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ABSTRACT

Multivariate biosignals are prevalent in many medical domains. Modeling multi-
variate biosignals is challenging due to (1) long-range temporal dependencies and
(2) complex spatial correlations between electrodes. To address these challenges,
we propose representing multivariate biosignals as time-dependent graphs and in-
troduce GRAPHS4MER, a general graph neural network (GNN) architecture that
models spatiotemporal dependencies in multivariate biosignals. Specifically, (1)
we leverage the Structured State Spaces architecture, a state-of-the-art deep se-
quence model, to capture long-range temporal dependencies in biosignals and (2)
we propose a graph structure learning layer to learn dynamically evolving graph
structures in the data. We evaluate our proposed model on three distinct tasks and
show that GRAPHS4MER consistently improves over existing models, including
(1) seizure detection from electroencephalography signals, outperforming a pre-
vious GNN with self-supervised pre-training by 3.1 points in AUROC; (2) sleep
staging from polysomnography signals, a 4.1 points improvement in macro-F1
score over existing sleep staging models; and (3) electrocardiogram classification,
outperforming previous state-of-the-art models by 2.7 points in macro-F1 score.

1 INTRODUCTION

Multivariate biosignals are signals measured by multiple sensors and play critical roles in many
medical domains. Several challenges exist in modeling spatiotemporal dependencies in multivariate
biosignals. First, most biosignals are sampled at a high sampling rate, which results in long se-
quences that can be up to tens of thousands of time steps. Moreover, biosignals often involve long-
range temporal correlations (Berthouze et al., 2010). Therefore, a model that is capable of modeling
long-range temporal correlations is needed to better capture temporal dependencies in biosignals.
Recently, the Structured State Space sequence model (S4) (Gu et al., 2022), a deep sequence model
based on the classic state space approach, has outperformed previous state-of-the-art (SoTA) mod-
els on challenging long sequence modeling tasks, such as Long Range Arena benchmark (Tay et al.,
2020), raw speech classification (Gu et al., 2022), and audio generation (Goel et al., 2022).

Second, sensors have complex, non-Euclidean spatial correlations. Graphs are data structures that
can represent complex, non-Euclidean correlations in the data (Chami et al., 2022; Bronstein et al.,
2017). Previous temporal graph neural networks (GNNs) for modeling multivariate time series
(Covert et al., 2019; Tang et al., 2022b; Li et al., 2018; Wu et al., 2019; Zheng et al., 2020; Jiang
& Luo, 2022; Tian & Chan, 2021) only use sequences up to hundreds of time steps and require a
predefined, static graph structure. However, the graph structure of multivariate biosignals may not
be easily defined due to variability in sensor locations. Moreover, the underlying graph connectivity
can evolve over time due to changes in the underlying biology. Hence, the ability to dynamically
learn the underlying graph structures is highly desirable. Graph structure learning (GSL) aims to
jointly learn an optimized graph structure and its node and graph representations (Zhu et al., 2021).
GSL has been employed for modeling traffic flows (Zhang et al., 2020; Tang et al., 2022a; Shang
et al., 2021; Wu et al., 2019; Bai et al., 2020), fMRI (El-Gazzar et al., 2021; 2022), and sleep staging
(Jia et al., 2020). However, these studies are limited to sequences of less than 1k time steps and do
not capture dynamic graph structures evolving over time.
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Figure 1: Architecture of GRAPHS4MER. The model has three main components: (1) stacked S4
layers; (2) a graph structure learning (GSL) layer; (3) GNN layers.

In this study, we address the foregoing challenges and make the following main contributions. First,
we propose GRAPHS4MER (Figure 1), a general GNN architecture for modeling multivariate biosig-
nals. Our modeling contributions are: (1) we leverage S4 to capture long-range temporal dependen-
cies in biosignals, (2) our model dynamically learns the underlying graph structures in the data
without predefined graphs, and (3) our approach is a novel, effective way of combining S4, GSL,
and GNN. Second, we evaluate GRAPHS4MER on three datasets with distinct data modalities and
tasks. Our model consistently outperforms existing methods on (1) seizure detection from EEGs,
outperforming a previous GNN with self-supervised pre-training by 3.1 points in AUROC; (2) sleep
staging from polysomnography signals, outperforming existing models by 4.1 points in macro-F1
score; (3) ECG classification, outperforming previous SoTA models by 2.7 points in macro-F1 score.
Lastly, qualitative interpretability analysis suggests that our GSL method learns meaningful graph
structures that reflect the underlying seizure classes, sleep stages, and ECG abnormalities.

2 METHODS

Problem setup. Let X ∈ RN×T×M be a multivariate biosignal, where N is the number of sensors,
T is the sequence length, and M is the input dimension of the signal (typically M = 1). We
represent the multivariate signal as a graph G = {V, E ,W}, where the set of nodes V corresponds
to the sensors (channels/leads), E is the set of edges, and W is the adjacency matrix. Here, E and
W are unknown and will be learned by our model. While our formulation is general to any type of
node or graph classification and regression tasks, we focus on graph classification tasks in this work.

Temporal modeling with S4. We leverage S4 to capture long-range temporal dependencies in
biosignals. Naively applying S4 to projects the N signal channels to the hidden dimension with a
linear layer (Gu et al., 2022), which may be suboptimal because it neglects the underlying graph
structure of biosignals. Instead, we use stacked S4 layers to embed signals in each sensor indepen-
dently, resulting in an embedding H ∈ RN×T×D (referred to as “S4 embeddings” hereafter) for
each input signal X, where D is the hidden dimension.

Dynamic graph structure learning. To model spatial dependencies in biosignals (i.e., graph adja-
cency matrix W), we develop a GSL layer to learn the similarities between nodes. To capture the
dynamics of signals that evolve over time, our GSL layer learns a unique graph structure within a
short time interval r, where r is a pre-specified resolution. Instead of learning a unique graph at
each time step, we choose to learn a graph over a time interval of length r because (1) aggregating
information across a longer time interval can result in less noisy graphs and (2) it is more compu-
tationally efficient. For convenience, we let the predefined resolution r be an integer and assume
that the sequence length T is divisible by r without overlaps, and denote nd = T

r as the number of
dynamic graphs. We adopt self-attention (Vaswani et al., 2017) and use the attention weights as edge
weights. The adjacency matrix of the t-th dynamic graph, W

(t) ∈ RN×N , is learned as follows:

Q = h(t)MQ, K = h(t)MK , W
(t)

= softmax(
QKT

√
D

), for t = 1, 2, ..., nd (1)

Here, h(t) ∈ RN×D is mean-pooled S4 embeddings within the t-th time interval of length r; MQ ∈
RD×D and MK ∈ RD×D are weights projecting h(t) to query Q and key K, respectively. The
above equations can be easily extended to multihead self-attention (Vaswani et al., 2017).

To guide the GSL process, for the t-th dynamic graph, we add a k-nearest neighbor (KNN) graph
W

(t)
KNN to the learned adjacency matrix W

(t)
, where each node’s k-nearest neighbors are defined by

cosine similarity between their respective values in h(t). i.e., W(t) = ϵW
(t)
KNN+(1−ϵ)W

(t)
, where
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ϵ ∈ [0, 1) is a hyperparameter for the weight of the KNN graph. To introduce graph sparsity, we
prune W(t) by removing edges whose weights are smaller than a threshold κ (a hyperparameter).

To encourage the learned graphs to have desirable properties, including smoothness, sparsity, and
connectivity (Chen et al., 2020; Kalofolias, 2016; Zhu et al., 2021), we include three regularization
terms as detailed in Equations 2–3 in Appendix A. The regularization loss is the weighted sum of
the three terms and averaged across all dynamic graphs, where the weights are hyperparameters.

Model architecture. The overall architecture of our model (Figure 1), GRAPHS4MER, consists
of three main components: (1) stacked S4 layers with residual connection to model temporal de-
pendencies in signals within each sensor independently, which maps raw signals X ∈ RN×T×M

to S4 embedding H ∈ RN×T×D, (2) a GSL layer to learn dynamically evolving adjacency matri-
ces W(1), ...,W(nd), and (3) GNN layers to learn spatial dependencies between sensors given the
learned graph structures and node features H. We use an expressive GNN architecture, Graph Iso-
morphism Network (Xu et al., 2019; Hu et al., 2020), in our experiments. Finally, a temporal pooling
and a graph pooling layer are added to aggregate temporal and spatial representations, respectively,
followed by a fully connected layer to produce a prediction for each multivariate biosignal. Source
code is publicly available at https://github.com/tsy935/graphs4mer.

3 EXPERIMENTS

Table 1: Seizure detection results. Best
and second best results are bolded and
underlined.

Model AUROC

LSTM (Hochreiter & Schmidhuber, 1997) 0.715 ± 0.016
Dense-CNN (Saab et al., 2020) 0.796 ± 0.014
CNN-LSTM (Ahmedt-Aristizabal et al., 2020) 0.682 ± 0.003
Dist-DCRNN w/o pre-training (Tang et al., 2022b) 0.793 ± 0.022
Corr-DCRNN w/o pre-training (Tang et al., 2022b) 0.804 ± 0.015
Dist-DCRNN w/ pre-training (Tang et al., 2022b) 0.875 ± 0.016
Corr-DCRNN w/ pre-training (Tang et al., 2022b) 0.850 ± 0.014

GRAPHS4MER (ours) 0.906 ± 0.012

We evaluate GRAPHS4MER on three tasks. (1)
Seizure detection from EEGs. We use the public
TUSZ v1.5.2 dataset (Shah et al., 2018), and follow
the same experimental setup of seizure detection on
60-s EEGs as in Tang et al. (2022b). The number
of EEG sensors is 19 and the sequence length is 12k
time steps. The task is binary classification of de-
tecting whether or not a 60-s EEG contains seizure.
Baselines are prior SoTA models from Tang et al.
(2022b). (2) Sleep staging from polysomnogra-
phy signals. We use the public DOD-H (Guillot
et al., 2020) dataset. The number of polysomnog-
raphy (PSG) sensors is 16 and the sequence length
is 7.5k time steps. The task is to classify each 30-s PSG signal as one of the five sleep stages:
wake, rapid eye movement (REM), N1, N2, and N3. Baseline models include existing sleep staging
models (Guillot et al., 2020; Guillot & Thorey, 2021; Hochreiter & Schmidhuber, 1997). (3) ECG
classification. We use the public ICBEB ECG dataset (Liu et al., 2018), and follow the same data
split as described in Strodthoff et al. (2021). The number of ECG channels is 12 and the sequence
lengths vary from 600 to 6k time steps. The task is to classify each ECG into at least one of nine
classes (see Table 7 in Appendix B). Baseline models include seven prior CNNs/RNNs for ECG
classification (Strodthoff et al., 2021; Ismail Fawaz et al., 2020; He et al., 2019; Wang et al., 2017;
Hochreiter & Schmidhuber, 1997). For each model, we ran three runs with different random seeds
and report mean and standard deviation of results. See Appendix B–C for detailed experimental
setup, model training procedures, and hyperparameters.

Table 2: Sleep staging results.

Model Macro-F1 Kappa

LSTM (Hochreiter & Schmidhuber, 1997) 0.609 ± 0.034 0.539 ± 0.046
SimpleSleepNet (Guillot et al., 2020) 0.720 ± 0.001 0.703 ± 0.013
RobustSleepNet (Guillot & Thorey, 2021) 0.777 ± 0.007 0.758 ± 0.008
DeepSleepNet (Supratak et al., 2017) 0.716 ± 0.025 0.711 ± 0.032

GRAPHS4MER (ours) 0.818 ± 0.008 0.802 ± 0.014

Seizure detection results. As shown in Ta-
ble 1, GRAPHS4MER outperforms the previ-
ous SoTA, Dist-DCRNN with pre-training, by
3.1 points in AUROC. Notably, Dist-DCRNN
was pre-trained using a self-supervised task
(Tang et al., 2022b), whereas GRAPHS4MER
was trained from scratch without the need of
pre-training.

Sleep staging results. As shown in Table 2,
GRAPHS4MER outperforms RobustSleepNet, a specialized sleep staging model, by 4.1 points in
macro-F1. Note that the baselines preprocess the PSG signals using short-time Fourier transform,
whereas our model directly operates on raw PSG signals without preprocessing.
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ECG classification results. Table 3 compares GRAPHS4MER to existing models. GRAPHS4MER
provides 2.7 points improvement in macro-F1 score over XResNet1D (He et al., 2019).

Table 3: ECG classification results.

Model Macro F1-Score Macro F2-Score Macro G2-Score Macro AUROC

InceptionTime (Ismail Fawaz et al., 2020) 0.778 ± 0.020 0.792 ± 0.023 0.576 ± 0.027 0.964 ± 0.008
XResNet1D (He et al., 2019) 0.782 ± 0.016 0.803 ± 0.016 0.587 ± 0.019 0.971 ± 0.001
ResNet1D (Wang et al., 2017) 0.772 ± 0.015 0.788 ± 0.008 0.570 ± 0.014 0.963 ± 0.004
FCN (Wang et al., 2017) 0.736 ± 0.015 0.764 ± 0.014 0.538 ± 0.014 0.950 ± 0.003
Bidir-LSTM (Hochreiter & Schmidhuber, 1997) 0.748 ± 0.009 0.769 ± 0.004 0.548 ± 0.005 0.945 ± 0.002
WaveletNN (Strodthoff et al., 2021) 0.621 ± 0.013 0.643 ± 0.019 0.396 ± 0.014 0.911 ± 0.002

GRAPHS4MER (ours) 0.809 ± 0.004 0.804 ± 0.004 0.609 ± 0.005 0.977 ± 0.001

Figure 2: Mean adjacency matrix for EEG for (i) focal seizures, (ii) generalized seizures, and (iii)
non-seizure. (iv) Difference between focal seizure and non-seizure. (v) Difference between gener-
alized seizure and non-seizure. δ indicates the mean and standard deviation of the absolute values
of the differences between two mean adjacency matrices.

Ablations. We investigate the importance of (1) graph-based representation, where we remove GSL
and GNN layers; (2) S4 encoder, where we replace S4 layers with GRUs (Cho et al., 2014); (3) long-
range temporal modeling for GSL, where we apply GSL and GNN layers to raw signals, followed by
S4 layers; and (4) GSL, where we remove GSL layer and use predefined graphs. We use the distance-
based EEG graph from Tang et al. (2022b) for seizure detection; DOD-H and ICBEB datasets have
no predefined graph, and thus we use a KNN graph based on cosine similarity of raw signals between
nodes. We find that removing any of these components decreases model performance (Table 4).

Table 4: Ablation results.

Model TUSZ
(AUROC)

DOD-H
(Macro-F1)

ICBEB
(Macro-F1)

S4 0.824 ± 0.011 0.778 ± 0.009 0.781 ± 0.003
GRAPHS4MER w/o S4 0.705 ± 0.095 0.634 ± 0.061 0.197 ± 0.005
GSL-GNN-S4 0.882 ± 0.014 0.797 ± 0.011 0.772 ± 0.012
GRAPHS4MER w/o GSL 0.899 ± 0.010 0.765 ± 0.016 0.797 ± 0.012

GRAPHS4MER 0.906 ± 0.012 0.818 ± 0.008 0.809 ± 0.004

Interpretation of graphs. To investigate if the
learned graphs are meaningful, we visualize the
mean adjacency matrices in the correctly pre-
dicted test samples, grouped by seizure classes,
sleep stages, or ECG classes. The adjacency ma-
trices were reviewed by clinical experts in terms
of whether the differences in adjacency matrices
between diseased (or sleep) and normal (or wake)
classes reflect characteristics of the diseased (or
sleep) states. For the EEG use case (Figure 2), the
magnitude of differences between generalized seizure and non-seizure adjacency matrices (Figure
2v) is larger than the magnitude of differences between focal seizure and non-seizure (Figure 2iv).
This suggests that the abnormalities in generalized seizures are more synchronized across channels,
which is consistent with the literature that generalized seizures are characterized with abnormally
synchronized brain activity (Gloor et al., 1990; Amor et al., 2009). Similarly, for PSG and ECG, we
observe that the learned graphs reflect sleep stages and ECG abnormalities (see Appendix D).

4 CONCLUSION AND FUTURE WORK

In conclusion, we presented GRAPHS4MER, a general GNN integrating S4 and GSL for modeling
multivariate biosignals. Our method set new SoTA performance on seizure detection, sleep staging,
and ECG classification, and learned meaningful graph structures that reflect seizure classes, sleep
stages, and ECG abnormalities. Exciting future directions include (1) leveraging domain knowledge
for improved GSL, (2) investigating other ways of combining S4 and GSL to further improve long-
range GSL, and (3) applying our methods to other use cases, including regression tasks.
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APPENDIX

A GRAPH REGULARIZATION

Graph regularization encourages a learned graph to have several desirable properties, such as
smoothness, sparsity, and connectivity (Chen et al., 2020; Kalofolias, 2016; Zhu et al., 2021). Let
X ∈ RN×D be a graph data with N nodes and D features. First, a common assumption in graph
signal processing is that features change smoothly between adjacent nodes (Ortega et al., 2018).
Given an undirected graph with adjacency matrix W, the smoothness of the graph can be measured
by the Dirichlet energy (Belkin & Niyogi, 2001):

Lsmooth(X,W) =
1

2N2

∑
i,j

Wij ||Xi,: −Xj,:||2 =
1

N2
tr
(
XTLX

)
(2)

where tr(·) denotes the trace of a matrix, L = D−W is the graph Laplacian, D is the degree matrix
of W. Minimizing Equation 2 therefore encourages the learned graph to be smooth. In practice, the
normalized graph Laplacian L̂ = D−1/2LD−1/2 is used so that it is independent of node degrees.

However, simply minimizing the smoothness may result in a trivial solution W = 0 (Chen et al.,
2020). To avoid this trivial solution and encourage sparsity of the learned graph, additional con-
straints can be added (Chen et al., 2020; Kalofolias, 2016):

Ldegree(W) = − 1

N
1T log(W1) (3)

Lsparse(W) =
1

N2
||W||2F (4)

where ||.||F is the Frobenius norm of a matrix. Intuitively, Ldegree penalizes disconnected graphs and
Lsparse discourages nodes with high degrees (i.e., encourages the learned graph to be sparse).

B DETAILS OF DATASETS, EXPERIMENTAL SETUP, AND BASELINES

Temple University Hospital Seizure Detection Corpus (TUSZ). We use the publicly available
Temporal University Hospital Seizure Detection Corpus (TUSZ) v1.5.2. for seizure detection (Shah
et al., 2018). We follow the same experimental setup as in Tang et al. (2022b). The TUSZ train set
is divided into train and validation splits with distinct patients, and the TUSZ test set is held-out for
model evaluation. The following 19 EEG channels are included: FP1, FP2, F3, F4, C3, C4, P3, P4,
O1, O2, F7, F8, T3, T4, T5, T6, FZ, CZ, and PZ. Because the EEG signals are sampled at different
sampling rate, we resample all the EEG signals to 200 Hz. Following a prior study (Tang et al.,
2022b), we also exclude 5 patients in the TUSZ test set who appear in both the TUSZ train and test
sets. The EEG signals are divided into 60-s EEG clips without overlaps, and the task is to predict
whether or not an EEG clip contains seizure. Each 60-s EEG clip has a sequence length of 12k time
steps. The resolution r in GSL layer is chosen as 10-s (i.e., 2,000 time steps), which is inspired by
how trained EEG readers analyze EEGs. We treat the EEG graphs as undirected. Table 5 shows the
number of EEG clips and patients in the train, validation, and test splits.

We compare our model performance to existing models for seizure detection, including (1) LSTM
(Hochreiter & Schmidhuber, 1997), a variant of RNN with gating mechanisms; (2) Dense-CNN
(Saab et al., 2020), a densely connected CNN specialized in seizure detection; (3) CNN-LSTM
(Ahmedt-Aristizabal et al., 2020); and (4) Dist- and Corr-DCRNN without and with self-supervised
pre-training (Tang et al., 2022b). Following prior studies, we use AUROC as the evaluation metric.

Table 5: Number of EEG clips and patients in train, validation, and test splits of TUSZ dataset.

EEG Clips (% Seizure) Patients (% Seizure)

Train Set 38,613 (9.3%) 530 (34.0%)
Validation Set 5,503 (11.4%) 61 (36.1%)
Test Set 8,848 (14.7%) 45 (77.8%)
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Dreem Open Dataset-Healthy (DOD-H). We use the publicly available Dreem Open Dataset-
Healthy (DOD-H) for sleep staging (Guillot et al., 2020). The DOD-H dataset consists of overnight
PSG sleep recordings from 25 volunteers. The PSG signals are measured from 12 EEG channels, 1
electromyographic (EMG) channel, 2 electrooculography (EOG) channels, and 1 electrocardiogram
channel using a Siesta PSG device (Compumedics). All the signals are sampled at 250 Hz. Fol-
lowing the standard AASM Scoring Manual and Recommendations (Rosen et al., 2018), each 30-s
PSG signal is annotated by a consensus of 5 experienced sleep technologists as one of the five sleep
stages: wake (W), rapid eye movement (REM), non-REM sleep stages N1, N2, and N3. We ran-
domly split the PSG signals by 60/20/20 into train/validation/test splits, where each split has distinct
subjects. Each 30-s PSG signal has a sequence length of 7.5k time steps. The resolution r in GSL
layer is set as 10-s (i.e., 2,500 time steps). We treat the PSG graphs as undirected. Table 6 shows
the number of 30-s PSG clips, the number of subjects, and the five sleep stage distributions.

Baseline models include existing sleep staging models that achieved state-of-the-art on DOD-H
dataset, SimpleSleepNet (Guillot et al., 2020), RobustSleepNet (Guillot & Thorey, 2021), and Deep-
SleepNet (Supratak et al., 2017), all of which are based on CNNs and/or RNNs. We also include the
traditional sequence model LSTM (Hochreiter & Schmidhuber, 1997) as a baseline. For fair com-
parisons between the baselines and GRAPHS4MER, we trained SimpleSleepNet, RobustSleepNet,
and DeepSleepNet using the open sourced code1 and setting the temporal context to be one 30-s
PSG signal. Similar to Guillot & Thorey (2021), we use macro-F1 score and Cohen’s Kappa as the
evaluation metrics.

Table 6: Number of subjects and 30-s PSG clips in the train, validation, and test splits of DOD-H
dataset.

Subjects 30-s PSG Clips
Total Wake N1 N2 N3 REM

Train 15 14,823 1,839 925 6,965 2,015 3,079
Validation 5 5,114 480 254 2,480 990 910
Test 5 4,725 718 326 2,434 509 738

ICBEB ECG Dataset. We use the publicly available ECG dataset for the 1st China Physiological
Signal Challenge held during the International Conference on Biomedical Engineering and Biotech-
nology (ICBEB) for ECG classification (Liu et al., 2018). We follow the same data split as described
in Strodthoff et al. (2021). Specifically, as the official ICBEB test set is not publicly available, we
only use the official ICBEB training set and randomly split it into 10 folds using stratified split,
where the first 8 folds are used as the training set, the 9th fold is used as the validation set for hy-
perparameter tuning, and the 10th fold is used as the held-out test set to report results in this study.
In total, there are 6,877 12-lead ECGs ranging between 6-s and 60-s. Following Strodthoff et al.
(2021), the ECGs are downsampled to 100 Hz, resulting in sequence lengths ranging from 600 to 6k
time steps. To handle variable length ECGs for training in mini batches, we pad the short sequences
with 0s. During training and testing, the padded values are masked out so that they are not seen by
the models. In the ICBEB dataset, each ECG record is annotated by up to three reviewers. There are
9 classes in total, including one normal and 8 abnormal classes, and each ECG may be associated
with more than one abnormal classes (i.e., multilabel classification). The resolution r in the GSL
layer is set as the actual ECG sequence lengths to facilitate model training in batches. We treat the
ECG graphs as undirected. Table 7 shows the 9 classes and the number of ECGs in each class in the
train/validation/test splits.

We compare GRAPHS4MER to a wide variety of prior CNNs/RNNs for ECG classification as in
Strodthoff et al. (2021): (1) InceptionTime (Ismail Fawaz et al., 2020), (2) XResNet1D (He et al.,
2019), (3) ResNet1D (Wang et al., 2017), (4) fully convolutional network (FCN) (Wang et al., 2017),
(5) LSTM (Hochreiter & Schmidhuber, 1997), (6) bidirectional LSTM (Hochreiter & Schmidhuber,
1997), and (7) WaveletNN (Strodthoff et al., 2021). Note that these baselines take 2.5-s ECG win-
dows as inputs and aggregate the window-wise predictions at test time, whereas GRAPHS4MER

1SimpleSleepNet: https://github.com/Dreem-Organization/dreem-learning-open;
RobustSleepNet, DeepSleepNet: https://github.com/Dreem-Organization/
RobustSleepNet
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takes the entire ECG signal as inputs, which allows modeling long-range temporal dependencies in
the entire signals.

Table 7: Number of ECGs in the train, validation, and test splits of ICBEB dataset used in this study.
Note that some ECGs are associated with more than one abnormal classes, and thus the total number
of ECGs (last row) is not equal to the sum of the ECGs in the individual classes. Abbreviations:
AFIB, atrial fibrillation; I-AVB, first-degree atrioventricular block; LBBB, left bundle branch block;
RBBB, right bundle branch block; PAC, premature atrial contraction; PVC, premature ventricular
contraction; STD, ST-segment depression; STE, ST-segment elevated.

Train Validation Test

Normal 734 92 92
AFIB 976 122 123
I-AVB 578 72 72
LBBB 189 24 23
RBBB 1,487 176 194
PAC 493 61 62
PVC 560 70 70
STD 695 87 87
STE 176 22 22

Total 5,499 690 688

C DETAILS OF MODEL TRAINING PROCEDURES AND HYPERPARAMETERS

Model training was accomplished using the AdamW optimizer (Loshchilov & Hutter, 2019) in Py-
Torch on a single NVIDIA A100 GPU. All experiments were run for three runs with different ran-
dom seeds. Cosine learning rate scheduler with 5-epoch warm start was used (Loshchilov & Hutter,
2017). Model training was early stopped when the validation loss did not decrease for 20 consec-
utive epochs. We performed hyperparameter search for all the hyperparameters in Table 8 on the
validation set using an off-the-shelf hyperparameter tuning tool2.

Table 8: Summary of hyperparameters.

Hyperparameters Tuning Range

Initial learning rate [1× 10−4, 1× 10−2]
Dropout rate [0.1, 0.5]
Hidden dimension {64, 128, 256}
Number of S4 layers {2, 3, 4}
S4 bidirectionality {True, False}
Number of GNN layers {1, 2}
Graph pooling {max-pool, mean-pool, sum-pool}
Value of κ threshold for graph pruning [0.01, 0.5]
Value of K in KNN graph {2, 3}
Weight of KNN graph (ϵ) [0.3, 0.6]
α, β, γ weights in graph regularization loss [0, 1]

Model training and hyperparameters for seizure detection on TUSZ dataset. As there are many
more negative samples in the dataset, we undersampled the negative examples in the train set during
training. We used binary cross-entropy loss as the loss function. The models were trained for 100
epochs with an initial learning rate of 8× 10−4. The batch size was 4; dropout rate was 0.1; hidden
dimension was 128; number of stacked S4 layers was 4; S4 layers were unidirectional; number
of GNN layers was 1; graph pooling was max-pool and temporal pooling was mean-pool; graph
pruning was done by setting a threshold of κ = 0.1, where edges whose edge weights <= 0.1 were

2https://docs.wandb.ai/guides/sweeps
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removed; K = 2 for KNN graph and the KNN graph weight ϵ was 0.6; α, β, and γ weights were
all set to 0.05. This results in 265k trainable parameters in GRAPHS4MER. Best model was picked
based on the highest AUROC on the validation set.

Model training and hyperparameters for sleep staging on DOD-H dataset. As the DOD-H
dataset is highly imbalanced, we undersampled the majority classes in the train set during training.
We used cross-entropy loss as the loss function. The models were trained for 100 epochs with an
initial learning rate of 1× 10−3. The batch size was 4; dropout rate was 0.4; hidden dimension was
128; number of stacked S4 layers was 4 and S4 layers were unidirectional; number of GNN layers
was 1; graph pooling was sum-pool and temporal pooling was mean-pool; graph pruning was done
by setting a threshold of κ = 0.1; K = 3 for KNN graph and the weight for KNN graph ϵ was 0.6;
α, β, and γ weights were all set to 0.2. This results in 266k trainable parameters in GRAPHS4MER.
Best model was picked based on the highest macro-F1 score on the validation set.

Model training and hyperparameters for ECG classification on ICBEB dataset. As each ECG
in the ICBEB dataset may be associated with more than one classes, this task is a multilabel classi-
fication task. Therefore, we used binary cross-entropy loss as the loss function. The models were
trained for 100 epochs with an initial learning rate of 1 × 10−3. The batch size was 8; dropout
rate was 0.1; hidden dimension was 128; number of stacked S4 layers was 4; S4 layers were bidi-
rectional; number of GNN layers was 1; graph pooling was mean-pool and temporal pooling was
mean-pool; graph pruning was done by setting a threshold of κ = 0.02; K = 2 for KNN graph
and the weight for KNN graph ϵ was 0.6; α, β, and γ weights were 1.0, 0.0, and 0.5, respectively.
This results in 299k trainable parameters in GRAPHS4MER for ECG classification. Best model was
picked based on the highest macro-AUROC on the validation set. To obtain binarized predictions,
we selected the cutoff threshold for each class separately by maximizing the F1-score on the valida-
tion set for the respective class.

D VISUALIZATION OF PSG AND ECG GRAPHS

Figure 3 shows mean adjacency matrices for PSG signals in correctly predicted test samples grouped
by five sleep stages. We observe that N3 differs from wake stage more than N1 (comparing Figure
3ix to Figure 3vii). This pattern is expected given that N1 is the earliest sleep stage, whereas N3 is
the deep sleep stage and is associated with slow brain waves that are not present in other sleep stages
(Iber et al., 2007). Moreover, in REM stage (Figure 3ii), the EMG channel has very weak connection
to all other channels (red arrow in Figure 3ii), which is expected given that one experiences muscle
paralysis in REM stage.

Figure 4 shows mean adjacency matrices for ECG signals in correctly predicted test samples,
grouped by ECG classes. We find that the magnitude of differences between adjacency matrices of
first-degree atrioventricular block (I-AVB) and normal ECG is small (Figure 4xi), which is expected
as I-AVB abnormality involves only small changes in the ECG (a subtle increase in the PR interval
of ECG, not involving any morphologic changes in the p-waves or the QRS complexes). In contrast,
the magnitude of differences between adjacency matrices of left bundle branch block (LBBB) and
normal ECG is much more noticeable (Figure 4xii), particularly in ECG leads V1-V6. This finding
is clinically meaningful as ECG signals with LBBB demonstrate a pronounced abnormality in the
QRS complexes of the ECG, especially in leads V1-V6.

E EFFECT OF TEMPORAL RESOLUTION

To examine the effect of temporal resolution r on model performance, we show the performance
versus different values of r for seizure detection and sleep staging in Figure 5. We observe that
smaller value of r tends to result in higher performance, which suggests that capturing dynamically
varying graph structures is useful for these tasks. Note that in ECG classification experiments, the
temporal resolution r is set as the actual sequence length for each ECG due to variable ECG lengths,
and thus ECG classification task is excluded from Figure 5.
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Figure 3: (i)–(v) Mean adjacency matrices for PSG signals for five sleep stages in correctly predicted
test samples. (vi)–(ix) Difference between non-WAKE stages and WAKE. δ indicates the mean and
standard deviation of the absolute values of the differences between non-WAKE stages and WAKE.
Red arrow indicates EMG channel in REM stage that has weak connection to all other channels.
Self-edges (i.e., diagonal) are not shown here.

F EFFECT OF KNN GRAPH IN GSL

To examine the effect of adding KNN graph in GSL (see Section 2) on model performance, we show
the performance without versus with KNN graph in Figure 6. We observe that adding KNN graph
in GSL tends to result in better performance.

Additionally, instead of using a fixed KNN graph weight, we decay the KNN graph weight according
to a cosine annealing scheduler (Loshchilov & Hutter, 2017). Figure 7 shows the model performance
with and without decay (original GRAPHS4MER). Decaying KNN graph weight tends to result in
decreased performance than using a fixed KNN graph weight (i.e., original GRAPHS4MER).

G EFFECT OF END-TO-END TRAINING

In our experiments in Tables 1–3, all of the layers in GRAPHS4MER are trained end-to-end. Here,
we examine the effect of end-to-end training. Specifically, for each task, we pre-trained S4 on the
task, extracted S4 embeddings from the pre-trained S4, and trained GSL and GNN layers using
the S4 embeddings as inputs. Figure 8 shows the model performance with pre-trained S4 (frozen)
and original end-to-end training. Pre-training and freezing S4 decrease the model performance by a
large margin, suggesting that end-to-end training is needed to learn S4 embeddings that are useful
for learning graph structures and graph representations.

13



Published as a conference paper at ICLR 2023

Figure 4: (i)–(ix) Mean adjacency matrices for ECG signals for nine ECG classes in correctly pre-
dicted test samples. (x)–(xvii) Difference between adjacency matrices of abnormal ECG classes and
normal class. δ indicates the mean and standard deviation of the absolute values of the differences
between the abnormal class and the normal class. Self-edges (i.e., diagonal) are not shown here. Ab-
breviations: AFIB, atrial fibrillation; I-AVB, first-degree atrioventricular block; LBBB, left bundle
branch block; RBBB, right bundle branch block; PAC, premature atrial contraction; PVC, premature
ventricular contraction; STD, ST-segment depression; STE, ST-segment elevated.
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Figure 5: Model performance versus temporal resolution using the run with median performance.
For convenience, we assume that temporal resolution is chosen so that the sequence length is
divisible by the resolution. Asterisk indicates the temporal resolution used to report results for
GRAPHS4MER in Tables 1–2 and Table 4. Error bars indicate 95% confidence intervals obtained
using bootstrapping with 5,000 replicates with replacement.

Figure 6: Model performance without and with KNN graph in GSL using the run with median
performance. Error bars indicate 95% confidence intervals obtained using bootstrapping with 5,000
replicates with replacement.

Figure 7: Model performance with and without KNN graph weight decay using the run with median
performance. Error bars indicate 95% confidence intervals obtained using bootstrapping with 5,000
replicates with replacement.

Figure 8: Model performance with pre-trained S4 versus original end-to-end training. Error bars
indicate 95% confidence intervals obtained using bootstrapping with 5,000 replicates with replace-
ment.
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