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ABSTRACT

In this paper, we address the dual challenge of maintaining high accuracy and
ensuring fairness in differentially private (DP) deep learning models. The opti-
mization process is inherently complicated by the necessity of injecting random
noise and limiting training iterations, particularly for over-parameterized models.
Moreover, DP mechanisms frequently exacerbate accuracy disparities across sub-
populations, complicating the balance between privacy and fairness. To tackle
these challenges, we introduce a novel framework that systematically addresses
the trade-off between privacy and utility in DP deep learning. At the core of
our approach is the concept of instance-level smoothing, which enhances privacy
protections without compromising performance. Our theoretical contributions in-
clude deep insights into sample complexity, instance-level smoothing factors, and
error bounds required to achieve a given privacy budget. These insights provide a
robust foundation for optimizing the delicate balance between privacy and utility.
Our method demonstrates remarkable robustness, independent of iteration counts,
model parameters, batch normalization processes, and subpopulation disparities.
This flexibility enables an optimal balance between privacy preservation and util-
ity, adaptable to a wide range of scenarios. Through extensive empirical studies
on the large-scale medical imaging dataset CheXpert, we validate the effective-
ness of our approach. Our findings align with theoretical predictions, showing that
our method can effectively meet stringent privacy requirements while maintaining
high performance. By bridging the gap between formal privacy guarantees and
practical deep learning applications, our work lays the groundwork for future ad-
vancements in the field. This research empowers practitioners to protect sensitive
data during model training and ensures both data privacy and model generality,
paving the way for more secure and equitable AI systems.

1 INTRODUCTION

Large neural networks with billions of parameters have achieved state-of-the-art performance across
a wide range of machine learning tasks Brown & Mann (2020); Zhai et al. (2022). Despite their
success, these models are known to memorize training data Zhang et al. (2021), leading to poten-
tial leakage of sensitive information. Privacy attacks capable of extracting memorized training data
have been demonstrated on various types of models, including language models Carlini et al. (2021),
diffusion models Carlini et al. (2023), and image classification models Balle et al. (2022). Addition-
ally, membership inference attacks, which can determine whether a particular data point was used to
train a model, have proven successful across multiple architectures and data modalities Carlini et al.
(2022). The implications of these vulnerabilities are profound, particularly in applications involving
private, confidential, or proprietary data, such as healthcare, finance, recommendation systems, and
mobility. To ensure the safe deployment of models trained on such data, it is crucial to address these
privacy concerns effectively.

Differential Privacy (DP) Dwork et al. (2006) has emerged as the gold standard for protecting indi-
vidual privacy in data processing algorithms. However, achieving strong privacy protections with DP
is particularly challenging in deep learning, especially as model sizes and data dimensions increase.
The most popular DP training technique in deep learning is Differentially Private Stochastic Gradi-
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ent Descent (DP-SGD) Abadi et al. (2016), which privatizes gradients by clipping and adding noise.
The strength of the privacy guarantee ε depends on the noise scale, batch size, number of training
samples, and number of iterations. While DP-SGD is a near drop-in replacement for standard SGD,
it presents significant challenges that have hindered its widespread adoption.

Achieving high accuracy with differentially private (DP) models faces two major challenges. First,
injecting random noise and limiting training iterations complicates optimization, as noisy gradients
and iteration constraints hinder effective hyperparameter tuning Anil et al. (2021). The noise’s Eu-
clidean norm scales with model size, degrading performance for larger models Yu et al. (2021). This
issue is particularly problematic given the prevalence of over-parameterized neural networks in AI.
Second, fairness issues arise in deep neural networks, exacerbated by DP mechanisms. Models can
show accuracy disparities across subpopulations, such as race, age, sex, or insurance type in medi-
cal tasks Seyyed-Kalantari et al. (2021). DP can worsen these disparities, increasing accuracy gaps
due to unbalanced subgroup data Bagdasaryan et al. (2019); Santos-Lozada et al. (2020). DP limits
information extraction from individual data points, conflicting with the accurate learning needed
for small or underrepresented subgroups, particularly in medical datasets Cummings et al. (2019);
Suriyakumar et al. (2021).

Figure 1: Histogram of the mean distances for k-nearest neighbors (KNN) in CIFAR10. This his-
togram visualizes the distribution of average distances among data points as computed by the KNN
algorithm.

Understanding the trade-off between privacy and utility in differentially private (DP) deep learning
models is crucial for both theoretical and practical advancements. This paper introduces a novel
framework that aims to bridge the performance gap between DP models and their non-private coun-
terparts by training an end-to-end DP network. Our central hypothesis is that samples with sparse
distributions in their feature space, based on pre-trained large models, are more prone to privacy
leakage. In contrast, classes with sufficient samples that are compactly clustered in the feature space
will be well-represented, incurring minimal privacy sacrifice while maintaining high performance.

To illustrate the difference in feature density among classes in the CIFAR-10 dataset, we present
a graph depicting the mean distances within the 10 classes. This graph measures the proximity
of each sample to its 5 nearest neighbors. As shown in Figure 1, the mean sample distance for
car is 129.25, whereas for dog, it is 191.08. The observed trade-off between privacy and utility
Berrada et al. (August 2023) aligns well with these mean distances: the car class exhibits the best
classification accuracy and the least privacy leakage, whereas the dog class suffers from significant
privacy leakage and class disparity issues.

Given that each class has an equal number of 5000 training samples, the within-class compact-
ness and between-class distance largely determine the privacy-utility trade-off. In scenarios where
the sample numbers across classes are imbalanced, privacy preservation and class disparity issues
worsen. This observation motivates us to consider instance-level probability density function (PDF)
estimation and instance-specific kernel smoothing to enhance privacy without degrading perfor-
mance. We prefer the term instance smoothing over noise, as it better captures the essence of our
approach in providing privacy protection alongside model generality.

Our method remains flexible and can incorporate future advancements in deep learning, including
improved network architectures and pre-trained models, without additional constraints. This work
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represents a significant step towards enabling deep learning practitioners to leverage formal privacy
guarantees offered by DP while protecting sensitive data during model training.

The contributions of this paper are multifaceted and significant, paving the way for a new paradigm
in differentially private deep learning:

• Innovative Framework: We introduce a novel framework that systematically addresses
the trade-off between privacy and utility in differentially private (DP) deep learning models.
Central to our approach is the concept of instance-level smoothing and PDF representation
learning, which significantly enhances privacy without compromising model performance.

• Theoretical Insights: Our work provides profound theoretical insights into key aspects
such as sample complexity, instance-level smoothing factors, and error bounds for achiev-
ing a given privacy budget. These insights offer a robust foundation for understanding and
optimizing the balance between privacy and utility.

• Robust Methodology: The proposed method demonstrates remarkable robustness, being
independent of iteration counts, backbone parameters, batch normalization processes, and
sub-class disparities. This flexibility allows for an optimal balance between privacy preser-
vation and utility, making it adaptable to a wide range of scenarios.

• Empirical Validation: Through extensive empirical studies on the large-scale medical
image dataset CheXpert Irvin et al. (January 2019), we validate the effectiveness of our
approach. Our findings confirm the theoretical predictions, demonstrating that our method
can effectively meet privacy requirements while maintaining high performance. This new
paradigm has the potential to significantly expand the use of large models in real-world
scenarios where privacy is paramount.

2 RELATED WORKS

Zero-Concentrated Differential Privacy Differential Privacy (DP) was initially formalized by
Dwork et al. (2006) and later adapted to deep learning by Abadi et al. (2016), who operationalized
DP-SGD Bassily et al. (2014) to train neural networks with differential privacy guarantees. The
central goal in differentially private learning is to train a classifier while satisfying a rigorous math-
ematical definition of privacy known as differential privacy Dwork (2006), which ensures that any
individual training data point cannot be identified using the trained model and any additional side
information. More formally, we adopt the popular modern variant called zero-centered Concentrated
Differential Privacy (zCDP), as defined below:
Definition 1. ZERO-CONCENTRATED DIFFERENTIAL PRIVACY BUN & STEINKE (2016)
Two datasets D0 and D1 are neighbors if they can be constructed from each other by adding or
removing one data point. A randomized mechanism A satisfies ρ-zero-concentrated differential
privacy (ρ-zCDP) if, for all neighboring datasets D0 and D1, we have

Rα(A(D0)‖A(D1)) ≤ ρα,
where

Rα(P‖Q) =
1

α− 1
log

∫ (
p(x)

q(x)

)α
q(x) dx

is the Rényi divergence between two distributions P and Q.

In the above definition, ρ ≥ 0 is the privacy loss parameter that measures the strength of the pro-
tection. ρ = 0 indicates perfect privacy, while ρ = ∞ means no protection at all. The privacy
protection is considered sufficiently strong in practice if ρ is a small constant, e.g., 1, 2, 4, 8. For
readers familiar with standard approximate DP but not zCDP, ρ-zCDP implies (ε, δ)-DP for all δ > 0

with ε = ρ+ 2
√
ρ log(1/δ).

While DP-SGD Berrada et al. (August 2023) is foundational for differential privacy in deep learning,
it has significant drawbacks. It requires a trade-off between privacy budget (ε), noise addition,
and the number of iterations, impacting model utility. The method is sensitive to hyperparameters
and regularization, and per-sample gradient clipping introduces bias and high variance, degrading
performance. Additionally, the noise scales with model dimension, complicating its application to
large models and disrupting batch normalization.
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We propose a novel approach that bypasses these issues. Our method adjusts the smoothing band-
widths of the PDF per instance, independent of iterations, enhancing the balance between privacy
and accuracy. It is robust to hyperparameter settings and avoids gradient clipping and noise addition,
reducing bias and variance. This allows for fine-tuning large pre-trained models in high-dimensional
spaces without affecting batch normalization. We also provide theoretical bounds on sample size and
classification errors, demonstrating its effectiveness.

Overall, our method offers a practical and efficient alternative to DP-SGD, maintaining privacy while
improving model performance.

Adaptive Kernel Density Fine-tuning Our work diverges from the DP-SGD method by drawing
on adaptive kernel metric representation learning, particularly useful for tasks like anomaly detec-
tion. Kernel density-based learning captures the underlying probability density of data, using Gaus-
sian kernels to assess local density and identify anomalies, which are prone to privacy risks in sparse
regions Zhang et al. (2018). Kernel-based methods handle uncertainty and class-specific variances
well, as demonstrated by Non-isotropic von Mises-Fisher (nivMF) distributions that model complex
variances to enhance generalization Kirchhof et al. (2022).

We employ a projection network parameterized by W ∈ Rp×d, where d is the feature dimension
from the backbone network, and p is the projected dimension in the PDF space. This adaptive kernel
estimation-based approach emphasizes local data density, crucial for identifying and mitigating pri-
vacy risks in sparse regions. It allows fine-tuning of pre-trained models in high-dimensional spaces,
compatible with any backbone architecture.

Unlike DP-SGD, which requires per-sample gradient clipping and noise addition, our method ad-
justs the smoothing bandwidth at the instance level, leading to more efficient training. By focusing
on instance-level smoothing, we effectively balance privacy and accuracy, offering a practical and
efficient alternative to DP-SGD for differentially private learning.

3 METHOD

Our training framework for medical images starts by feeding samples into feature extraction net-
works, such as pre-trained transformers on ImageNet, to obtain initial feature representations. We
then project these raw features into a PDF representation space, modeling each class with an inde-
pendent PDF using an adaptive kernel density estimation method. This approach assigns a specific
smoothing bandwidth to each instance based on its relative distribution density.

As shown in Figure 2, we construct a PDF for each class by applying adaptive kernel density es-
timation in the projected space, ensuring customized privacy preservation for each instance. To
maintain compactness within classes and distinctiveness between different classes, we employ a
PDF contrastive loss with a margin. This loss function encourages the model to achieve the desired
feature separation. During testing, we compute the likelihood of a test sample belonging to each
class by comparing it against the trained PDFs. The predicted label is assigned based on the class
with the highest probability. The detailed steps are depicted in Figure 2 and will be elaborated in the
following sub-sections.

3.1 INSTANCE LEVEL PRIVACY BUDGET ALLOCATION

This projection network can map the samples in feature space in Rd to PDF in Rp. For example, in
our experiment settings, d = 768 is for transformer and p = 64 for the embedding PDF space. The
parameter p is selected by evaluation process.

Each training sample exhibits different local sensitivity in the PDF space. We should allocate the
privacy budget according to their sensitivity. Adaptive smoothing mechanism adjusts the amount of
bandwidth based on the local sensitivity of the PDF estimate. This approach enhances privacy while
maintaining the utility of the PDF representation.
Proposition 1. INSTANCE LEVEL PRIVACY SMOOTHING
Let xi ∈ Rp be a sample. To protect each sample xi, smoothing factor Ni is applied for each
dimension, where Ni ∼ N (0, s2i · σ2). Here, si represents the local sensitivity of xi, and σ is a
global privacy setting applicable to all training samples. The protected sample x̃i is then given
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Figure 2: Adaptive Kernel PDF Representation Learning Framework. In the first stage, each training
sample is smoothed with a customized bandwidth: densely distributed samples receive less smooth-
ing, while sparsely distributed samples are protected with larger bandwidths. In the second stage, the
projection network is trained to optimally separate each class. The mean vectors for each class are
represented by red markers: stars, circles, and triangles correspond to the classes Pleural Effusion,
Edema, and Consolidation, respectively, positioned at the centers of their corresponding elliptical
PDFs. Each class is formed as a compacted PDF with a margin among other classes. The varying
sizes of the shaded areas around the samples represent different local bandwidths, corresponding to
varied probability densities and different allocations of privacy budgets.

by x̃i = xi + Ni. This mechanism ensures that the level of smoothing corresponds to the local
sensitivity of each data point, balancing privacy protection and data utility by scaling the smoothing
variance with s2i · σ2. The introduction of smoothing Ni adheres to differential privacy principles,
providing a customizable level of privacy suited to the sensitivity of the data.

We will define the si firstly. The PDF for the training set is defined as:

p̂(x) =
1

n

n∑
j=1

Kh(x− xj)

.

The PDF without sample xi is:

p̂−i(x) =
1

n− 1

∑
j 6=i

Kh(x− xj)

Then the local sensitivity si at xi is:

si = |p̂(x)− p̂−i(x)|

For large n, this can be approximated as:

si ≈
1

n
Kh(x− xi)

The Kh is the kernel function with smoothing bandwidth h, such as the Gaussian Kernel. However,
in this paper, we will define the Adaptive Kernel Function in the next sub-section to best describe
each sample’s distinctiveness.
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The x̃i = xi+Ni provides instance level privacy protection mechanism. The modified PDF estimate
p̂(x) is:

p̂(x) =
1

n

n∑
i=1

Kh(x− x̃i)

In the following section, we will not use x̃i but xi for brevity to represent the enhanced samples.
The customized smoothing factor Ni is related to instance sensitivity si and an global smoothing
variance σ2 independent of sample index.
Theorem 1. PRIVACY-PRESERVING FOR ρ-ZCDP
To achieve ρ-zero Concentrated Differential Privacy (ρ-zCDP), the smoothing variance is chosen as
σ2 = 2 ln(1/δ)

ρ . The privacy-preserving parameter ρ controls the overall level of privacy, ensuring
that the samples in PDF space remains stable and robust while preserving privacy. This formulation
provides a balance between privacy protection and data utility by adjusting the smoothing variance
according to the specified privacy parameter ρ.

The proof can be found in Appendix A.1.

3.2 ADAPTIVE KERNEL IN HIGHER DIMENSIONS

Proposition 2. ADAPTIVE KERNEL SMOOTHING
In the context of the higher-dimensional adaptive kernel, we can define h′ explicitly based on the
local density, which provides additional privacy-preserving ability for the sparse training samples
given the base bandwidth h. The adaptive kernel Kh(x) in p dimensions is given by:

Kh(x) =


1

(2πh2)p/2
exp

(
−‖x‖

2

2h2

)
if Nr(x) ≥ λ,

1
(2π(h2+h′2))p/2

exp
(
− ‖x‖2

2(h2+h′2)

)
if Nr(x) < λ,

where h′ = h · c
Nr(x)

. To define sparse and dense regions in high-dimensional space, we use a
measure of local density, for which one effective approach is the k-nearest neighbors (k-NN) method.

To distinguish between dense and sparse regions, we set a threshold λ. This threshold can be de-
termined based on the empirical distribution of k-NN distances in the dataset. For example, setting
λ to the median or the 75th percentile of k-NN distances ensures a robust boundary. Formally, we
define regions as follows:

{
Dense region if Nr(x) ≥ λ
Sparse region if Nr(x) < λ

where λ is a chosen percentile of the distribution of k-NN distances.

For example, in the CIFAR10 dataset, the mean 5-nearest-neighbor distance for car is 129.25. We
can define λ = 129.25. For samples with mean distance to their 5-nearest-neighbor beyond this
threshold, we should use extra bandwidth to protect the samples.
Theorem 2. SAMPLE SIZE COMPLEXITY
To preserve ρ-zCDP in PDF space, the number of samples n should satisfy:

n ≥ C

ρ(α− 1)

This theoretical bound ensures that the change in the KDE estimate due to removing a single sample
is sufficiently small to maintain the desired privacy level ρ. The constant C is given by:

C =
1√

2πh2

This bound provides a theoretical guideline for the minimum number of samples needed to ensure
ρ-zCDP in the context of PDF probability density estimation.

The proof can be found in Appendix A.2.
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3.3 KERNEL DENSITY-BASED REPRESENTATION LEARNING

In the training framework, the pre-trained baseline network are frozen, which provides feature rep-
resentation ability thanks to their extensive pre-training on large public datasets such as ImageNet.
We define W> ∈ Rd×p serves as the projection matrix that transforms the raw feature space of
training samples to the PDF space, facilitating comparisons among different classes.

We propose our learning objective to act as the training loss, replacing the conventional cross-
entropy loss and guiding the network training process.

L(W) = max(−
∑
x∈Dt

1{yb=t}K(x− xb)

+
∑
x∈Dt

1{yb 6=t}(K(x− xb) +m, 0)
(1)

In Eq. 1, the set of trainable parameters is denoted by W, which is implemented as a projection
network in our design. In this context, x represents the PDF representations of all training sample,
and xb signifies a batch of instances, while the yb is the class label for xb. The symbol m is intro-
duced as a PDF margin, ensuring that the PDF for positive samples with the same yb exceeds that of
negative instances with different class label by a safe margin. Eq. 1 is employed as the contrastive
loss function within our framework. Notably, the probability values involved in the computation
are expressed in logarithmic format. This approach not only stabilizes the training process but also
prevents the values from experiencing underflow during back-propagation.

For the PDF-based classification model, if a test sample is nearer to a class in the PDF representa-
tion, the sample should be classified to the given class. Assuming there are k classes, we need to
incorporate the privacy-preserving mechanism into the accuracy calculation.

For a sample x, compute the KDE estimates for each class j ∈ {1, . . . , k}:

p̂j(x) =
1

nj

nj∑
i=1

Kh(x− xij)

where nj is the number of samples in class j and xij are the samples belonging to class j. Assign
the sample x to the class with the highest KDE estimate:

ŷ(x) = arg max
j
p̂j(x)

Theorem 3. BOUNDS ON MISCLASSIFICATION ERRORS
The accuracy of KDE-based classification is affected by the amount of smoothing added to achieve
ρ-zCDP. The trade-off between privacy and accuracy can be analyzed using the following bound for
a projection network f : Rd → Rp such that the misclassification error:

Err(f) ≤ 2 exp

(
− m2ρ

4 ln(1/δ)

)
Higher ρ leads to more smoothing and thus lower classification accuracy. Balancing ρ appropriately
ensures a reasonable trade-off between privacy and accuracy. The m is the PDF margin in the
training process.

The proof can be found in Appendix A.3.

4 EMPIRICAL STUDIES

4.1 DATASETS

The CIFAR10 dataset Krizhevsky (2009) comprises 32×32 color images across 10 distinct classes,
encompassing 50,000 training examples and 10,000 testing examples. We train the model using
the proposed privacy-preserving mechanism. This setup is crucial for demonstrating the effective-
ness of privacy-preserving techniques in image classification tasks, ensuring that sensitive data is

7
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safeguarded during the training process. We further conduct experiments on the real medical CheX-
pert dataset Irvin et al. (January 2019), a substantial collection comprising 224,316 chest X-rays
from 65,240 patients. This dataset includes five classes representing various thoracic pathologies:
(a) Atelectasis, (b) Cardiomegaly, (c) Consolidation, (d) Edema, and (e) Pleural Effusion. For our
purposes, we reinitialize only the projection layer while keeping the other layers fixed, ensuring no
impact on privacy leakage as described in Abadi et al. (October 2016).

4.2 EXPERIMENT SETTINGS

To evaluate both non-private and private deep learning models, we employ the area under the curve
(AUC) metric. For our model, we set the projected PDF dimension to 64, as this configuration
offers the best balance between prediction accuracy and training efficiency. The PDF margin in our
learning process is set to 10 (in logarithmic scale) based on cross-validation on the CIFAR10 dataset
Krizhevsky (2009). For the differentially private stochastic gradient descent (DP-SGD) methods,
the training settings are configured according to the guidelines provided in Berrada et al. (August
2023).

An algorithm that satisfies ρ-zCDP also satisfies (ε, δ)-DP, where:

ε = ρ+ 2
√
ρ log(1/δ)

Based on this relationship, we will compare our method with other approaches under the same
pre-trained models, such as ResNet-50, ViT-B/16, and DenseNet. In our experimental settings, the
broken probability δ is fixed at 10−5. It is important to note that in this context, δ denotes the broken
probability, which is distinct from the δ used in the previous section to represent the confidence
bound.

We will assess how varying ε values in (ε, δ)-DP affect model performance, corresponding to dif-
ferent ρ values in ρ-zCDP. This evaluation will provide insights into the trade-offs between privacy
guarantees and model efficacy.

4.3 RESULTS AND DISCUSSION ON CIFAR10

To validate the effectiveness of the proposed method and the theoretical analysis presented in Section
3, we conducted experiments using the CIFAR-10 dataset. The DP-SGD methods adhere to the
settings outlined in Berrada et al. (August 2023), with the primary difference being the backbone
models used: ResNet18, ResNet-50, and ViT-B/16. All models were pre-trained on ImageNet-21K.
For the Non-Private method, we utilized the optimal settings without enforcing any smoothing.
Several observations can be drawn from the results. The batch size was set to 4096 to favor DP-
SGD, although we did not explore extremely large batch sizes due to computational limitations.

Model Capacity and Smoothing Resilience our method exhibits a narrow gap with the Non-
Private model, lagging by just 2-3 percent when ε = 8. However, for the DP-SGD method, even un-
der the setting of ε = 8, its performance is still inferior to our ε = 3 counterpart. This indicates that
our method provides significantly better utility for a given privacy budget. Our experiments reveal
that larger models, such as ResNet50 and ViT-B/16, exhibit higher resilience to the smoothing intro-
duced by differential privacy mechanisms. This resilience can be attributed to the models’ enhanced
capacity to learn robust feature representations, which can better withstand the perturbations caused
by smoothing. This finding aligns with existing literature that suggests a direct correlation between
model complexity and its ability to generalize from noisy data Kaplan et al. (2020). The significant
performance gap between our method and the traditional DP-SGD approach, even at higher ε values,
underscores the effectiveness of our approach in balancing the privacy-utility trade-off. Traditional
DP-SGD methods often suffer from a substantial reduction in utility due to the added smoothing,
which is necessary to ensure privacy. Our method, however, achieves competitive accuracy with a
much lower privacy budget, demonstrating a more efficient utilization of the privacy budget.

Impact of ε on Performance The parameter ε in differential privacy quantifies the trade-off be-
tween privacy and utility. Our results show that while increasing ε improves the performance of the
DP-SGD method, it still lags behind our method with a lower ε. This suggests that our method can
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achieve higher accuracy even under stricter privacy constraints, making it more suitable for applica-
tions where both high utility and stringent privacy guarantees are required. Our method can allocate
the budget at instance level, which will not waste privacy on the samples in dense PDF regions and
degrade the performance. The smoothing effect for the sparse samples is economically allocated as
the backbone can provide more precise representation, resulting in less performance degradation as
the privacy budget increases.

4.4 RESULT AND DISCUSSION ON CHEXPERT

In the realm of medical image analysis, ensuring patient privacy while maintaining high model
performance is a paramount concern. The CheXperf dataset, a comprehensive collection of thoracic
condition images, serves as an excellent benchmark for evaluating privacy-preserving techniques.
Our proposed instance-level PDF smoothing model exhibits significant advancements over existing
methods such as DP-SGD and non-private models.

The experimental results depicted in Figure 2 reveal several critical insights. Our proposed PDF
smoothing model consistently outperforms DP-SGD under the same backbone and experiment set-
tings and has a narrow gap with non-private model. This indicates that our method effectively
balances the trade-off between privacy and utility. As expected, higher values of ε correlate with im-
proved model accuracy due to reduced smoothing factor. This is a well-documented phenomenon in
differential privacy literature. However, our adaptive DP model demonstrates superior performance
even at lower ε values, underscoring its robustness. For thoracic conditions with privacy budgets set
to ε = 2 and ε = 8, our model achieves an average testing AUC of 85% across all five labels. In
contrast, DP-SGD lags behind, achieving approximately 70%. This significant margin underscores
the efficacy of our adaptive approach in maintaining high accuracy while preserving privacy.

Instance-Level Privacy Allocation A key strength of our model lies in its instance-level privacy
allocation. By dynamically adjusting the privacy budget for each data instance based on its prob-
ability density, we ensure that samples in sparse regions receive higher privacy protection. This
targeted approach is more economical and effective compared to uniform noise addition strategies.
Medical images often contain critical and unique information that might appear infrequently (i.e.,
in sparse regions of the data distribution). Our model enhances privacy for these samples without
significantly compromising their utility. This is particularly vital in medical contexts where rare con-
ditions need accurate representation and analysis. Conversely, in dense regions where data points
are abundant, excessive smoothing injection can severely disrupt the model’s learning process. Our
method strategically injects less smoothing in these areas, preserving the inherent structure and re-
lationships within the data. This selective smoothing ensures that the overall performance of the
model remains high.

Class Disparity Improved by Instance level Probability Smoothing In Figure 3, we compare
class disparities between our private models (at ε=8) and non-private baselines. Both model types
show similar disparities across subgroups, with private models not systematically worse in terms of
AUC disparities. Notably, smaller subgroups, such as Atelectasis, suffer more performance degrada-
tion due to their sparse feature distribution. Contrary to prior works, our private models demonstrate
significant improvement over the DP-SGD method, achieving better group fairness outcomes than
non-private baselines. This suggests that increased disparities in private models observed previously
are not inherent. Our instance-level PDF smoothing model effectively balances privacy and per-
formance, protecting sparse samples economically while minimizing disruption in dense regions.
Future work could extend this method to other medical datasets and real-time clinical systems, and
explore adaptive mechanisms for dynamic privacy budget adjustments.

5 CONCLUSION

In conclusion, we introduce a novel instance-level PDF smoothing model that enhances privacy
preservation while maintaining high performance in medical image analysis. Our approach of-
fers profound theoretical insights into sample complexity, smoothing factors, and error bounds for
achieving privacy budgets. Our experimental results demonstrate the efficacy of our model in balanc-
ing privacy and utility, dynamically adjusting privacy parameters to protect samples in sparse regions

9
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(e) Pleural effusion

Figure 3: Comparison between non-private model, DP-SGD and our adaptive DP model under
different privacy budget settings. The x-axis the training iterations in epochs and the y-axis is the
model performance in AUC.

Table 1: Performance of Different Algorithms on CIFAR-10

DP Algorithm ResNet18 ResNet50 ViT-B/16
DPSGD (ε = 3) 77.8 81.5 92.4
DPSGD (ε = 8) 82.9 84.1 94.0
Ours (ε = 3) 85.2 89.9 94.2
Ours (ε = 8) 90.2 92.9 95.2
Non-Private 93.2 94.9 97.1

and addressing class disparities in medical datasets. The adaptive DP model not only preserves the
utility of critical medical information but also improves overall model fairness. Our findings open
several avenues for future research, including extending to other medical datasets and integrating
with real-time clinical systems. Our instance-level PDF smoothing model represents a significant
step forward in privacy-preserving medical image analysis, offering a robust, comprehensive solu-
tion to the challenges posed by differential privacy. We hope our work inspires further innovation,
contributing to safer and more effective healthcare technologies. Limitations list in Appendix A.4.
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A APPENDIX

You may include other additional sections here.

A.1 PROOF OF THEOREM 1

Proof. Zero-Concentrated Differential Privacy (zCDP) is defined such that a mechanismM satisfies
ρ-zCDP if the privacy loss random variable L satisfies E[eL] ≤ eρ. The privacy loss L is given by
L = log

(
M(D1)
M(D2)

)
, where D1 and D2 are neighboring datasets differing by one element.

Consider the Gaussian mechanism M that adds smoothing Ni ∼ N (0, σ2) to each sample xi.

The privacy loss L for the Gaussian mechanism is given by L = log
(
p(M(D1))
p(M(D2))

)
. For two neigh-

boring datasets D1 and D2, the difference in the KDE estimates is small, and the privacy loss L can
be approximated using the Rényi divergence.

The Rényi divergence Dα between two distributions P and Q is defined as:

Dα(P‖Q) =
1

α− 1
log

(∫
p(x)αq(x)1−α dx

)
For α > 1, the Rényi divergence is a measure of the distance between two distributions.

The ρ-zCDP condition can be expressed in terms of Rényi divergence:

Dα(P‖Q) ≤ ρ

For α = 2, the Rényi divergence simplifies to:

D2(P‖Q) = log

(∫
p(x)2q(x)−1 dx

)

For the Gaussian mechanism, the smoothing Ni ∼ N (0, σ2) ensures that the privacy loss L is
controlled. The Rényi divergence for the Gaussian mechanism is given by:

D2(P‖Q) ≤ ∆2

2σ2

where ∆ is the sensitivity of the function being perturbed.

The sensitivity ∆ is the maximum change in the PDF estimate due to adding or removing one
sample.

To achieve ρ-zCDP, we need D2(P‖Q) ≤ ρ. Substituting the Rényi divergence for the Gaussian
mechanism, we get:

∆2

2σ2
≤ ρ

Solving for σ2, we have:

σ2 ≥ ∆2

2ρ

To account for the confidence bound δ, we use the fact that the tail probability of the Gaussian
distribution is controlled by δ:

Pr[L > ρ] ≤ δ
Using the Chernoff bound, we obtain:

σ2 ≥ 2 ln(1/δ)

ρ

13
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A.2 PROOF OF THEOREM 2

Proof. The change in Rényi divergence ∆Dα can be bounded using the properties of the PDF esti-
mate:

∆Dα =
1

α− 1

(
log

(∫
p̂−k(x)αQ(x)1−α dx

)
− log

(∫
p̂(x)αQ(x)1−α dx

))
For large n, the change in the KDE estimate due to removing a single sample can be approximated
as:

p̂−k(x) ≈ p̂(x)− 1

n
Kh(x− xk)

The change in Rényi divergence can be bounded using the stability of the KDE estimate:

∆Dα ≤
1

α− 1
log

(
1 +

C

n

)
where C is a constant that depends on the kernel and the bandwidth h.

To ensure ρ-zCDP, we need:
1

α− 1
log

(
1 +

C

n

)
≤ ρα

Simplifying this inequality:

log

(
1 +

C

n

)
≤ ρ(α− 1)

For small C/n, we can use the approximation:

C

n
≤ ρ(α− 1)

Solving for n:

n ≥ C

ρ(α− 1)

To derive the constant C, we need to consider the maximum possible change in the KDE estimate
due to removing a single sample.

Maximum Change in KDE Estimate:

∆p̂(x) ≈ 1

n
Kh(x− xk)

Bounding the Maximum Change, the maximum value of the kernel function Kh(x) is:
1√

2πh2

Therefore, the maximum change in the KDE estimate is:

∆p̂(x) ≤ 1

n
· 1√

2πh2

Formulating C: The constant C can be formulated as:

C =
1√

2πh2

14
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A.3 PROOF OF THEOREM 3

Proof. To achieve ρ-zCDP, smoothing Ni ∼ N (0, s2i ·
2 ln(1/δ)

ρ ) is added to each sample xi:

x′i = xi +Ni

The privacy preserved PDF p̂′(x) is:

p̂′(x) =
1

n

n∑
i=1

Kh(x− x′i)

The classification error is affected by the smoothing added to the PDF. It can be bounded by the PDF
margin between different classes:

Err(f) ≤ Pr (|p̂(x)− p̂′(x)| > m)

The smoothing variance σ2 is:

σ2 =
2 ln(1/δ)

ρ

Thus, the classification error bound is given by:

Err(f) ≤ Pr (|p̂(x)− p̂′(x)| > m) ≤ Pr (|Ni| > m)

Using the properties of the Gaussian distribution:

Pr (|Ni| > m) ≤ 2 exp

(
−m

2

2σ2

)
Substituting σ2 = 2 ln(1/δ)

ρ , we get:

Pr (|Ni| > m) ≤ 2 exp

(
− m2ρ

4 ln(1/δ)

)
Therefore, the classification error bound is:

Err(f) ≤ 2 exp

(
− m2ρ

4 ln(1/δ)

)

A.4 LIMITATIONS

While our proposed framework demonstrates significant advancements in balancing privacy and
utility in differentially private (DP) deep learning models, several limitations warrant discussion:

1. Generalization Across Domains: Although our empirical studies on the CheXpert dataset
show promising results, the generalization of our method to other domains and data types
remains to be thoroughly validated. Medical imaging datasets, like CheXpert, may possess
unique characteristics that are not representative of other datasets, potentially limiting the
applicability of our findings to different domains such as natural language processing or
other forms of visual data.

2. Scalability and Computational Overhead: Our instance-level smoothing mechanism,
while effective, introduces additional computational overhead that may not be scalable for
extremely large datasets or models with billions of parameters. The increased computa-
tional requirements could hinder the practical deployment of our framework in resource-
constrained environments.

3. Hyperparameter Sensitivity: The success of our method heavily relies on the careful tun-
ing of hyperparameters related to instance-level smoothing and noise injection. Identifying
the optimal settings for these parameters can be challenging and may require extensive
experimentation, which could limit the ease of adoption for practitioners with limited re-
sources or expertise in hyperparameter optimization.
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4. Impact on Training Time: The necessity to balance privacy and utility often comes with a
trade-off in training time. Our method, which includes additional smoothing processes and
noise injection, may result in longer training times compared to non-DP models. This could
be a critical limitation for applications requiring rapid model development and deployment.

5. Potential for Subpopulation Fairness: Despite our efforts to mitigate accuracy disparities
across subpopulations, the inherent complexity of ensuring fairness in DP models means
that some level of disparity may still persist. Future work is needed to develop more robust
methods for guaranteeing fairness across diverse and heterogeneous subpopulations.

6. Theoretical Assumptions: Our theoretical insights and error bounds are based on certain
assumptions regarding sample complexity and instance-level smoothing factors. The prac-
tical validity of these assumptions in real-world scenarios needs further empirical validation
across a broader range of datasets and model architectures.

7. Privacy Budget Allocation: The allocation of the privacy budget in DP models is a critical
factor that influences the overall performance. Our framework provides guidelines for op-
timizing this balance, but the practical implementation of these guidelines can be complex
and may not always achieve the desired outcomes in every context.

Addressing these limitations in future research will be crucial for advancing the practical applica-
bility and robustness of differentially private deep learning models, ensuring that they can meet the
dual challenges of high accuracy and fairness across a wide range of applications.
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