.21 94.79 ± 0.30 † 97.22 ± 0.24 92.29 ± 0.44 95.83 ± 0.30 95.00 ± 0.33 †
d-DPP Sampler 92.43 ± 0.42 92.60 ± 0.38 95.59 ± 0.33 93.67 ± 0.41 94.08 ± 0.35 94.01 ± 0.41

MiniImagenet

Uniform Sampler 48.86 ± 0.62 41.42 ± 0.56 48.56 ± 0.60 43.84 ± 0.58 55.02 ± 0.66 64.48 ± 0.71
No Diversity Task Sampler 36.70 ± 0.53 32.38 ± 0.48 37.83 ± 0.53 35.08 ± 0.53 36.62 ± 0.55 46.51 ± 0.63
No Diversity Batch Sampler 48.78 ± 0.60 † 40.80 ± 0.54 47.32 ± 0.62 42.15 ± 0.58 53.50 ± 0.63 60.92 ± 0.68

No Diversity Tasks per Batch Sampler 48.17 ± 0.62 41.49 ± 0.56 † 47.73 ± 0.60 42.54 ± 0.53 50.60 ± 0.62 64.11 ± 0.68 †
Single Batch Uniform Sampler 41.76 ± 0.56 22.96 ± 0.33 41.35 ± 0.56 40.00 ± 0.54 39.10 ± 0.54 45.47 ± 0.67

OHTM Sampler 48.30 ± 0.58 40.44 ± 0.54 47.45 ± 0.59 43.05 ± 0.55 47.11 ± 0.58 59.62 ± 0.69
s-DPP Sampler 48.14 ± 0.59 40.19 ± 0.56 47.22 ± 0.58 42.66 ± 0.56 52.74 ± 0.63 63.26 ± 0.69
d-DPP Sampler 35.61 ± 0.50 35.91 ± 0.54 34.77 ± 0.50 43.15 ± 0.58 34.67 ± 0.53 60.96 ± 0.70

Tiered-Imagenet

Uniform Sampler 51.89 ± 0.68 50.35 ± 0.69 49.18 ± 0.68 42.18 ± 0.66 49.51 ± 0.67 65.16 ± 0.75
No Diversity Task Sampler 34.13 ± 0.51 34.94 ± 0.54 34.01 ± 0.54 32.01 ± 0.51 37.12 ± 0.59 45.40 ± 0.68
No Diversity Batch Sampler 50.40 ± 0.68 48.80 ± 0.67 48.09 ± 0.67 42.03 ± 0.67 † 48.47 ± 0.67 60.13 ± 0.75

No Diversity Tasks per Batch Sampler 49.62 ± 0.69 50.77 ± 0.67† 46.96 ± 0.67 43.15 ± 0.66 ‡ 43.05 ± 0.63 62.81 ± 0.73
Single Batch Uniform Sampler 41.74 ± 0.66 36.82 ± 0.56 38.22 ± 0.62 38.08 ± 0.61 36.21 ± 0.60 45.56 ± 0.72

OHTM Sampler 49.00 ± 0.67 50.06 ± 0.67 † 45.29 ± 0.66 41.56 ± 0.65 46.14 ± 0.62 59.70 ± 0.74
s-DPP Sampler 51.15 ± 0.66 50.50 ± 0.68 † 49.42 ± 0.68 † 44.08 ± 0.68 ‡ 49.65 ± 0.68 † 63.88 ± 0.75
d-DPP Sampler 34.20 ± 0.52 42.13 ± 0.62 34.78 ± 0.53 40.47 ± 0.66 33.96 ± 0.54 63.01 ± 0.73

Table 2: Performance metric of our models on different task samplers in the 5-way 1-shot setting.
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Dataset Sampler MAML Reptile Protonet Matching Networks MetaOptNet CNAPs

Omniglot

Uniform Sampler 91.28 ± 0.22 90.09 ± 0.22 93.72 ± 0.20 74.62 ± 0.38 90.20 ± 0.23 92.09 ± 0.22
No Diversity Task Sampler 83.39 ± 0.29 59.49 ± 0.33 85.84 ± 0.27 26.50 ± 0.32 88.40 ± 0.26 73.82 ± 0.39
No Diversity Batch Sampler 89.07 ± 0.25 88.23 ± 0.23 93.18 ± 0.20 71.77 ± 0.38 91.24 ± 0.22 ‡ 89.56 ± 0.24

No Diversity Tasks per Batch Sampler 90.77 ± 0.23 91.15 ± 0.21‡ 93.85 ± 0.19 † 61.31 ± 0.41 89.59 ± 0.24 89.99 ± 0.24
Single Batch Uniform Sampler 82.45 ± 0.31 80.89 ± 0.27 92.67 ± 0.20 54.01 ± 0.40 70.81 ± 0.35 77.54 ± 0.37

OHTM Sampler 91.25 ± 0.22 † 89.92 ± 0.22 93.33 ± 0.20 72.20 ± 0.38 91.56 ± 0.23 ‡ 89.51 ± 0.25
s-DPP Sampler 88.79 ± 0.24 85.40 ± 0.25 90.90 ± 0.22 72.86 ± 0.37 91.47 ± 0.22 ‡ 90.98 ± 0.22
d-DPP Sampler 87.45 ± 0.26 83.38 ± 0.27 91.21 ± 0.22 70.84 ± 0.38 90.40 ± 0.24 † 90.11 ± 0.24

Table 3: Performance metric of our models on different task samplers in the 20-way 1-shot setting.

Dataset Sampler MAML Reptile Protonet Matching Networks MetaOptNet CNAPs

Meta-Dataset (ILSVRC)

Uniform Sampler 22.24 ± 0.33 31.32 ± 0.47 25.41 ± 0.35 27.52 ± 0.45 28.74 ± 0.43 40.11 ± 0.59
No Diversity Task Sampler 23.02 ± 0.35 ‡ 25.43 ± 0.40 26.68 ± 0.44 ‡ 24.32 ± 0.37 23.85 ± 0.36 42.23 ± 0.64 ‡
No Diversity Batch Sampler 23.24 ± 0.36 ‡ 28.70 ± 0.44 24.71 ± 0.34 24.25 ± 0.37 25.64 ± 0.40 34.07 ± 0.52

No Diversity Tasks per Batch Sampler 23.14 ± 0.37 ‡ 31.25 ± 0.51 † 27.04 ± 0.42 ‡ 26.47 ± 0.44 27.01 ± 0.43 33.00 ± 0.53
Single Batch Uniform Sampler 22.99 ± 0.34 ‡ 26.43 ± 0.41 27.05 ± 0.42 ‡ 27.79 ± 0.44 † 28.00 ± 0.45 26.18 ± 0.44

OHTM Sampler 22.66 ± 0.35 † 31.62 ± 0.48 ‡ 26.48 ± 0.39 ‡ 27.05 ± 0.43 † 29.03 ± 0.44 † 38.12 ± 0.57

Meta-Dataset (Omniglot)

Uniform Sampler 30.93 ± 0.69 86.07 ± 0.50 77.77 ± 0.65 77.61 ± 0.64 81.82 ± 0.60 87.08 ± 0.52
No Diversity Task Sampler 31.17 ± 0.65 † 41.36 ± 0.74 61.26 ± 0.73 60.59 ± 0.69 73.67 ± 0.65 60.18 ± 0.73
No Diversity Batch Sampler 32.70 ± 0.75 ‡ 72.13 ± 0.66 70.86 ± 0.67 56.61 ± 0.71 73.27 ± 0.64 73.69 ± 0.69

No Diversity Tasks per Batch Sampler 30.36 ± 0.71 ‡ 86.29 ± 0.49 † 72.33 ± 0.69 72.96 ± 0.68 63.17 ± 0.70 56.14 ± 0.72
Single Batch Uniform Sampler 30.21 ± 0.74 † 75.39 ± 0.66 63.52 ± 0.69 72.95 ± 0.71 73.44 ± 0.66 42.72 ± 0.74

OHTM Sampler 31.91 ± 0.70 ‡ 83.42 ± 0.53 76.55 ± 0.65 74.93 ± 0.66 74.56 ± 0.66 78.00 ± 0.69

Meta-Dataset (Aircraft)

Uniform Sampler 22.52 ± 0.34 40.62 ± 0.54 28.34 ± 0.41 27.93 ± 0.41 32.12 ± 0.47 38.64 ± 0.54
No Diversity Task Sampler 22.76 ± 0.32 † 24.55 ± 0.35 26.77 ± 0.36 22.58 ± 0.30 24.73 ± 0.36 30.37 ± 0.40
No Diversity Batch Sampler 22.32 ± 0.31 † 33.11 ± 0.48 28.57 ± 0.40 † 23.63 ± 0.33 25.76 ± 0.36 28.84 ± 0.39

No Diversity Tasks per Batch Sampler 23.00 ± 0.33 ‡ 40.59 ± 0.52 † 28.32 ± 0.41 † 27.98 ± 0.42 † 27.13 ± 0.40 26.09 ± 0.36
Single Batch Uniform Sampler 22.40 ± 0.31 † 29.19 ± 0.40 28.51 ± 0.40 † 26.47 ± 0.39 27.53 ± 0.42 21.86 ± 0.26

OHTM Sampler 23.34 ± 0.32 ‡ 38.73 ± 0.54 27.99 ± 0.38 † 29.53 ± 0.45 ‡ 31.08 ± 0.47 35.96 ± 0.50

Meta-Dataset (Birds)

Uniform Sampler 22.30 ± 0.32 47.79 ± 0.61 29.84 ± 0.42 34.36 ± 0.53 33.70 ± 0.48 47.43 ± 0.62
No Diversity Task Sampler 23.13 ± 0.33 ‡ 27.25 ± 0.38 27.08 ± 0.38 25.95 ± 0.39 26.78 ± 0.41 40.42 ± 0.61
No Diversity Batch Sampler 25.31 ± 0.41 ‡ 36.66 ± 0.51 28.47 ± 0.38 26.91 ± 0.41 28.55 ± 0.40 31.95 ± 0.48

No Diversity Tasks per Batch Sampler 23.93 ± 0.37 ‡ 45.36 ± 0.56 29.48 ± 0.43 † 32.11 ± 0.48 27.86 ± 0.41 31.28 ± 0.47
Single Batch Uniform Sampler 23.69 ± 0.36 ‡ 33.70 ± 0.47 30.40 ± 0.46 † 32.39 ± 0.50 30.80 ± 0.44 25.13 ± 0.38

OHTM Sampler 23.22 ± 0.35 ‡ 46.38 ± 0.61 30.83 ± 0.43 ‡ 35.17 ± 0.54 ‡ 37.18 ± 0.50 ‡ 43.77 ± 0.59

Meta-Dataset (Textures)

Uniform Sampler 22.51 ± 0.34 33.33 ± 0.48 26.63 ± 0.37 28.74 ± 0.42 27.44 ± 0.40 38.10 ± 0.50
No Diversity Task Sampler 22.46 ± 0.35 † 24.93 ± 0.37 24.95 ± 0.37 23.58 ± 0.35 23.80 ± 0.34 33.11 ± 0.51
No Diversity Batch Sampler 22.32 ± 0.32 † 29.40 ± 0.44 26.80 ± 0.37 † 23.84 ± 0.34 24.95 ± 0.35 32.46 ± 0.49

No Diversity Tasks per Batch Sampler 22.69 ± 0.35 † 31.94 ± 0.45 26.53 ± 0.37 † 25.65 ± 0.37 23.99 ± 0.34 31.77 ± 0.44
Single Batch Uniform Sampler 21.51 ± 0.29 26.97 ± 0.39 27.08 ± 0.37 ‡ 25.52 ± 0.38 26.29 ± 0.38 22.93 ± 0.35

OHTM Sampler 22.94 ± 0.36 † 31.67 ± 0.48 28.33 ± 0.40 ‡ 29.36 ± 0.42 ‡ 28.34 ± 0.41 ‡ 34.90 ± 0.46

Meta-Dataset (Quick Draw)

Uniform Sampler 34.84 ± 0.63 55.31 ± 0.69 51.80 ± 0.67 52.61 ± 0.68 56.17 ± 0.67 58.54 ± 0.70
No Diversity Task Sampler 34.95 ± 0.62 † 37.59 ± 0.58 48.94 ± 0.64 42.82 ± 0.62 51.42 ± 0.68 44.04 ± 0.64
No Diversity Batch Sampler 35.45 ± 0.63 † 46.98 ± 0.64 44.28 ± 0.63 36.60 ± 0.55 48.00 ± 0.63 47.53 ± 0.68

No Diversity Tasks per Batch Sampler 35.31 ± 0.61 † 55.49 ± 0.67 50.77 ± 0.65 47.41 ± 0.67 48.96 ± 0.63 41.24 ± 0.63
Single Batch Uniform Sampler 36.58 ± 0.62 ‡ 50.10 ± 0.64 48.52 ± 0.66 48.02 ± 0.68 51.96 ± 0.67 29.29 ± 0.48

OHTM Sampler 35.13 ± 0.61 † 53.42 ± 0.68 49.90 ± 0.69 50.59 ± 0.68 54.11 ± 0.65 51.99 ± 0.68

Meta-Dataset (Fungi)

Uniform Sampler 23.04 ± 0.36 39.78 ± 0.57 29.43 ± 0.42 34.45 ± 0.54 34.65 ± 0.53 40.37 ± 0.58
No Diversity Task Sampler 23.53 ± 0.36 † 29.22 ± 0.45 27.69 ± 0.40 24.57 ± 0.35 27.25 ± 0.43 35.26 ± 0.50
No Diversity Batch Sampler 25.05 ± 0.41 ‡ 34.84 ± 0.54 28.43 ± 0.42 25.97 ± 0.41 30.46 ± 0.50 30.75 ± 0.46

No Diversity Tasks per Batch Sampler 24.47 ± 0.41 ‡ 38.80 ± 0.59 30.38 ± 0.46 ‡ 32.03 ± 0.54 28.82 ± 0.44 31.26 ± 0.47
Single Batch Uniform Sampler 23.28 ± 0.36 † 31.28 ± 0.49 30.12 ± 0.46 ‡ 31.94 ± 0.51 30.49 ± 0.48 25.90 ± 0.43

OHTM Sampler 23.88 ± 0.37 ‡ 34.84 ± 0.54 31.13 ± 0.47 ‡ 35.63 ± 0.56 ‡ 36.40 ± 0.56 ‡ 41.85 ± 0.57 ‡

Meta-Dataset (VGG Flower)

Uniform Sampler 30.28 ± 0.51 65.76 ± 0.64 50.98 ± 0.55 58.64 ± 0.71 58.28 ± 0.67 65.12 ± 0.68
No Diversity Task Sampler 31.19 ± 0.49 ‡ 49.91 ± 0.59 45.36 ± 0.57 45.50 ± 0.64 37.46 ± 0.56 52.21 ± 0.65
No Diversity Batch Sampler 35.93 ± 0.52 ‡ 60.13 ± 0.66 49.97 ± 0.59 44.95 ± 0.56 53.61 ± 0.64 41.95 ± 0.64

No Diversity Tasks per Batch Sampler 34.11 ± 0.55 ‡ 66.35 ± 0.66 † 53.77 ± 0.61 ‡ 57.27 ± 0.67 50.29 ± 0.59 43.91 ± 0.60
Single Batch Uniform Sampler 26.84 ± 0.46 53.39 ± 0.63 51.14 ± 0.59 † 54.32 ± 0.67 52.84 ± 0.61 27.16 ± 0.44

OHTM Sampler 32.69 ± 0.52 ‡ 64.39 ± 0.67 50.55 ± 0.56 † 56.07 ± 0.67 58.33 ± 0.68 † 62.51 ± 0.68

Meta-Dataset (Traffic Signs)

Uniform Sampler 24.53 ± 0.39 48.85 ± 0.67 38.97 ± 0.57 39.59 ± 0.63 39.23 ± 0.58 52.75 ± 0.67
No Diversity Task Sampler 25.81 ± 0.43 ‡ 32.48 ± 0.52 32.84 ± 0.50 33.81 ± 0.51 35.57 ± 0.57 40.24 ± 0.54
No Diversity Batch Sampler 26.16 ± 0.44 ‡ 41.59 ± 0.59 38.12 ± 0.53 34.10 ± 0.49 37.67 ± 0.58 39.69 ± 0.55

No Diversity Tasks per Batch Sampler 25.92 ± 0.43 ‡ 48.73 ± 0.69 † 38.69 ± 0.54 † 38.86 ± 0.58 32.38 ± 0.47 35.42 ± 0.51
Single Batch Uniform Sampler 25.62 ± 0.44 ‡ 38.42 ± 0.54 39.18 ± 0.58 35.77 ± 0.57 40.87 ± 0.62 ‡ 26.39 ± 0.45

OHTM Sampler 24.97 ± 0.42 † 45.73 ± 0.65 38.00 ± 0.51 † 36.61 ± 0.55 41.56 ± 0.62 ‡ 47.09 ± 0.63

Meta-Dataset (MSCOCO)

Uniform Sampler 23.00 ± 0.36 36.97 ± 0.56 30.82 ± 0.49 31.98 ± 0.55 33.68 ± 0.54 42.46 ± 0.60
No Diversity Task Sampler 23.98 ± 0.39 ‡ 30.53 ± 0.51 30.47 ± 0.49 † 26.37 ± 0.44 26.72 ± 0.46 42.71 ± 0.64 †
No Diversity Batch Sampler 25.95 ± 0.47 ‡ 33.83 ± 0.53 29.32 ± 0.45 26.42 ± 0.42 29.25 ± 0.49 34.89 ± 0.54

No Diversity Tasks per Batch Sampler 24.56 ± 0.40 ‡ 36.84 ± 0.55 † 32.71 ± 0.52 ‡ 32.80 ± 0.57 ‡ 31.59 ± 0.51 32.88 ± 0.51
Single Batch Uniform Sampler 23.66 ± 0.37 ‡ 33.07 ± 0.53 32.47 ± 0.53 ‡ 33.14 ± 0.56 ‡ 34.53 ± 0.57 ‡ 27.72 ± 0.44

OHTM Sampler 23.83 ± 0.39 ‡ 37.22 ± 0.58 † 31.02 ± 0.49 † 33.54 ± 0.57 ‡ 33.87 ± 0.56 † 40.19 ± 0.60

Table 4: Additional Performance metrics of our models on different task samplers in the 5-way
1-shot setting.

Dataset Sampler MAML Reptile Protonet Matching Networks MetaOptNet CNAPs

Omniglot

No Diversity Tasks per Batch Sampler 97.76 ± 0.20 94.55 ± 0.31 † 97.18 ± 0.25 93.97 ± 0.40 96.80 ± 0.27 90.84 ± 0.47
Single Batch Uniform Sampler 93.84 ± 0.37 92.60 ± 0.38 95.95 ± 0.31 92.98 ± 0.44 95.76 ± 0.31 75.86 ± 0.73

SBU unbounded 98.06 ± 0.19 88.66 ± 0.55 97.80 ± 0.23 † 93.82 ± 0.40 97.18 ± 0.26 89.01 ± 0.52
SBU bounded 97.46 ± 0.21 87.62 ± 0.55 97.85 ± 0.22 † 94.96 ± 0.37 † 97.18 ± 0.27 91.24 ± 0.46

MiniImagenet

No Diversity Tasks per Batch Sampler 48.17 ± 0.62 41.49 ± 0.56 † 47.73 ± 0.60 42.54 ± 0.53 50.60 ± 0.62 64.11 ± 0.68 †
Single Batch Uniform Sampler 41.76 ± 0.56 22.96 ± 0.33 41.35 ± 0.56 40.00 ± 0.54 39.10 ± 0.54 45.47 ± 0.67

SBU unbounded 45.81± 0.59 29.82 ± 0.48 48.60 ± 0.60 † 42.92 ± 0.56 52.24 ± 0.64 53.99 ± 0.67
SBU bounded 45.65 ± 0.59 30.03 ± 0.49 48.64 ± 0.61 † 44.21 ± 0.56 † 52.63 ± 0.64 53.19 ± 0.67

Tiered-Imagenet

No Diversity Tasks per Batch Sampler 49.62 ± 0.69 50.77 ± 0.67† 46.96 ± 0.67 43.15 ± 0.66 ‡ 43.05 ± 0.63 62.81 ± 0.73
Single Batch Uniform Sampler 41.74 ± 0.66 36.82 ± 0.56 38.22 ± 0.62 38.08 ± 0.61 36.21 ± 0.60 45.56 ± 0.72

SBU unbounded 49.40 ± 0.68 43.68 ± 0.61 50.46 ± 0.68 ‡ 43.08 ± 0.68 ‡ 51.95 ± 0.69 ‡ 56.23 ± 0.74
SBU bounded 47.33 ± 0.68 44.51 ± 0.62 51.11 ± 0.69 ‡ 43.23 ± 0.69 ‡ 51.93 ± 0.69 ‡ 52.77 ± 0.74

Table 5: Performance metric of our models on SBU oriented task samplers in the 5-way 1-shot
setting.
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Figure 9: Average accuracy on Omniglot 5-way 1-shot, miniImageNet 5-way 1-shot, &
tieredImageNet 5-way 1-shot with a 95% confidence interval. We denote all samplers that are worse
than the Uniform Sampler and are statistically significant (with a p-value p = 0.05) with H, and
those that are significantly better than the Uniform Sampler with N.
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Figure 10: Convergence curve of Matching Networks model on Omniglot 5-way 1-shot.
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