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Abstract
Interpretability research has shown that self-001
supervised Spoken Language Models (SLMs)002
encode a wide variety of features in human003
speech from the acoustic, phonetic, phonolog-004
ical, syntactic and semantic levels, to speaker005
characteristics. The bulk of prior research on006
representations of phonology has focused on007
segmental features such as phonemes; the en-008
coding of suprasegmental phonology (such as009
tone and stress patterns) in SLMs is not yet010
well understood. Tone is a suprasegmental fea-011
ture that is present in more than half of the012
world’s languages. This paper aims to ana-013
lyze the tone encoding capabilities of SLMs,014
using Mandarin and Vietnamese as case stud-015
ies. We show that SLMs encode lexical tone to016
a significant degree even when they are trained017
on data from non-tonal languages. We further018
find that SLMs behave similarly to native and019
non-native human participants in tone and con-020
sonant perception studies, but they do not fol-021
low the same developmental trajectory.022

1 Introduction023

Explaining the inner workings of self-supervised024

models of written and spoken language has been025

the focus of much recent work. Transformer-based026

(Vaswani et al., 2017) written language models027

have been shown to encode many types of linguis-028

tic information (Conneau et al., 2018; Hewitt and029

Manning, 2019). The analysis of self-supervised030

Spoken Language Models (SLMs) is also gaining031

traction: architectures such as wav2vec2 (Baevski032

et al., 2020) and HuBERT (Hsu et al., 2021) have033

been shown to encode linguistic information at the034

phonetic, phonological, syntactic and semantic lev-035

els of human speech without labeled data (Abdullah036

et al., 2021; Ma et al., 2021; de Seyssel et al., 2022;037

Bartelds et al., 2022; Martin et al., 2023; Shen et al.,038

2023).039

The majority of research on representations of040

phonetic and phonological information in SLMs041

focuses on the segmental level. Segmental refers 042

to units of speech that do not spread but remain 043

localized. Phonemes (e.g. vowels and consonants) 044

are the smallest abstract units of sound that help 045

to distinguish one unit from another (e.g. pat vs 046

bat). Suprasegmental, in contrast, refers to fea- 047

tures that are not necessarily limited to single units, 048

but can spread across multiple phonemes or phrases. 049

Examples include tone, stress patterns, and intona- 050

tion, which can all entail syllable and phrase level 051

changes (Singh and Fu, 2016). The representation 052

of suprasegmental information in SLMs is impor- 053

tant to study, as it is one of the main distinguish- 054

ing features of speech compared to text: spoken 055

utterances use suprasegmental cues to convey in- 056

formation that is generally not explicitly marked in 057

a corresponding written sentence. As a first step, 058

in this work, we focus on lexical tone as a highly 059

constrained, relatively well-understood example of 060

a suprasegmental feature. 061

We firstly examine to what extent SLMs trained 062

on tonal and non-tonal languages encode tone in- 063

formation in their internal representations. We find 064

that SLMs are capable of capturing tonal informa- 065

tion, regardless of whether they are trained on tonal 066

or non-tonal languages. 067

Secondly, we investigate the impact of super- 068

vised fine-tuning on the automatic speech recogni- 069

tion (ASR) task. We find that fine-tuning enhances 070

tone representations for models trained on tonal 071

languages, but reduces them for models trained on 072

non-tonal languages. 073

Thirdly, we investigate whether SLMs exhibit 074

the same perceptual patterns as native and non- 075

native human listeners. We find that models show 076

patterns similar to humans in discrimination of 077

Mandarin tones and consonants, but find no ev- 078

idence that they follow a similar developmental 079

trajectory. 080
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2 Tones081

Estimates suggest that more than 60% of the082

world’s languages use some degree of tonal con-083

trast (Yip, 2002). Our primary focus is on lexical084

tone, the process by which lexical items are distin-085

guished from one another primarily by pitch cues086

(Chen et al., 2022). Non-tonal phonemic units (e.g.087

vowels, consonants) can be defined primarily by088

non-pitch articulatory cues, such as vowel height,089

voicing, and duration. In contrast, tonal units make090

use of pitch cues, with F0 (fundamental frequency)091

contour usually considered to be the primary cue092

(Rhee et al., 2021). In ambiguous contexts, other093

pitch cues can be used in combination with non-094

pitch cues such as amplitude, voice quality (e.g.095

breathy vs creaky), and spectral tilt (Rhee et al.,096

2021). The Tone Bearing Unit (TBU) varies across097

languages, with some bearing it on all morphemes,098

whilst others demonstrate TBU only on specific099

contrasts or lexical pairs e.g. in Japanese (Jun and100

Kubozono, 2020).101

We compare SLMs trained on non-tonal lan-102

guage as well as three fully lexical tonal languages:103

Mandarin, Cantonese and Vietnamese. The models104

are tested primarily on Mandarin data. Mandarin105

demonstrates full tonality, with tone found on each106

morpheme (Hyman, 2018), and has been widely107

studied for tone perception as well as acquisition.108

Secondarily, we also test on data from another lex-109

ical tone language, Vietnamese, to assess if our110

results generalize.111

Mandarin Chinese is typically described as112

containing four (lexical) tones and one neutral tone113

that only occurs in unstressed syllables (Wu et al.,114

2020). The tones are conventionally assigned the115

labels 1-4 (T1-4); Figure 1 illustrates the four Man-116

darin tones. The TBU in Mandarin is morphemic;117

that is, each morpheme contains one tonal unit.118

Since one morpheme (one character) corresponds119

to one tone in Mandarin Chinese, we can use the120

Pinyin transcription to obtain our tone labels easily121

(see Figure 1 for notations); for example:122

(1) 今
Jı̄n
T1

天
tiān
T1

天
tiān
T1

气
qì
T4

很
hěn
T3

好
hǎo
T3

123

‘The weather today is very good.’124

The tone label corresponds to the tone of the char-125

acter when it is pronounced in isolation (base form).126

However, Mandarin features tone sandhi, i.e. the127

tone assigned to individual morphemes can change128

in pronunciation based on the tone of the adjacent129

Figure 1: F0 contours of the four Mandarin tones mea-
sured from pronunciations recorded by one of the co-
authors, a native speaker of Mandarin Chinese. The
four syllables are pronounced in isolation (notation: mā
T1, má T2, mǎ T3, mà T4).

morpheme (sandhi form). One instance of tone 130

sandhi rules in Mandarin is T3 sandhi (Chen, 2000): 131

if two T3 (‘dipping’) tones occur next to one an- 132

other, the first will adjust to T2 (‘rising’) to avoid 133

two consecutive T3 tones, as can be seen in ex- 134

amples 2 and 3, after Chen (2000). Tone labels 135

obtained from Pinyin transcriptions only take the 136

base form into account. 137

(2)

小
xiǎo
T3
‘small’

138

(3)

小 狗
xiǎo gǒu
T3 T3 base form
T2 T3 sandhi form
‘small dog’

139

The primary pitch cue that distinguishes the indi- 140

vidual Mandarin tones from each other is F0; how- 141

ever, secondary pitch cues are also present such as 142

voice quality and spectral tilt (Belotel-Grenie and 143

Grenie, 1994; Huang, 2020). 144

Vietnamese also has obligatory tones on every 145

syllable, similar to Mandarin’s morphemic TBU 146

(Kirby, 2011). We adhere to the eight tone system 147

described by Kirby (2011) in our experiment setup. 148

Cantonese is a Sinitic language related to Man- 149

darin, and also features lexical tone, with six tonal 150

distinctions (Zee, 1991) as opposed to Mandarin’s 151

four. 152
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3 Related work153

The present paper builds both on works interpreting154

the inner workings of SLMs and on experiments155

on perception of aspects of human speech.156

3.1 Analyzing SLMs157

The transformer architecture (Vaswani et al., 2017)158

has dominated the SLM realm. Researchers have159

developed many methods to analyze the inner-160

working of these models. Pasad et al. (2021) pro-161

vide an overview on the variety of linguistics fea-162

turs encoded by self-supervised SLMs. The models163

tend to follow an autoencoder-like behavior with164

the middle layers showing the strongest encoding165

of a variety of linguistic features.166

More recently, research has focused on specific167

properties of the input audio that is being encoded168

by the models. Martin et al. (2023) tested whether169

SLMs can distinguish between voiced and voice-170

less consonants. Shen et al. (2023) showed that self-171

supervised as well as visually-supervised SLMs are172

capable of encoding syntactic properties to some173

extent. Some prior works in the field have touched174

on the encoding of suprasegmental features in SSL175

speech models. Bartelds et al. (2022) showed the176

hidden state activations of SLMs are capable of177

capturing intonational and durational information178

on the phrase level, indicating that they can encode179

non-segmental information to a significant degree.180

Many recent interpretability studies are inspired181

by psycholinguistics and child language develop-182

ment research. With the rise of probing and other183

interpretability methods, researchers replicated ex-184

perimental paradigms in psychology and linguistics185

to better understand the capabilities of models com-186

pared to humans. For example, Wilcox et al. (2023)187

tested text language models using psycholinguis-188

tic experimental paradigms, showing that they are189

capable of learning syntactic dependencies with190

relatively little input data.191

On the speech side, Lavechin et al. (2023)192

presented evidence that self-supervised SLMs193

can develop limited language-specific perception.194

Cruz Blandón et al. (2023) proposed comparing195

model behavior using checkpoints in the SLM pre-196

training process with data in child language de-197

velopment. They showed that computational lan-198

guage models can be a valuable resource in testing199

or confirming linguistic theories in the language200

development field. The methodology mostly con-201

cerns of the overall learning of the language model202

in the output stage. Our work contributes to the 203

explanation of the inner workings of SLMs. 204

3.2 Human perception experiments 205

In terms of tone perception, F0 is a clear primary 206

cue (Ryant et al., 2014b; Rhee et al., 2021; Chen 207

et al., 2022), but other secondary pitch cues serve to 208

assist when speech is ambiguous and/or disrupted. 209

Given that conversational speech contains non- 210

trivial speech recognition difficulties such as e.g. 211

tone sandhi and coarticulation, individual variation, 212

and context omission (Ryant et al., 2014b), sec- 213

ondary cues play a role in the distinction of tones. 214

An example of this is voice quality, where for ex- 215

ample lowering F0 (introducing ‘creaky’ voice) 216

increased perceptual saliency for T3, whereas T1 217

and T4 accuracy decreased and T2 remained un- 218

affected (Huang, 2020; Chai, 2019; Kuang, 2017). 219

This emphasises the fact that F0 does not operate 220

in isolation, but that covariation between pitch and 221

voice quality is inherent in Mandarin. Spectral cues 222

(e.g. amplitude differences, spectral tilt) have also 223

been suggested to be sufficient for adult speakers in 224

tone production, while children are thought to hy- 225

perarticulate the tonal differences in speech (Rhee 226

et al., 2021). 227

Suprasegmental cues appear to be preferred in 228

experiments that compare segmental and supraseg- 229

mental cues against each other. Human infants are 230

more sensitive to suprasegmental cues, with even 231

newborns showing the same preference (Mehler 232

et al., 1988; Nazzi et al., 1998). Several studies ob- 233

serve that tonal sensitivity develops earlier than per- 234

ception of vowels and consonants (Xi et al., 2009; 235

Yeung et al., 2013), with sensitivity to non-native 236

tonal distinctions remaining longer than perception 237

of non-tonal non-native phoneme categories (Liu 238

and Kager, 2014; Shi et al., 2017). 239

Comparing vowels, consonants and tones, Singh 240

et al. (2015) show that Mandarin learning children’s 241

sensitivity to consonants and vowels develop at a 242

similar rate and shows departure from tones. The 243

effect of tone mispronunciation is much larger than 244

that of vowel or consonant mispronunciation for 245

toddlers, but the pattern is reversed in preschoolers 246

(Singh et al., 2015). 247

3.3 Automatic classification of tones 248

Automatic tone classification in Mandarin tradition- 249

ally uses F0 contour and mel-frequency cepstral 250

coefficients (MFCC) features. Advances in deep 251

learning brought improvements in performance of 252
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tone classification. Ryant et al. (2014a) compare253

MFCC features and F0 contour as input to a neural254

tone classifier. MFCC features, while not explicitly255

encoding the F0 contour information, achieve an er-256

ror rate of 15.56% for Tone 1-4 classification. The257

combination of MFCC features and F0 contours258

extracted with different methods did not see an im-259

provement in the classifier’s performance, indicat-260

ing that the classifier was able to extract F0 contour261

from the MFCC features, or it was able to predict262

Mandarin tones reliably without F0 contour infor-263

mation. However, it is possible that the classifier264

was able to exploit associations between specific265

phonemes strings and tone labels, and hence avoid266

learning to detect tone based on pitch and voice267

quality cues.268

After the introduction of self-supervised SLMs,269

Yuan et al. (2021) fine-tuned an English pre-trained270

wav2vec2 model (Baevski et al., 2020) for Man-271

darin tone classification and achieved a tone error272

rate of 6% on the same dataset as (Ryant et al.,273

2014a). Clearly, SLMs can handle the task of clas-274

sifying Mandarin lexical tone with labeled fine-275

tuning. The aim of the present paper is not to276

compete with the existing implementations of Man-277

darin tone classifiers; rather we aim to uncover the278

tone encoding capabilities emerged without explicit279

supervision.280

4 Methodology281

We use a number of wav2vec2-based (Baevski282

et al., 2020) models pre-trained and fine-tuned on283

datasets of different languages for our investigation.284

As examples of tonal languages, we choose Man-285

darin, Vietnamese and Cantonese, whereas English286

and French serve as non-tonal language examples.287

The models trained in the languages above are then288

tested on test data from Mandarin and Vietnamese.289

To examine the encoding of tone, we train linear290

probing classifiers on the hidden state activations291

extracted from the aforementioned models for ev-292

ery morpheme in our testing datasets.293

4.1 Datasets294

Training data. We examine SLMs that were295

trained on datasets of the following languages:296

Mandarin pre-trained with AISHELL-2 (Du297

et al., 2018) and fine-tuned with AISHELL-1 (Bu298

et al., 2017). English pre-trained and fine-tuned299

with LibriSpeech (Panayotov et al., 2015). Viet-300

namese pre-trained with unlabelled YouTube au-301

dio and fine-tuned with the VLSP dataset for ASR 302

(Nguyen, 2021). Cantonese pre-trained on a com- 303

bined dataset of older Cantonese adult speech and 304

YouTube audio (Huang and Mak, 2023). French 305

pre-trained on MLS French (Pratap et al., 2020). 306

Table 1 summarizes the characteristics of these 307

datasets. 308

Test data. We primarily use the Mandarin Chi- 309

nese THCHS-30 dataset (Wang and Zhang, 2015) 310

for testing models’ encoding of Mandarin tone. 311

THCHS-30 consists of 30 hours of Mandarin 312

speech recorded in a laboratory environment. The 313

dataset is transcribed into both Chinese characters 314

and Mandarin Pinyin. We also obtain character- 315

level forced alignment with the Charsiu aligner 316

(Zhu et al., 2022). 317

To test the generalizability of our results, we also 318

use the Vietnamese VIVOS dataset (Luong and Vu, 319

2016), which consists of 15 hours of Vietnamese 320

read speech recorded in a laboratory environment. 321

The dataset is transcribed into Vietnamese orthog- 322

raphy. We then convert the transcription into Inter- 323

national Phonetic Alphabet (IPA) with tone labels 324

with vPhon (Kirby, 2008). We use the Montreal 325

Forced Aligner (McAuliffe et al., 2017) to obtain a 326

syllable-level forced alignment. 327

Pre-training data. For the experiments on 328

SLM’s learning trajectory and perceptual patterns 329

(see Section 5.3), we pre-train SLMs from scratch 330

on the following datasets: 331

• MAGICDATA (Magic Data Technology Co., 332

2019), containing 755 hours of read Mandarin 333

Chinese. The dataset was pre-split into a 712- 334

hour training set and a 28-hour validation set. 335

• LibriSpeech (Panayotov et al., 2015), see de- 336

tails in Table 1. We split a subset of the Lib- 337

riSpeech dataset into a 710-hour training set 338

and a 29-hour validation set. 339

4.2 Spoken Language Models 340

Architecture. With the exception of the Can- 341

tonese model, all models investigated in this paper 342

are based on the base configuration of wav2vec2 343

(Baevski et al., 2020). Wav2vec2-base consists of 344

five convolutional feature encoder and twelve trans- 345

former layers. The feature encoder processes the 346

audio waveform input into latent speech representa- 347

tions, and the transformer layers encode the feature 348

encoder output into contexual representations. The 349

wav2vec2-base models has 95M parameters. The 350
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Size (hours)
Training language Tonality Pre-training Fine-tuning Speech type

English (Baevski et al., 2020) Non-tonal 960 960 Read
French (Parcollet et al., 2023) Non-tonal 1,000 - Read

Mandarin (Lu and Chen, 2022) Tonal 1,000 178 Read
Vietnamese (Nguyen, 2021) Tonal 13,000 250 YouTube audio/Read
Cantonese (Huang and Mak, 2023) Tonal 2,800 - Spotaneous + Read

Table 1: Description of the datasets used in pre-training/fine-tuning models.

Cantonese model uses the wav2vec2-conformer351

architecture with 180M parameters.352

Training objectives. The fully self-supervised353

pre-training objective in wav2vec2 consists in dis-354

criminating between the matched and unmatched355

segment representations for a masked portion of the356

latent speech representation. The ASR fine-tuning357

objective consists in transcribing the audio input358

into output tokens in the orthography of the target359

language and is realized by adding a linear layer360

on top of a pre-trained wav2vec2 model.361

Checkpoints. For the experiments in Section 5.3362

we pre-train two SLMs with the fairseq toolkit (Ott363

et al., 2019) on LibriSpeech for English and MAG-364

ICDATA for Mandarin; we train both models for365

85,000 steps using 8 Nvidia A100-40GB GPU with366

update frequency = 8 to simulate training with 64367

GPUs. Each model finished training in approxi-368

mately 96 hours. We save checkpoints every 5,000369

steps.370

4.3 Probing classifiers371

Preprocessing. We follow previous work (Ryant372

et al., 2014a) in removing segments transcribed373

with the neutral tone from the Mandarin tone clas-374

sification task. Mandarin neutral tones primarily375

appear in unstressed syllables (cf. Section 2) and376

hence are more susceptible to variations.377

Generating classifier input. We extract the hid-378

den state activations of models as a response to379

audio samples in the test data. We average-pool380

the hidden state output corresponding to the dura-381

tion of individual syllables to obtain a vector using382

forced alignment timestamps. The resulting 768-383

dimensional vectors are input to the classifiers. To384

control for the influence of lexical cues on tone385

detection, we construct an exclusive train-test-split386

such that phoneme strings appearing in the test387

set do not appear in the training set. This setup388

Language Split Samples

Mandarin Train 223,851
Mandarin Test 45,772
Vietnamese Train 124,248
Vietnamese Test 29,629

Table 2: Train/test splits for the tone probing classifier,
for the Mandarin and Vietnamese data.

prevents the probing classifier from exploiting as- 389

sociations between tones and phoneme sequences. 390

We employ a randomized 80:20 train-test split with 391

the split sizes shown in Table 2. 392

F0 and MFCC baselines. We closely follow 393

Ryant et al. (2014a) and use F0 contours and 40- 394

dimensional mel-frequency cepstral coefficients 395

(MFCC) features as baselines. We use Librosa 396

(McFee et al., 2023) to extract the MFCC fea- 397

tures and Praat (Jadoul et al., 2018; Boersma and 398

Weenink, 2021) to extract the F0 contours from 399

the audio samples. We then find the center frame 400

for each word using the alignment timestamps and 401

concatenate all frames in a 21 frame window (10- 402

1-10) for both F0 and MFCC features. We end up 403

with a 21-dimensional vector for F0 contours and 404

840-dimensional vector for MFCC features as our 405

baseline classifier inputs. 406

Text baseline. In addition to audio baselines, we 407

also include a text-based transformer model in our 408

comparison. BERT (Devlin et al., 2019) serves as 409

a reference point to show how much information 410

is encoded in the speech signal as opposed to what 411

can be guessed from pure text. We use a Chinese 412

pre-trained BERT1 that encodes Chinese charac- 413

ters into vectors. We extract per-word hidden state 414

outputs with a resulting 768-dimensional vector. 415

1https://huggingface.co/bert-base-chinese

5

https://huggingface.co/bert-base-chinese


Split Samples

Train 92,413
Test 15,688

Table 3: Train/test split for the consonant probing clas-
sifier, for the Mandarin data.

Tone classifiers. We use the syllable activation416

vectors as input to a Ridge linear classifier that417

predicts the lexical tone of the input morpheme. We418

select the final model via 5-fold cross-validation,419

and report the classification accuracy on the test420

split. The regularization strength α was tuned for421

values {10n | n ∈ {−4,−3,−2,−1, 0, 1, 2}}.422

Consonant classifiers. When comparing tone to423

consonant classification, we employ the same clas-424

sifier setup for consonant and replicate the percep-425

tion experiment in Wang and Chen (2020) in Sec-426

tion 5.3.1. Since we only investigate consonants427

that appear solely in the onset position and the rest428

of the phonemes are not relevant to our task, we429

use the same syllable vectors as above instead of430

obtaining a phoneme vector with using phoneme431

level alignment. We construct exclusive train-test-432

splits that contain unique rhymes (nucleus + coda)433

of the syllables. Specific details of the train/test434

split for this experiment can be found in Table 3.435

5 Results436

In this section, we present a series of experiments437

for analyzing the encoding of tone in SLMs.438

5.1 Tone encoding across languages439

Figure 2 shows the tone classification accuracy us-440

ing the layer-wise representations of all models441

pre-trained on non-tonal (left) versus tonal (panel)442

languages. We see that all layers of all models443

perform better than the F0 and MFCC baselines,444

which themselves outperform the text-based BERT445

baseline. The classification accuracy for tonal lan-446

guage models is overall higher, and increases in the447

higher layers of the models. Models trained on non-448

tonal languages also show substantial encoding of449

tone; but remarkably, there is a substantial drop in450

classification accuracy in their final layers while the451

corresponding decrease is much less pronounced452

in tonal language models.453

We repeat the tone classification experiment for454

Vietnamese tones. Results in Figure 3 show the455

Cantonese model performs slightly better than the456

Figure 2: Classification accuracy of Mandarin lexical
tones using layer-wise representations from models pre-
trained on tonal and non-tonal languages.

Figure 3: Classification accuracy of Vietnamese lexi-
cal tones with hidden-state activations from models pre-
trained on tonal and non-tonal languages.

English model, especially towards the later layers; 457

the Mandarin model, however, patterns similar to 458

the English model. This is likely due to the fact 459

that Mandarin has fewer tonal contrasts than Viet- 460

namese and Cantonese (cf. Section 2). 461

Studies on human participants show that speak- 462

ers of other tonal languages perform better at iden- 463

tifying Mandarin lexical tones compared to non- 464

tonal language speakers (So and Best, 2010), and 465

the SLMs we tested show the same pattern. Regard- 466

ing Vietnamese tones, the result is more equivocal 467

suggesting that Cantonese tone representations gen- 468

eralize to Vietnamese to some extent, while Man- 469

darin ones do not. 470

5.2 Impact of ASR fine-tuning 471

We examine how fine-tuning for ASR impacts the 472

encoding of tone in SLMs. Since tonal information 473

is crucial for correctly transcribing tonal language 474

input, SLMs fine-tuned for tonal languages are ex- 475
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pected to perform better at our tone classification476

task. Figure 4 compares the tone classification477

accuracy of the English and Mandarin models, pre-478

trained only (left) versus pre-trained and then fine-479

tuned (right); Figure 5 shows the corresponding480

results for English and Vietnamese.481

We find that fine-tuning affects the encoding482

of tone for non-tonal vs tonal language models483

in opposite ways: classification accuracy benefits484

from fine-tuning for Mandarin, but is harmed by485

it for the English model. The same pattern holds486

for English vs Vietnamese on the Vietnamese tone487

data in Figure 5.488

These results likely reflect the fact that ASR489

fine-tuning encourages the SLM to increase its spe-490

cialization in identifying the language-specific in-491

formation needed to output the written form of the492

language. Tonal information may not contribute493

much to this objective in non-tonal languages, and494

thus fine-tuning would tend to remove it. In tonal-495

language ASR however, tone information may be496

crucial to correctly transcribe the input audio, for497

example, when disambiguating Mandarin syllables498

that consist of the same phonemes and only dif-499

fer in tone, in order to output the correct Chinese500

character.501

5.3 Comparison to human perception502

In this section we report the results motivated by503

tone and consonant perception patterns in humans.504

5.3.1 Learning trajectory505

Children have a higher sensitivity to tone than con-506

sonant distinctions early on. For children speak-507

ing a non-tonal language, this sensitivity towards508

tone continues longer than sensitivity towards non-509

native segmental features, i.e. consonants and vow-510

els (Shi et al., 2017; Liu and Kager, 2014).511

Here we aim to determine the corresponding512

learning trajectory in SLMs by testing them during513

pre-training. Figure 6 shows the accuracy of clas-514

sifying Mandarin consonants and tones in the best515

performing layer of SLMs trained on English and516

Mandarin as a function of the number of training517

steps.518

Although we observe classification accuracy of519

the SLMs quickly surpasses the F0 and MFCC520

baselines after 10,000 steps, we do not detect an521

obvious difference in the overall pattern between522

the case of consonants and tones. This suggest523

that SLMs do not follow the same differential tra-524

jectory as children, at least as measured via our525

Figure 4: Classification accuracy of Mandarin lexical
tones using layer-wise representations from models pre-
trained and fine-tuned on Mandarin and English.

Figure 5: Classification accuracy of Vietnamese lexical
tones using layer-wise representations from models pre-
trained and fine-tuned on Vietnamese and English.

methodology. 526

Figure 6: Classification accuracy of Mandarin lexical
tones versus consonants for models pre-trained on En-
glish and Mandarin.

5.3.2 Tone and consonant contrasts 527

Non-native speakers can have difficulty distinguish- 528

ing between T2-T3 and T1-T4 tone pairs in Man- 529

darin (Hao, 2012). We investigate this pattern in 530
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Figure 7: Binary classification accuracy for Mandarin tonal pairs, for English and Mandarin models.

Figure 8: Classification accuracy for Mandarin conso-
nant groups, for English and Mandarin models. The F0
baseline with its much lower classification accuracy is
omitted from this figure for clarity.

pre-trained SLMs via a dedicated probing experi-531

ment, using the final (85,000 steps) checkpoint of532

the pre-trained models in Section 5.3.1. As can be533

seen in Figure 7, tone pairs T1-4 and T2-3 show534

the largest differences in the best classification ac-535

curacy between the Mandarin and English models,536

which roughly matches human perceptual pattern.537

We complement the results on the development538

of tone contrast with a parallel experiment on those539

Mandarin consonant contrasts which are challeng-540

ing for speakers of English. Each member of a con-541

trasting group is perceived as the same phoneme542

by English speakers due to perceptual assimilation543

(Wang and Chen, 2020). Table 4 displays the re-544

sulting mapping to English phoneme categories.545

Figure 8 shows that accuracy for consonant546

groups 2 and 3 match closely for the two mod-547

els. Group 1 shows a discrepancy, possibly due to548

the potential mapping of Mandarin x /C/ into two549

English consonants sh /S/ and z /z/, as hypothesized550

Mandarin English

Group Pinyin IPA Alphabet IPA
1 sh, x ù, C sh S
2 ch, zh, q tùh, tù, tCh ch tS
3 s, z, c s, ts, tsh s s

Table 4: Perceptual mapping of Mandarin consonants
onto English consonants (Wang and Chen, 2020).

by Wang and Chen (2020). 551

6 Conclusion 552

We analyze the tone encoding capabilities of spo- 553

ken language models trained on three tonal and two 554

non-tonal languages, using classifier probes with 555

data from two tonal languages Mandarin and Viet- 556

namese. We find that SLMs trained on either tonal 557

or non-tonal languages encode tonal information 558

to a significant degree. 559

We also find that fine-tuning for the speech 560

recognition task enhances the tone encoding ca- 561

pabilities of models trained on tonal languages but 562

reduces them for models trained on non-tonal lan- 563

guages. While we see evidence suggesting that the 564

learning trajectories of SLMs in pre-training do not 565

follow the same developmental trajectories found 566

in human language acquisition, we find that SLMs 567

show patterns similar to that of human listeners in 568

tone and consonant perception experiments. 569

Here we investigate the encoding of tone, one 570

example of suprasegmentals; encoding of other 571

suprasegmental features such as stress patterns and 572

intonation is important to study in future work. 573
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7 Limitations574

We selected SLMs based on the wav2vec2 architec-575

ture in our experimental design, but we acknowl-576

edge that the training data of the models selected is577

quite varied in their size and quality (noisy vs clean578

speech) as described in Section 4.1. This is par-579

tially due to the scarce availability of (high-quality)580

speech data for underrepresented languages, es-581

pecially the many tonal languages of the world.582

Hence SLMs pre-trained on monolingual datasets583

of these languages are also sparse. The Vietnamese584

wav2vec2 model (Nguyen, 2021) was trained on585

a significantly larger amount of data (13k hours)586

than the other models tested (around 1000 hours).587

It is possible that in addition to the inclusion of588

tonal languages in training, the amount of train-589

ing data also played a role in increasing the tonal590

encoding capabilities of SLMs. However, litera-591

ture has shown that more training data does not592

always have a positive impact on the models per-593

formance if the additional data is noisy (Parcollet594

et al., 2023). At the same time, we note that the595

Cantonese model (Huang and Mak, 2023), in ad-596

dition to being pre-trained on a larger dataset, is597

also different in architecture. Additionally, our use598

of two read speech datasets as test data does not599

fully reflect the linguistic diversity of different ac-600

cents and dialects in Mandarin and Vietnamese.601

Future work needs to go wider and deeper in both602

model architecture and dataset diversity in order603

to uncover more generalizable patterns in different604

languages.605
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