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Abstract

Retrieval Augmentation Generation (RAG) has
significantly mitigated hallucination issues in
Large Language Models (LLMs), with context
compressing playing a pivotal role in enhancing
the efficiency of the RAG systems. Traditional
context compressing approaches include extrac-
tive and abstractive methods. Extractive meth-
ods often perform poorly due to their indepen-
dent modeling of sentences, while abstractive
methods suffer from high latency and the risk
of introducing hallucinations. In this paper, we
propose GCR, a novel generative compression
method that reformulates context compression
as sentence index generation, ensuring mini-
mal inference latency. GCR effectively models
semantic interactions between sentences, pre-
vents potential hallucinations during compres-
sion, and offers adaptive control over the com-
pression rate. Extensive experiments across
three knowledge-intensive tasks confirm the ef-
fectiveness and efficiency of our method.

1 Introduction

Recently, Large Language Models (LLMs) (Taylor
et al., 2022; Chowdhery et al., 2022; Zhao et al.,
2023a) have demonstrated impressive performance
across a variety of downstream tasks (Xia et al.,
2024; Yamauchi et al., 2023; Imani et al., 2023;
Lewkowycz et al., 2022). Despite these advance-
ments, LLMs are still prone to generate responses
that contain hallucinated facts and inaccurate infor-
mation (Ji et al., 2023; Shuster et al., 2021; Zhang
et al., 2023a), which raises concerns about their
reliability. To mitigate this issue, researchers have
adopted Retrieval-Augmented Generation (RAG),
which retrieves external documents to enhance re-
sponse accuracy (Ram et al., 2023; Shi et al., 2023;
Rashkin et al., 2021; Gao et al., 2022; Bohnet et al.,
2022; Menick et al., 2022). However, directly in-
corporating retrieved documents into the prompt
can be computationally expensive and may intro-
duce irrelevant or noisy information.
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i Sentence 1: France, officially known
 as the French Republic, is a country ... 1
: Sentence 2: It has a rich history and
 has been a center of art, science ...
i Sentence 3: The capital of France is |
‘ Paris, which is not only the political ... !
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Figure 1: Illustration of Generative Compressing.

A promising solution is to use context compres-
sion techniques (Li, 2023; Xu et al., 2024; Wang
et al., 2023c; Yoon et al., 2024; Jiang et al., 2023b;
Pan et al., 2024) to condense retrieved documents
into a more concise and relevant format. Current
context compression methods can be broadly clas-
sified into two categories: extractive and abstrac-
tive methods. Extractive methods (Xu et al., 2024;
Jin et al., 2024a; Reimers and Gurevych, 2019)
typically utilize retrieval methods to calculate the
similarity between queries and sentences, select-
ing the sentences with the highest similarity as
the compressed output. In contrast, abstractive
methods generate summaries of the retrieved doc-
uments. For example, RECOMP (Xu et al., 2024)
trains a compressor to produce summaries of re-
trieved content, while FILCO (Wang et al., 2023c)
first identifies useful context through lexical and
information-theoretic approaches before training a



context-filtering model. COMPACT (Yoon et al.,
2024) employs an active strategy to condense exten-
sive documents without losing critical information,
and SKR (Qiao et al., 2024) optimizes the com-
pression process by focusing on supportiveness.
Longl.LMLingua (Jiang et al., 2023b) filters out
less important information based on perplexity.

While these methods have demonstrated promis-
ing results, they still face three significant limita-
tions. First, extractive methods typically evalu-
ate the similarity between each sentence and the
query independently, disregarding the contextual
relationships between sentences, which can result
in suboptimal compression. Second, although ab-
stractive methods offer more flexibility in gener-
ating summaries, they often modify the original
content, which risks introducing hallucinations or
information not present in the retrieved documents.
This issue becomes more pronounced when the
model’s parametric knowledge conflicts with the
non-parametric knowledge in the documents (Jin
et al., 2024b; Tan et al., 2024; Wang et al., 2023a).
Third, the generative process in abstractive meth-
ods is typically iterative, leading to high latency
as the model produces the compressed tokens step
by step. This delay poses a significant challenge
in real-world applications, particularly in online
serving scenarios where low latency is crucial.

To address these challenges, we propose a gen-
erative compressor, GCR, which redefines the con-
text compression process as a sentence index gen-
eration task. Specifically, during inference, GCR
first splits the original documents into sentences,
which are input to the compressor to generate the
indexes of the most relevant sentences. Our ap-
proach follows the following three stages. In the
Supervised Distillation stage, a strong LLM ex-
tracts the most relevant sentences from the retrieved
documents to create training data. To improve
extraction accuracy, we guide the model to fol-
low a Chain-of-Thought process (Wei et al., 2022),
where it first analyzes both the query and sentences
before outputting the relevant indexes. The com-
pressor is then fine-tuned on this labeled data to
develop its basic compression capability. In the
Critic Sampling stage, the compressor generates
multiple compression results for each query, which
are ranked by the LLM. To reduce positional bias
(Xiong et al., 2023), we apply permutation rank-
ing, where the positions of the compression results
are randomly shuffled, and the LLM reranks them
for each permutation. The results from multiple

permutations are then ensembled to produce the
final ranking. In the Preference Alignment stage,
we construct preference pairs from the ranking in-
formation and use them to perform the alignment.
During inference, to further enhance the quality of
the compression results, we introduce constrained
consistency sampling, which performs multiple
top-k samplings (Fan et al., 2018) and ranks sen-
tences based on their appearance frequencies.

GCR offers the following three main advantages:
(1) Lower Latency: Unlike traditional abstractive
methods, GCR produces only a small number of
index tokens, significantly reducing latency. More-
over, since it does not modify the original content,
it completely eliminates the risk of introducing
hallucinated information into compression results.
(2) Enhanced Interaction Modeling: In contrast
to traditional extractive methods, GCR can effec-
tively model the semantic interactions between all
sentences simultaneously, leveraging the strong
reasoning capabilities of the language model. (3)
Flexible Compression Control: The novel index
generation format of GCR allows seamless integra-
tion with the self-consistency sampling technique
(Wang et al., 2022), which not only enhances com-
pression quality but also provides flexible control
over the compression rate.

To summarize, our contributions are as follows:

* We propose GCR, a novel generative compres-
sion method that reformulates context com-
pression as sentence index generation, offer-
ing minimal inference latency.

* GCR effectively models semantic interactions
between sentences, prevents potential halluci-
nations during compression, and enables adap-
tive control of the compression rate.

* We conduct extensive experiments on five
datasets across three QA tasks, validating both
the effectiveness and efficiency of our method.

2 Methodology

2.1 Preliminary

In Retrieval Augmented Generation (RAG), given
query g, aretriever is first employed to retrieve a set
of similar documents D = {dy, d, ..., d;, }. Then,
a reader LLM will answer the question based on
these documents. We assume that each retrieved
document d; = [t},...,t?] contains n text spans t.
The task of context compression aims to select the
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Figure 2: Overview of the GCR framework. 1) Supervised Distillation: A strong LLM selects relevant sentences
from retrieved documents to create training data for fine-tuning the compressor. 2) Critic Sampling: The compressor
generates multiple compression results for each query, which the LLM ranks to form a ranked list. 3) Preference
Alignment: Preference pairs are constructed from ranking information for alignment. During inference, we perform
multiple top-k samplings and rank sentences based on their appearance frequencies.

most relevant text spans and output their indexes.
The selected spans are then concatenated and fed
into the reader LLM for question answering.

2.2 GCR Framework

As shown in Figure 2, GCR mainly consists of three
stages. In the supervised distillation stage, a strong
LLM selects the most relevant sentences from the
retrieved documents to create training data, which
is then used to fine-tune the compressor and build
its basic compression ability. In the critic sampling
stage, the compressor generates multiple compres-
sion results for each query, which are ranked by the
LLM to form a ranked list. In the preference align-
ment stage, we construct preference pairs from the
ranking and use them to conduct the alignment.

Supervised Distillation In the first stage, we uti-
lize a strong LLM as a data labeler to extract rel-
evant sentences for each query in the training set.
To improve the extraction accuracy of the LLM,
we instruct it to decompose the index extraction

process into three steps: query analysis, sentence
analysis, and index output. Specifically, the LLM
first performs query analysis to thoroughly under-
stand the topic and intent of the query. Next, it
conducts sentence analysis, summarizing the con-
tent related to the query and identifying sentences
that are relevant. Finally, the LLM lists the spe-
cific indices of the relevant sentences. To further
improve the quality of the labeled data, we filter
out the extraction results that do not contain the
correct answers to the question. Then the compres-
sor model is trained on filtered data, which equips
it with the basic ability to generate compressing
results for given queries and documents.

Critic Sampling In this stage, we construct pref-
erence data to facilitate the preference alignment
process. Given a query g and its retrieved doc-
uments, the compressor is used to sample multi-
ple compression results for each query, denoted as
S ={s1,s2,...,sn}. Next, we employ a strong
LLM to perform a list-wise ranking of these sam-



pled compression results. Specifically, a group of
compression results is fed into the LLM, which
then outputs their ranking based on their helpful-
ness in answering the query. To mitigate any po-
sitional bias that might influence the LLM’s judg-
ment due to the order in which the compression
results are presented (Xiong et al., 2023), we intro-
duce Permutation Ranking. This process involves
randomly shuffling the positions of the compres-
sion results in the prompt and requesting the LLM
to output the reranked list for each permutation.
During the permutation ensembling process, we
calculate the pairwise ranking scores for each com-
pression result s; by counting the number of times
the LLM ranks s; higher than other compression
results across the different permutations. This pro-
vides a cumulative pairwise ranking score for each
result, reflecting how consistently s; performs rela-
tive to the others. Based on these cumulative scores,
we establish a ranking of all the compression re-
sults. In instances where two compression results
share the same pairwise ranking score, we resolve
the tie by considering their compression rates, prior-
itizing the result with the higher compression rate.
This ensures that the final ranking list reflects our
preference for both effectiveness and efficiency.

Preference Alignment In this stage, we sample
preference pairs from the final ranking list and use
them to train the compressor with Direct Preference
Optimization (Rafailov et al., 2024). After prefer-
ence alignment, the compressor not only selects
the most relevant sentences from the documents
but also prioritizes those with higher compression
rates, balancing effectiveness and efficiency. This
results in a compression model that extracts useful
information while maintaining a compact output.

Constrained Consistency Sampling During in-
ference, we apply a constrained decoding mecha-
nism that restricts the output indices to valid sen-
tence positions within the input documents. To
further enhance the robustness and reliability of the
compression results, we adopt the self-consistency
sampling strategy (Wang et al., 2022). Specifically,
for each query, we perform multiple Top-k sam-
pling (Fan et al., 2018) iterations with the compres-
sor to generate a set of possible compression out-
puts. We then aggregate these results by counting
the frequency of each sentence index across all sam-
pling iterations. After ranking the sentences based
on their frequencies, we select the top-m ranked
sentences to form the final compression result. This

approach not only enhances the robustness of the
compression but also offers flexible control over
the compression rate, allowing the system to adapt
to different application requirements.

3 Experiment Setup

3.1 Datasets and Metrics

Datasets We experiment on five datasets across
three knowledge-intensive tasks: (1) Open-
domain QA, including NQ dataset (Kwiatkowski
et al., 2019), TriviaQA dataset (Joshi et al., 2017)
and SQuAD dataset (Rajpurkar et al., 2016); (2)
Multi-hop QA, including HotpotQA dataset (Yang
etal., 2018). (3) Ambiguous QA, including ASQA
dataset (Stelmakh et al., 2022).

Metrics We evaluate performance using two key
metrics: Exact Match (EM) and F1 Score. A pre-
dicted answer is considered correct under the EM
metric if its normalized form exactly matches any
of the normalized versions of the reference answers
in the answer list. The F1 score, on the other
hand, measures the word-level overlap between
the normalized predicted answer and the reference
answers in the provided answer list.

3.2 Baselines

Among the baselines, Closed Book represents no re-
trieval, and Raw Document represents no compres-
sion. Extractive methods include Longl.LLMLin-
gua (Jiang et al., 2023b) and RECOMP (Xu et al.,
2024), while generative methods include FILCO
(Wang et al., 2023c) and COMPACT (Yoon et al.,
2024). Please refer to Appendix B for detailed
introductions to these methods.

3.3 Implementation Details

In our experiments, we initialize the compressor
model with Qwen2-7B'. For the reader models,
we employ Qwen2-7B, Meta-Llama-3-8B2, and
Qwen2.5-14B3. We use Qwen-Max as the data
labeler in the supervised distillation and critic
sampling stage. We use Wikipedia dump from
Jan. 27, 2020 as our retrieval corpus and use
DPR (Karpukhin et al., 2020) as our dense retriever.
For each query, we retrieve the top-5 most similar
documents from the retrieval corpus. We plan to
open-source the code upon acceptance to enhance
the reproducibility of our method.

1
https://huggingface.co/Qwen/Qwen2-78
https://huggingface.co/meta-1lama/Meta-Llama-3-8B
3
https://huggingface.co/Qwen/Qwen2.5-14B


https://huggingface.co/Qwen/Qwen2-7B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/Qwen/Qwen2.5-14B

Methods NQ TriviaQA SQuAD HotpotQA ASQA Avg.
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
QWEN-2-7B
Closed Book 22.10 29.84 5230 59.13 13.60 23.84 2230 30.66 2637 3579 27.33 35.86
Raw Document 38.70 46.55 5875 65.59 1890 28.52 2530 33.54 4570 5447 3747 4573
LongLLMLingua 26.60 35.60 52.60 59.19 13.55 22.86 22.65 2994 3274 4330 29.63 38.18
RECOMP 33.25 41.00 54.15 61.72 17.05 27.33 2395 32.15 3922 4923 3352 4229
FILCO 3535 4255 5820 65.15 19.10 28.25 24.10 3270 42.79 5240 3591 44.21
COMPACT 36.65 44.62 5730 64.85 17.55 26.74 24.75 33.26 43.69 53.80 3599 44.65
GCR 40.75 49.21 61.30 68.75 20.25 29.84 2695 3591 47.37 5790 39.32 48.32
LLAMA-3-8B
Closed Book 30.10 37.86 64.05 7020 1640 2592 2345 3150 3486 4523 3377 42.14
Raw Document 41.55 4998 67.30 72.67 22.60 32.09 2825 36.66 4838 57.14 41.62 49.71
LongLLMLingua 33.15 41.67 63.60 69.23 17.20 26.92 2630 34.59 40.67 50.32 36.18 44.55
RECOMP 3790 4534 6435 7033 20.60 30.17 2630 3451 4525 5432 38.88 4693
FILCO 40.30 47.50 65.75 71.15 21.80 30.95 28.70 37.05 44.58 53.63 40.23 48.06
COMPACT 4095 49.33 6525 7144 2205 31.50 2990 39.15 47.37 5691 41.10 49.67
GCR 4290 50.66 67.70 73.52 22.85 32.17 30.25 39.22 49.16 58.79 42.57 50.87
QWEN-2.5-14B
Closed Book 28.95 38.04 61.70 67.59 20.60 31.20 2630 35.00 3642 4595 34.79 43.56
Raw Document 42.80 5044 6395 69.74 22.60 3194 2790 3645 47.60 55.77 4097 48.87
LongLLMLingua 30.25 39.00 57.60 64.03 17.80 2640 25.75 33.68 3642 4571 33.56 41.76
RECOMP 36.35 4256 60.70 66.44 19.65 28.09 26.10 33.89 4235 50.05 37.03 44.21
FILCO 3940 46.50 6295 68.60 2145 3040 2690 3550 44.13 5251 3897 46.70
COMPACT 41.20 48.32 6195 67.92 21.15 29.67 2895 37.72 4693 56.03 40.04 4793
GCR 4340 50.85 64.65 70.55 23.50 3250 3035 39.00 51.40 60.00 42.66 50.58
Table 1: Performance comparison on five datasets across readers of different parameter sizes.
4 Experimental Results
p Methods NQ ASQA
4.1 Main Results Comp. EM Comp. EM
In this section, we present a comprehensive com- GCR i 10.1140.75 11.37 47.37
. fth " £ vari -w/o Sampling 11.37 4045 13.15 4693
parison of the per ormance 0 Varlous.compres'sors wlo Alignment 926 4040 993 4626
across five datasets using readers of different sizes. -w/o Filtering 940 3975 994 4581

Based on the results shown in Table 1, several ob-
servations can be made:

First, our method consistently achieves the best
performance across all datasets and readers, demon-
strating both its effectiveness and generalizability.
This is because, after performing preference align-
ment, our method effectively extracts the most use-
ful sentences. Additionally, the constrained consis-
tency sampling enhances the method’s robustness.

Second, among the baselines, the abstractive
method COMPACT performs better than the ex-
tractive method RECOMP. This is mainly because

Table 2: Ablation Study. We experiment by gradually
removing all components using Qwen2-7B as the reader.

performance across different readers, confirming
its superior generalization ability. Furthermore, the
training process of our method is reader-agnostic,
meaning it can easily compress documents for vari-
ous readers without requiring additional retraining.

4.2 Ablation Study

the extractive method models each sentence inde-
pendently, failing to utilize contextual semantic
information. It is worth noting that although our
method is also extractive, it models all sentences
together, enabling it to fully capture semantic infor-
mation and leading to better results.

Third, our method consistently delivers the best

In this section, we assess the impact of each com-
ponent in our model by gradually removing them.
Specifically, we conduct experiments on the NQ
and ASQA datasets using Qwen2-7B as the reader.

As shown in Table 2, removing any component
leads to performance degradation, verifying their
importance. Specifically, removing the constrained
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Figure 3: The performance change over different hyper-
parameters on NQ and ASQA datasets.

consistency sampling mechanism decreases the
compression rate but increases accuracy. This oc-
curs because single sampling cannot capture all
the information needed to answer the question. By
sampling multiple times, we improve the recall rate
of useful sentences, which justifies the increased
accuracy. Moreover, removing the preference align-
ment leads to a significant decrease in the com-
pression rate. This is because, during preference
alignment, the compressor is trained to choose com-
pression results that balance both effectiveness and
efficiency. Therefore, when preference alignment
is removed, both the effectiveness and efficiency of
the compressor decrease. Finally, removing the fil-
tering mechanism introduces noise into the training
data of supervised distillation, which can confuse
the compressor and lead to inferior performance.

4.3 Hyper-parameter Study

In this section, we analyze the impact of two impor-
tant hyperparameters on our model’s performance:
the number of kept sentences m and the Top-k sam-
pling parameter k. Specifically, we experiment on
the NQ and ASQA datasets, using Meta-Llama-3-
8B as the reader LLM. Based on the result shown
in Figure 3, several observations can be made.
First, as the number of kept sentences m in-
creases, the performance gradually improves. This
is expected, as keeping more sentences in the com-
pressed result provides the reader with more infor-
mation. Then, the reader is more likely to absorb
useful content to answer the question, leading to
enhanced performance. However, retaining more
sentences reduces the compression rate, leading to
higher inference costs for the reader. Therefore,
we recommend tuning this parameter according to
available computational resources and the desired
trade-off between performance and efficiency.
Second, as the Top-k sampling parameter k in-
creases, the performance initially improves but
eventually declines. This is because when & is low,
the compressor generally generates the same result

Methods NQ TriviaQA ASQA

EM Comp. EM Comp. EM Comp.
Raw Document 3870  1.00x 58.75 1.00x 4570 1.00x
LongLLMLingua 26.60 3.81x 52.60 3.76x 3274 3.8Ix
RECOMP 3325 470x 5415 457x 3922 4.66x
FILCO 3535 3.07x 5820 3.12x 4279  3.09x
COMPACT 36.65  9.35x  57.30  9.99x  43.69 10.09x
GCR 4075 1011x 6130 11.16x 47.37 11.37x

Table 3: Compression Analysis. Comp. refers to

the compression rate which is denoted as follows:

: __ # of tokens in retrieved documents
compression rate = # of tokens in compressed text

across multiple sampling iterations, making the
consistency sampling mechanism ineffective. How-
ever, when k is too high, the compressor may gen-
erate outputs randomly, introducing noise into the
compression and decreasing performance. There-
fore, selecting an optimal value for k is crucial to
ensure the robustness of the compressed results.

4.4 Analysis

Compression Analysis In this section, we ana-
lyze the effectiveness of the compressors by com-
paring their compression rates. Specifically, we
conduct the experiments on NQ, TriviaQA and
ASQA datasets using Qwen2-7B as the reader.

As shown in Table 3, all compressor models
significantly reduce the number of tokens in the
retrieved documents, thereby dramatically decreas-
ing the inference cost for the reader LLMs. Among
the compressor methods, our approach achieves
the highest compression rate while maintaining the
best model performance. Although other compres-
sor methods also reduce cost, they fail to capture
all the important information, resulting in inferior
model performance compared with the raw docu-
ment. In contrast, our method not only outperforms
the uncompressed raw document method but also
achieves a lower cost. This is because our method
effectively extracts important information from the
retrieved documents, preventing noisy information
from influencing the model’s performance.

Latency Analysis In this section, we compare
the inference latency of our framework with other
baselines. Specifically, we measure the GPU
time taken to compress documents and read the
compressed texts on the HotpotQA dataset using
Qwen2.5-14B as the reader.

As shown in Table 4, all compressor methods
reduce the inference time for the reader. Among
them, the extractive method RECOMP achieves
the lowest compression latency due to its paral-
lel pipeline. However, it struggles to extract the



Methods Compress Read Throughput EM
Raw Document - 309.0 ms 3.2 Tter/s 27.9
LongLLMLingua 189.8 ms 210.9 ms 2.5 Tter/s 25.8
RECOMP 314ms 2223 ms 3.9 Iter/s 26.1
FILCO 2322.5ms 236.3 ms 0.4 Tter/s 26.9
COMPACT 3518.6ms 209.2 ms 0.3 Iter/s 29.0
GCR 673.3ms  203.1 ms 1.1 Tter/s 30.4

-w/o Sampling 209.2ms  208.4 ms 2.4 Tter/s 30.0

Table 4: Latency Analysis. We measure the GPU time
taken to compress documents and read the compressed
texts. We also report the throughput (examples per
second) and the corresponding performance (EM).

most relevant sentences, resulting in lower perfor-
mance. The abstractive method COMPACT im-
proves model performance but exhibits higher com-
pression latency, mainly due to its iterative gen-
eration process. In contrast, our method not only
enhances model performance but also achieves sig-
nificantly lower compression latency, primarily due
to its shorter generation length. Additionally, it’s
worth noting that the compression latency of our
method can be further reduced by removing the
consistency sampling mechanism.

Critic Analysis In this section, we evaluate the
effectiveness of Permutation Ranking in the critic
sampling stage by comparing it to Single Ranking,
which only samples the results once. Our exper-
iments, using Qwen2-7B as the reader LLM, are
presented in Table 5. In these results, “Win” and
“Lose” refer to using the highest-ranked and lowest-
ranked compressor outputs, respectively, to answer
the questions. “Raw” represents the use of uncom-
pressed documents to answer the questions.

The results show that the top-ranked compressed
output significantly outperforms the bottom-ranked
output, with the performance of uncompressed doc-
uments falling in between. This indicates that
the data labeler LLM is effective in identifying
the most useful compression results. Additionally,
when comparing Single Ranking with Permutation
Ranking, we observe that the top-ranked output
from Permutation Ranking performs better than
that of Single Ranking, while the bottom-ranked
output performs worse. This suggests that Per-
mutation Ranking is more effective at distinguish-
ing valuable compression results, ranking high-
quality outputs higher and lower-quality ones lower,
thereby validating its effectiveness.

4.5 Case Study

In this section, we analyze the effectiveness of our
method by examining several cases from the ASQA

Win Raw Lose
Datasets
EM F1 EM F1 EM F1
SINGLE RANKING
NQ 3720 45.85 3343 42.05 29.27 37.83
ASQA 46.08 56.77 44.83 5541 4232 53.11
SQuAD 20.87 30.05 18.26 2741 1478 21.77
TriviaQA  56.88 64.84 53.27 61.36 49.06 57.76
HotpotQA 28.57 37.97 27.89 36.03 24.49 3246
PERMUTATION RANKING

NQ 37.99 46.53 3343 4205 29.18 37.73
ASQA 4734 59.04 4483 5541 41.07 51.63
SQuAD 21.16 30.63 1826 27.41 13.33 21.00
TriviaQA  57.01 65.09 53.27 61.36 4829 56.88
HotpotQA 2891 38.49 27.89 36.03 22.79 30.00

Table 5: Critic Analysis. We compare the performance
between Single Ranking and Permutation Ranking by
utilizing the top-ranked (Win) and bottom-ranked (Lose)
compression results to answer the question.

datasets, which is shown in Table 6.

As we can see, our model demonstrates several
notable advantages: (1) Noise Filtering: In Case
1, for the query “When did Breaking Dawn Part 2
come out?”, our model isolated the precise sentence
“Part 2 was released on November 16, 2012, effec-
tively filtering out irrelevant information. (2) Cross-
Examination: In Case 2, regarding the current sher-
iff of Maricopa County, Arizona, the model cor-
rectly identified “Paul Penzone” by synthesizing
information across multiple sentences. (3) Com-
prehensive Coverage: In Case 3, concerning the
production timeline of the first Fast and Furious
film, the compression results not only confirmed
the year 2000 as the start of production but also
provided its release date, offering comprehensive
coverage. Overall, these cases exemplify how our
compression model efficiently filters noisy infor-
mation, extracts relevant information from multiple
sentences, and provides comprehensive coverage
to answer questions accurately and reliably.

5 Related Work

5.1 Augmented Generation

Despite advancements, Large Language Models
(LLMs) can generate responses containing hallu-
cinated facts and inaccurate information (Ji et al.,
2023; Shuster et al., 2021; Zhang et al., 2023a),
which undermines their reliability. To address
this issue, researchers have adopted Retrieval-
Augmented Generation (RAG), integrating exter-
nal knowledge to enhance response accuracy (Ram
et al., 2023; Shi et al., 2023; Rashkin et al., 2021;



Case 1: Noise Filtering

Original Query: When did breaking dawn part 2 come out?
Retrieved Documents:

Sentence 2: Part 2 was released on November 16, 2012.
Compressor result: 2

Answer: November 16, 2012 [CORRECT]

Case 2: Cross Examination

Original Query: Who is the current sheriff of maricopa county arizona?

Retrieved Documents:

Sentence 5: Paul Penzone is the current Sheriff of Maricopa.

Sentence 8: Paul Penzone (born March 29, 1967) is the sheriff of Maricopa County, Arizona, United States.
Sentence 9: Penzone was elected sheriff in 2016, defeating longtime incumbent Joe Arpaio.

Compressor result: 5 8 9
Answer: Paul Penzone [CORRECT]

Case 3: Comprehensive Coverage

Query: When was the first fast and furious film made?
Retrieved Documents:

Sentence 4: The film was shot in various locations within Los Angeles and southern California, from July to October 2000.
Sentence 7: Production began in 2000, as part of an international co-production between the United States and Germany, and is

set and filmed across California.

Sentence 9: Upon its release on June 22, 2001, The Fast and the Furious grossed $207 million from a $38 million budget.

Compressor result: 479
Answer: 2000 [CORRECT]

Table 6: Case studies of context compressing. Blue text indicates the stem, pink text indicates the effective hint,
[CORRECT] indicates the judgment of whether the answer is correct.

Gao et al., 2022; Bohnet et al., 2022; Menick et al.,
2022). Among existing studies, some studies pro-
pose retrieving information only once at the begin-
ning of the generation process (Shi et al., 2023;
Wang et al., 2023c; Zhang et al., 2023b; Yu et al.,
2023a,c). Other works (Qian et al., 2023; Yu
et al., 2023b) suggest retrieving multiple times
during generation, offering flexibility in when and
what to search. For example, Jiang et al. (2023c)
propose retrieving when the generation contains
low-confidence tokens. Ram et al. (2023) recom-
mend refreshing the retrieved documents every n
tokens, which is more effective than retrieving only
once. Furthermore, Wang et al. (2023b); Asai et al.
(2023); Zhao et al. (2023b) propose retrieving only
when the LLM deems it necessary.

5.2 Context Compressing

Context compressing techniques (Chevalier et al.,
2023; Ge et al., 2023; Jiang et al., 2023b,a; Pan
et al., 2024) aims to condense retrieved documents
into a more concise and relevant format. Current
context compressing methods can be broadly clas-
sified into two categories: extractive approaches
and abstractive approaches. Extractive meth-
ods (Xu et al., 2024; Jin et al., 2024a; Reimers and
Gurevych, 2019) typically utilize retrieval meth-
ods to calculate the similarity between queries and
sentences, selecting the sentences with the highest

similarity as the compressed output. In contrast,
abstractive methods generate summaries of the re-
trieved documents. For example, RECOMP (Xu
et al., 2024) trains a compressor to produce sum-
maries of retrieved content, while FILCO (Wang
et al., 2023c) first identifies useful context through
lexical and information-theoretic approaches be-
fore training a context-filtering model. COM-
PACT (Yoon et al., 2024) employs an active strat-
egy to condense documents without losing critical
information, and SKR (Qiao et al., 2024) optimizes
the compression by focusing on supportiveness.
LongL.LMLingua (Jiang et al., 2023b) filters out
less important information based on perplexity.

6 Conclusion

In this work, we propose GCR, a novel generative
compression method that reformulates context com-
pression as sentence index generation, ensuring
minimal inference latency. GCR effectively models
semantic interactions between sentences, prevents
hallucinations during compression, and offers adap-
tive control over the compression rate. We conduct
extensive experiments on five datasets across three
knowledge-intensive tasks and the results demon-
strate that GCR outperforms other compression
methods, achieving both high compression rates
and minimal inference latency.



Limitations

In this paper, we propose a generative compression
method for retrieval-augmented generation. We
acknowledge two limitations of our method:

(1) The compression operates at the fixed
sentence-level granularity, which may limit its ap-
plicability in scenarios requiring finer or coarser
levels of detail.

(2) Our method incurs a small amount of addi-
tional computational cost due to the constrained
consistency sampling mechanism.

Ethics Statement

This work was conducted in strict compliance with
the ACL Ethics Policy. All datasets and large lan-
guage models (LLMs) used for evaluation are pub-
licly available. Furthermore, our work aims to
explore a context-compressing method, which can
lower the inference cost of the reader LLM. We
do not foresee any negative ethical impacts arising
from our work.
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A Dataset Statistics

The dataset statistics used in this paper are shown in Table 7.

Settings NQ TriviaQA SQuAD HotpotQA ASQA

(Kwiatkowski et al., 2019)  (Joshi et al., 2017) (Mallen et al., 2022) (Yanget al., 2018) (Stelmakh et al., 2022)

Dataset statistics

Task Open-domain QA Open-domain QA Open-domain QA Multi-hop QA Ambiguous QA

Train Data 87,925 61,888 0 0 0

Test Data 2,000 2,000 2,000 2,000 895
Evaluation settings

Metrics EM, F1 EM, F1 EM, F1 EM, F1 EM, F1

Retrieval settings
Corpus Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia
Retriever DPR DPR DPR DPR DPR

Table 7: Statistics and experimental settings of different tasks/datasets.

B Baseline Details

We compare our methods with the following baselines:
* Closed Book: Directly use the LLM to answer the question without external documents.

* Raw Document: Use the original context of retrieved documents to answer the question.

* LongLLMLingua (Jiang et al., 2023b): A method that filters out tokens with low importance based

on perplexity.

* RECOMP (Xu et al., 2024): A method that employs a dual encoder to select the most similar

sentences from the retrieved documents.

e FILCO (Wang et al., 2023c): A method that removes distracting content partially supporting and

irrelevant to the queries.

* COMPACT (Yoon et al., 2024): A method that iteratively compresses documents by actively

summarizing relevant information.

C Training Details

Training Data We fine-tuned the model on the NQ and TQA datasets and then used the fine-tuned
model to evaluate performance on all test datasets. Specifically, we combined the NQ (87,925 queries)

and TQA (61,888 queries) datasets into a single training set.

Training Process We conducted full parameter fine-tuning during both stages.

* Supervised Distillation Stage: We randomly sampled 50,000 queries from the combined training set
for supervised fine-tuning. The model (Qwen2-7B) was fully fine-tuned for 1 epoch with a learning
rate of 3e-6 and a batch size of 8.

* Preference Alignment Stage: In this stage, we performed critic sampling using the remaining 99,813
queries, resulting in 81,592 valid preference pairs. The model was further fine-tuned for 2 epochs
with a learning rate of 7e-7 and a batch size of 2 using Direct Preference Optimization (Rafailov
etal., 2024).

Model Inference After fine-tuning on this combined training set, we tested the model on all the datasets.
Therefore, we only need to conduct the data labeling once.
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D Prompts

Prompt: Extraction Instruction

Instruction:
Given a list of sentences and a specific query, identify and list all sentences that are relevant to the query. Output the
following three steps, without any additional information.

Analysis:

1. Analyze the Query: [Carefully analyze the query to understand what information or topic is being asked about.].

2. Analyze the Sentences: [Summarize the content related to the query. Then, identify sentences that are related to the query
in any way, even if they don’t answer it directly.]

3. Relevant Sentences: [List the specific indices of the relevant sentences. Format your output like: [1, 2, 3, 4]. If no
sentences are relevant, output: [No relevant sentences]].

Here is an example:

Sentences:...

Query: which mode is used for short wave broadcast service?

Analysis:

1. Analyze the Query:

The query is asking for the broadcasting mode used in shortwave broadcast services. We need to identify sentences
mentioning the mode, method, or anything related to shortwave broadcasting.

2. Analyze the Sentences:

The sentences discuss different aspects of radio communication, including various frequencies and broadcasting methods.
Relevant information includes:

- Sentence 9: Discusses the role of shortwave frequencies in global communication, which is related to shortwave
broadcasting.

- Sentence 11: Mentions shortwave bands and their applications in broadcasting and communication.

- Sentence 15: Specifies that most international broadcasters use amplitude modulation (AM) for shortwave broadcast
services, which directly relates to the query.

3. Relevant Sentences: [9, 11, 15]

Sentences: {sentences}

Query:{query}
Analysis:

Prompt: Critic Instruction

Instruction:

You are tasked with evaluating multiple documents in relation to a given query and its corresponding answer. Your goal
is to rank the documents based on how much valuable support they provide for addressing the query and arriving at the
given answer. Focus solely on whether the documents provide the most critical information needed to answer the query,
disregarding any extraneous details or context not directly relevant.

Requirements:

- Analyze the key information in each document that directly assists in answering the query.

- Compare the documents based on the relevance and significance of their content concerning the query.

- If the differences in usefulness between two or more documents are negligible, consider them equal in usefulness.

- Provide a clear and concise justification for your rankings in the analysis and provide the complete ranking list without
additional strings in the result.

Output Format:

- Analysis: [Briefly explain your reasoning for the rankings, noting the key information each document provides. ]

- Result: [Provide a ranked list of the documents using ">’ to denote greater usefulness and ’=’ to denote similar usefulness.
The format should be: Doc i > Doc j. If two documents are equally useful, represent it as: Doc i = Doc j.]

Input:

- Query: {query}

- Given Answer: {answer}
- Documents: {documents}

- Analysis:

& J
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