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Abstract001

Neural topic models (NTMs) have become002
an increasingly important component of topic003
modeling due to their flexibility and extensi-004
bility, which have facilitated various advance-005
ments, including the incorporation of self-006
supervised learning. Self-supervised NTMs007
construct contrastive samples either in the doc-008
ument representation space or the topic repre-009
sentation space, aiming to optimize the rela-010
tionship between anchor and contrastive sam-011
ples. However, previous approaches often rely012
on tf-idf-based augmentation strategies, which013
produce contrastive samples with limited infor-014
mativeness, constraining their effectiveness in015
enhancing topic quality. To address this limi-016
tation, we propose an extension of the prede-017
cessor model into an adversarial framework,018
where positive samples are dynamically gen-019
erated in the embedding space by a trainable020
augmentation model. Our approach further in-021
tegrates contextualized word embeddings ex-022
tracted from large language models (LLMs),023
enhancing the semantic richness of the gener-024
ated samples. Extensive experiments demon-025
strate that our model consistently outperforms026
existing methods in terms of topic coherence,027
validating the effectiveness of adversarial learn-028
ing for self-supervised NTMs.029

1 Introduction030

Topic modeling statistically leverages word co-031

occurrence patterns in each document to extract la-032

tent structural information called topics from large033

text corpora. The topics can be used for various034

downstream applications such as text classifica-035

tion, clustering, regression, information retrieval,036

and recommendation systems (Mcauliffe and Blei,037

2007; Zhao et al., 2021; Wei and Croft, 2006;038

Wang and Blei, 2011). Latent Dirichlet allocation039

(LDA) (Blei et al., 2003) is the most representative040

conventional topic model. With the development of041

deep learning and advances in hardware like GPUs,042

neural topic models (NTMs) built on variational 043

autoencoder (VAE) (Welling and Kingma, 2014) 044

framework have become an increasingly important 045

part of topic modeling. The greater flexibility and 046

extensibility of NTMs have led to various exten- 047

sions, including those that integrate self-supervised 048

learning. These models construct contrastive sam- 049

ples to learn better topic representations, ultimately 050

improving topic quality (Nguyen and Luu, 2021; 051

Wu et al., 2022; Han et al., 2023). 052

Self-supervised NTMs have employed var- 053

ious strategies to build contrastive samples. 054

CLNTM (Nguyen and Luu, 2021) generates con- 055

trastive bag-of-words (BoW) samples by modify- 056

ing the values of unimportant and salient words, 057

identified based on their words’ term frequency- 058

inverse document frequency (tf-idf) values. Specifi- 059

cally, positive samples are constructed by replacing 060

the values of unimportant words with their coun- 061

terparts in the reconstructed BoW representation, 062

while negative samples are created by replacing 063

the values of salient words with their reconstructed 064

conuterparts. VICNTM (Xu et al., 2025) adopts the 065

same strategy to create only positive samples and 066

employing Variance-Invariance-Covariance (VIC) 067

regularization (Bardes et al., 2022) to act as im- 068

plicit negative samples. However, this tf-idf-based 069

strategy faces the problem that the positive samples 070

become closer to the anchor samples as training 071

progresses, providing limited guidance to the train- 072

ing process. 073

Adversarial data augmentation, widely used in 074

computer vision to improve model generalization, 075

generates informative positive samples. These 076

methods typically use augmentation models to cre- 077

ate samples that maximize task loss for the target 078

classification model while applying constraints to 079

prevent collapse (Zhang et al., 2020; Tang et al., 080

2020; Suzuki, 2022). TeachAugment (Suzuki, 081

2022), on the other hand, introduces a teacher 082

model to guide the augmentation process. Un- 083
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like previous approaches, TeachAugment requires084

no prior knowledge or additional hyperparameters.085

This framework ensures that the generated positive086

samples remain challenging for the target model087

while still being recognizable by the teacher model.088

Furthermore, it can be applied to unsupervised089

models.090

For text data augmentation, representation-level091

augmentation methods, which generate adversar-092

ial samples by adding adversarial perturbations to093

anchor samples in the embedding space, are com-094

monly employed in adversarial frameworks (Miy-095

ato et al., 2017; Zhu et al., 2020). However, the096

noise derived from gradients used to minimize the097

model objective often lacks interpretability and098

flexibility. To address these issues, Chen et al.099

(2023) proposed an adversarial framework for train-100

ing text classification models in low-resource sce-101

narios. In this framework, hard positive samples102

are generated by weighted mixing embeddings of103

important words with unknown-word embeddings,104

thereby improving model robustness.105

In this paper, we propose VICNTMxACE,106

an extension of VICNTM incorporating an107

Adversarial framework and Contextualized108

Embeddings, as illustrated in Fig. 1. Our motiva-109

tion is to enhance the performance of VICNTM by110

optimizing the generation of positive samples. To111

achieve this, we apply the adversarial framework112

proposed by Suzuki (2022) to the self-supervised113

NTM, utlizing the representation-level augmen-114

tation strategy inspired by Chen et al. (2023) as115

the augmentation model within this adversarial116

framework. Since we aim to augment the anchor117

samples in the embedding space, we replace118

BoW representations used in VICNTM with word119

embeddings. Drawing inspiration from Xu et al.120

(2023), we represent each input as word embed-121

dings encoded by BERT (Devlin et al., 2019),122

which are then compressed by a CNN encoder.123

Experimental results on three widely used datasets124

demonstrate that our model outperforms baseline125

and state-of-the-art VAE-based models in terms of126

topic coherence, quantitatively. Additionally, we127

conducted an ablation study to further verify the128

effectiveness of each newly added component. Our129

contributions are summarized as follows:130

1. We introduce VICNTMxACE, an enhanced131

version of VICNTM that incorporates a con-132

venient adversarial framework to optimize the133

generation of positive samples, thereby boost-134

ing model performance. To the best of our 135

knowledge, this is the first study to explore 136

self-supervised NTMs in an adversarial set- 137

ting. 138

2. Unlike traditional BoW-based augmentation 139

methods, we introduce a word embedding 140

space augmentation strategy that generates 141

positive samples in the embedding space. This 142

strategy aligns with the adversarial frame- 143

work’s requirement for trainable and informa- 144

tive hard positive samples. 145

3. We also introduce a CNN encoder to compress 146

the word embeddings of each document into 147

a unified document representation, enabling 148

effective input for the NTM. 149

4. Extensive experiments demonstrate that our 150

approach surpasses the state-of-the-art VAE- 151

based NTMs in terms of topic coherence, fur- 152

ther validated by both standard metrics and 153

LLM-based evaluations. 154

2 Related works 155

Research on NTMs has become an integral part 156

of topic modeling. ProdLDA (Srivastava and 157

Sutton, 2017) was the first NTM to implement 158

topic modeling using the VAE framework, with 159

a logistic normal prior approximating the Dirich- 160

let prior. By incorporating the log-frequency of 161

words and refining implementation details from 162

ProdLDA, SCHOLAR (Card et al., 2018), a general 163

NTM capable of incorporating external informa- 164

tion, achieved significantly improved topic quality 165

compared to its predecessor. 166

Meanwhile, NTMs based on adversarial frame- 167

works have been explored using generative adver- 168

sarial networks (Goodfellow et al., 2014), where a 169

generator creates negative samples and a discrimi- 170

nator distinguishes them from true samples (Wang 171

et al., 2019, 2020; Hu et al., 2020). How- 172

ever, Nguyen and Luu (2021) showed that represen- 173

tation learning benefits more from the mutual infor- 174

mation between positive and anchor samples than 175

from negative samples. Building on SCHOLAR, 176

they proposed CLNTM, which leverages both posi- 177

tive and negative samples generated based on the tf- 178

idf values of anchor samples. Avoiding the limita- 179

tions of negative samples, Xu et al. (2025) adopted 180

the same augmentation strategy to generate only 181

positive samples and introduced regularizations 182

between positive and anchor samples, as well as 183
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Figure 1: Illustration of our model. The left part of the figure depicts the structure of the model, with red (solid)
lines representing the flow of anchor samples and yellow (dashed) lines indicating the flow of positive samples. The
right part of the figure illustrates the structure of the augmentation model in detail.

among samples within each group. Contrastive184

learning has also been utilized in other NTMs to185

improve topic quality in various ways (Wu et al.,186

2022; Han et al., 2023).187

Unlike the adversarial topic models, our model188

consists of a trainable augmentation model, a self-189

supervised NTM as the target model, and a teacher190

model. These components will be described in191

detail in the next section.192

3 Methodology193

In this paper, we propose VICNTMxACE, an ex-194

tension of the regularized self-supervised NTM,195

VICNTM (Xu et al., 2025), using an adversarial196

framework. Fig. 1 illustrates the model structure.197

For each minibatch of documents X , where each198

document consists of a sequence of tokens, an-199

chor samples X are obtained with each sample rep-200

resented as word embeddings {w0,w1, · · · ,wn}201

via the LLM encoder, with n being the maximum202

number of tokens it can process. Positive sam-203

ples X
′
= αϕ(X) are generated through the aug-204

mentation model αϕ(·), parameterized by ϕ. The205

anchor and positive word embeddings are com-206

pressed and concatenated into a single embedding,207

denoted as Xc = g(X) and X
′
c = g(X

′
), re-208

spectively, which are then fed into the target model209

(VICNTM), consisting of an encoder and decoder210

parameterized by θ = {θenc,θdec}. VIC regular-211

ization (Bardes et al., 2022) is applied to the topic212

distributions Z and Z ′ inferred by the encoder213

θenc. Finally, the BoW representations Xrecon re-214

constructed by the decoder θdec are used to com-215

pute the reconstruction error against the anchor216

BoW representations XBoW. This model aims to217

generate hard positive samples that provide richer 218

information to better guide the training process 219

of the NTM, thereby improve topic quality. The 220

remainder of this section presents the adversarial 221

framework, followed by detailed descriptions of 222

the target model and the augmentation model. Fi- 223

nally, we explain how word embeddings of each 224

samples are fed into the NTM. 225

Adversarial framework In this paper, we adopt 226

TeachAugment (Suzuki, 2022) as the adversarial 227

framework, which consists of three components: an 228

augmentation model for generating positive sam- 229

ples from input samples, a target model trained 230

on these positive samples for image classification, 231

and a teacher model, implemented as the exponen- 232

tial moving average (EMA) of the target model. 233

Originally, TeachAugment generates positive im- 234

age representations through a trainable augmen- 235

tation model that applies geometric augmentation 236

and color augmentation to the input images. The 237

adversarial framework is trained by alternately op- 238

timizing the target model to minimize its classifica- 239

tion loss with a fixed augmentation model and op- 240

timizing the augmentation model to maximize the 241

target model’s loss while minimizing the teacher 242

model’s loss. This alternating optimization ensures 243

that the generated positive samples remain chal- 244

lenging for the target model while still being rec- 245

ognizable by the teacher model. In our work, we 246

extend this framework to text data augmentation by 247

introducing a tailored augmentation model. Addi- 248

tionally, both anchor samples and positive samples 249

are simultaneously fed into the target and teacher 250

models. 251

Augmentation model To generate positive sam- 252
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ples for text classification in an adversarial frame-253

work, Chen et al. (2023) proposed Adversarial254

Word Dilution, which neutralize strongly positive255

words by introducing a dilution network for each256

class. This network produces a dilution weight for257

each word embedding in a given text sequence, cre-258

ating a diluted word embedding through a weighted259

combination of the original word embedding and260

the embedding for an unknown token ([UNK]) ex-261

tracted from the LLM encoder. Inspired by Chen262

et al. (2023), we design a noising network to gener-263

ate informative positive samples by injecting noise264

into anchor samples. Our approach leverages the265

unknown token embedding, denoted as eUNK, and266

applies a multilayer perceptron (MLP) followed by267

a sigmoid activation to produce a weight coefficient268

γi for each word. This coefficient determines the269

retention degree of the original word embedding270

in the augmented representation. As illustrated in271

Fig. 1, the augmented embedding is computed as:272

w
′
i = γi ·wi + (1 − γi) · eUNK, where wi repre-273

sents the original word embedding and w
′
i is the274

generated positive word embedding. This mecha-275

nism ensures that the augmented samples remain276

semantically relevant while introducing sufficient277

perturbations for effective adversarial training.278

Target model Our target model is VICNTM, a279

self-supervised NTM that integrates VIC regular-280

ization into SCHOLAR(Card et al., 2018). VIC-281

NTM leverages the same sampling strategy as282

CLNTM (Nguyen and Luu, 2021) to generate posi-283

tive samples. Originally, the model employed the284

previously mentioned tf-idf-based sampling strat-285

egy, which were subsequently processed with VIC286

regularization to refine the latent topic representa-287

tions of both anchor and positive samples. VIC288

regularization consists of three components:289

• Variance regularization: Ensures diversity290

among latent topic representations within291

a mini-batch, preventing representation col-292

lapse. The variance regularization is defined293

as:294

v(Z) =
1

d

d∑
j=1

max(0, τ −
√

Var(Zj) + ϵ),295

where Var(Zj) denotes the variance of the296

j-th dimension across the mini-batch.297

• Invariance regularization: Minimizes the298

difference between the latent topic representa-299

tions of anchor samples and their correspond-300

ing positive samples. The invariance regular- 301

ization is defined as: 302

s(Z,Z′) =
1

n

∑
i=1

∥zi − z′
i∥22. 303

• Covariance regularization: Minimizes lin- 304

ear correlations across different topics, en- 305

hancing topic disentanglement and prevent- 306

ing redundancy in the learned representations. 307

The covariance regularization is defined as: 308

c(Z) = 1
d

∑
i ̸=j [C(Z)2i,j ], 309

C(Z) = 1
n−1

∑n
i=1(z − z̄)(z − z̄)⊤, 310

z̄ = 1
n

∑n
i=1 zi. 311

Given a minibatch of N documents, the model 312

optimizes the NTM loss LNTM, which includes a 313

reconstruction term and a Kullback-Leibler diver- 314

gence term, alongside the VIC regularization term 315

LVICReg(Z,Z′). The complete objective is defined 316

as follows: 317

Lθ(X,X ′) = LNTM + LVICReg(Z,Z′) 318

=
(∑N

i=1−Eqθenc (zi|xi)[log pθdec(xi|zi)] 319

+ KL[qθenc(zi|xi)∥p(zi)]
)

320

+ λs(Z,Z′) + µ[v(Z) + v(Z′)] 321

+ ν[c(Z) + c(Z′)], (1) 322

where λ, µ, and ν are the hyperparameters for in- 323

variance, variance, and covariance terms, respec- 324

tively. 325

In this paper, the target model takes continu- 326

ous representations output from the augmentation 327

model, replacing the traditional discrete BoW rep- 328

resentations. To effectively leverage the rich se- 329

mantic information embedded in word vectors, we 330

adopt the method proposed by Xu et al. (2023), 331

which employs a CNN encoder to compress the 332

sequence of word embeddings in a token-wise 333

manner. Specifically, a sequency of 512 word 334

embedding, each with a dimensionality of 1024, 335

is compressed into a sequency of 4 embeddings 336

of the same dimension. These compressed em- 337

beddings are subsequently concatenated to form a 338

4096-dimensional document representation, which 339

is then fed into the target model to infer its topic 340

distribution. The input to the target and the teacher 341

models are denoted as Xc and X
′
c, respectively, as 342

aforementioned. 343
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To achieve adversarial learning, our model is344

trained by optimizing the following min-max ob-345

jective:346

max
ϕ

min
θ

EX∼D

[
Lθ(Xc,X

′
c)347

− Lθ̂(Xc,X
′
c)
]
, (2)348

where the target model (parameterized by θ) and349

the augmentation model (parameterized by ϕ)350

are trained alternately, following the procedure in351

TeachAugment. The teacher model, parameterized352

by θ̂, is implemented as the EMA of the target353

model, providing stable supervision during adver-354

sarial training.355

4 Experiments356

4.1 Setup357

Dataset # Docs Avg. Length Split (%)
20NG 16469 89±152 48/12/40
IMDb 46304 78±54 50/25/25
Wiki 28590 1320±1057 70/15/15

Table 1: Dataset details.

We conducted experiments on three widely used358

datasets: 20Newsgroups (20NG) (Lang, 1995),359

IMDb movie reviews (IMDb) (Maas et al., 2011),360

and Wikitext-103 (Wiki) (Merity et al., 2017) to361

evaluate topic coherence of top ten words in each362

topic for two different topic settings, K = 50 and363

K = 200. The datasets were preprocessed follow-364

ing the approach in Xu et al. (2025), with additional365

modifications inspired by Card et al. (2018) and Xu366

et al. (2023). The detailed statistics of the prepro-367

cessed datasets are summarized in Table 1.368

We compared our model against several369

state-of-the-art VAE-based approaches, includ-370

ing ProdLDA (Srivastava and Sutton, 2017),371

ECRTM (Wu et al., 2023), TSCTM (Wu372

et al., 2022), SCHOLAR (Card et al., 2018),373

CLNTM (Nguyen and Luu, 2021), and VIC-374

NTM (Xu et al., 2025).375

For model implementation, we utlized BERT-376

large (Devlin et al., 2019) as the LLM encoder and377

adopted the CNN encoder from Xu et al. (2023).378

Hyperparameters, including batch size, the number379

of batches per update for the augmentation model,380

and the weights for the VIC regularization terms,381

were optimized using Optuna (Akiba et al., 2019).382

Each experiment was repeated with ten times with383

different random seeds to ensure statistiacal relia- 384

bility. 385

We evaluate the quality of the learned topics 386

using the following metrics: 387

• Topic coherence: We assessed topic coher- 388

ence using well-established automated met- 389

rics, as detailed below. 390

– NPMI (Lau et al., 2014): We evaluate 391

the top ten words of each topic internally 392

(using test data). 393

– CV (Röder et al., 2015): We evaluate 394

each topic externally using a collection 395

of Wikipedia articles as the reference cor- 396

pus, employing the Palmetto tool 1. 397

• LLM-based Evaluation Metrics: To evalu- 398

ate the semantic consistency and interpretabil- 399

ity of the learned topics, we conducted 400

LLM-based evaluation using Llama-3.1-8B- 401

Instruct 2 to perform the two tasks below. The 402

prompts templates used for each task are de- 403

tailed in A. 404

– Intruder detection: Following the ap- 405

proach in Stammbach et al. (2023), we 406

prompt the LLM to identify an out-of- 407

topic word among the top-ranked words 408

of a topic. Specifically, for each topic, 409

we select the top five words and intro- 410

duce one additional word from a differ- 411

ent topic that does not belong to the cur- 412

rent topic distribution. The LLM is then 413

asked to identify the intruder word. This 414

task is evaluated using detection accu- 415

racy. 416

– Rating: Following the approach 417

in Stammbach et al. (2023), we prompt 418

the LLM to rate the semantic coherence 419

of the top ten words in each topic on a 420

scale of 1 to 3. 421

• Topic diversity: Addtionally, we assess topic 422

diversity (TD, Dieng et al. (2020)) to evalu- 423

ate the breadth of discoverd topics. Detailed 424

results and analysis are provided in B. 425

4.2 Results 426

In this section, we present the experimental results 427

of our proposed model, VICNTMxACE, across 428

1https://github.com/dice-group/Palmetto
2https://huggingface.co/meta-llama/Llama-3.1-8B-

Instruct
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Dataset 20NG IMDb Wiki
K 50 200 50 200 50 200
ProdLDA 0.2347±0.0083 0.1739±0.0028 0.1075±0.0061 0.0735±0.0020 0.2554±0.0064 0.1916±0.0037

ECRTM 0.2354±0.0113 0.1630±0.0029 0.1048±0.0075 0.0605±0.0076 0.3799±0.0078 0.2457±0.0038

TSCTM 0.2469±0.0084 0.1571±0.0052 0.1262±0.0129 0.0787±0.0023 0.4250±0.0204 0.2075±0.0103

SCHOLAR 0.3519±0.0075 0.3122±0.0015 0.1551±0.0062 0.1274±0.0018 0.5138±0.0147 0.4571±0.0045

CLNTM 0.3530±0.0063 0.3115±0.0055 0.1568±0.0056 0.1255±0.0017 0.5141±0.0112 0.4564±0.0052

VICNTM 0.3543±0.0064 0.3148±0.0051 0.1558±0.0069 0.1272±0.0026 0.5090±0.0083 0.4587±0.0031

VICNTMxACE 0.3632±0.0046 0.3452±0.0055 0.1678±0.0065 0.1353±0.0065 0.5122±0.0149 0.4555±0.0047

Table 2: Results on NPMI when K = 50 and K = 200. Boldface indicates the optimal performance in each
experiment.

Dataset 20NG IMDb Wiki
K 50 200 50 200 50 200
ProdLDA 0.3839±0.0138 0.3243±0.0039 0.4211±0.0097 0.3516±0.0076 0.4717±0.0139 0.4062±0.0065

ECRTM 0.3629±0.0206 0.3158±0.0051 0.3427±0.0124 0.2608±0.0185 0.4548±0.0294 0.3679±0.0137

TSCTM 0.3237±0.0192 0.2998±0.0108 0.3616±0.0174 0.2815±0.0046 0.4693±0.0140 0.3542±0.0108

SCHOLAR 0.3975±0.0090 0.3700±0.0059 0.3975±0.0090 0.3700±0.0059 0.5324±0.0189 0.5126±0.0050

CLNTM 0.3948±0.0104 0.3688±0.0041 0.3813±0.0102 0.3550±0.0075 0.5200±0.0141 0.5052±0.0100

VICNTM 0.4014±0.0118 0.3724±0.0044 0.3690±0.0114 0.3541±0.0068 0.5238±0.0216 0.5122±0.0079

VICNTMxACE 0.4067±0.0123 0.4024±0.0108 0.3863±0.0114 0.3869±0.0340 0.5241±0.0191 0.5051±0.0102

Table 3: Results on CV when K = 50 and K = 200. Boldface indicates the optimal performance in each
experiment.

Dataset 20NG IMDb Wiki
K 50 200 50 200 50 200
ProdLDA 0.3140±0.0550 0.2205±0.0199 0.3160±0.0548 0.2385±0.0519 0.4060±0.0822 0.3550±0.0369

ECRTM 0.3340±0.0481 0.2665±0.0362 0.2940±0.0795 0.2360±0.0296 0.4660±0.0647 0.3740±0.0347

TSCTM 0.2480±0.0828 0.2125±0.0279 0.2860±0.0558 0.2015±0.0246 0.4900±0.0886 0.2995±0.0353

SCHOLAR 0.3840±0.0440 0.3335±0.0333 0.3800±0.0525 0.3230±0.0396 0.6000±0.0625 0.5540±0.0258

CLNTM 0.3960±0.0788 0.3395±0.0316 0.4140±0.0718 0.3345±0.0393 0.6000±0.0442 0.5705±0.0244

VICNTM 0.3520±0.0634 0.3185±0.0302 0.4000±0.0516 0.3300±0.0196 0.5740±0.0859 0.5565±0.0342

VICNTMxACE 0.3740±0.0724 0.3795±0.0144 0.4900±0.0634 0.5005±0.0480 0.6040±0.0832 0.5455±0.0234

Table 4: Results on intruder detection task when K = 50 and K = 200. Boldface indicates the optimal performance
in each experiment.

Dataset 20NG IMDb Wiki
K 50 200 50 200 50 200
ProdLDA 2.3320±0.0612 2.1455±0.0134 2.5760±0.610 2.3725±0.0298 2.6530±0.0442 2.5315±0.0315

ECRTM 2.2980±0.0846 2.1515±0.0201 2.4100±0.0492 2.1130±0.0656 2.6540±0.0517 2.4090±0.0311

TSCTM 2.2040±0.0440 2.1145±0.0211 2.5460±0.0706 2.1975±0.0247 2.8040±0.0556 2.4465±0.0573

SCHOLAR 2.5440±0.0617 2.4565±0.0430 2.6660±0.0550 2.5380±0.0337 2.9080±0.0424 2.9045±0.0126

CLNTM 2.5160±0.0711 2.4545±0.0215 2.6680±0.0509 2.5235±0.0215 2.9000±0.0267 2.8965±0.0242

VICNTM 2.5340±0.0626 2.4640±0.0265 2.6780±0.0476 2.5415±0.0232 2.8980±0.0319 2.9000±0.0252

VICNTMxACE 2.5480±0.0535 2.5360±0.0464 2.7200±0.0680 2.6490±0.0825 2.9060±0.0299 2.9045±0.0083

Table 5: Results on rating task when K = 50 and K = 200. Boldface indicates the optimal performance in each
experiment.
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three datasets. The evaluation is conducted using429

both traditional topic coherence metrics (NPMI and430

CV ) and LLM-based methods (intruder detection431

and topic rating).432

Tables 2 and 3 present the results of NPMI and433

CV for the top ten words of each topic. Among the434

SCHOLAR-based NTMs (SCHOLAR, CLNTM,435

VICNTM, VICNTMxACE), our proposed VICNT-436

MxACE consistently achieves the best performance437

on 20NG and IMDb for most settings, surpassing438

all other baselines. On the Wiki dataset, the slightly439

lower performance compared to other SCHOLAR-440

based models may due to the average document441

length exceeding the 512-token limit (as shown in442

Table 1), which may truncate critical information443

during encoding. Nonetheless, VICNTMxACE444

maintains competitive performance on this dataset.445

To further evaluate the semantic consistency and446

interpretability of the learned topics, we performed447

LLM-based evaluations using intruder detection448

and rating tasks, as shown in Tables 4 and 5. Con-449

sistent with traditional topic coherence metrics,450

SCHOLAR-based models outperformed the base-451

lines, with VICNTMxACE achieving the best re-452

sults across most of the settings. In the intruder453

detection task, our model achieves the highest de-454

tection accuracy for most settings, indicating that455

the topics generated by VICNTMxACE are more456

distinguishable and semantically consistent. For457

the rating task, LLM assigned higher ratings to the458

top ten words of each topic produced by our model,459

suggesting a stronger alignment with semantic co-460

herence. Notably, recent studies have demonstrated461

that LLM-based evaluations correlate more closely462

with human judgement than traditional automated463

metrics(Stammbach et al., 2023; Yang et al., 2025).464

Hence, the superior performance of VICNTMx-465

ACE in these tasks highlights its ability to generate466

topics that are not only coherent but also contextu-467

ally meaningful.468

Overall, VICNTMxACE consistently surpasses469

state-of-the-art baselines in both traditional and470

LLM-based evaluations, demonstrating the effec-471

tiveness of our adversarial learning strategy in im-472

proving topic coherence and interpretability.473

4.3 Ablation study474

To verify the contributions of each newly intro-475

duced component, we conducted an ablation study476

on the 20NG dataset. The results are summarized477

in Table 6. We first evaluate the model without both478

the LLM encoder and the CNN encoder, replacing479

them with traditional BoW representations (w/o 480

LLM&CNN). The results show a noticeable drop in 481

NPMI, indicating that the introduction of the LLM 482

encoder and CNN encoder improves topic coher- 483

ence. Next, we examine the impact of the CNN 484

encoder by replacing it with an MLP encoder (w/o 485

CNN). The results indicate that the performance de- 486

grades, especially when K = 200, highlighting the 487

importance of local feature extraction provided by 488

the CNN encoder. This suggests that the local fea- 489

ture extraction capability of the CNN encoder plays 490

a crucial role in enhancing model performance. We 491

also evaluate the effectiveness of the noising net- 492

work in the augmentation model by replacing it 493

with a simple MLP mapping f(·), such that the 494

augmented embedding is computed as w
′
i = f(wi) 495

(w/o word noising). The results show that the origi- 496

nal noising network achieves better NPMI, indicat- 497

ing its role in generating harder positive samples 498

that improve model performance. Finally, we as- 499

sess the impact of the TeachAugment framework 500

by removing the adversarial training mechanism 501

(w/o TeachAugment). We observe that when the 502

number of topics is optimally set, the adversarial 503

generation of positive samples through TeachAug- 504

ment significantly boosts topic coherence. This 505

validates the effectiveness of our proposed augmen- 506

tation strategy in refining topic quality. 507

Overall, the ablation study highlights the impor- 508

tance of each component in achieving optimal per- 509

formance. The LLM encoder and CNN encoder en- 510

hance semantic representation, the noising network 511

introduces harder positives for robust learning, and 512

TeachAugment enables effective adversarial aug- 513

mentation. 514

5 Conclusion 515

In this paper, we propose VICNTMxACE, a self- 516

supervised NTM enhanced with adversarial data 517

augmentation, building upon VICNTM. To gener- 518

ate richer and more informative positive samples, 519

we integrate word embeddings extracted from an 520

LLM encoder and introduce a trainable augmen- 521

tation model. To the best of our knowledge, this 522

is the first application of an adversarial framework 523

in the context of self-supervised NTMs. Extensive 524

experiments across multiple datasets demonstrate 525

that VICNTMxACE consistently outperforms its 526

predecessor (VICNTM) as well as other state-of- 527

VAE-based NTMs. Our model achieves significant 528

improvements in both traditional topic coherence 529
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K 50 200
w/o TeachAugment 0.3528±0.0083 0.3427±0.0057

w/o word noising 0.3579±0.0075 0.3385±0.0073

w/o CNN 0.3577±0.0097 0.3341±0.0049

w/o LLM&CNN 0.3542±0.0068 0.3117±0.0052

VICNTMxACE 0.3632±0.0046 0.3452±0.0149

Table 6: Ablation study in terms of NPMI on the 20NG dataset.

metrics (NPMI and CV ) and LLM-based evalua-530

tions (intruder detection and rating tasks), validat-531

ing its capability to generate semantically coherent532

and interpretable topics. The results of the ablation533

study further confirm the effectiveness of each com-534

ponent, highlighting the contributions of the LLM-535

based word embeddings, the CNN encoder, and the536

adversarially generated positive samples. These537

components collectively enhance the semantic rich-538

ness of the learned topics, leading to improved539

topic quality. Overall, VICNTMxACE effectively540

leverages adversarial learning for data augmenta-541

tion, leading to more semantically coherent and542

interpretable topic representations.543

6 Limitations544

The introduction of the LLM encoder and the CNN545

encoder increases overall training time and com-546

putational resource requirements. For reference,547

training a baseline model such as VICNTM on the548

20NG dataset with an NVIDIA A40 GPU (48GB549

memory) typically takes around 5 minutes, whereas550

our method requires approximately six times longer551

due to the additional computational complexity.552

Further improving topic coherence requires the553

document length being close to or shorter than the554

token limitation of the LLM. However, selecting555

an LLM with higher capacity would further in-556

crease computational costs. While we optimized557

several hyperparameters, those related to the CNN558

encoder remain unexplored. Furthermore, the pos-559

itive examples generated by our model have not560

been demonstrated to be more informative than561

those generated by previous approaches. This will562

need to be explored in future work.563
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A Prompt Templates for LLM-based732

Evaluation733

This section presents the prompt templates used for734

the LLM-based evaluation tasks, including intruder735

detection and rating tasks. All evaluations were736

conducted with Llama-3.1-8B-Instruct.737

A.1 Intruder detection prompt738

For the intruder detection task, the LLM is739

prompted to identify the word that does not be-740

long semantically to the group of top topic words.741

The following template was used:742

System prompt: You are a helpful assis-743

tant evaluating the top words of a topic744

model output for a given topic. Select745

which word is the least related to all746

other words. If multiple words do not747

fit, choose the word that is most out of748

place. Reply with a single word. Do not749

provide me explanations.750

User prompt: processor, quadra, drink,751

motherboard, port, apple752

The six words consist of five words of the top753

ten words from a single topic and one additional754

word sampled from another topic, ensuring it is not755

within the top 50 words of the current topic. The756

LLM’s response is evaluated based on whether it757

correctly identifies the intruder. The final reported758

accuracy is averaged across 10 different random759

seeds.760

A.2 Rating prompt761

For the rating task, the LLM is prompted to assess762

the semantic coherence of the top ten words in each763

topic on a scale of 1 to 3. The following template764

was used:765

System prompt: You are a helpful assis-766

tant evaluating the top words of a topic767

model output for a given topic. Please768

rate how related the following words are769

to each other on a scale from 1 to 3 ("1" 770

= not very related, "2" = moderately re- 771

lated, "3" = very related). Reply with 772

a single number, indicating the overall 773

appropriateness of the topic. Do not pro- 774

vide me explanations. 775

User prompt: processor, board, quadra, 776

simms, monitor, mhz, port, apple, moth- 777

erboard, centris 778

The average rating for each model is computed 779

over topics, and the final reported score is averaged 780

across 10 different random seeds. 781

B Topic Diversity 782

In this section, we present the results of topic diver- 783

sity across three datasets when when K = 50 and 784

K = 200, as shown in Table 7. We observed that 785

our model achieves comparable TD performance to 786

other SCHOLAR-based NTMs when K = 50, but 787

experiences a noticeable decline when K = 200. 788

We identify two primary reasons for this observa- 789

tion: 790

• Document truncation by LLM tokenizer: 791

Although this may not apply universally to all 792

datasets, the inverted pyramid structure com- 793

monly found in documents places essential 794

information at the beginning, while supple- 795

mentary details tend to be near the end. Due 796

to the token limit of the LLM encoder, these 797

less critical but diverse words are often trun- 798

cated, resulting in reduced topic diversity. 799

• Compression by CNN: The CNN encoder 800

further compresses document representations 801

by focusing on local patterns, which, while 802

enhancing topic coherence, may also discard 803

less informative words. This effect is ampli- 804

fied as the number of topics increases, leading 805

to a narrower range of unique terms and a drop 806

in TD. 807

We believe that selecting an optimal number of top- 808

ics that aligns with the dataset’s intrinsic structure 809

is crucial for achieving better topic diversity. To 810

validate this, we conducted an additional evalua- 811

tion on 20NG with K = 20, which matches its 812

20 well-defined categories. As shown in Table 8, 813

our model with K = 20 achieves topic diversity 814

that is either superior to or comparable with other 815

state-of-the-art models. Furthermore, our model 816

consistently outperforms the baselines in terms of 817
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Dataset 20NG IMDb Wiki
K 50 200 50 200 50 200
ProdLDA 0.8858±0.0068 0.6892±0.0100 0.6694±0.0175 0.5809±0.0148 0.8364±0.0142 0.6248±0.0116

ECRTM 0.8790±0.0424 0.9544±0.0059 0.9616±0.0145 0.9409±0.1053 0.9806±0.0073 0.9118±0.0190

TSCTM 0.9302±0.0314 0.5508±0.0177 0.9772±0.0090 0.8570±0.0188 0.9878±0.0055 0.7871±0.0404

SCHOLAR 0.8874±0.0218 0.5037±0.0077 0.8778±0.0169 0.6895±0.0076 0.9912±0.0047 0.8221±0.0124

CLNTM 0.8904±0.0189 0.5084±0.0129 0.8592±0.0302 0.7033±0.0084 0.9876±0.0068 0.8223±0.0119

VICNTM 0.8878±0.0136 0.4998±0.0110 0.8712±0.0239 0.6947±0.0129 0.9842±0.0107 0.8242±0.0168

VICNTMxACE 0.8696±0.0162 0.2905±0.0137 0.8180±0.0650 0.1601±0.0310 0.9746±0.0294 0.7522±0.0231

Table 7: Results on TD when K = 50 and K = 200.

K = 20 TD NPMI
ProdLDA 0.9590±0.0126 0.2628±0.0131

ECRTM 0.9290±0.0497 0.3394±0.0391

TSCTM 0.9825±0.0098 0.3670±0.0247

SCHOLAR 0.9845±0.0154 0.3962±0.0177

CLNTM 0.9825±0.0106 0.3894±0.0127

VICNTM 0.9795±0.0169 0.3944±0.0109

VICNTMxACE 0.9825±0.0138 0.3977±0.0100

Table 8: Results on TD and NPMI when K = 20 on the
20NG dataset.

NPMI, highlighting its ability to generate more co-818

herent and diverse topics. This is in contrast to819

the results for K = 50 and K = 200 presented in820

Table 7. These findings highlight the importance821

of aligning the number of topics with the dataset822

characteristics to maximize diversity. Under such823

conditions, our model demonstrates strong perfor-824

mance in terms of topic diversity while maintaining825

topic coherence.826
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