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Abstract

Interpretability research has shown that self-
supervised Spoken Language Models (SLMs)
encode a wide variety of features in human
speech from the acoustic, phonetic, phonolog-
ical, syntactic and semantic levels, to speaker
characteristics. The bulk of prior research on
representations of phonology has focused on
segmental features such as phonemes; the en-
coding of suprasegmental phonology (such as
tone and stress patterns) in SLMs is not yet
well understood. Tone is a suprasegmental fea-
ture that is present in more than half of the
world’s languages. This paper aims to ana-
lyze the tone encoding capabilities of SLMs,
using Mandarin and Vietnamese as case stud-
ies. We show that SLMs encode lexical tone to
a significant degree even when they are trained
on data from non-tonal languages. We further
find that SLMs behave similarly to native and
non-native human participants in tone and con-
sonant perception studies, but they do not fol-
low the same developmental trajectory.

1 Introduction

Explaining the inner workings of self-supervised
models of written and spoken language has been
the focus of much recent work. Transformer-based
(Vaswani et al., 2017) written language models
have been shown to encode many types of linguis-
tic information (Conneau et al., 2018; Hewitt and
Manning, 2019). The analysis of self-supervised
Spoken Language Models (SLMs) is also gaining
traction: architectures such as wav2vec?2 (Baevski
et al., 2020) and HuBERT (Hsu et al., 2021) have
been shown to encode linguistic information at the
phonetic, phonological, syntactic and semantic lev-
els of human speech without labeled data (Abdullah
etal., 2021; Ma et al., 2021; de Seyssel et al., 2022;
Bartelds et al., 2022; Martin et al., 2023; Shen et al.,
2023).

The majority of research on representations of
phonetic and phonological information in SLMs

focuses on the segmental level. Segmental refers
to units of speech that do not spread but remain
localized. Phonemes (e.g. vowels and consonants)
are the smallest abstract units of sound that help
to distinguish one unit from another (e.g. pat vs
bat). Suprasegmental, in contrast, refers to fea-
tures that are not necessarily limited to single units,
but can spread across multiple phonemes or phrases.
Examples include tone, stress patterns, and intona-
tion, which can all entail syllable and phrase level
changes (Singh and Fu, 2016). The representation
of suprasegmental information in SLMs is impor-
tant to study, as it is one of the main distinguish-
ing features of speech compared to text: spoken
utterances use suprasegmental cues to convey in-
formation that is generally not explicitly marked in
a corresponding written sentence. As a first step,
in this work, we focus on lexical tone as a highly
constrained, relatively well-understood example of
a suprasegmental feature.

We firstly examine to what extent SLMs trained
on tonal and non-tonal languages encode tone in-
formation in their internal representations. We find
that SLMs are capable of capturing tonal informa-
tion, regardless of whether they are trained on tonal
or non-tonal languages.

Secondly, we investigate the impact of super-
vised fine-tuning on the automatic speech recogni-
tion (ASR) task. We find that fine-tuning enhances
tone representations for models trained on tonal
languages, but reduces them for models trained on
non-tonal languages.

Thirdly, we investigate whether SLMs exhibit
the same perceptual patterns as native and non-
native human listeners. We find that models show
patterns similar to humans in discrimination of
Mandarin tones and consonants, but find no ev-
idence that they follow a similar developmental
trajectory.



2 Tones

Estimates suggest that more than 60% of the
world’s languages use some degree of tonal con-
trast (Yip, 2002). Our primary focus is on lexical
tone, the process by which lexical items are distin-
guished from one another primarily by pitch cues
(Chen et al., 2022). Non-tonal phonemic units (e.g.
vowels, consonants) can be defined primarily by
non-pitch articulatory cues, such as vowel height,
voicing, and duration. In contrast, tonal units make
use of pitch cues, with FO (fundamental frequency)
contour usually considered to be the primary cue
(Rhee et al., 2021). In ambiguous contexts, other
pitch cues can be used in combination with non-
pitch cues such as amplitude, voice quality (e.g.
breathy vs creaky), and spectral tilt (Rhee et al.,
2021). The Tone Bearing Unit (TBU) varies across
languages, with some bearing it on all morphemes,
whilst others demonstrate TBU only on specific
contrasts or lexical pairs e.g. in Japanese (Jun and
Kubozono, 2020).

We compare SLMs trained on non-tonal lan-
guage as well as three fully lexical tonal languages:
Mandarin, Cantonese and Vietnamese. The models
are tested primarily on Mandarin data. Mandarin
demonstrates full tonality, with tone found on each
morpheme (Hyman, 2018), and has been widely
studied for tone perception as well as acquisition.
Secondarily, we also test on data from another lex-
ical tone language, Vietnamese, to assess if our
results generalize.

Mandarin Chinese is typically described as
containing four (lexical) tones and one neutral tone
that only occurs in unstressed syllables (Wu et al.,
2020). The tones are conventionally assigned the
labels 1-4 (T1-4); Figure 1 illustrates the four Man-
darin tones. The TBU in Mandarin is morphemic;
that is, each morpheme contains one tonal unit.
Since one morpheme (one character) corresponds
to one tone in Mandarin Chinese, we can use the
Pinyin transcription to obtain our tone labels easily
(see Figure 1 for notations); for example:

1 4K K AR &

Jin tian tian qi hén hdo
TI Tl T1 T4T3 T3
‘The weather today is very good.’

The tone label corresponds to the tone of the char-
acter when it is pronounced in isolation (base form).
However, Mandarin features tone sandhi, i.e. the
tone assigned to individual morphemes can change
in pronunciation based on the tone of the adjacent
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Figure 1: FO contours of the four Mandarin tones mea-
sured from pronunciations recorded by one of the co-
authors, a native speaker of Mandarin Chinese. The
four syllables are pronounced in isolation (notation: ma
T1, ma T2, ma T3, ma T4).

morpheme (sandhi form). One instance of tone
sandhi rules in Mandarin is T3 sandhi (Chen, 2000):
if two T3 (‘dipping’) tones occur next to one an-
other, the first will adjust to T2 (‘rising’) to avoid
two consecutive T3 tones, as can be seen in ex-
amples 2 and 3, after Chen (2000). Tone labels
obtained from Pinyin transcriptions only take the
base form into account.

N
xido
@ 13
‘small’
/I 1
xido gbu
3 T3 T3 base form
T2 T3 sandhi form
‘small dog’

The primary pitch cue that distinguishes the indi-
vidual Mandarin tones from each other is FO; how-
ever, secondary pitch cues are also present such as
voice quality and spectral tilt (Belotel-Grenie and
Grenie, 1994; Huang, 2020).

Vietnamese also has obligatory tones on every
syllable, similar to Mandarin’s morphemic TBU
(Kirby, 2011). We adhere to the eight tone system
described by Kirby (2011) in our experiment setup.

Cantonese is a Sinitic language related to Man-
darin, and also features lexical tone, with six tonal
distinctions (Zee, 1991) as opposed to Mandarin’s
four.



3 Related work

The present paper builds both on works interpreting
the inner workings of SLMs and on experiments
on perception of aspects of human speech.

3.1 Analyzing SLMs

The transformer architecture (Vaswani et al., 2017)
has dominated the SLM realm. Researchers have
developed many methods to analyze the inner-
working of these models. Pasad et al. (2021) pro-
vide an overview on the variety of linguistics fea-
turs encoded by self-supervised SLMs. The models
tend to follow an autoencoder-like behavior with
the middle layers showing the strongest encoding
of a variety of linguistic features.

More recently, research has focused on specific
properties of the input audio that is being encoded
by the models. Martin et al. (2023) tested whether
SLMs can distinguish between voiced and voice-
less consonants. Shen et al. (2023) showed that self-
supervised as well as visually-supervised SLMs are
capable of encoding syntactic properties to some
extent. Some prior works in the field have touched
on the encoding of suprasegmental features in SSL
speech models. Bartelds et al. (2022) showed the
hidden state activations of SLMs are capable of
capturing intonational and durational information
on the phrase level, indicating that they can encode
non-segmental information to a significant degree.

Many recent interpretability studies are inspired
by psycholinguistics and child language develop-
ment research. With the rise of probing and other
interpretability methods, researchers replicated ex-
perimental paradigms in psychology and linguistics
to better understand the capabilities of models com-
pared to humans. For example, Wilcox et al. (2023)
tested text language models using psycholinguis-
tic experimental paradigms, showing that they are
capable of learning syntactic dependencies with
relatively little input data.

On the speech side, Lavechin et al. (2023)
presented evidence that self-supervised SLMs
can develop limited language-specific perception.
Cruz Blandén et al. (2023) proposed comparing
model behavior using checkpoints in the SLM pre-
training process with data in child language de-
velopment. They showed that computational lan-
guage models can be a valuable resource in testing
or confirming linguistic theories in the language
development field. The methodology mostly con-
cerns of the overall learning of the language model

in the output stage. Our work contributes to the
explanation of the inner workings of SLMs.

3.2 Human perception experiments

In terms of tone perception, FO is a clear primary
cue (Ryant et al., 2014b; Rhee et al., 2021; Chen
et al., 2022), but other secondary pitch cues serve to
assist when speech is ambiguous and/or disrupted.
Given that conversational speech contains non-
trivial speech recognition difficulties such as e.g.
tone sandhi and coarticulation, individual variation,
and context omission (Ryant et al., 2014b), sec-
ondary cues play a role in the distinction of tones.
An example of this is voice quality, where for ex-
ample lowering FO (introducing ‘creaky’ voice)
increased perceptual saliency for T3, whereas T1
and T4 accuracy decreased and T2 remained un-
affected (Huang, 2020; Chai, 2019; Kuang, 2017).
This emphasises the fact that FO does not operate
in isolation, but that covariation between pitch and
voice quality is inherent in Mandarin. Spectral cues
(e.g. amplitude differences, spectral tilt) have also
been suggested to be sufficient for adult speakers in
tone production, while children are thought to hy-
perarticulate the tonal differences in speech (Rhee
et al., 2021).

Suprasegmental cues appear to be preferred in
experiments that compare segmental and supraseg-
mental cues against each other. Human infants are
more sensitive to suprasegmental cues, with even
newborns showing the same preference (Mehler
et al., 1988; Nazzi et al., 1998). Several studies ob-
serve that tonal sensitivity develops earlier than per-
ception of vowels and consonants (Xi et al., 2009;
Yeung et al., 2013), with sensitivity to non-native
tonal distinctions remaining longer than perception
of non-tonal non-native phoneme categories (Liu
and Kager, 2014; Shi et al., 2017).

Comparing vowels, consonants and tones, Singh
et al. (2015) show that Mandarin learning children’s
sensitivity to consonants and vowels develop at a
similar rate and shows departure from tones. The
effect of tone mispronunciation is much larger than
that of vowel or consonant mispronunciation for
toddlers, but the pattern is reversed in preschoolers
(Singh et al., 2015).

3.3 Automatic classification of tones

Automatic tone classification in Mandarin tradition-
ally uses FO contour and mel-frequency cepstral
coefficients (MFCC) features. Advances in deep
learning brought improvements in performance of



tone classification. Ryant et al. (2014a) compare
MEFECC features and FO contour as input to a neural
tone classifier. MFCC features, while not explicitly
encoding the FO contour information, achieve an er-
ror rate of 15.56% for Tone 1-4 classification. The
combination of MFCC features and FO contours
extracted with different methods did not see an im-
provement in the classifier’s performance, indicat-
ing that the classifier was able to extract FO contour
from the MFCC features, or it was able to predict
Mandarin tones reliably without FO contour infor-
mation. However, it is possible that the classifier
was able to exploit associations between specific
phonemes strings and tone labels, and hence avoid
learning to detect tone based on pitch and voice
quality cues.

After the introduction of self-supervised SLMs,
Yuan et al. (2021) fine-tuned an English pre-trained
wav2vec2 model (Baevski et al., 2020) for Man-
darin tone classification and achieved a tone error
rate of 6% on the same dataset as (Ryant et al.,
2014a). Clearly, SLMs can handle the task of clas-
sifying Mandarin lexical tone with labeled fine-
tuning. The aim of the present paper is not to
compete with the existing implementations of Man-
darin tone classifiers; rather we aim to uncover the
tone encoding capabilities emerged without explicit
supervision.

4 Methodology

We use a number of wav2vec2-based (Baevski
et al., 2020) models pre-trained and fine-tuned on
datasets of different languages for our investigation.
As examples of tonal languages, we choose Man-
darin, Vietnamese and Cantonese, whereas English
and French serve as non-tonal language examples.
The models trained in the languages above are then
tested on test data from Mandarin and Vietnamese.

To examine the encoding of tone, we train linear
probing classifiers on the hidden state activations
extracted from the aforementioned models for ev-
ery morpheme in our testing datasets.

4.1 Datasets

Training data. We examine SLMs that were
trained on datasets of the following languages:
Mandarin pre-trained with AISHELL-2 (Du
et al., 2018) and fine-tuned with AISHELL-1 (Bu
et al., 2017). English pre-trained and fine-tuned
with LibriSpeech (Panayotov et al., 2015). Viet-
namese pre-trained with unlabelled YouTube au-

dio and fine-tuned with the VLSP dataset for ASR
(Nguyen, 2021). Cantonese pre-trained on a com-
bined dataset of older Cantonese adult speech and
YouTube audio (Huang and Mak, 2023). French
pre-trained on MLS French (Pratap et al., 2020).
Table 1 summarizes the characteristics of these
datasets.

Test data. We primarily use the Mandarin Chi-
nese THCHS-30 dataset (Wang and Zhang, 2015)
for testing models’ encoding of Mandarin tone.
THCHS-30 consists of 30 hours of Mandarin
speech recorded in a laboratory environment. The
dataset is transcribed into both Chinese characters
and Mandarin Pinyin. We also obtain character-
level forced alignment with the Charsiu aligner
(Zhu et al., 2022).

To test the generalizability of our results, we also
use the Vietnamese VIVOS dataset (Luong and Vu,
2016), which consists of 15 hours of Vietnamese
read speech recorded in a laboratory environment.
The dataset is transcribed into Vietnamese orthog-
raphy. We then convert the transcription into Inter-
national Phonetic Alphabet (IPA) with tone labels
with vPhon (Kirby, 2008). We use the Montreal
Forced Aligner (McAuliffe et al., 2017) to obtain a
syllable-level forced alignment.

Pre-training data. For the experiments on
SLM’s learning trajectory and perceptual patterns
(see Section 5.3), we pre-train SLMs from scratch
on the following datasets:

* MAGICDATA (Magic Data Technology Co.,
2019), containing 755 hours of read Mandarin
Chinese. The dataset was pre-split into a 712-
hour training set and a 28-hour validation set.

* LibriSpeech (Panayotov et al., 2015), see de-
tails in Table 1. We split a subset of the Lib-
riSpeech dataset into a 710-hour training set
and a 29-hour validation set.

4.2 Spoken Language Models

Architecture. With the exception of the Can-
tonese model, all models investigated in this paper
are based on the base configuration of wav2vec2
(Baevski et al., 2020). Wav2vec2-base consists of
five convolutional feature encoder and twelve trans-
former layers. The feature encoder processes the
audio waveform input into latent speech representa-
tions, and the transformer layers encode the feature
encoder output into contexual representations. The
wav2vec2-base models has 95M parameters. The



Size (hours)

Training language Tonality Pre-training  Fine-tuning Speech type
English (Baevski et al., 2020) Non-tonal 960 960 Read

French (Parcollet et al., 2023) Non-tonal 1,000 - Read
Mandarin (Lu and Chen, 2022) Tonal 1,000 178 Read
Vietnamese (Nguyen, 2021) Tonal 13,000 250 YouTube audio/Read
Cantonese (Huang and Mak, 2023) Tonal 2,800 - Spotaneous + Read

Table 1: Description of the datasets used in pre-training/fine-tuning models.

Cantonese model uses the wav2vec2-conformer
architecture with 180M parameters.

Training objectives. The fully self-supervised
pre-training objective in wav2vec2 consists in dis-
criminating between the matched and unmatched
segment representations for a masked portion of the
latent speech representation. The ASR fine-tuning
objective consists in transcribing the audio input
into output tokens in the orthography of the target
language and is realized by adding a linear layer
on top of a pre-trained wav2vec2 model.

Checkpoints. For the experiments in Section 5.3
we pre-train two SLMs with the fairseq toolkit (Ott
et al., 2019) on LibriSpeech for English and MAG-
ICDATA for Mandarin; we train both models for
85,000 steps using 8 Nvidia A100-40GB GPU with
update frequency = 8 to simulate training with 64
GPUs. Each model finished training in approxi-
mately 96 hours. We save checkpoints every 5,000
steps.

4.3 Probing classifiers

Preprocessing. We follow previous work (Ryant
et al., 2014a) in removing segments transcribed
with the neutral tone from the Mandarin tone clas-
sification task. Mandarin neutral tones primarily
appear in unstressed syllables (cf. Section 2) and
hence are more susceptible to variations.

Generating classifier input. We extract the hid-
den state activations of models as a response to
audio samples in the test data. We average-pool
the hidden state output corresponding to the dura-
tion of individual syllables to obtain a vector using
forced alignment timestamps. The resulting 768-
dimensional vectors are input to the classifiers. To
control for the influence of lexical cues on tone
detection, we construct an exclusive train-test-split
such that phoneme strings appearing in the test
set do not appear in the training set. This setup

Language Split ~ Samples
Mandarin Train 223,851
Mandarin Test 45,772
Vietnamese Train 124,248
Vietnamese Test 29,629

Table 2: Train/test splits for the tone probing classifier,
for the Mandarin and Vietnamese data.

prevents the probing classifier from exploiting as-
sociations between tones and phoneme sequences.
We employ a randomized 80:20 train-test split with
the split sizes shown in Table 2.

FO0 and MFCC baselines. We closely follow
Ryant et al. (2014a) and use FO contours and 40-
dimensional mel-frequency cepstral coefficients
(MFCC) features as baselines. We use Librosa
(McFee et al., 2023) to extract the MFCC fea-
tures and Praat (Jadoul et al., 2018; Boersma and
Weenink, 2021) to extract the FO contours from
the audio samples. We then find the center frame
for each word using the alignment timestamps and
concatenate all frames in a 21 frame window (10-
1-10) for both FO and MFCC features. We end up
with a 21-dimensional vector for FO contours and
840-dimensional vector for MFCC features as our
baseline classifier inputs.

Text baseline. In addition to audio baselines, we
also include a text-based transformer model in our
comparison. BERT (Devlin et al., 2019) serves as
a reference point to show how much information
is encoded in the speech signal as opposed to what
can be guessed from pure text. We use a Chinese
pre-trained BERT' that encodes Chinese charac-
ters into vectors. We extract per-word hidden state
outputs with a resulting 768-dimensional vector.

"https://huggingface.co/bert-base-chinese
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Split  Samples
Train 92,413
Test 15,688

Table 3: Train/test split for the consonant probing clas-
sifier, for the Mandarin data.

Tone classifiers. We use the syllable activation
vectors as input to a Ridge linear classifier that
predicts the lexical tone of the input morpheme. We
select the final model via 5-fold cross-validation,
and report the classification accuracy on the test
split. The regularization strength o was tuned for
values {10" | n € {—4,—-3,-2,-1,0,1,2}}.

Consonant classifiers. When comparing tone to
consonant classification, we employ the same clas-
sifier setup for consonant and replicate the percep-
tion experiment in Wang and Chen (2020) in Sec-
tion 5.3.1. Since we only investigate consonants
that appear solely in the onset position and the rest
of the phonemes are not relevant to our task, we
use the same syllable vectors as above instead of
obtaining a phoneme vector with using phoneme
level alignment. We construct exclusive train-test-
splits that contain unique rhymes (nucleus + coda)
of the syllables. Specific details of the train/test
split for this experiment can be found in Table 3.

5 Results

In this section, we present a series of experiments
for analyzing the encoding of tone in SLMs.

5.1 Tone encoding across languages

Figure 2 shows the tone classification accuracy us-
ing the layer-wise representations of all models
pre-trained on non-tonal (left) versus tonal (panel)
languages. We see that all layers of all models
perform better than the FO and MFCC baselines,
which themselves outperform the text-based BERT
baseline. The classification accuracy for tonal lan-
guage models is overall higher, and increases in the
higher layers of the models. Models trained on non-
tonal languages also show substantial encoding of
tone; but remarkably, there is a substantial drop in
classification accuracy in their final layers while the
corresponding decrease is much less pronounced
in tonal language models.

We repeat the tone classification experiment for
Vietnamese tones. Results in Figure 3 show the
Cantonese model performs slightly better than the
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Figure 2: Classification accuracy of Mandarin lexical
tones using layer-wise representations from models pre-
trained on tonal and non-tonal languages.
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Figure 3: Classification accuracy of Vietnamese lexi-
cal tones with hidden-state activations from models pre-
trained on tonal and non-tonal languages.

English model, especially towards the later layers;
the Mandarin model, however, patterns similar to
the English model. This is likely due to the fact
that Mandarin has fewer tonal contrasts than Viet-
namese and Cantonese (cf. Section 2).

Studies on human participants show that speak-
ers of other tonal languages perform better at iden-
tifying Mandarin lexical tones compared to non-
tonal language speakers (So and Best, 2010), and
the SLMs we tested show the same pattern. Regard-
ing Vietnamese tones, the result is more equivocal
suggesting that Cantonese tone representations gen-
eralize to Vietnamese to some extent, while Man-
darin ones do not.

5.2 Impact of ASR fine-tuning

We examine how fine-tuning for ASR impacts the
encoding of tone in SLMs. Since tonal information
is crucial for correctly transcribing tonal language
input, SLMs fine-tuned for tonal languages are ex-



pected to perform better at our tone classification
task. Figure 4 compares the tone classification
accuracy of the English and Mandarin models, pre-
trained only (left) versus pre-trained and then fine-
tuned (right); Figure 5 shows the corresponding
results for English and Vietnamese.

We find that fine-tuning affects the encoding
of tone for non-tonal vs tonal language models
in opposite ways: classification accuracy benefits
from fine-tuning for Mandarin, but is harmed by
it for the English model. The same pattern holds
for English vs Vietnamese on the Vietnamese tone
data in Figure 5.

These results likely reflect the fact that ASR
fine-tuning encourages the SLM to increase its spe-
cialization in identifying the language-specific in-
formation needed to output the written form of the
language. Tonal information may not contribute
much to this objective in non-tonal languages, and
thus fine-tuning would tend to remove it. In tonal-
language ASR however, tone information may be
crucial to correctly transcribe the input audio, for
example, when disambiguating Mandarin syllables
that consist of the same phonemes and only dif-
fer in tone, in order to output the correct Chinese
character.

5.3 Comparison to human perception

In this section we report the results motivated by
tone and consonant perception patterns in humans.

5.3.1 Learning trajectory

Children have a higher sensitivity to tone than con-
sonant distinctions early on. For children speak-
ing a non-tonal language, this sensitivity towards
tone continues longer than sensitivity towards non-
native segmental features, i.e. consonants and vow-
els (Shi et al., 2017; Liu and Kager, 2014).

Here we aim to determine the corresponding
learning trajectory in SLMs by testing them during
pre-training. Figure 6 shows the accuracy of clas-
sifying Mandarin consonants and tones in the best
performing layer of SLMs trained on English and
Mandarin as a function of the number of training
steps.

Although we observe classification accuracy of
the SLMs quickly surpasses the FO and MFCC
baselines after 10,000 steps, we do not detect an
obvious difference in the overall pattern between
the case of consonants and tones. This suggest
that SLMs do not follow the same differential tra-
jectory as children, at least as measured via our
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Figure 4: Classification accuracy of Mandarin lexical
tones using layer-wise representations from models pre-
trained and fine-tuned on Mandarin and English.
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Figure 6: Classification accuracy of Mandarin lexical
tones versus consonants for models pre-trained on En-
glish and Mandarin.

5.3.2 Tone and consonant contrasts

Non-native speakers can have difficulty distinguish-
ing between T2-T3 and T1-T4 tone pairs in Man-
darin (Hao, 2012). We investigate this pattern in
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Figure 7: Binary classification accuracy for Mandarin tonal pairs, for English and Mandarin models.
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Figure 8: Classification accuracy for Mandarin conso-
nant groups, for English and Mandarin models. The FO
baseline with its much lower classification accuracy is
omitted from this figure for clarity.

pre-trained SLMs via a dedicated probing experi-
ment, using the final (85,000 steps) checkpoint of
the pre-trained models in Section 5.3.1. As can be
seen in Figure 7, tone pairs T1-4 and T2-3 show
the largest differences in the best classification ac-
curacy between the Mandarin and English models,
which roughly matches human perceptual pattern.
We complement the results on the development
of tone contrast with a parallel experiment on those
Mandarin consonant contrasts which are challeng-
ing for speakers of English. Each member of a con-
trasting group is perceived as the same phoneme
by English speakers due to perceptual assimilation
(Wang and Chen, 2020). Table 4 displays the re-
sulting mapping to English phoneme categories.
Figure 8 shows that accuracy for consonant
groups 2 and 3 match closely for the two mod-
els. Group 1 shows a discrepancy, possibly due to
the potential mapping of Mandarin x /¢/ into two
English consonants sh /[/ and z /z/, as hypothesized

Mandarin English
Group | Pinyin 1IPA Alphabet IPA
1 sh, x S, € sh I
2 ch,zh,q ts", ts, te" ch tf
3 S, Z, C s, ts, tsh S S

Table 4: Perceptual mapping of Mandarin consonants
onto English consonants (Wang and Chen, 2020).

by Wang and Chen (2020).

6 Conclusion

We analyze the tone encoding capabilities of spo-
ken language models trained on three tonal and two
non-tonal languages, using classifier probes with
data from two tonal languages Mandarin and Viet-
namese. We find that SLMs trained on either tonal
or non-tonal languages encode tonal information
to a significant degree.

We also find that fine-tuning for the speech
recognition task enhances the tone encoding ca-
pabilities of models trained on tonal languages but
reduces them for models trained on non-tonal lan-
guages. While we see evidence suggesting that the
learning trajectories of SLMs in pre-training do not
follow the same developmental trajectories found
in human language acquisition, we find that SLMs
show patterns similar to that of human listeners in
tone and consonant perception experiments.

Here we investigate the encoding of tone, one
example of suprasegmentals; encoding of other
suprasegmental features such as stress patterns and
intonation is important to study in future work.



7 Limitations

We selected SLMs based on the wav2vec?2 architec-
ture in our experimental design, but we acknowl-
edge that the training data of the models selected is
quite varied in their size and quality (noisy vs clean
speech) as described in Section 4.1. This is par-
tially due to the scarce availability of (high-quality)
speech data for underrepresented languages, es-
pecially the many tonal languages of the world.
Hence SLMs pre-trained on monolingual datasets
of these languages are also sparse. The Vietnamese
wav2vec2 model (Nguyen, 2021) was trained on
a significantly larger amount of data (13k hours)
than the other models tested (around 1000 hours).
It is possible that in addition to the inclusion of
tonal languages in training, the amount of train-
ing data also played a role in increasing the tonal
encoding capabilities of SLMs. However, litera-
ture has shown that more training data does not
always have a positive impact on the models per-
formance if the additional data is noisy (Parcollet
et al., 2023). At the same time, we note that the
Cantonese model (Huang and Mak, 2023), in ad-
dition to being pre-trained on a larger dataset, is
also different in architecture. Additionally, our use
of two read speech datasets as test data does not
fully reflect the linguistic diversity of different ac-
cents and dialects in Mandarin and Vietnamese.
Future work needs to go wider and deeper in both
model architecture and dataset diversity in order
to uncover more generalizable patterns in different
languages.
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