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Graph-Based Cross-Granularity Message Passing on
Knowledge-Intensive Text

Chenwei Yan ", Xiangling Fu"”, Xinxin You, Ji Wu

Abstract—In knowledge-intensive fields such as medicine, the
text often contains numerous professional terms, specific text frag-
ments, and multidimensional information. However, most existing
text representation methods ignore this specialized knowledge and
instead adopt methods similar to those used in the general do-
main. In this paper, we focus on developing a learning module
to enhance the representation ability of knowledge-intensive text
by leveraging a graph-based cross-granularity message passing
mechanism. To this end, we propose a novel learning framework,
the Multi-Granularity Graph Neural Network (MG-GNN), to
integrate fine-grained and coarse-grained knowledge at the char-
acter, word, and phase levels. The MG-GNN performs learning in
two stages: 1) inter-granularity learning and 2) intra-granularity
learning. During inter-granularity learning, semantic knowledge
is extracted from character, word, and phrase granularity graphs,
whereas intra-granularity learning focuses on fusing knowledge
across different granularity graphs to achieve comprehensive mes-
sage integration. To enhance the fusion performance, we propose
a context-based gating mechanism to guide cross-graph propaga-
tion learning. Furthermore, we apply MG-GNN to address two
important medical applications. Experimental results demonstrate
that our proposed MG-GNN model significantly enhances the per-
formance in both diagnosis prediction and medical named entity
recognition tasks.

Index Terms—Multi-granularity, graph neural network, elec-
tronic medical record, medical NER, diagnosis prediction.

1. INTRODUCTION

EDICAL texts, as knowledge-intensive texts, contain
M rich medical semantic knowledge and valuable clinical
experience. This information can be represented at different
levels of granularity: fine-grained knowledge, such as single
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Fig. 1. An example of knowledge across different granularities in a medical

text segment. Best viewed in color.

characters, and coarse-grained knowledge, such as phrases and
sentences [1]. As depicted in Fig. 1, medical texts contain
both word-level and phrase-level knowledge, illustrating their
knowledge-intensive nature. Compared with word-level knowl-
edge, longer terminologies in the medical domain, such as
disease names, symptoms, and treatment, often have a coarser
granularity. Effective representation learning across these vari-
ous granularities is vital for understanding the overall semantics
of medical texts. This process involves encoding the information
into semantic text representations, optimizing and enriching
these representations with domain-specific knowledge, and ap-
plying them to diverse downstream tasks and clinical prac-
tices [2], including medical named entity recognition, diagnosis
prediction, and International Classification of Diseases (ICD)
coding.

From the perspective of different granularities, fine-grained
information provides more detailed knowledge from various
aspects for a complete understanding of the semantics. For
example, as shown in Fig. 1, integrating the word embedding of
“Adults” into the embedding of “Latent Autoimmune Diabetes
in Adults” can emphasize the age of onset of the disease. After
the interaction of cross-granularity knowledge, the embeddings
of “Adults” can be influenced by the given disease. In the
semantic space, the word “adult” becomes closer to adult-related
diseases, whereas it becomes more distant from words associated
with other age groups, such as “adolescent” and “elderly”.
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In contrast, coarse-grained information provides more abstract
and complete information [3], as well as boundary information
for the terms [4]. For example, “patch” refers to an adhesive
piece applied to the skin in the sentence “The patient used a
nicotine skin patch to help quit smoking”, whereas it refers to
an abnormal area in the macula of the eye in the sentence “The
eye specialist found a macular patch during the examination”.
Thus, the meaning of a word is closely related to its context.
The incorporation of the coarse-grained information into the
learning of fine-grained embeddings can increase their accuracy.
However, in practice, coarse-grained knowledge is more easily
discarded, especially for Chinese natural language processing
(NLP) tasks, where Chinese word segmentation (CWS) errors
often result in irregular coarse-grained terminologies or phrases
being incorrectly segmented by word segmentation tools. A large
amount of useful coarse-grained information between the word
level and the document level, such as professional expressions,
may be overlooked in graph-based models [5], [6]. As a result,
the coarse-grained information that should be incorporated into
word and document representations is not fully utilized during
feature extraction.

Several studies [4], [7], [8], [9] have shown that different
granularities of knowledge in text are both useful and com-
plementary. Zhang et al. [7] and Ma et al. [10] incorporated
word-level information into character-based models to recover
coarse-grained knowledge. Xia et al. [§] combined word-level
and sentence-level information to address overlapping issues in
named entity recognition. Yao et al. [5] employed a graph-based
model to connect word-level and document-level information to
enhance the final text representation. Ma et al. [3] expanded the
text sampling granularity from the word level to the sentence
level. Zhu et al. [11] extracted phrases to generate local-level
and global-level features.

Similarly, in the medical domain, some methods consider
different granularities of knowledge. Lee et al. [12] integrated
word-level information into characters for medical named entity
recognition, however, they ignored phrase-level information.
Yao et al. [13] employed trigger phrases as domain knowl-
edge to guide disease prediction, however, these phrases were
spliced together without being connected to the corresponding
fine-grained information. In summary, medical texts provide
multiple granularities of knowledge owing to their knowledge-
intensive nature, but most existing approaches fail to fully
exploit the different granularities of knowledge, let alone the
semantic relationships between these granularities. Therefore,
to obtain more accurate medical text representations, leveraging
the knowledge-intensive and multi-granularity nature of medical
texts and enhancing the interaction between different granular-
ities of knowledge are essential.

Thus, in this paper, we propose a novel multi-granularity
learning framework, named the Multi-Granularity Graph
Neural Network (MG-GNN), along with two message pass-
ing modes for the interaction of different granularities of
knowledge.

(1) Top-Down mode: The semantics of a single Chinese
character are rich and varied, as a character can convey dif-
ferent meanings depending on the context of the sentence.
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Coarser-grained information can provide more complete and
abstract semantic information. In other words, the interpretation
of a character’s meaning is determined by the surrounding
coarser-grained information. Therefore, incorporating the entire
coarse information into the understanding of individual charac-
ters is essential.

(2) Bottom-Up mode: Phrases are made up of words, and the
words are made up of characters. Fine-grained information can
provide more detailed knowledge from different perspectives.
Since the contributions of each character to the word are not
equal, the key to forming a coarse-grained knowledge represen-
tation is to identify and capture the vital fine-grained information
features.

Specifically, in this work, we construct a character-granularity
graph, a word-granularity graph, and a phrase-granularity graph
for each medical document. The edges of the character and word
graphs are built by their co-occurrence information, and the
edges of the phrase graph are built by the similarity between
phrases. The graph neural network is exploited in these three
graphs to obtain the inter-granularity neighborhood informa-
tion. After the inter-granularity message passing, we utilize
a context-based gating mechanism to establish the message
passing between graphs, and the gating mechanism contains
top-down or bottom-up modes. In summary, our contributions
are as follows:

® We propose a graph neural network-based learning frame-

work to integrate multi-granularity knowledge, which en-
hances the use of knowledge and allows mutual comple-
mentarity between different granularities of knowledge.

® We design two message passing modes in intra-granularity

aggregation to enable the interaction between fine-grained
knowledge and coarse-grained knowledge. The top-down
mode compresses prior knowledge into a representation of
fine-grained granularity, whereas the bottom-up mode adds
fine-grained semantics to sentence representations.

® We conduct extensive experiments on two medical tasks,

and the results demonstrate that our framework can capture
better representations of medical texts, and it outperforms
the state-of-the-art baselines.

II. RELATED WORK

This section reviews recent studies on text modeling via graph
neural networks (GNNs) and multi-granularity text information
fusion.

A. Text Modeling Via Graph Neural Networks

In natural language processing (NLP) tasks, transferring nat-
ural language symbol information into digital information, such
as vectors or matrices, to facilitate computer understanding and
processing is key. A good text representation needs to be able
to fully express the semantic connotation of the text. Early text
modeling methods have evolved from methods based on bag-
of-words (BOW) to methods based on word embeddings repre-
sented by word2vec [14] and Glove [15]. These methods convert
words into continuous and dense distributed representations in
low-dimensional space. The emergence of word embeddings
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allowed natural languages to establish perfect connections with
deep neural network models. Convolutional neural networks
(CNNp5s) [16] and recurrent neural networks (RNNs) [17], [18]
are widely used in text modeling for NLP applications. These
models capture the semantic information from the text sequence.

Recently, graph neural networks have become popular for
text modeling. GNN5s [19] provide much richer neighbors with
multiple relations rather than only focusing on sequentiality, and
enable the long-term and nonconsecutive semantics to be cap-
tured [20]. In terms of constructing text into graphs, Vashishth et
al. [21] utilize dependency parsing to construct the word graphs.
Yao et al. [5] built a graph on the entire corpus to generate
the word and document representations. The graph is built on
global word co-occurrence, which is calculated as pointwise
mutual information (PMI) values and so the word representa-
tions are based on the global context. It is often built for the
entire corpus level, and does not change with the sentence-level
context. Generally, the semantics of words may differ according
to their context, so the word embedding features need to be more
dynamic and flexible. We use the graph construction method
of [6], which builds individual graphs for each document. In
this way, the word representations can be dynamically adjusted
on the local context.

B. Multi-Granularity Information Fusing

In general, characters, words, entities, sentences, and even
paragraphs represent different granularities of knowledge,
each containing different levels of semantics. Fine-grained
information-based models, such as characters and words, are
very common. Pre-trained language models trained on large-
scale corpora, such as BERT [22] and XLNet [23], and medical
domain models, such as MC-BERT [24], are typical examples
of word-based models for fine-grained information learning.
Considering the characteristics of Chinese, some works [25],
[26] have introduced multi-granularity pre-trained language
models that combine characters and words to utilize the word
information for character-based models. The introduction of
word-level information allows the model to learn from coarser-
grained knowledge, reducing the difficulty of model learning. In
addition, for Chinese named entity recognition (NER) tasks, al-
though character-based models, which are the finest-grained rep-
resentations, have shown superior performance compared with
word-based models [27], the integration of word information
into characters can further benefit the final prediction [4], [7].
These multi-granularity information benefits are also observed
in information retrieval tasks [3], [9].

These works have shown that different granularities of knowl-
edge in text are both useful and complementary. Moreover,
the coarser information contains more complete and abstract
semantic information, and can be regarded as the introduction
of prior knowledge [21], [28].

III. METHOD

Our multi-granularity learning model consists of a graph
construction module, an inter-granularity aggregation module,
an intra-granularity aggregation module, and an output module.
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The graph construction module parses the input text and converts
itinto three graphs at the character, word, and phrase granularity.
The inter-granularity aggregation module and intra-granularity
aggregation module present two learning stages, as illustrated
in Fig. 2. These stages learn inter-granularity features and fuse
granular features via graph neural networks. Specifically, two
cross-graph message passing mechanisms are proposed in the
intra-granularity aggregation module. Finally, the output mod-
ule is designed to convert the output embeddings to the final
prediction.

A. Graph Construction

For a given text segment S = {¢1,¢a,..., ¢, }, we perform
text parsing at various levels of granularity. First, we consider the
character level, which is the smallest semantic unit in Chinese.
Each distinct character within the segment is treated as a node,
and the co-occurrence relations between characters within a
fixed-length sliding window form the edges. This character
graph is denoted as Gcpar = (Vehar, Echar ) Where Vepq, is the
set of nodes with |V,p4,| <= n, and where E.j,, represents
the set of edges. Next, we proceed to word-level parsing. The
words existing in the lexicon are selected as word-level nodes.
To mitigate the negative impact of different word segmentation
methods, we include all potential words present in the given
text segment S. The words are then reordered on the basis of
the index of the first character. The resulting word graph is
denoted as Guord = (Vwords Pword), Where Vi,,.q represents
the set of nodes, and where F,,,,q4 is the set of edges. The edges
in word-graph are also from the co-occurrence of words, which
can be identified within local sentences or calculated as PMI
values [5] via the global corpus. In our model, we incorporate
both of these methods and present a comparison in the experi-
mental section. Finally, similar to the selection of potential words
in word-level parsing, phrases that match the domain-specific
phrase dictionary are collected as nodes. Owing to the sparsity
of phrases, we connect them on the basis of their semantic
similarity. Specifically, the edge between two phrases is set to
the value of their cosine similarity, and if this value falls below
a threshold, the edge is set to zero. This phrase graph is denoted
as Gphrase = (‘/phrasea Ephrase)’ where V;)hrase represents the
set of nodes, and where I}, represents the set of edges. All
three graphs are undirected graphs.

Another necessary graph is the multi-granularity graph. This
graph incorporates all the nodes from the character, word, and
phrase graphs. In this comprehensive graph, we consider the
containment relationships between these different granulari-
ties. Specifically, an edge between a character-granularity node,
Uchar, » and a word-granularity node, Vword » is assigned a value
of 1 if the character char; appears in the word word;, where
char; is the i-th character and word; is the j-th word. A
similar approach is applied to the relationships between words
and phrases. Additionally, for character-granularity nodes, we
introduce edges between adjacent characters, following their
forward and backward sequence order in the text. This multi-
granularity graph is denoted as Gowp = (Vewp, Ecwp), Where
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Overview of the learning framework of the multi-granularity graph neural network (MG-GNN). (a) shows the inter-graph aggregation of three single-

granularity graphs, and (b) shows the two message passing modes of the intra-granularity graphs.

Vewp = {Vehars Vwords Vohrase } 18 the set of nodes, and E.,,,
is the set of edges.

B. Inter-Granularity Aggregation

Given the individual single-granularity graphs, the initial node
embeddings and the adjacent matrix are denoted as X, €
RIVarl<d” and A, € RIVorl<IVarl| respectively, where gr rep-
resents the different granularities [c,w,p|] (character, word,
phrase), d* is the dimension of word embeddings, and |V, |
denotes the size of the node set.

To learn the embeddings of nodes in each graph, we employ
the gated graph neural networks (GGNN) [19]. Initially, the
information from direct neighbor nodes is collected as aglr). By
stacking the ¢-layer GGNN, we can obtain the information from
the ¢-step neighbors.

HO) = X, (1)
all) = Ay, HE VW, ©)

where X, is the initial embedding for a specific granularity
“gr” (character-level, word-level, or phrase-level), and A, rep-
resents the adjacent matrix.

Then, we aggregate the neighborhood information ag,tr) with
the current node’s self-information H(*~). The node representa-
tionis updated according to the formulas (3)—(6), which illustrate
how the GGNN uses the initial embedding and neighborhood
information to derive the final representation:

of) =0 (Wil + U D +83,). ®
r®) = o (Wyal, + U HIED 40, @)

ffggtr) = leaky_relu (W“ at

gr—gr

+ U, (rgi) ® Hg(ffl)) + bZr) ,
&)
q) =HY o+ Y o (1 — z(t)> : (6)

qr

Gating mechanism

= Gate(context(@),R(Q))

Fig. 3. Context-based gating mechanism in top-down mode. The blue nodes
represent phrase-level nodes, the green nodes represent word-level nodes, and
the orange nodes represent character-level nodes. Best viewed in color.

where H, étr) is the updated representation after ¢-layer. We stack
two layers here, that is ¢t = 2. zétr) and rg;) are the update and

reset gates in GGNN. © is element-wise multiplication.

C. Intra-Granularity Aggregation

Initial Embeddings: After aggregating the neighborhood in-
formation within the inter-graphs, we obtain the ¢-layer outputs
of the character graph H, c(t), the word graph H. S ), and the phrase
graph H,gt). These outputs are then concatenated to form the
input for the intra-graph aggregation process.

HS), = [Hc(t);HS);H,St)} : )

Context-based Gating Mechanism: To better control the mes-
sage flow between graphs, we use a context-based gating mech-
anism to update the adjacent matrix A..,p € RIVewsx[Vews |,

To effectively enhance the coarse-grained knowledge of the
fine-grained nodes, a context-based gating mechanism, depicted
in Fig. 3, is introduced. This mechanism aims to convey the
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Fig. 4. Graph attention mechanism in bottom-up mode. The meanings of the
node colors are the same as those in Fig. 3. The thicker the curve connecting a
word-level node to a phrase-level node is, the higher the weight assigned to that
edge. Best viewed in color.

meaning of entire phrases to individual words and characters
while minimizing the deviations caused by segmentation errors
or incomplete word meanings. Specifically, for each character,
only the information of the coarse-grained nodes that are directly
connected to the character is collected. The update formulas for
this process are denoted as (8)—(9).

/

a;; = Gij © gij, ®)
9i5 = Simi(AGG(UbeforeJa Vi, 'Uafterj% R(”]))a (9)

where a;; is the item of i-th row and j-th column in A, and
a;; is the item of i-th row and j-th column in new adjacent
matrix Af:wp, v; is the neighbors of v;, Vpe fore_; 18 the previous
character of v;, Vg rter ; iS the character after v;, Simi is the
cosine similarity, and R(v;) = H, ,§S}p (vy), H c(?u)p is treated as the
embedding lookup table.

Now, we obtain the new adjacent matrix A7, and the initial

embeddings H, C(SJ)Z,, and the intra-graphs aggregation is updated
in the same way as the inter-graph aggregation. To capture
information from a larger neighborhood, we again stack two
layers of the graph neural network.

Graph Attention: In addition to the top-down mode, we further
explore a bottom-up mode, which leverages graph attention to
propagate semantically richer fine-grained information to the
upper layers. This attention mechanism serves as a selector, fil-
tering out unimportant messages, as not all characters contribute
equally to the meaning of words or final phrases. Fig. 4 illustrates
the abstract representation of this bottom-up mode. The weights
of edges are calculated using graph self-attention, as proposed
in [29]. The specific update formulas are denoted as (10)—(12):

eij = o(Whi, Why) (10)
where W is the shared weight matrix, h; and h; are nodes and
for nodes j € N;, where N; is neighborhood of node i in the
graph. o is the leaky relu activation function.

exp(ei;)

Q5 = SOftmaX(eij) = m,
eN; z

Y
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Based on the attention weight a;;, the final embedding for node
7 is denoted as:

hi =0 Z aijWhj 5 (12)

JEN;

Overall, during the intra-granularity aggregation process,
each character’s neighbors encompass not only the immediately
preceding and following characters but also the words and
phrases that encompass it. This approach facilitates interaction
between fine-grained characters and coarse-grained knowledge,
effectively integrating their respective information into a char-
acter representation. The output of this module is denoted as

a,.

D. Output Module

To date, we have obtained a multi-granularity representation,
which can be used for various downstream tasks. The specific
output module is determined by the requirements of each task.
Here, we demonstrate its adaptability to two common tasks:
sequence labeling and classification.

Text Sequence Labeling Tasks: Since sequence labeling tasks
require preserving the original character order, the final character
representations need to be retrieved from the entire embedding
set and reorganized according to their original order. This pro-
cess is denoted as:

R, = { RO, RY) (13)

cy1? Cc2 7"

..,Rgt_),...,Rgt)},

where Rg) = Hc(fgp(ci). The matrix Hc(f,,)p is treated as a em-

bedding lookup table and Rg) is the character embedding of the
i-th character in the text.

Bidirectional long short-term Memory (BiLSTM) is applied
to capture the sequence information.

fr o
‘7_ R((/t)
o T (w e a (14)
O, g h7—71
Cr tanh
Cr=frOcr1+i, 08 (15)
hy = o ® tanh(c;) (16)

After that, a standard conditional random field (CRF) layer is
exploited on {hy, ha, ..., hr, ..., h,} for the sequence labeling
tasks.

Text Classification Tasks: For text classification, we utilize
both the max pooling layer and the average pooling layer to
extract the final features. Specifically, we independently apply
max pooling and average pooling to the phrase-level represen-
tations, and subsequently concatenate the results into a single
one-dimensional vector. This vector is then projected onto the
label space via a multilayer perceptron (MLP). Finally, a Soft-
max classifier is employed to perform the classification, yielding
the predicted category for the given text.

out = [Poolmean (Hz(f)) , Pool a0 (H}gt))} (17)
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Output = M LP(out), (18)

where ngt) is the entity-section features of H, éfj,,.

E. Decoding and Training

For the sequence labeling tasks, we have the probability of the
label sequence y = {l3,l2, .. .1}, which is calculated
as formula (19):

ol

erp (Ei (W(lq‘, 1Ji)hi + b(li 1,l7:)))
Ly erp (Zi (W(z;d,z;)hi + b(z;fl,z;)))
where v/ is the arbitrary label sequence, and Wa. 1) W(l; BRAE
b, 1,)» b, , are model parameters.

The loss function is a negative log-likelihood loss with L2
regularization.

L =-% log(p(yi|s:)) + A||O]%, (20)

where N is the number of a set of training data, X is the Lo
regularization parameter and O is the parameter set.

P(ylS) =

, (19

7 = SoftMax(Wrina Output + binai), 21)

The loss function is cross-entropy loss with L2 regularization.
L = —Xy;log(yi) + 4|0, (22)

Moreover, we add L2 regularization to the cross-entropy to
avoid overfitting.

IV. EXPERIMENTS
A. Task Definition

We selected two kinds of common medical tasks to verify the
effectiveness of our framework. (1) The diagnosis prediction
task, which is commonly regarded as a document classification
task, is vital in medical treatment. Traditionally, diagnosis relies
on doctors’ expertise, and is time-consuming. Diagnosis pre-
diction aims to assist doctors in decision-making by analyzing
electronic medical records (EMRs). (2) Medical named entity
recognition (NER), a character-level sequence labeling task,
aims to identify specific entities such as diagnoses, drugs, and
symptoms within medical texts.

These two tasks, one that predicts a diagnosis on the basis
of semantic information of coarse-grained information, and the
other that focuses on semantics at a fine-grained level, are
therefore suitable for validating our proposed model. The NER
task is used to verify the fine-grained representations, especially
with our top-down mode, whereas the diagnosis prediction task
focuses on coarse-grained semantics, aiming to demonstrate the
necessity of obtaining accurate coarse representations from our
bottom-up mode. Examples from each dataset are provided in
the Appendix A.

B. Datasets

To better validate our method, we construct two datasets
for the two tasks in Section IV-A. The motivation for using
self-constructed datasets lies in their advantages related to real-
world data sources, high knowledge density, and wide disease
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TABLE I
DETAILED STATISTICS INFORMATION FOR DIAGPREDICTION DATASET

Statistics Quantity
# Train Samples 10000
# Test Samples 2439

# Total Labels 153

# Average characters per sample 62.4
# Average words per sample 39.9
# Max characters per sample 99
# Max words per sample 69
Vocabulary Size - character 1982
Vocabulary Size - words 7160

TABLE I
DETAILED STATISTICS INFORMATION FOR EMR-NER DATASET

Entity Type # Train ~ # Test
Position 899 181
Disease Nature 2457 59
Dosage 305 67
Medication Frequency 101 24
Start Time 1000 254
Duration 98 22
Disease Diagnosis 709 176
Treatment Effect 346 88
Treatment Drug 800 197
Negative Symptoms 2188 474
Intake Pattern 264 57
Total # of entities 9167 1599

coverage. (1) Data Sources. Our data are derived from real EMRs
and manually labeled by physicians, ensuring alignment with
the actual application scenarios of the tasks. This enhances the
relevance and applicability of our experiments. (2) Knowledge
Density. EMR data have high knowledge density and include
sufficient medical phrases to meet the multi-granularity require-
ments of our model. (3) Disease Coverage. Our datasets cover
a wide range of diseases, minimizing the bias that might arise
from limited disease types in experiments.

First, we construct a dataset for the diagnosis prediction task,
namely, the DiagPrediction dataset. Each sample in the dataset
contains the chief complaint and the history of the present illness
from the electronic medical records, with a single diagnosis
label. In total, we collected 12,439 samples covering 153 general
disease diagnoses; more detailed statistics are reported in Table I.

Second, we gather 2,506 Chinese electronic medical records
from hospitals and construct a dataset for medical named entity
recognition, namely, the EMR-NER dataset. In this dataset, we
annotate 11 kinds of common medical entities, totaling 10,766
labeled entities. Table Il provides detailed statistics for the EMR-
NER dataset.

C. Parameters and Metrics

The optimizer employed is Adam [30] with a learning rate of
0.005. The word embeddings are pre-trained via Glove [15] with
dimensions of 200, and the training corpus is from an extensive
collection of medical texts. The dropout rate is 0.5. We employ
2 layers of the GGNN, and the dimension of the GGNN output
layer is 200. The LSTM hidden dimension used in the NER
task is 128. The batch sizes of the diagnosis prediction task and
NER task are 512 and 50, respectively. In addition, in the graph
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TABLE III
EXPERIMENTAL RESULTS ON DIAGPREDICTION DATASET
Macro
Model Accuracy Precision  Recall F1
SWEM [31] 84.72 81.33 73.52 7522
FastText [32] 85.24 76.69 7233 7254
TextCNN [16] 85.77 81.62 74.04 7547
RNN [33] 79.05 60.46 61.70  59.08
DPCNN [34] 82.62 68.84 6149 6291
LEAM [35] 85.53 78.76 74.03  74.73
Attention-LSTM [18] 82.62 68.84 61.60 62.33
Transformer [36] 73.64 57.30 48.03 49.05
TextGCN [5] 83.35 79.24 69.77 7197
TextING [6] 83.48 75.46 69.19  69.61
ProtoPatient [37] 74.14 72.49 68.61 69.06
Gzip [38] 72.78 57.90 50.84  51.69
MCBERT [24] 85.86 79.55 76.32 76.01
MG-GNN + local co-oc (Proposed) 86.68 82.28 77.62  79.31
MG-GNN + global PMI (Proposed) 87.07 84.40 78.10  79.83
The last block reports our proposed MG-GNN. ‘local co-oc’ refers to single granularity graphs are constructed
by the co-occurrence in each sample. ‘global PMI” refers to the graphs are constructed by the PMI value
calculated on the whole corpus.
construction stage, the length of the sliding window is 3, and the TABLE IV
cosine similarity threshold is set at 0.3. All the parameters are THE EXPERIMENTAL RESULTS ON EMR-NER DATASET
determined by the development set which is split from training Micro
set, and the final model is trained on the whole training set. Model Precision  Recall  FI
We use the micro precision, micro recall, and micro F1 score BiLSTM+CRF (Char-based) 8142 69.60  75.05
. . . .. BiLSTM+CRF (Bichar-based) 81.51 70.30 75.49
as metrics for the NER task. For the diagnosis prediction task, Lattice LSTM [7] R4 7981 7927
the metrics include accuracy, macro precision, macro recall, and LGN [4] 77.99 78.87  78.43
the macro F1 score. SoftLexicon [10] 80.06 78.40  79.22
MCBERT [24] 65.17 77.28 70.71
MG-GNN + local co-oc (Proposed) 82.31 7831  80.26
MG-GNN + global PMI (Proposed) 83.05 80.20 81.60

D. Baselines

To better evaluate our framework, we select several kinds
of methods for comparison in diagnosis prediction task. (1)
Simple compositional methods: SWEM [31], FastText [32];
(2) CNN-based and RNN-based methods: TextCNN [16],
TextRNN [33], DPCNN [34]; (3) Attention-based methods:
LEAM [35], Attention-LSTM [ 18], Transformer [36]; (4) GNN-
based methods: TextGCN [5], TextING [6]; (5) Other state-of-
the-art methods. A non-parametric compressor-based method
named Gzip [38], and a prototypical network-based method
named ProtoPatient [37]. The max text length is set to 100 tokens
for all the models, and the remaining parameters are kept up with
the original settings.

The baselines for the NER task include bidirectional LSTM
with a CRF layer, where the character-based model and
bicharacter-based model [17] are both evaluated. In addition, we
compare our results with those of lattice LSTM [7], LGN [4],
and SoftLexicon [10] since these methods integrate the coarse-
grained information into characters.

E. Main Experimental Results of the Proposed Model

The experimental results on the DiagPrediction dataset are
reported in Table III. Overall, our proposed methods outperform
all the above methods in terms of accuracy, precision, recall, and
F1 score. The MG-GNN with global PMI is superior to that with
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local co-occurrence. Specifically, the accuracy of the MG-GNN
with a global PMI reaches 87.07%.

In the first block of Table III, we present two simple com-
positional methods, with FastText [32] achieving an 85.24%
accuracy. Among the classical neural network-based models
in the second block, TextCNN [16] exhibits the best perfor-
mance, achieving an 85.77% accuracy. The third block shows
the attention-based methods, where the LEAM [35] achieves
an 85.53% accuracy. The two models based on graph neural
networks achieves a similar performance. Compared with those
of the baselines, the accuracy, macro precision, macro recall, and
macro F1 score of the MG-GNN with global PMI are improved
by 1.3%, 2.78%, 4.06%, and 4.36%, respectively.

Furthermore, we conducted experiments on the EMR-NER
dataset, and the results are reported in Table IV. Our proposed
model achieves a micro-F1 score of 80.26%, which improves
the F1 score by 0.99% compared with the best baseline model.

In the first block of Table IV, the BiLSTM-based models
achieved a micro-F1 score of 75.49%. Moving to the second
block, three state-of-the-art models integrating word-level in-
formation into the character representations were presented.
Among them, lattice LSTM and SoftLexicon exhibited similar
best performances at 79.27% and 79.22%, respectively. It is
obvious that the methods in Blocks 2 and 3 (our proposed
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TABLE V
THE RESULTS OF ABLATION STUDY ON DIAGPREDICTION DATASET

Macro

Model Accuracy Precision  Recall F1

MG-GNN + local co-oc 86.68 82.28 77.62  79.31
MG-GNN + global PMI 87.07 84.40 78.10  79.83
w/o word and phrase 84.64 75.92 7224 7142
w/o character and phrase 85.94 77.94 76.11  75.18
w/o character and word 86.08 72.05 7497  71.38
w/o phrase 85.07 74.23 72.85  71.60
w/o word 86.28 78.51 73.08  75.98
w/o character 86.45 81.55 76.87 7741
w/o context-based gating 86.35 82.63 76.67  77.54
w/o graph attention 86.57 82.12 77.03  78.39
w/o gating and attention 85.49 78.49 75.17  75.34

TABLE VI

THE RESULTS OF ABLATION STUDY ON EMR-NER DATASET

Micro

Model Precision  Recall Fl1

MG-GNN + local co-oc 82.31 78.31  80.26
MG-GNN + global PMI 83.05 80.20  81.60
w/o word and phrase 78.89 7455  76.66
w/o phrase 80.82 74.86 77.73
w/o context-based gating 81.71 78.78 80.22
w/o graph attention 81.27 78.73  79.98
w/o gating and graph attention 80.56 76.26  78.35

method) enhance the recall immensely since they introduce extra
word and phrase information.

V. ANALYSIS AND DISCUSSION
A. Ablation Experiments on Multi-Granularity Information

Our model integrates knowledge from multiple granularities.
To validate the positive impact of each granularity on the fi-
nal performance, we conducted ablation experiments, with the
results reported in Tables V and VL.

For the diagnosis prediction task, as illustrated in Table V,
we first evaluated single granularity models, i.e., characters,
words, and phrases, and the results are listed in Rows 2-4.
Among these, word-granularity knowledge performs the best
in single granularity learning, achieving an accuracy of 85.94%.
Moreover, we integrate knowledge from two granularities in
Rows 5-7, and the highest accuracy of 86.45% is achieved by
combining word and phrase knowledge. These findings align
with our initial expectations, namely, that coarse-grained infor-
mation contributes significantly more to document classification
tasks.

For the NER task, character granularity is necessary; thus,
we conducted ablation experiments only on the character gran-
ularity graph and the character-word granularity graph. As illus-
trated in Table VI, the character-based single-granularity graph
model achieves a micro-F1 score of 76.66%. Compared with
the character-based Bi-LSTM (reported 75.05% at Table IV),
our single-granularity graph model incorporates inter-graph ag-
gregation, effectively enhancing the character representations.
The two-granularity graph model uses the same intra-graph
aggregation method to update the final character representations,
resulting in a 1.07% improvement in the F1 score compared
with the single-granularity graph model. Moreover, the inclusion
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of phrase information also proves effective, as evidenced by
an increase in the F1 score from 77.73% to 80.26%. Thus,
each granularity contributes unique semantic information, and
combining them allows for a better knowledge representation.

B. Ablation Experiments on Message Passing Mechanisms

To validate the effectiveness of the two message passing
mechanisms, we conducted ablation experiments, with the re-
sults reported in the bottom blocks of Tables V and VI. Removing
either the context-based gating mechanism or the graph attention
mechanism results in a significant decline in the performance
of the MG-GNN across all the metrics. Compared with the
model without both context-based gating and graph attention,
our MG-GNN improves the accuracy from 85.49% to 87.07%
on the DiagPrediction dataset, improves the micro-F1 score from
78.35% to 81.60% on the EMR-NER dataset. This demonstrates
the effectiveness of the message passing mechanisms.

C. Analysis of Similarity Between Phrases

The phrase granularity graph is built via cosine similarity
between phrases, with values ranging from O to 1. A threshold
is set to decide whether there is an edge between two phrases,
effectively helping each phrase select its neighbors. We inves-
tigate various threshold values: 0.2, 0.3, 0.4 and 0.6, leading to
two important observations:

1) The best performance is achieved with a threshold of 0.3.
Increasing the threshold does not always improve perfor-
mance since the graph becomes sparser as the threshold
increases. Lower thresholds, such as 0.2, result in most
phrase nodes being connected because their cosine simi-
larity is generally no less than 0.2. However, a sparse graph
significantly impacts performance negatively.

2) As shown in Fig. 5(a) and (b), the similarity between dif-
ferent symptoms of the same disease is high. For example,
in Fig. 5(a), the similarity between “cough” and “pro-
ductive cough” is 0.81, and in (b), the similarity between
“urinary urgency” and “frequent urination” reaches 0.98.
In other words, the final phrase-granularity graph often
consists of a few closely connected subgraphs representing
several related symptoms.

D. Analysis of PMI

The key to effectively applying GNNs to text is construct-
ing an appropriate graph, which involves defining nodes and
their connections. We demonstrated two methods for creating
a word-level graph: local co-occurrence and global PMI. The
results in Tables III and IV indicate that the model using PMI
values outperforms the one using local co-occurrence in both
the diagnosis prediction task and the medical NER task. For
the disease prediction task, the introduction of global PMI in-
creased the model accuracy from 86.68% to 87.07%, and raised
the micro-F1 score from 80.26% to 81.60% in the NER task.
This improvement can be attributed to the fact that the word
relationships in the graph are based on the global context, thus
incorporating more comprehensive information.
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Fig. 5.

The patient experienced dizziness, tinnitus, occasional headaches, and occasional chest
tightness without chest pain or chest discomfort three years ago without any obvious triggers.
The patient sought medical attention at XX Hospital and was diagnosed with_high blood
pressure. Symptomatic treatment with antihypertensive medication was administered, resulting
in symptom relief. The patient was prescribed Bisoprolol for treatment, and the condition has
remained stable. Today, the patient is here for a follow-up blood pressure check.

Orinigal Chinese Text: 3FRIBELBRIFELE, HIS, fELE, BEMT, THIFEMER
Eagﬁﬁgm‘é\ BHABIE, SFRENELT, ERER, DIRFREET, miskEE,
% o

{ Diagnosis Label: High blood pressure / Hypertension. (B [IJE in Chinese) }
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Fig. 6. An example from the diagnosis prediction dataset. Visualization of

the adjacent matrix of the multi-granularity graph and the graph attention
matrix.
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Two Examples of Phrase Similarity Matrices: The darker the color, the more similar the corresponding phrases. Similarity values range from O to 1.

VI. CASE STUDY

To demonstrate the effects of different granularities of knowl-
edge, we provide an example from the DiagPrediction dataset
in Fig. 6.

First, we visualized the adjacency matrix used in the intra-
graph learning in Fig. 6. The x-axis and y-axis both represent
node ids. Starting from the origin, first, character nodes are
identified, followed by word nodes, and finally, entity nodes. The
multi-granularity graph is dense, with connections established
between nodes of different granularities through co-occurrence
relationships, inclusion relationships, and semantic similarity re-
lationships. The weights on the edges effectively reflect the
relationships between different granularities.

Furthermore, we visualize the graph attention matrix of our
model in Fig. 6. Darker colors represent higher weights. Intu-
itively, word and phrase nodes are assigned greater importance
in the disease prediction task, indicating a greater influence on
model prediction.

VII. CONCLUSION

In this paper, we propose a novel learning framework, the
multi-granularity graph neural network (MG-GNN), to inte-
grate multi-granularity knowledge. Applied within the medical
domain, our framework leverages professional domain knowl-
edge effectively. By constructing character, word, and phrase
graphs and employing graph neural networks for inter-graph
and intra-graph message passing, we utilize a context-based
gating mechanism and graph attention to capture fused semantic
knowledge. Specifically, our framework accommodates three
granularity levels of knowledge. It initially learns single granu-
larity information independently, and then uses two message
passing mechanisms to fuse different granularities, ensuring
that the fine-grained and coarse-grained knowledge complement
each other.

Furthermore, we evaluate our proposed MG-GNN model
across two medical NLP applications, both of which demonstrate
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TABLE VII
AN EXAMPLE IN ELECTRONIC MEDICAL RECORD NER DATASET

English Version

Chinese Version

ture up to 39, accompanied by chills, and

During the illness, in fever 10 days ago, the highest body tempera-

after self-administered paracetamol. No coughing, and

PR IOR AT A, IRERF30E,
JE, BRIMNAEE o TEIZHZ

Iz 1k 15 VL J

Text expectoration, no bleeding gums, no mouth ulcers, no abdominal P)S %ﬁ:%ﬁﬁw[ 3#325)1&{%@%@55% - 1
pain, and diarrhea. Hair loss. Raynaud’s phenomenon. Normal {i ﬁﬂ/“ﬁ; il ?/"/J\ﬁi/’ EIE
stool, general sleep and diet,and recent weight gain. i, BEIRICE S, ST E AT -
Negative Symptoms: FH 'H%?U;i
{ *5-5": “fever’, 20-20": “chills’, *33-33’: ‘coughing’, {7-8: KH, 18-19°: EE,
36-36’: ‘expectoration’, ‘39-39’: ‘bleeding’, 34-35": TEWC, 36-377: TR,
‘44-44’: “ulcers’,*53-54’: ‘hair loss’, 42-43°: I, *48-39": VBB,
‘56-57°: ‘Raynaud’s phenomenon’} 59-60": ‘i, 62-65": ‘FHIHTG )

Annotations | Position: ERAL

{40-40’: ‘gums’,*43-43’: ‘mouth’} {40-41": “ZFiRY, “45-47: ‘AfE}
Treatment Drug: 1BIT 251):

{30-30": ‘paracetamol’ }

{23-27": ‘body temperature returned to normal’}

{23-26": “FMNRAETR}

{28-31": PRRIER }

Best viewed in color.

TABLE VIII
AN EXAMPLE IN AUTOMATIC DISEASE DIAGNOSIS DATASET

English Version

Chinese Version

Chief Complaint

Intermittent chest tightness for one year.

EER D

History of
Present Illness

One year ago, the patient developed precordial pain after
exertion, which was paroxysmal squeezing pain and relieved
spontaneously after 3-5 minutes. It was accompanied by
chest tightness, and there was no fall or disturbance of
consciousness. Come to see the doctor today.

B IR EE S R IO X
PR, BREAVEEVERERR, frst
3-550BIT BATRAR, MR, T
B KRR - 4 AR .

Diagnosis

Coronary Heart Disease

O

superior performances compared with the baselines. We also
conducted extensive ablation experiments to verify that the
information at each granularity is useful, and under our multi-
granularity learning, they can promote the final performance of
the model together. In addition, we verify the effectiveness of
the two message passing mechanisms.

In future work, we plan to increase the flexibility of the frame-
work by accommodating more granularity levels, such as the
subsentence-level and sentence-level information. This would
allow for even richer representations and potentially improve
performance on more complex tasks. These directions will help
refine the MG-GNN and extend its applicability across a broader
range of NLP applications.

APPENDIX
SAMPLES FOR OUR TwWO DATASETS

To make a better demonstration of our dataset, we provide
sample data for each dataset in Tables VII and VIII. The text,
annotation, and labels have all been translated into English.
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