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Abstract— This paper presents a 1/10th scale MiniCity
platform used as a testing bed for evaluating autonomous
and connected vehicles. Using the MiniCity platform, we can
evaluate different driving scenarios including human-driven
and autonomous driving. We provide a unique, visual feature-
rich environment for evaluating computer vision methods. The
conducted experiments utilize onboard sensors mounted on
a robotic platform we built, allowing them to navigate in a
controlled real-world urban environment. The designed city is
occupied by cars, stop signs, a variety of residential and business
buildings, and complex intersections mimicking an urban area.
Furthermore, We have designed an intelligent infrastructure at
one of the intersections in the city which helps safer and more
efficient navigation in the presence of multiple cars and pedes-
trians. We have used the MiniCity platform for the analysis of
three different applications: city mapping, depth estimation in
challenging occluded environments, and smart infrastructure
for connected vehicles. Our smart infrastructure is among the
first to develop and evaluate Vehicle-to-Infrastructure (V2I)
communication at intersections. The intersection-related result
shows how inaccuracy in perception, including mapping and
localization, can affect safety. The proposed MiniCity platform
can be considered as a baseline environment for developing
research and education in intelligent transportation systems.

I. INTRODUCTION

As technology and urban mobility evolve, Autonomous
Vehicles (AVs) and Intelligent Transportation Systems (ITS)
are key factors in shaping the future of urban landscapes.
The development of these technologies calls for rigorous and
varied testing environments that can ensure safety and func-
tionality. Traditionally, testing AVs algorithms in real-world
scenarios presented significant costs as well as safety and
practical challenges; therefore, researchers are now turning to
simulated environments, such as CARLA [1] and Unity [2],
which provides controlled settings and great step in regards
to simulation testbeds; however, these environments still lack
the fidelity and complexities of real-world interactions.

Although advancements have been made in such simulated
environments, transitioning these technologies from virtual to
complex real-world urban settings remains with interesting
challenges. The discrepancy between simulated and real-
world conditions can lead to significant performance devia-
tions. To address this gap, scaled testbeds such as mini-cities
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Fig. 1: Smart Intersection Scenario: The non-communicating
car on road A continues forward without communicating
with the infrastructure. communicating car on road B shares
its location with the smart infrastructure located at the bottom
left corner. The infrastructure warns the communicating car
to stop if there is a risk of accident.

have provided a more realistic and controllable environment
for thorough testing before real-world deployment. A recent
comprehensive survey of small-scale testbeds highlights their
value in providing cost-effective, controlled environments
that bridge the gap between full-scale experiments and
simulations [3]. These testbeds simulate real-world scenarios
with varying degrees of complexity and realism, allowing
researchers to evaluate algorithms under different conditions.
However, these models often lack comprehensive integration
of complex urban infrastructures and detailed environmental
contexts, which are critical for the next generation of urban
mobility solutions.

Prior research has explored other mini-cities for au-
tonomous vehicle testing[4], [5], however, these models have
yet to integrate key components of ITS such as smart in-
frastructures and connected vehicles. Our work introduces a
novel 1/10th scale MiniCity that incorporates these elements,
offering a unique test bed that bridges the before-mentioned
gap even further between simulation and real-world appli-
cation. This MiniCity not only facilitates complex testing
scenarios involving AVs and connected vehicles but also



Fig. 2: Ground Truth (GT) map of the MiniCity

enhances and opens the doors to more research capabilities
across various domains, which potentially can accelerate the
advancements being made within the fields of autonomous
technology and smart infrastructures.

Our proposed MiniCity encompasses multiple urban fea-
tures such as roads, buildings, and traffic systems, as well
as a fully developed environmental background. This latter
feature surrounds the entire perimeter of the test bed, are
scaled appropriately down to the same scale as the rest
of the physical components of the MiniCity. Adding these
layers of environmental context enhances the simulation’s
realism and complexity, which had not previously been
implemented in other mini-cities, which further makes for
a more comprehensive testing and development site for AVs
and ITS.

A. Main contribution

The main contribution is listed as follows:
• Design and build a physical 1/10th scale city including

a variety of buildings, mimicking a realistic urban areas.
• Design and implement a smart intersection that enables

cars to communicate with the infrastructure at the
intersection, leading to a safe navigation.

• Consider MiniCity as a test bed for evaluating au-
tonomous driving-related research such as depth esti-
mation, mapping, and autonomous navigation.

II. RELATED WORK

Related work can be grouped into small cities, robotic
cars, and smart infrastructure.

A. Small City Platform

There are several studies in MiniCity. Buckman et al. [5],
presented a 1/10th scale MiniCity, which has been used for
object detection and state estimation. The work [4] presented
a MiniCity in which the driving behaviors is analyzed to
identify vehicle failure. This indicates the importance of

vehicle failure identification such as swerving due to manual
control, lane offset, speeding, and periodic steering and
speeding. However, this MiniCity does not utilize connected
vehicle communication as our version does.

Duckietown [6] is another example of MiniCity. The
primary goal of this city was to provide high schools and
other universities with a pre-assembled bundle to deploy and
begin their work on autonomous navigation. Duckietown has
a total area of 240 sqft, and includes three traffic lights and
thirty duckiebots. The MiniCity is two times larger while it is
much cheaper in comparison with Duckietown, as shown in I,
which makes our platform affordable to broader community.

B. Robotic Platforms

There are a variety of robotic platforms with different
scales have been used for conducting research in autonomous
cars. This section lists only platforms that are closely related
to our cars. F1TENTH [7] is a race car developed by a
team with the same name, it has been used for educational
and research purposes. Although this platform shares similar
processor and sensors with our robotic platform, our design
is based on MuSHR’s platform [8], which was originally
inspired by MIT’s RACECAR [9]. Furthermore, we utilize
our cars to conduct research in connected vehicles and smart
infrastructure in smart cities. We have built a fleet of 1/10
scale race car, called ARC. ARC are used for a variety of
experiments conducted in MiniCity. The cars are equipped
with Wi-Fi, which enables them to communicate within
themselves as well as smart infrastructure.

C. Smart Infrastructure and Smart Intersections

Recent innovations in smart roads, crucial for smart
cities, are detailed by Toh et al. [10]. The paper discusses
the integration of advanced transportation technologies like
V2X communication (i.e., Vehicle to everything communica-
tion), smart intersections, and automated emergency services.
While these advancements significantly enhance road safety
and efficiency, the authors note a gap in the implementation
of these technologies at a granular, interconnected level
across urban infrastructures. Our research aims to address
this gap by proposing an integrated framework that enhances
vehicle-to-infrastructure communication at smart intersec-
tions, particularly in miniaturized urban environments like
our MiniCity.

III. MINICITY DESIGN AND IMPLEMENTATION

A. MiniCity Layout

We consider a variety of buildings with different heights,
two-way roads, intersections with realistic layout, and other
urban features in general to design and build our MiniCity.
The proposed MiniCity, consists of six size-varied buildings
including two houses, one apartment, one hospital, one gas
station, and a series of sophisticated traffic infrastructure to
resemble driving scenarios in urban areas. The overall size



TABLE I: MiniCity Build of Material list

Material Purpose Quantity Cost per
unit ($)

Total
cost($)

Floor foam Roads/ground 4 102.23 411.72
Boards Buildings 6 39.99 239.94
Tape Road lanes 3 13.28 29.84
Fence Outer wall 2 23.99 47.98
PVC Pipes City enclosure 16 4.71 75.36
Posters Visual Background 250 0.7 175
Tools/Misc Assembly/Accessories 1 100 100
MiniCity Testing bed 1 1079.84 1079.84

of the MiniCity is 26.75′× 19.75′ which is around 528 sqft,
and it consists of two four-way intersections, two three-way
intersections, and two blind-curve areas. The buildings are
not attached to the flooring, which makes our design flexible
and easily modifiable for different scenarios. Fig. 2 shows
the layout of the MiniCity. Fig. 3 shows a detailed illustration
of the buildings within the MiniCity.

B. Building MiniCity Platform

We have selected cost-efficient materials to build the
MiniCity. The overall cost is around $1000. The bill of the
materials with their price is summarized in Table I. We plan
to release detailed instructions for building the MiniCity. The
construction of the city is not only affordable, but also offers
a unique layout that provides flexibility for expansion as all
of its components, including the buildings and the ground
floor, are easily portable. All the components of the MiniCity
is built in 1/10th scale. Roads are made of interlocking 1/2-
inch thick foam mats and industrial-grade white and yellow
duct tape. The differing colors are for the vehicles to easily
differentiate between an outside lane and a median lane.
Our team constructed the houses and other buildings from
corrugated plastic and black paper to resemble windows. We
surrounded the entire city with a feature-rich background and
a sky backdrop to assist vehicles with visual navigation in
recognizing their location.

IV. VEHICLES AND SMART INFRASTRUCTURE
PLATFORMS

To mimic a city environment, we consider three differ-
ent platforms: ground vehicles, pedestrians, and ambulance
drones. The vehicles were designed and built by members of
our team. We considered off-the-shelves humanoid robots to
mimic pedestrians[11]. We also designed and implemented
a smart infrastructure to represent a smart city and provide
a smart intersection.

A. AirOU RaceCar (ARC)

ARCs are 1/10th scale non-holonomic vehicles designed
based on MuSHR [8] that utilizes two cameras, one 2D-
LiDAR, and a built-in IMU which are crucial for real-
time obstacle detection, simultaneous localization and map-
ping (SLAM), and path planning. The car dimensions are

0.51(W )× 0.30(L)× 0.25(H), the values are in meters and
they weigh approximately 4.5kg with a turning radius of 1.47
meters. The ARC utilizes an onboard NVIDIA Jetson Nano
with 4GB RAM and 128 Cores. The vehicle is controlled
via a Flipsky 50A FSESC, which controls the 3500 kv
brush-less motor, and a single 20kg servo motor that allows
us to control the vehicle via Ackermann steering. Fig. 4
shows our ARC platform. We have modified the original
body design in MuSHR and upgraded some of the hardware.
This involves adding a tracking camera Intel T265 to enable
vision-based localization and mapping. We also considered
an 11.1V LiPO battery, as the previous version did not
provide sufficient current. The previous 7.2V LiPO batteries
forced us to frequently encounter random shutdowns and
issues with starting up in general. After experimenting with
a multi-meter, we found the bootup process would demand
a large amount of current and since there was an insufficient
current, the Jetson Nano would shut off.

Fig. 5 shows the ARC components. We have used YDL-
IDAR X4 2D LiDAR for SLAM, an Intel T265 tracking
camera, and an Intel D435i depth camera. All Sensors,
motors, and drivers are managed via the onboard computer
utilizing Robotics Operating Systems (ROS) to communicate
information synced. ROS enables autonomous vehicles and
smart infrastructure to share information throughout the city.
In this sense, the MiniCity emulates a high-tech urban envi-
ronment where data can be shared between smart devices.

The car’s operating system is Ubuntu 20.04 LTS. We
extended MuSHR’s software package to support communi-
cation between cars and the infrastructure using Wi-Fi. We
also extended the computer vision capability of the robots to
estimate the depth of different objects in the city environment
as well as providing the map using both cameras and LiDAR.

B. Smart Infrastructure

We designated one intersection in the city to perform our
experiments with a smart infrastructure. This platform en-
ables running various experiments in smart-intersection and
evaluation of communication between the vehicles and the
infrastructure. The smart infrastructure, located at the corner
of the intersection next to the hospital, is equipped with a
3-D LiDAR (Velodyne VLP-16) which is connected to an
NVIDIA Orin Processor. This oversees passing vehicles and
pedestrians, sharing real-time data and information regarding
the state of the intersection.

Such an installation allows for dynamic traffic control
at resolutions beyond conventional induction loop sensors,
which only sense the presence of large vehicles in one lo-
cation at intersections. Such systems are flawed in detecting
motorcycles, cyclists, or pedestrians. Our proposed system
allows for tracking of different objects, such as cyclists and
pedestrians using the 3D point cloud extracted from 3D-
LiDAR at intersection, allowing for high-speed tracking and
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Fig. 3: (a) West side, and (b) East side of MiniCity with labeled buildings. The city background is generated by Artificial
Intelligence.

Fig. 4: ARC fleet used in the experiments.

Fig. 5: ARC with detailed view of onboard sensors and
processor.

planning at intersections. The implemented system is also
flexible to various sensors to be selectively installed and
utilized at any time. This includes light and infrared cameras,
LiDAR, radar, etc.

V. EXPERIMENTAL RESULTS

We conducted two types of experiments. The first group
of experiments considered the MiniCity as a test bed to
evaluate existing algorithms in perception and mapping. The
second group of experiments analyzes the proposed smart
intersection and evaluates its effectiveness in improving the
safety and efficiency of communicating cars at intersections.

A. Extracting the Ground Truth Map of the MiniCity

A MiniCity 2D Ground Truth (GT) map was created on
AutoCAD with accurate dimensions of the buildings, roads,
and distances between buildings manually measured. This
map is compatible with the mapping technique derived from
the LiDAR data. Subsequently, the AutoCAD file (DWG file)
was used to transform it into a PNG image, which contains
the MiniCity map. The result is shown in Fig. 2. The image
of the MiniCity has a resolution of 1584× 1224 pixels. We
use this map as a ground truth to compare other estimated
maps. We want to mention the coloring behind the drawing,
where black is the borders of the MiniCity, grey is a viable
area the ARCs can view, and white is driveable roads or
buildings.

B. Mapping of the MiniCity

Gmapping method [12] was chosen to map the MiniCity
in 2D and can be considered as a baseline for the future
mapping algorithms. Gmapping is easy to implement and
well documented. We utilize the ARC car’s 2D LiDAR
(YDLiDARX4) with an available range of 0.12 to 10 me-
ters and 360 degrees of scanning. The ROS wrapper for
OpenSLAM’s Gmapping was utilized to run SLAM on-
board. This package provides a laser-based SLAM as a ROS
node and allows for the creation of a 2D occupancy grid
map. Gmapping using a Rao-Blackwellized particle filter
attempts to solve the independence between localization and
mapping. This particle filter maintains a set of particles
where each represents a possible path that the robot could
have taken, with each particle carrying its version of the
map. Odometry data are used to update the weights of the
particles. The algorithm then creates a new set of particles,
favoring those with higher weights based on the new point
cloud collected by LiDAR. All computations were performed
onboard utilizing an NVIDIA Jetson Nano (4GB). We found
that the best results were obtained by doing at least three
loops around the city, when the car is driven at a very



TABLE II: Gmapping evaluation result

Metric Value
KNN Distance (GT to Gmapping) 14.15 cm
KNN Distance (Gmapping to GT) 15.42 cm
RMSE 0.68 cm
IoU 0.7415

low speed. Fig. 6 shows the estimated map against the GT
map created in AutoCAD. We observed that the algorithm
recognized most of the walls/obstacles, but came across
issues with the corner of the hospital as it is farther from
the car. Furthermore, the location of the building was not
the most accurate for the Apartments and House 2. The
mapping is also evaluated quantitatively in terms of following
metrics. Note that the values were converted to meters using
the resolution of the map obtained which is about 0.05
meters/pixel:

• K-Nearest Neighbor (KNN): shows the average dis-
tance from each point on one map to its nearest neighbor
on the other map. Lower is better.

• Root Mean Square Error(RMSE): represents the
average difference between corresponding pixel values
in the GT and Gmapping maps. The lower is better.

• Intersection over Union (IoU): a unitless measure
representing the proportion of overlap between the two
maps. The range varies from zero to one, higher is
better.

The results are summarized in Table II, showing Gmapping
provides a map with high accuracy. Moreover, Calculating
the KNN distance from GT to Gmapping and vice-versa
gives us similar values of KNN Distance (GT to Gmapping).
The difference is expected because of the nature of KNN; To
elaborate on this difference, let us assume a point A in map
1, with point B as the nearest neighbor in map 2. However,
point B’s nearest neighbor may not necessarily be point A.
This illustrates the asymmetric nature of KNN. Comparing
both maps vice-versa acts as a form of validation. The result
shows both values are small and similar, implying a higher
level of similarity or alignment between the compared maps,
which indicates the map is estimated accurately. In the future,
the MiniCity can be utilized as a testing bed for exploring
more advanced mapping algorithms such as Visual SLAM
(VSLAM). This is the case due to its "feature richness"
as seen in Fig. 7. This image shows a great number of
distinctive visual features that could be detected and tracked
by VSLAM.

C. Depth Estimation in Urban Simulations

We conducted experiments using the ARC car’s monocular
camera, which through these experiments we further look
to illustrate the MiniCity’s usefulness and capabilities. We
analyzed various urban scenarios, to estimate the depth
of different usually existing objects in urban areas with
respect to the camera (i.e., ego vehicle). The list of objects

Fig. 6: Qualitative comparison of 2D mapping of MiniCity
using Gmapping (black lines) against Ground Truth (red
lines).

Fig. 7: First-person view of MiniCity from ARC. Green
squares are visual features extracted by ARC’s camera and
will be used for visual SLAM.

that has been considered are hospital buildings, trees, cars,
pedestrians (humanoid robots), stop signs, as well as highly
occluded scenes like a building overlapping another building.

The ARC’s RGB camera captured the different scenar-
ios within the MiniCity, and from then we extracted the
necessary image data from the camera topics in the ROS
bags collected from each scenario throughout the experiment.
After extracting the required data, different depth estimation
algorithms were evaluated and compared: DPT (Dense Pre-
diction Transform) [13], Depth Anything [14], and Marigold
[15].

D. Algorithm Performance

Fig. 8 shows the qualitative result of dept estimation algo-
rithms, which indicates DPT and Depth Anything algorithms
did not yield significant visual results, aside from obscure
shadowing of the expected objects when zoomed in. This
likely results from the specific datasets these algorithms were
trained on, which did not align well with our MiniCity’s



Fig. 8: Depth estimation of challenging scenarios in MiniCity
running different algorithms.

specific conditions. However, the Marigold algorithm showed
more promising results, closely aligning with the different ur-
ban scenarios in our MiniCity. We also evaluate the baselines
quantitatively. The ground truth is obtained by measuring a
range of an estimated distance from the car’s camera to the
intended object manually, when conducting the experiments
and then allowed the algorithm to predict the depths of the
different scenarios. we focused on three evaluation metrics:

• Inference time to gauge the operational efficiency: A
lower inference time is desirable as it indicates a faster
processing capability.

• Mean Absolute Error (MAE) to measure the accuracy
of the depth predictions: A lower MAE indicates higher
accuracy, as it reflects smaller average errors in depth
estimations.

• Mean Relative Error (MRE) to assess the proportional-
ity of the errors in relation to the actual depth values.
a lower MRE is preferred as it signifies smaller error
proportions relative to the true depth, demonstrating
more precise and reliable predictions.

The results highlighted that while DPT and Depth Anything
struggled with accuracy and had higher error rates. Marigold

performed much better under varied urban conditions, offer-
ing lower MAE and significantly reduced MRE; however, it
took a significant longer time to process with a high inference
time compared to the other two algorithms, which might be
more due to limitation of the hardware being used in the
actual computation of the algorithm. This underscores the
effectiveness of Marigold’s training on synthetic and diverse
real-world datasets, which enables robust depth estimation
even in complex scenarios such as those presented in MiniC-
ity. Such findings are crucial for deploying depth estimation
technologies in real-world applications where adaptability
and accuracy are paramount. The following paragraph high-
lights the data resources each baseline is trained on that could
explain the difference in their performance performance in
our MiniCity.

• DPT (Dense Prediction Transformer): Trained on a
combination of indoor and outdoor scenes, the DPT
models utilize data from environments such as NYU
Depth V2 [16] for indoor settings and KITTI [17]
for outdoor scenes. Although they offer broad depth
estimation capabilities, they are not tailored for specific
scenarios like those presented in MiniCity.

• Depth Anything:Fine-tuned on metric depth informa-
tion from datasets like NYU Depth V2 and KITTI,
Depth Anything is adept at handling both indoor sce-
narios and driving environments. However, it may not
capture the finer details required for the complex urban
contexts found in MiniCity, such as the specific chal-
lenges posed by occlusions and varied object distances.

• Marigold: Marigold excels in adapting to a wide range
of real-world scenarios, thanks to its initial training
on synthetic datasets like Hypersim [18] and Virtual
KITTI, which simulate controlled environments. The
model is further refined through fine-tuning diverse
real-world scenes using advanced latent diffusion tech-
niques, enabling it to effectively handle the unique and
varied scenarios encountered in MiniCity.

TABLE III: Comparison of Depth Estimation algorithms in
different scenarios shown in Fig. 8

Algorithms Inference Time(s) MAE(m) MRE(%)
DPT [13] 34.332 2.384 78.859
Depth-Anything [14] 22.405 1.846 64.292
Marigold [15] 603.323 0.493 13.285

VI. SMART INFRASTRUCTURE AND CONNECTED
VEHICLES

The smart infrastructure consists of a 3D LiDAR (Velo-
dyne VLP-16) connected to Nvidia Orin processor, and
mounted at the southwest corner of the intersection next to
the hospital as shown in Fig. 1.

The Velodyne produces the 3D point cloud of the en-
vironment and detects and tracks the traffic surroundings



of the intersection using depth clustering algorithm [19],
where the point clouds are clustered and grouped based on
their orientation. This information helps the infrastructure
node at the intersection identify any risk of accident that
the other cars cannot observe due to their limitation in the
field of view. We conduct a scenario that includes two cars
approaching the smart intersection at the same time. The
scenario is shown in Fig. 1. The car on Road A has the
right of way and the car on Road B must yield to the
incoming traffic from Road A. These two cars cannot see
each other until they are close enough to the intersection.
We assume one of the cars is a non-communicating car, non-
comm-car in short. Non-comm-car could be a human-driven
car without tools to communicate with the infrastructure.
However, another car is a communicating car, comm-car
in short, and it communicates with the infrastructure. The
infrastructure is equipped with 3D LiDAR and it notifies the
communicating car if there is any car that is approaching
the intersection. Otherwise, the warning is deactivated, which
means the communicating car does not stop.

This experiment was conducted ten times with two cars
approaching the intersection. In the first experiment, the non-
communicating car is on road A and communicating car is
on road B. The result shows the communicating car stops at
an intersection when the other car is approaching, however, it
may crash by up to 30 percent due to the inaccuracies of the
mapping or delay in communication, leading the car stops
too late to avoid the accident. This indicates that inaccuracy
in understanding the surroundings may increase the risk
of crashes. In the next experiment, the cars locations are
swapped such that communicating car is on road A and non-
communicating car is on road B. we see that having more
accurate mapping at another corner of the intersection im-
proves overall safety as the car stops before the intersection.
An additional set of experiments was conducted regarding

TABLE IV: Result of car crashes at the intersection with im-
perfect data and communication. One car is communicating,
one car is not communicating.

comm-car
location

no-comm-car
location

crashes(%) traveling
time (sec)

Road B Road A 30.78±13.05 3± 0.5
Road A Road B 20.82± 7.87 2± 0.4

the stopping distance of a communicating car for different
approaches toward the intersection and different intersection
model parameters. The intersection was approached from all
four entry roads (North-, East-, South-, and West-bound) over
two different intersection models, where the intersections
encompassing the polygon were scaled by 1× and 1.25×.
The stopping distance was measured as the distance from
the rear axle of the car to the stop line. The results over five
trials for each case are summarized in Table V.

These results suggest the intersection model is perhaps
off-center towards the South-bound and West-bound sides,

TABLE V: Stopping distance (cm) resulting from smart in-
tersection model in a format of Average±std. Average and
std are the averages of the result and the standard deviation
respectively. Negative values indicate the car stopped before
the stop line, whereas positive values imply the car stopped
after the stop line at the intersection.

Scale North-bound East-bound South-bound West-bound
1.00 56.4± 14.6 54.3± 10.0 −23.7± 7.9 −18.0± 2.5
1.25 28.3± 9.6 35.6± 13.8 −48.4± 4.6 −44.0± 1.2

resulting in the car’s derived "presence" in the intersection
being biased in those directions. It also reflects varied
standard deviations for certain approach directions, possibly
due to varying quality of the localization of the vehicle and
to varying qualities of the ground-truth map or localization
algorithm used.

VII. EDUCATIONAL IMPACT

The first version of MiniCity has been built in October
2023, and the current version was finished in February 2024.
Since then, the MiniCity has been used in two courses at the
University of Oklahoma; The projects within the coursework
involved utilizing the cameras or LiDAR for autonomous
navigation, lane detection, obstacle/pedestrian detection, Li-
DAR navigation, and simultaneous localization and mapping
(SLAM). The course Visual Navigation for Autonomous
Vehicles [20] offered in Fall 2023, where students utilize
robotic cars to visually map the city and autonomously using
Kimera [21] and ORB-SLAM3 [22] navigate in the city. The
course Artificial Intelligence offered in Spring 2024, utilized
MiniCity as a testbed for students to implement an end-to-
end learning method in a Jetbot [23] to keep it between the
lanes in the loop around the gas station in MiniCity (Fig. 9).
In this project the robot follows a road by end-to-end training
on on-board camera image data.

Fig. 9: Jetbot following a road in min-icity. This was im-
plemented as the final project for the Artificial Intelligence
course at the University of Oklahoma offered in Spring 2024.

VIII. CONCLUSION

In this paper, we present our smart MiniCity as a piv-
otal development for bridging the gap between simulated
environments and real-world applications in the field of
autonomous connected vehicles and intelligent transportation



systems. Through our experiments, we have validated the
MiniCity as a crucial and advancing test bed for smart
city technology and evaluating autonomous vehicle systems
as a whole, which we demonstrated by conducting our
mapping experiment as well as depth estimation the MiniCity
among different algorithms through a variety of challenging
scenarios. Our work with the smart infrastructure at our
intersection also further demonstrates enhancements in traffic
management and safety, as well as setting the stage for
future research into more intelligent transportation systems.
Looking ahead, the MiniCity is poised to expand its role,
incorporating more complex scenarios and interactive ele-
ments like responsive traffic signals and pedestrian crossing
at interactions. Finally, as the MiniCity contributes to the
development of urban mobility research in different simu-
lated environments, it naturally fosters interdisciplinary re-
search that converges urban planning, civil engineering, and
computer science, while also maintaining cost-effectiveness
so any laboratory can construct one and produce a similar
testing bed. As we enhance and evolve the MiniCity, it is set
to contribute to shaping the development of smarter, safer,
and more efficient urban environments.
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