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Abstract

Neural topic models (NTMs) have become
an increasingly important component of topic
modeling due to their flexibility and extensi-
bility, which have facilitated various advance-
ments, including the incorporation of self-
supervised learning. Self-supervised NTMs
construct contrastive samples either in the doc-
ument representation space or the topic repre-
sentation space, aiming to optimize the rela-
tionship between anchor and contrastive sam-
ples. However, previous approaches often rely
on tf-idf-based augmentation strategies, which
produce contrastive samples with limited infor-
mativeness, constraining their effectiveness in
enhancing topic quality. To address this limi-
tation, we propose an extension of the prede-
cessor model into an adversarial framework,
where positive samples are dynamically gen-
erated in the embedding space by a trainable
augmentation model. Our approach further in-
tegrates contextualized word embeddings ex-
tracted from large language models (LLMs),
enhancing the semantic richness of the gener-
ated samples. Extensive experiments demon-
strate that our model consistently outperforms
existing methods in terms of topic coherence,
validating the effectiveness of adversarial learn-
ing for self-supervised NTMs.

1 Introduction

Topic modeling statistically leverages word co-
occurrence patterns in each document to extract la-
tent structural information called topics from large
text corpora. The topics can be used for various
downstream applications such as text classifica-
tion, clustering, regression, information retrieval,
and recommendation systems (Mcauliffe and Blei,
2007; Zhao et al., 2021; Wei and Croft, 2006;
Wang and Blei, 2011). Latent Dirichlet allocation
(LDA) (Blei et al., 2003) is the most representative
conventional topic model. With the development of
deep learning and advances in hardware like GPUs,

neural topic models (NTMs) built on variational
autoencoder (VAE) (Welling and Kingma, 2014)
framework have become an increasingly important
part of topic modeling. The greater flexibility and
extensibility of NTMs have led to various exten-
sions, including those that integrate self-supervised
learning. These models construct contrastive sam-
ples to learn better topic representations, ultimately
improving topic quality (Nguyen and Luu, 2021;
Wu et al., 2022; Han et al., 2023).

Self-supervised NTMs have employed var-
ious strategies to build contrastive samples.
CLNTM (Nguyen and Luu, 2021) generates con-
trastive bag-of-words (BoW) samples by modify-
ing the values of unimportant and salient words,
identified based on their words’ term frequency-
inverse document frequency (tf-idf) values. Specifi-
cally, positive samples are constructed by replacing
the values of unimportant words with their coun-
terparts in the reconstructed BoW representation,
while negative samples are created by replacing
the values of salient words with their reconstructed
conuterparts. VICNTM (Xu et al., 2025) adopts the
same strategy to create only positive samples and
employing Variance-Invariance-Covariance (VIC)
regularization (Bardes et al., 2022) to act as im-
plicit negative samples. However, this tf-idf-based
strategy faces the problem that the positive samples
become closer to the anchor samples as training
progresses, providing limited guidance to the train-
ing process.

Adversarial data augmentation, widely used in
computer vision to improve model generalization,
generates informative positive samples. These
methods typically use augmentation models to cre-
ate samples that maximize task loss for the target
classification model while applying constraints to
prevent collapse (Zhang et al., 2020; Tang et al.,
2020; Suzuki, 2022). TeachAugment (Suzuki,
2022), on the other hand, introduces a teacher
model to guide the augmentation process. Un-



like previous approaches, TeachAugment requires
no prior knowledge or additional hyperparameters.
This framework ensures that the generated positive
samples remain challenging for the target model
while still being recognizable by the teacher model.
Furthermore, it can be applied to unsupervised
models.

For text data augmentation, representation-level
augmentation methods, which generate adversar-
ial samples by adding adversarial perturbations to
anchor samples in the embedding space, are com-
monly employed in adversarial frameworks (Miy-
ato et al., 2017; Zhu et al., 2020). However, the
noise derived from gradients used to minimize the
model objective often lacks interpretability and
flexibility. To address these issues, Chen et al.
(2023) proposed an adversarial framework for train-
ing text classification models in low-resource sce-
narios. In this framework, hard positive samples
are generated by weighted mixing embeddings of
important words with unknown-word embeddings,
thereby improving model robustness.

In this paper, we propose VICNTMxACE,
an extension of VICNTM incorporating an
Adversarial framework and Contextualized
Embeddings, as illustrated in Fig. 1. Our motiva-
tion is to enhance the performance of VICNTM by
optimizing the generation of positive samples. To
achieve this, we apply the adversarial framework
proposed by Suzuki (2022) to the self-supervised
NTM, utlizing the representation-level augmen-
tation strategy inspired by Chen et al. (2023) as
the augmentation model within this adversarial
framework. Since we aim to augment the anchor
samples in the embedding space, we replace
BoW representations used in VICNTM with word
embeddings. Drawing inspiration from Xu et al.
(2023), we represent each input as word embed-
dings encoded by BERT (Devlin et al., 2019),
which are then compressed by a CNN encoder.
Experimental results on three widely used datasets
demonstrate that our model outperforms baseline
and state-of-the-art VAE-based models in terms of
topic coherence, quantitatively. Additionally, we
conducted an ablation study to further verify the
effectiveness of each newly added component. Our
contributions are summarized as follows:

1. We introduce VICNTMXxACE, an enhanced
version of VICNTM that incorporates a con-
venient adversarial framework to optimize the
generation of positive samples, thereby boost-

ing model performance. To the best of our
knowledge, this is the first study to explore
self-supervised NTMs in an adversarial set-
ting.

2. Unlike traditional BoW-based augmentation
methods, we introduce a word embedding
space augmentation strategy that generates
positive samples in the embedding space. This
strategy aligns with the adversarial frame-
work’s requirement for trainable and informa-
tive hard positive samples.

3. We also introduce a CNN encoder to compress
the word embeddings of each document into
a unified document representation, enabling
effective input for the NTM.

4. Extensive experiments demonstrate that our
approach surpasses the state-of-the-art VAE-
based NTMs in terms of topic coherence, fur-
ther validated by both standard metrics and
LLM-based evaluations.

2 Related works

Research on NTMs has become an integral part
of topic modeling. ProdLDA (Srivastava and
Sutton, 2017) was the first NTM to implement
topic modeling using the VAE framework, with
a logistic normal prior approximating the Dirich-
let prior. By incorporating the log-frequency of
words and refining implementation details from
ProdLDA, SCHOLAR (Card et al., 2018), a general
NTM capable of incorporating external informa-
tion, achieved significantly improved topic quality
compared to its predecessor.

Meanwhile, NTMs based on adversarial frame-
works have been explored using generative adver-
sarial networks (Goodfellow et al., 2014), where a
generator creates negative samples and a discrimi-
nator distinguishes them from true samples (Wang
et al.,, 2019, 2020; Hu et al.,, 2020). How-
ever, Nguyen and Luu (2021) showed that represen-
tation learning benefits more from the mutual infor-
mation between positive and anchor samples than
from negative samples. Building on SCHOLAR,
they proposed CLNTM, which leverages both posi-
tive and negative samples generated based on the tf-
idf values of anchor samples. Avoiding the limita-
tions of negative samples, Xu et al. (2025) adopted
the same augmentation strategy to generate only
positive samples and introduced regularizations
between positive and anchor samples, as well as



XR?con \

»@4—

Augmentation |Anchor EMB w,-| |UNK EMB|
Model Decoder —
Concat T
X MLP
pr— LLM |[Anchor]| concat CNN Encoder s g sigmoid
Encoder ) EMBs Encoder £ Rogularization +
l 7 Y, SPIED

Teacher
Model

|
N

Figure 1: Illustration of our model. The left part of the figure depicts the structure of the model, with red (solid)
lines representing the flow of anchor samples and yellow (dashed) lines indicating the flow of positive samples. The
right part of the figure illustrates the structure of the augmentation model in detail.

among samples within each group. Contrastive
learning has also been utilized in other NTMs to
improve topic quality in various ways (Wu et al.,
2022; Han et al., 2023).

Unlike the adversarial topic models, our model
consists of a trainable augmentation model, a self-
supervised NTM as the target model, and a teacher
model. These components will be described in
detail in the next section.

3 Methodology

In this paper, we propose VICNTMxACE, an ex-
tension of the regularized self-supervised NTM,
VICNTM (Xu et al., 2025), using an adversarial
framework. Fig. 1 illustrates the model structure.
For each minibatch of documents X, where each
document consists of a sequence of tokens, an-
chor samples X are obtained with each sample rep-
resented as word embeddings {wq, w1, -+, Wy}
via the LLM encoder, with n being the maximum
number of tokens it can process. Positive sam-
ples X' = ag(X) are generated through the aug-
mentation model oy (-), parameterized by ¢. The
anchor and positive word embeddings are com-
pressed and concatenated into a single embedding,
denoted as X, = ¢(X) and X, = g(X'), re-
spectively, which are then fed into the target model
(VICNTM), consisting of an encoder and decoder
parameterized by 8 = {6@enc, Odec }- VIC regular-
ization (Bardes et al., 2022) is applied to the topic
distributions Z and Z’ inferred by the encoder
0. Finally, the BoW representations Xiecon re-
constructed by the decoder Q4. are used to com-
pute the reconstruction error against the anchor
BoW representations Xgow. This model aims to

generate hard positive samples that provide richer
information to better guide the training process
of the NTM, thereby improve topic quality. The
remainder of this section presents the adversarial
framework, followed by detailed descriptions of
the target model and the augmentation model. Fi-
nally, we explain how word embeddings of each
samples are fed into the NTM.

Adversarial framework In this paper, we adopt
TeachAugment (Suzuki, 2022) as the adversarial
framework, which consists of three components: an
augmentation model for generating positive sam-
ples from input samples, a target model trained
on these positive samples for image classification,
and a teacher model, implemented as the exponen-
tial moving average (EMA) of the target model.
Originally, TeachAugment generates positive im-
age representations through a trainable augmen-
tation model that applies geometric augmentation
and color augmentation to the input images. The
adversarial framework is trained by alternately op-
timizing the target model to minimize its classifica-
tion loss with a fixed augmentation model and op-
timizing the augmentation model to maximize the
target model’s loss while minimizing the teacher
model’s loss. This alternating optimization ensures
that the generated positive samples remain chal-
lenging for the target model while still being rec-
ognizable by the teacher model. In our work, we
extend this framework to text data augmentation by
introducing a tailored augmentation model. Addi-
tionally, both anchor samples and positive samples
are simultaneously fed into the target and teacher
models.

Augmentation model To generate positive sam-



ples for text classification in an adversarial frame-
work, Chen et al. (2023) proposed Adversarial
Word Dilution, which neutralize strongly positive
words by introducing a dilution network for each
class. This network produces a dilution weight for
each word embedding in a given text sequence, cre-
ating a diluted word embedding through a weighted
combination of the original word embedding and
the embedding for an unknown token ([UNK]) ex-
tracted from the LLM encoder. Inspired by Chen
et al. (2023), we design a noising network to gener-
ate informative positive samples by injecting noise
into anchor samples. Our approach leverages the
unknown token embedding, denoted as eynk, and
applies a multilayer perceptron (MLP) followed by
a sigmoid activation to produce a weight coefficient
~; for each word. This coefficient determines the
retention degree of the original word embedding
in the augmented representation. As illustrated in
Fig. 1, the augmented embedding is computed as:
'w; = w; + (1 — ’}/Z) - eyNk, Where w; repre-
sents the original word embedding and w; is the
generated positive word embedding. This mecha-
nism ensures that the augmented samples remain
semantically relevant while introducing sufficient
perturbations for effective adversarial training.
Target model Our target model is VICNTM, a
self-supervised NTM that integrates VIC regular-
ization into SCHOLAR(Card et al., 2018). VIC-
NTM leverages the same sampling strategy as
CLNTM (Nguyen and Luu, 2021) to generate posi-
tive samples. Originally, the model employed the
previously mentioned tf-idf-based sampling strat-
egy, which were subsequently processed with VIC
regularization to refine the latent topic representa-
tions of both anchor and positive samples. VIC
regularization consists of three components:

* Variance regularization: Ensures diversity
among latent topic representations within
a mini-batch, preventing representation col-
lapse. The variance regularization is defined
as:

d
v(Z) = éZmax(O,T —\/Var(Z7) + ¢),
j=1

where Var(Z7) denotes the variance of the
j-th dimension across the mini-batch.

 Invariance regularization: Minimizes the
difference between the latent topic representa-
tions of anchor samples and their correspond-

ing positive samples. The invariance regular-
ization is defined as:

Z\Izz - 25

s(2,2") =

* Covariance regularization: Minimizes lin-
ear correlations across different topics, en-
hancing topic disentanglement and prevent-
ing redundancy in the learned representations.
The covariance regularization is defined as:

o(Z) = éZi# [C(Z)?,j]’
g s (2= 2)(z - 2) T,

% Z?:l Zi.

Given a minibatch of N documents, the model
optimizes the NTM loss £ntm, which includes a
reconstruction term and a Kullback-Leibler diver-
gence term, alongside the VIC regularization term
Lvicreg(Z, Z"). The complete objective is defined
as follows:

Lo(X,X") = Lntm + Lvicreg(Z, Z")
= (vazl _EQGenC(Zi\CBi) [log Py, (il 2i)]
+ KIL[qem(zi\wi)Hp(zi)])
+ Xs(Z,Z") + p[v(Z) +v(Z"))
+ v[e(Z) + c(Z")], ey

where A, u, and v are the hyperparameters for in-
variance, variance, and covariance terms, respec-
tively.

In this paper, the target model takes continu-
ous representations output from the augmentation
model, replacing the traditional discrete BoW rep-
resentations. To effectively leverage the rich se-
mantic information embedded in word vectors, we
adopt the method proposed by Xu et al. (2023),
which employs a CNN encoder to compress the
sequence of word embeddings in a token-wise
manner. Specifically, a sequency of 512 word
embedding, each with a dimensionality of 1024,
is compressed into a sequency of 4 embeddings
of the same dimension. These compressed em-
beddings are subsequently concatenated to form a
4096-dimensional document representation, which
is then fed into the target model to infer its topic
distribution. The input to the target and the teacher
models are denoted as X . and X /C, respectively, as
aforementioned.



To achieve adversarial learning, our model is
trained by optimizing the following min-max ob-
jective:

. /
mgxmelnEXND [EQ(XC,XC)
- L(XeX)l. O

where the target model (parameterized by 0) and
the augmentation model (parameterized by ¢)
are trained alternately, following the procedure in
TeachAugment. The teacher model, parameterized
by 0, is implemented as the EMA of the target
model, providing stable supervision during adver-
sarial training.

4 [Experiments

4.1 Setup
Dataset # Docs Avg. Length Split (%)
20NG 16469  89:is 48/12/40
IMDb 46304  78us4 50/25/25
Wiki 28590 13201057 70/15/15

Table 1: Dataset details.

We conducted experiments on three widely used
datasets: 20Newsgroups (20NG) (Lang, 1995),
IMDb movie reviews (IMDDb) (Maas et al., 2011),
and Wikitext-103 (Wiki) (Merity et al., 2017) to
evaluate topic coherence of top ten words in each
topic for two different topic settings, K = 50 and
K = 200. The datasets were preprocessed follow-
ing the approach in Xu et al. (2025), with additional
modifications inspired by Card et al. (2018) and Xu
et al. (2023). The detailed statistics of the prepro-
cessed datasets are summarized in Table 1.

We compared our model against several
state-of-the-art VAE-based approaches, includ-
ing ProdLDA (Srivastava and Sutton, 2017),
ECRTM (Wu et al, 2023), TSCTM (Wu
et al.,, 2022), SCHOLAR (Card et al., 2018),
CLNTM (Nguyen and Luu, 2021), and VIC-
NTM (Xu et al., 2025).

For model implementation, we utlized BERT-
large (Devlin et al., 2019) as the LLM encoder and
adopted the CNN encoder from Xu et al. (2023).
Hyperparameters, including batch size, the number
of batches per update for the augmentation model,
and the weights for the VIC regularization terms,
were optimized using Optuna (Akiba et al., 2019).
Each experiment was repeated with ten times with

different random seeds to ensure statistiacal relia-
bility.

We evaluate the quality of the learned topics
using the following metrics:

* Topic coherence: We assessed topic coher-
ence using well-established automated met-
rics, as detailed below.

— NPMI (Lau et al., 2014): We evaluate
the top ten words of each topic internally
(using test data).

— Cy (Roder et al., 2015): We evaluate
each topic externally using a collection
of Wikipedia articles as the reference cor-
pus, employing the Palmetto tool '.

* LLM-based Evaluation Metrics: To evalu-
ate the semantic consistency and interpretabil-
ity of the learned topics, we conducted
LLM-based evaluation using Llama-3.1-8B-
Instruct 2 to perform the two tasks below. The
prompts templates used for each task are de-
tailed in A.

— Intruder detection: Following the ap-
proach in Stammbach et al. (2023), we
prompt the LLM to identify an out-of-
topic word among the top-ranked words
of a topic. Specifically, for each topic,
we select the top five words and intro-
duce one additional word from a differ-
ent topic that does not belong to the cur-
rent topic distribution. The LLM is then
asked to identify the intruder word. This
task is evaluated using detection accu-
racy.

— Rating: Following the approach
in Stammbach et al. (2023), we prompt
the LLM to rate the semantic coherence
of the top ten words in each topic on a
scale of 1 to 3.

* Topic diversity: Addtionally, we assess topic
diversity (TD, Dieng et al. (2020)) to evalu-
ate the breadth of discoverd topics. Detailed
results and analysis are provided in B.

4.2 Results

In this section, we present the experimental results
of our proposed model, VICNTMxACE, across

"https://github.com/dice-group/Palmetto
“https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct



Dataset 20NG IMDb Wiki

K 50 200 50 200 50 200
ProdLDA 0.2347:00083  0.1739:0008  0.1075:00061  0.0735:00020  0.2554:00064  0.1916:0.0037
ECRTM 0.2354w00113  0.1630:00020  0.1048:00075  0.0605:00076  0.3799x0008  0.2457 00038
TSCTM 0.2469:0008a  0.1571:00052  0.1262:00120  0.0787100023  0.4250:00204  0.2075x00103
SCHOLAR 0.3519:00075  0.3122:00015  0.1551x00062  0.1274x0001s  0.5138x00147  0.457 10,0045
CLNTM 0.3530:00063  0.3115:00055  0.1568:00056  0.1255:00017  0.5141:00112  0.4564:0.0052
VICNTM 0.3543:00064  0.3148x000s1  0.1558:00060  0.1272:00026  0.5090x00083  0.4587T+00031
VICNTMXACE 0.3632:00046 0.3452:00055 0.1678x00065 0.1353x0006s 0.5122:00140  0.4555:00047

Table 2: Results on NPMI when K = 50 and K = 200. Boldface indicates the optimal performance in each

experiment.
Dataset 20NG IMDb Wiki
K 50 200 50 200 50 200
ProdLDA 0.383900133  0.3243:00030  0.4211:00007 0.3516200076  0.4717200139  0.40620.0065
ECRTM 0.3629:00206  0.3158:00051  0.3427:00124  0.2608x00185  0.4548:00204  0.3679:00137
TSCTM 0.3237:00192 0.2998x00108  0.3616:00174  0.2815:00046  0.4693:00140  0.3542:00108
SCHOLAR 0.3975:00000  0.3700:00050  0.3975:00000  0.3700:00050  0.5324:00150 0.5126:0.0050
CLNTM 0.3948:00104  0.3688x000e1  0.3813x001020  0.3550x00075  0.5200:00141  0.50520.0100
VICNTM 0.4014:001s  0.3724:000a4  0.3690:00114  0.3541:0006s  0.5238:00216  0.5122:00079
VICNTMXACE 0.4067:00123 0.4024:00108 0.3863:00112  0.3869x00320 0.5241s00101  0.5051:00102

Table 3: Results on Cyy when K = 50 and K = 200. Boldface indicates the optimal performance in each

experiment.
Dataset 20NG IMDb Wiki
K 50 200 50 200 50 200
ProdLDA 0.3140z00550  0.2205:00190  0.3160:00s48  0.2385x00510  0.4060:00822  0.3550:0.0369
ECRTM 0.3340s00451  0.2665:0032  0.2940:00795  0.2360:00206  0.4660:00647  0.3740x0.0347
TSCTM 0.2480:00s28  0.2125:0029  0.2860:0055s  0.2015:00206  0.4900:00886  0.2995:0.0353
SCHOLAR 0.3840:00440  0.3335:00333  0.3800:00525  0.3230:00306  0.6000x00625  0.5540x0.0258
CLNTM 0.3960:00788 0.3395:00316  0.4140:00m18  0.3345:0033  0.6000:00422  0.5705:00244
VICNTM 0.3520:00634  0.3185:0032  0.4000:00516  0.3300:00196  0.5740x00859  0.5565:0.0342
VICNTMXACE 0.3740:00724  0.3795:00144  0.4900:0063¢ 0.5005:00450 0.6040:00832  0.5455:00234

Table 4: Results on intruder detection task when K = 50 and K = 200. Boldface indicates the optimal performance

in each experiment.

Dataset 20NG IMDb Wiki

K 50 200 50 200 50 200
ProdLDA 2.3320s00612  2.1455:00138  2.5760:05610 2.3725:0008  2.6530:0042  2.5315:00315
ECRTM 2.2980:00846  2.1515:00200  2.4100:00002  2.1130s00656  2.6540:00517  2.4090:0.0311
TSCTM 2.2040:00440  2.1145:0001  2.5460:00706  2.1975:00247  2.8040:00556  2.4465:00573
SCHOLAR 2.5440:00617  2.4565:00430  2.6660:00s50  2.5380:00337  2.9080:00424  2.9045:00126
CLNTM 2.5160:007m1  2.4545:00215  2.6680:00500  2.5235:00215  2.9000s00267  2.8965:00042
VICNTM 2.5340:00626  2.4640:00265  2.6780:00476  2.5415:00232  2.8980:00310  2.9000:0.0252
VICNTMXACE 2.5480:00535 2.5360:00460 2.7200:00680 2.6490:00825 2.9060:00200  2.9045:0.0083

Table 5: Results on rating task when K = 50 and K = 200. Boldface indicates the optimal performance in each

experiment.



three datasets. The evaluation is conducted using
both traditional topic coherence metrics (NPMI and
Cy) and LLM-based methods (intruder detection
and topic rating).

Tables 2 and 3 present the results of NPMI and
Cy for the top ten words of each topic. Among the
SCHOLAR-based NTMs (SCHOLAR, CLNTM,
VICNTM, VICNTMxACE), our proposed VICNT-
MxACE consistently achieves the best performance
on 20NG and IMDb for most settings, surpassing
all other baselines. On the Wiki dataset, the slightly
lower performance compared to other SCHOLAR-
based models may due to the average document
length exceeding the 512-token limit (as shown in
Table 1), which may truncate critical information
during encoding. Nonetheless, VICNTMxACE
maintains competitive performance on this dataset.

To further evaluate the semantic consistency and
interpretability of the learned topics, we performed
LLM-based evaluations using intruder detection
and rating tasks, as shown in Tables 4 and 5. Con-
sistent with traditional topic coherence metrics,
SCHOLAR-based models outperformed the base-
lines, with VICNTMxACE achieving the best re-
sults across most of the settings. In the intruder
detection task, our model achieves the highest de-
tection accuracy for most settings, indicating that
the topics generated by VICNTMxACE are more
distinguishable and semantically consistent. For
the rating task, LLM assigned higher ratings to the
top ten words of each topic produced by our model,
suggesting a stronger alignment with semantic co-
herence. Notably, recent studies have demonstrated
that LLM-based evaluations correlate more closely
with human judgement than traditional automated
metrics(Stammbach et al., 2023; Yang et al., 2025).
Hence, the superior performance of VICNTMx-
ACE in these tasks highlights its ability to generate
topics that are not only coherent but also contextu-
ally meaningful.

Overall, VICNTMxACE consistently surpasses
state-of-the-art baselines in both traditional and
LLM-based evaluations, demonstrating the effec-
tiveness of our adversarial learning strategy in im-
proving topic coherence and interpretability.

4.3 Ablation study

To verify the contributions of each newly intro-
duced component, we conducted an ablation study
on the 20NG dataset. The results are summarized
in Table 6. We first evaluate the model without both
the LLM encoder and the CNN encoder, replacing

them with traditional BoW representations (w/o
LLM&CNN). The results show a noticeable drop in
NPM]I, indicating that the introduction of the LLM
encoder and CNN encoder improves topic coher-
ence. Next, we examine the impact of the CNN
encoder by replacing it with an MLP encoder (w/o
CNN). The results indicate that the performance de-
grades, especially when K = 200, highlighting the
importance of local feature extraction provided by
the CNN encoder. This suggests that the local fea-
ture extraction capability of the CNN encoder plays
a crucial role in enhancing model performance. We
also evaluate the effectiveness of the noising net-
work in the augmentation model by replacing it
with a simple MLP mapping f(-), such that the
augmented embedding is computed as w; = f(w;)
(w/o word noising). The results show that the origi-
nal noising network achieves better NPMI, indicat-
ing its role in generating harder positive samples
that improve model performance. Finally, we as-
sess the impact of the TeachAugment framework
by removing the adversarial training mechanism
W/o TeachAugment). We observe that when the
number of topics is optimally set, the adversarial
generation of positive samples through TeachAug-
ment significantly boosts topic coherence. This
validates the effectiveness of our proposed augmen-
tation strategy in refining topic quality.

Overall, the ablation study highlights the impor-
tance of each component in achieving optimal per-
formance. The LLM encoder and CNN encoder en-
hance semantic representation, the noising network
introduces harder positives for robust learning, and
TeachAugment enables effective adversarial aug-
mentation.

5 Conclusion

In this paper, we propose VICNTMxACE, a self-
supervised NTM enhanced with adversarial data
augmentation, building upon VICNTM. To gener-
ate richer and more informative positive samples,
we integrate word embeddings extracted from an
LLM encoder and introduce a trainable augmen-
tation model. To the best of our knowledge, this
is the first application of an adversarial framework
in the context of self-supervised NTMs. Extensive
experiments across multiple datasets demonstrate
that VICNTMxACE consistently outperforms its
predecessor (VICNTM) as well as other state-of-
VAE-based NTMs. Our model achieves significant
improvements in both traditional topic coherence



K 50 200
w/o TeachAugment 0.3528:00083  0.3427+0.0057
w/o word noising 0.3579+00075  0.3385:0.0073
w/o CNN 0.3577+00007  0.334 100040
w/o LLM&CNN 0.3542:0006s  0.3117:0.0052
VICNTMxACE 0.3632:00046  0.3452:00149

Table 6: Ablation study in terms of NPMI on the 20NG dataset.

metrics (NPMI and Cy/) and LLM-based evalua-
tions (intruder detection and rating tasks), validat-
ing its capability to generate semantically coherent
and interpretable topics. The results of the ablation
study further confirm the effectiveness of each com-
ponent, highlighting the contributions of the LLM-
based word embeddings, the CNN encoder, and the
adversarially generated positive samples. These
components collectively enhance the semantic rich-
ness of the learned topics, leading to improved
topic quality. Overall, VICNTMxACE effectively
leverages adversarial learning for data augmenta-
tion, leading to more semantically coherent and
interpretable topic representations.

6 Limitations

The introduction of the LLLM encoder and the CNN
encoder increases overall training time and com-
putational resource requirements. For reference,
training a baseline model such as VICNTM on the
20NG dataset with an NVIDIA A40 GPU (48GB
memory) typically takes around 5 minutes, whereas
our method requires approximately six times longer
due to the additional computational complexity.
Further improving topic coherence requires the
document length being close to or shorter than the
token limitation of the LLM. However, selecting
an LLM with higher capacity would further in-
crease computational costs. While we optimized
several hyperparameters, those related to the CNN
encoder remain unexplored. Furthermore, the pos-
itive examples generated by our model have not
been demonstrated to be more informative than
those generated by previous approaches. This will
need to be explored in future work.
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A Prompt Templates for LLM-based
Evaluation

This section presents the prompt templates used for
the LLM-based evaluation tasks, including intruder
detection and rating tasks. All evaluations were
conducted with Llama-3.1-8B-Instruct.

A.1 Intruder detection prompt

For the intruder detection task, the LLM is
prompted to identify the word that does not be-
long semantically to the group of top topic words.
The following template was used:

System prompt: You are a helpful assis-
tant evaluating the top words of a topic
model output for a given topic. Select
which word is the least related to all
other words. If multiple words do not
fit, choose the word that is most out of
place. Reply with a single word. Do not
provide me explanations.

User prompt: processor, quadra, drink,
motherboard, port, apple

The six words consist of five words of the top
ten words from a single topic and one additional
word sampled from another topic, ensuring it is not
within the top 50 words of the current topic. The
LLM’s response is evaluated based on whether it
correctly identifies the intruder. The final reported
accuracy is averaged across 10 different random
seeds.

A.2 Rating prompt

For the rating task, the LLM is prompted to assess
the semantic coherence of the top ten words in each
topic on a scale of 1 to 3. The following template
was used:

System prompt: You are a helpful assis-
tant evaluating the top words of a topic
model output for a given topic. Please
rate how related the following words are

10

to each other on a scale from 1 to 3 ("1"
= not very related, "2" = moderately re-
lated, "3" = very related). Reply with
a single number, indicating the overall
appropriateness of the topic. Do not pro-
vide me explanations.

User prompt: processor, board, quadra,
simms, monitor, mhz, port, apple, moth-
erboard, centris

The average rating for each model is computed
over topics, and the final reported score is averaged
across 10 different random seeds.

B Topic Diversity

In this section, we present the results of topic diver-
sity across three datasets when when K = 50 and
K = 200, as shown in Table 7. We observed that
our model achieves comparable TD performance to
other SCHOLAR-based NTMs when K = 50, but
experiences a noticeable decline when K = 200.
We identify two primary reasons for this observa-
tion:

* Document truncation by LLM tokenizer:
Although this may not apply universally to all
datasets, the inverted pyramid structure com-
monly found in documents places essential
information at the beginning, while supple-
mentary details tend to be near the end. Due
to the token limit of the LLM encoder, these
less critical but diverse words are often trun-
cated, resulting in reduced topic diversity.

Compression by CNN: The CNN encoder
further compresses document representations
by focusing on local patterns, which, while
enhancing topic coherence, may also discard
less informative words. This effect is ampli-
fied as the number of topics increases, leading
to a narrower range of unique terms and a drop
in TD.

We believe that selecting an optimal number of top-
ics that aligns with the dataset’s intrinsic structure
is crucial for achieving better topic diversity. To
validate this, we conducted an additional evalua-
tion on 20NG with K = 20, which matches its
20 well-defined categories. As shown in Table 8,
our model with K = 20 achieves topic diversity
that is either superior to or comparable with other
state-of-the-art models. Furthermore, our model
consistently outperforms the baselines in terms of



Dataset 20NG IMDb Wiki

K 50 200 50 200 50 200

ProdLDA 0.8858+0006s  0.6892:00100 0.6694:00175 0.5809x001s 0.8364:00142  0.6248:00116

ECRTM 0.8790:00424  0.9544:00050 0.9616:00145  0.9409:01053  0.9806:00073  0.9118=0.0190

TSCTM 0.9302:00314  0.5508:00177  0.9772:00000 0.8570x00185 0.98780005s  0.7871:0.0404

SCHOLAR 0.8874x00218  0.5037:00077 0.8778x00160 0.6895:00076 0.9912:00047  0.8221:0.0124

CLNTM 0.8904:0019  0.5084:00120 0.8592:00302  0.7033:00084  0.9876:00068 0.8223:00119

VICNTM 0.8878x00136  0.4998:00110 0.8712:00230 0.6947:00120 0.9842:00107  0.8242:00168

VICNTMXACE 0.8696:00162  0.2905:00137  0.8180:00650 0.1601:00310 0.9746x00200 0.75220.0231
Table 7: Results on TD when K = 50 and K = 200.

K =20 TD NPMI

ProdLDA 0.9590:00126  0.2628:00131

ECRTM 0.9290+00407  0.3394:0.0301

TSCTM 0.9825:00008  0.3670:00247

SCHOLAR 0.9845:00154  0.3962:00177

CLNTM 0.9825:00106  0.3894:00127

VICNTM 0.9795:00160  0.3944 00100

VICNTMXACE 0.9825:00133 0.3977:00100

Table 8: Results on TD and NPMI when K = 20 on the
20NG dataset.

NPMLI, highlighting its ability to generate more co-
herent and diverse topics. This is in contrast to
the results for K = 50 and K = 200 presented in
Table 7. These findings highlight the importance
of aligning the number of topics with the dataset
characteristics to maximize diversity. Under such
conditions, our model demonstrates strong perfor-
mance in terms of topic diversity while maintaining
topic coherence.
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