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ABSTRACT

Despite remarkable advances, large language models often fail at compositional
reasoning tasks, a phenomenon exemplified by the “curse of two-hop reasoning”.
This paper introduces the Identity Bridge, a simple yet powerful mechanism that
resolves this compositionality gap by supervising the model on a zero-hop iden-
tity task. We demonstrate empirically that this addition enables models to suc-
cessfully perform out-of-distribution two-hop reasoning, a task they otherwise
completely fail. To explain this phenomenon, we provide a theoretical analysis
using a simplified Emb-MLP model, proving that identity supervision reshapes
the model’s latent geometry. We show this alignment is induced by an implicit
nuclear-norm regularization during optimization, which favors low-rank solutions
that share structure across tasks. For complex tasks, we use small initialization
or weight decay to enhance the regularization effect, which enhances the latent
space alignment effect and slows down the generalization decay. Finally, we ex-
tend our investigation to large-scale models, observing that they still achieve two-
hop reasoning through the latent memory, which provides crucial inspiration for
enhancing their implicit reasoning abilities.

1 INTRODUCTION

Tell directly the answer with a word or phrase.
The author of the novel Think of a Number was born in the city of?

The author of the novel Think of a Number was born in the city of?

The author of the novel Think of a Number is John Verdon. 
He was born in New York City.

Binghamton

John Verdon, the author of Think of a Number,
was born in New York City.

Rochester

London

The author of the novel Think of a Number is John Verdon.
He was born in New York City.
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Figure 1: Brief description of the two-hop curse. (a) Large models have difficulty completing two-
hop reasoning tasks without CoT assistance. (b) Single-hop tasks and in-distribution two-hop tasks
cannot help generalize out-of-distribution two-hop tasks, but identity bridges can.

Large language models achieve strong performance across many tasks, yet they still stumble on
behaviors that seem elementary to humans, including the reversal curse Berglund et al. (2024);
Allen-Zhu & Li (2024; 2025) and the two-hop curse Balesni et al. (2024). The latter exposes a core
limitation in current training and data: models often fail to compose two single-hop facts (“A to B”
and “B to C”) into the correct conclusion (“A to C”) unless an explicit chain-of-thought is provided
or the composition appears verbatim in training data Wang et al. (2024); Ye et al. (2025). The issue
persists even in state-of-the-art systems Yang et al. (2024); Dziri et al. (2023).
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We revisit this phenomenon and show that a minimal addition, an identity bridge, is sufficient to
unlock robust out-of-distribution (OOD) two-hop reasoning. We augment training with a zero-
hop task mapping each bridge token to itself. Although trivial by itself, this supervision reshapes
the latent space so that the second hop can reliably latch onto the features produced by the first
hop. Empirically, models that previously failed on OOD two-hop queries begin to compose once
identity supervision is present, though the benefit diminishes as task complexity increases. This also
clarifies a gap between synthetic two-hop settings and pretrained models: pretraining effectively
endows models with a latent form of identity bridging (e.g., the ability to restate text), which partially
supports composition.

To understand the mechanism, we analyze a simplified Emb–MLP model, a transformer layer with
uniform attention. Gradient-based training induces an implicit nuclear-norm bias toward low-rank,
structure-sharing solutions. With identity supervision, this bias promotes cross-task memory sharing
and aligns the first-hop subject→bridge representation with the second-hop bridge→object map-
ping, yielding positive OOD margins on held-out compositions.

We further study high-complexity regimes with larger bridge vocabularies and more relation slices.
In these settings, implicit regularization alone is insufficient: relying only on shared latent memory
leaves subject states too weakly tied to the correct object. Prior work indicates that small initial-
ization provides a useful implicit bias in large models Zhang et al. (2024; 2025); Yao et al. (2025).
Building on this, we find that small initialization or weight decay strengthens regularization, tightens
representation alignment across layers, and markedly improves OOD generalization. These results
support the view that alignment quality tracks generalization.

Finally, we examine pretrained LLMs on real two-hop datasets. Even without explicit two-hop su-
pervision, fine-tuning signals show that models increase probability mass on the correct tail when
prompted with bridge-related cues, consistent with identity-bridge effects accrued during pretrain-
ing.

To sum up, our contribution can be summarized as follows.

1. We introduce the Identity Bridge, a zero-hop supervision that reliably enables OOD two-hop
composition (Figure 2).

2. We develop a uniform-attention theory (Theorem 1 and 2) showing how identity supervision, to-
gether with implicit nuclear-norm regularization, induces cross-task memory sharing and positive
OOD margins which reflects the mechanisms at work within large language models.

3. We identify and address high-complexity failure modes, demonstrating that stronger regulariza-
tion such as small initialization or weight decay improves alignment and OOD accuracy (Figure
6 and 7).

4. We present evidence on pretrained LLMs that aligns with our account and the existence of iden-
tity bridges (Figure 8).

2 RELATED WORK

In this section, we discuss related work and recent progress on implicit reasoning.

Implicit reasoning failure on synthetic data There has been a line of works studying the fail-
ure of implicit reasoning on synthetic data. Press et al. (2022) constructs a two-hop reasoning
task on a knowledge graph, demonstrating that transformers can generalize to in-distribution data
through long-term training, a phenomenon known as grokking. However, out-of-distribution data
cannot be generalized. Ye et al. (2025) further investigated this phenomenon, demonstrating that
in-distribution generalization stems from the presence of bridge entities in the two-hop task in the
training set, thereby inducing alignment. However, these works did not propose methods to alleviate
the generalization difficulties of OOD.

Compositionality gap in LLMs A large body of work has studied the evidence underlying reason-
ing in LLMs. Press et al. (2022); Xu et al. (2024) observed a significant gap between the accuracy
of single-hop and double-hop tasks in large models, and this gap does not decrease as the model
size increases. Yang et al. (2024) found limited evidence for implicit reasoning in large models
by eliminating shortcuts, and Yu (2024) found a similar phenomenon in fine-tuning. Kazemi et al.
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(2023) also found that the model is more able to utilize popular knowledge rather than lesser-known
knowledge during fine-tuning, which affects the model’s reasoning performance. These works have
demonstrated that it is possible for models to exploit shortcuts instead of golden inference. In order
to analyze the possible reasons, Biran et al. (2024) analyzes the intermediate states in the transformer
through circuit analysis and points out that one possible reason is that the first-hop task is completed
too late, making the model unable to utilize the first-hop information.

Explicit vs. Implicit Reasoning. The failure of two-hop reasoning mainly comes from the model’s
inability to combine the information of single-hop data in the latent space. One solution is to trade
time for space and use an explicit chain of thought (COT) to let the model reason step by step Wei
et al. (2022). However, recent work Turpin et al. (2023) points out that CoT is not always faithful and
may rely on superficial heuristics. An possible alternative to avoid the use of CoT is to use an explicit
recurrence model to implement reasoning in the latent space Dehghani et al. (2019); Hutchins et al.
(2022), although this is less common in real-world use. Another approach is to improve the model’s
reasoning ability during pre-training. A promising approach is to use small initialization and weight
decay techniques Zhang et al. (2025), which have also been initially tried in pre-training Hang et al.
(2025).

3 PRELIMINARIES

3.1 TWO-HOP REASONING TASK.

To study the mechanism behind compositionality gap, we introduce the synthetic dataset in which all
tokens are positive integers partitioned into a disjoint set of entities (E) and relations (R). Entities
are split into subject, bridge, and object subsets:

E = E1 ∪ E2 ∪ E3, with Ei ∩ Ej = ∅ (i ̸= j).

Relations are divided into two disjoint families for the two hops:

R = R1 ∪R2, with R1 ∩R2 = ∅.

One-hop tasks. We instantiate two one-hop tasks. For the first hop, we first partition the bridge
entities E2 according to relations in R1:

E2 =

|R1|⋃
i=1

E2,i.

Then define a deterministic (or sampling) map

g1 : E1 ×R1 → E2 such that g1(e1, ri) ∈ E2,i.
The first-hop triple set is

T1 = { (e1, r1, e2) : e1 ∈ E1, r1 ∈ R1, e2 = g1(e1, r1) }.
This partitioning of E2 ensures that each ri ∈ R1 only co-occurs with bridge entities from its
dedicated slice E2,i, reducing spurious shortcuts across relations. Second-hop construction follows
analogous principles.

Two-hop composition. A two-hop instance composes the two one-hop maps. Given (e1, ri, e2) ∈
T1 and (e2, rj , e3) ∈ T2, the composed query is (e1, ri, rj) with answer

(e1, ri, rj) = g2
(
g1(e1, ri), rj

)
= e3.

Identity Bridge. Unlike prior work, we also include a zero-hop task over bridge entities called
identity bridge to establish the connection between two one-hop tasks and shape the model’s latent
space. For each bridge entity e2 ∈ E2 we add a training pair of the form

(e2) → e2,

encouraging the model to implement an identity transformation f(e2) = e2 on the bridge entities.
This task is not introduced for its standalone difficulty, but to regularize representations so that the
composed mapping g2 ◦ g1 can be more reliably recovered during two-hop generalization.
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3.2 DATASET SETUP

OOD two-hop reasoning. After determine the g1 and g2 maps, we can construct training dataset
Dtrain and test dataset Dtest where Dtrain contains all one-hop data and partial two-hop data and Dtest
contains only the two-hop data. To investigate OOD composition ability, a two-hop (e1, r1, r2) data
is called out-of-distribution if the corresponding bridge entity e2 has never appeared in the two-hop
data of the training set. In this work, unless otherwise specified, the training set is restricted to
contain only single-hop data, ensuring that all two-hop data are out-of-distribution.

Dataset Complexity By adjusting the configurations of g1, g2, and the number of relations, we can
control the complexity of the dataset. The dataset complexity is defined precisely as the number of
object entities associated with each subject as follows:

Complexity = max
e1∈E1

#{e3 = (e1, ri, rj) | ri ∈ R1, rj ∈ R2}.

3.3 MODEL ARCHITECTURE

Transformer. We use a standard GPT-2 model. Let dvob, dm, dk denote the vocabulary size, embed-
ding space dimension, and query-key-value projection dimension, respectively. Then, each sequence
x1:L is embedded to X through embedding matrix E ∈ Rdvob×dm . Then use standard attention and
MLP modules, and use residual connections and layer norm between each module. For details on
the model implementation, please refer to appendix.

Embedding-MLP. For tasks where attention serves only as an information-mixing mechanism, we
adopt the Embedding-MLP model Yao et al. (2025); Huang et al. (2025), which can be viewed as a
transformer layer with uniform attention. This formulation allows flexible handling of the input and
output vocabularies, denoted by Vin and Vout. The embedding matrix is E ∈ R|Vin|×dm , with row es
corresponding to token s ∈ Vin, and the projection matrix is Wproj ∈ Rdm×|Vout|. For a sequence
X = (s1, . . . , sT ), we define:
Definition 1 (Embedding–MLP (Emb-MLP)). Given parameters θ = (E,Wproj), the model out-
puts logits is

fθ(X) =

(
T∑

t=1

est

)
Wproj ∈ R|Vout|.

3.4 PARAMETER INITIALIZATION

For any learnable weight matrix W ∈ Rd1×d2 , with d1 and d2 denoting the input and output dimen-
sions, we initialize each entry from a Gaussian distribution Wi,j ∼ N

(
0, σ2

)
. The standard GPT-2

model take σ = 0.02. When we use a small initialization, we let σ = d−γ
1 , where γ > 0.5 since

related work Zhang et al. (2024); Yao et al. (2025) shows that networks initialized in this way often
have stronger reasoning capabilities.

4 RESULTS

In this section, we construct different construct data sets of different complexity to demonstrate
the role of identity bridge which unlocks out-of-distribution composition. To further elucidate the
mechanism of the identity bridge, we use embedding-MLP as a simplified model on a dataset with
complexity one to prove that the identity bridge, together with the regularization of the gradient
descent algorithm, enables the model to share latent space memory, thereby completing two-hop
reasoning. On high-complexity data, we use small initialization settings to enhance the implicit
regularization effect brought by the gradient and achieve generalization.

4.1 IDENTITY MATTERS FOR OOD GENERALIZATION

We instantiate families of datasets with controlled complexity. Fix N ∈ N and set |E1| = |E3| = N .
Let C ∈ N denote the complexity parameter and take

|E2| = CN, |R1| = C, |R2| = 1.

4
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Figure 2: Test accuracy of different models on datasets with different complexities. The accuracy of
the standard GPT2 and Emb-MLP models is well consistent at different complexity levels, and the
small initialization model achieves excellent performance exceeding 1/C.

Partition the bridge set evenly as

E2 =

C⋃
j=1

E2,j , E2,j = { e2,k : (j − 1)N + 1 ≤ k ≤ jN }.

Write R1 = {r1,1, . . . , r1,C} and R2 = {r2}. The hop maps are defined by

g1(e1,i, r1,j) = e2,(j−1)N+i, g2(e2,k, r2) = e3,⌊ k
N ⌋+k mod N ,

so that each r1,j selects the j-th bridge slice and r2 collapses the bridge index modulo N onto E3.
When C = 1, we construct the structured setting used for analysis:

E1 = {a1, . . . , aN}, E2 = {b1, . . . , bN}, E3 = {c1, . . . , cN}, R1 = {r1}, R2 = {r2},

with one-to-one correspondences g1(ai, r1) = bi and g2(bi, r2) = ci, hence the composed answer
for (ai, r1, r2) is ci.

Figure 2 reports test accuracy across models and complexity levels C. Identity bridges is effective
throughout since it yields non-zero OOD two-hop generalization for all models regardless of whether
there are nonlinearities in the model or using small initialization. In particular, at C = 1 the identity
signal suffices for small-initialized GPT-2, standard GPT-2, and the simplified Emb–MLP to perform
well, consistent with the implicit-regularization account developed in Secs. 4.2 and 4.3.

It should be noted that, as complexity C increases, accuracy for standard GPT-2 and Emb–MLP
declines simultaneously, indicating that Emb–MLP captures the operative mechanism of the trans-
former and that gradient-descent implicit bias alone is insufficient for strong OOD composition at
higher complexity. In contrast, the small-initialized GPT-2 degrades more gracefully, suggesting a
stronger regularization effect: the initialization-induced bias further constrains the latent geometry
and better preserves the bridge–object coupling needed for composition which will be discussed in
Sec. 4.4.

4.2 CROSS-TASK MEMORY VIA IMPLICIT REGULARIZATION

We now examine how identity bridge enables composition of one-hop tasks. To make the mechanism
explicit, we use the Emb–MLP to solve task with one complexity and analyze the row-wise logit
templates encoded by

W = EWproj ∈ R|Vin|×|Vout|,

where the i-th row of W is the (unnormalized) logit vector produced by input token i; specifically,
Wij is the logit assigned by token i to output token j. Let the input and output vocabularies be
Vin = E1 ∪ E2 ∪R and Vout = E2 ∪ E3, respectively.

In this setup, Fig. 3(a) shows that relations act primarily as set selectors: r1 boosts logits toward E2
while suppressing E3, and r2 does the converse. Hence, the substantive computation of the two hops
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Figure 3: Row-wise logit templates in Emb–MLP. Panels (a–c) are trained with bridge identity
supervision; panel (d) omits it. (a) Base logit matrix: the top two rows correspond to relation
tokens r1 and r2; the remaining rows correspond to entity tokens in E1 and E2. (b) One-hop input
(ai, r1), visualized as the row-wise sum of ai and r1. (c) Two-hop query (ai, r1, r2), visualized as
the row-wise sum of ai, r1, and r2. Red boxes indicate the current argmax output token. (d) Same
visualization as in (c) but trained without identity supervision.

is carried by the entity rows of W . The key question is whether the subject rows for ai encode a
discriminative bias toward the correct tail ci.

With identity supervision, Fig. 3(a) further indicates that each bridge token bi is both self-peaked
and object-aligned, exhibiting high logit on bi and on its paired ci. Training on (ai, r1) concentrates
subject logits on the appropriate bridge slice; under the implicit nuclear-norm regularization induced
by gradient-based training, as discussed in Sec. 4.3, the lowest-rank way to satisfy all constraints
shares this structure across blocks, effectively transferring the bridge’s object-aligned peak to the
subject rows. Consequently, the rows associated with ai inherit a tail-directed bias via their linkage
to bi, supplying the cross-task memory needed for composition. Figs. 3(b) and 3(c) show that the
model then completes both the one-hop task and the two-hop generalization by combining subject
entities with relations.

In contrast, without identity, non-label logits within a block tend to equalize, yielding a nearly
diagonal-dominant pattern that conveys little information about the correct object ci for a given
subject ai, thereby leading to failure of two-hop reasoning.

4.3 UNIFORM-ATTENTION THEORY

We analyze how identity bridge enables two-hop generalization in the Emb-MLP model on the
dataset with complexity one, where attention acts only as uniform mixing. Previous experimental
evidence has shown that this model contains similar mechanisms to the standard GPT-2 model.

Before presenting the main results, we introduce some necessary concepts and related results. For a
labeled example (X, y) with y ∈ Vout, define the pairwise logit gap and multiclass margin by

s(X,y),y′ = fθ(X)y − fθ(X)y′ , q(X, y) = min
y′∈Vout\{y}

s(X,y),y′ .

Because Emb-MLP model is positively homogeneous in its parameters, and under standard separa-
bility with cross-entropy training, the normalized direction θ/∥θ∥2 converges to a KKT point of the
margin-maximization program (cf. Lyu & Li (2019)):

min
θ

1
2∥θ∥

2
2 s.t. s(X,y),y′ ≥ 1 ∀(X, y) ∈ Dtrain, ∀y′ ∈ Vout \ {y}. (1)

In the Emb–MLP model, writing the logit matrix W = EWproj ∈ R|Vin|×|Vout|, which leads to the
following convex formulation in W (e.g., Huang et al. (2025)):

min
W

1
2∥W ∥2∗ s.t. s(X,y),y′ ≥ 1 ∀(X, y) ∈ Dtrain, ∀y′ ∈ Vout \ {y}. (2)

Problem equation 2 is convex since the objective function is convex and constraints are linear. While
a KKT point of equation 1 does not, in general, certify optimality for equation 2 without additional
structure, our empirical evidence in Sec. 4.2 shows that the optimizer of equation 2 closely matches
the learned row-wise logit templates. We therefore use equation 2 to state margin consequences for
two-hop generalization.

We now state the formal consequences for two-hop generalization.
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Theorem 1 (Positive OOD margin with identity supervision). Assume training includes zero-hop
identity supervision over E2, and let W ⋆ (equivalently θ⋆) solve equation 2. Then for every OOD
query X = (ai, r1, r2) with label y = ci, the multiclass margin is positive:

q(X, y) > 0.

Hence the composed mapping g2◦ g1 is recovered on held-out compositions.
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Figure 4: The optimal solu-
tion of optimization problem
2 with identity bridge.

Proof sketch. We first use the dataset’s permutation symmetry to
get a highly structured optimal solution. We then obtain a closed-
form objective in this structure and, with a mild symmetry con-
straint, reduce the analysis to a few parameters. To avoid the dis-
cussion about subderivative, we add a simple slack variable and
apply KKT; the KKT conditions force tight, linear ties between
the subject, bridge, and object blocks. These ties shrink the OOD
margin check to a one-dimensional inequality that feasibility makes
strictly positive, yielding a positive margin on every held-out two-
hop query. See appendix A.2 for details of the proof.
Theorem 2 (Failure without identity supervision). If identity super-
vision is omitted, any solution of equation 2 satisfies, for each OOD
query X = (ai, r1, r2) with label y = ci, the multiclass margin is
negative:

q(X, y) < 0.

Thus the composed mapping fails on held-out compositions.
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Figure 5: The optimal solu-
tion of optimization problem
2 without identity bridge.

Proof sketch. Without identity supervision, the training constraints
are perfectly symmetric inside each block. Because the objective
is convex and permutation-invariant, we can average any optimal
solution over all within-block permutations and obtain an equally
optimal, fully symmetric one. A short KKT check then shows the
non-label logits equalize within blocks, so subjects carry no pref-
erence toward their true objects. When we test a held-out two-hop
composition, the signal from the subject does not point to the cor-
rect tail and the margin becomes negative. Hence the margins are
negative for all OOD two-hop queries and composition fails. See
appendix A.3 for details of the proof.

4.4 HIGH-COMPLEXITY REGIMES:
STRENGTHENING REGULARIZATION AND ALIGNMENT

As dataset complexity increases with larger bridge vocabulary and
more relation slices, the implicit regularization is no longer sufficient to solve two-hop reasoning
task since relying solely on shared latent memory makes the model unable to distinguish the infor-
mation of the object carried by the subject. We therefore strengthen regularization either by small
initialization or by weight decay. Both interventions substantially recover OOD performance.

Figures 6 visualize the geometry of hidden states across layers using the polar alignment plots. As
this figure illustrated ,models with small initialization or with weight decay exhibit tighter alignment
between (e1, r1) and the corresponding bridge e2 than the standard GPT-2 trained with the same
dataset.

Furthermore, as Fig. 7 indicates, the emergence of shared latent memory of ai to ci precedes the
growth of generalization ability. With the alignment of hidden states improves during training, the
test accuracy rises in step with this alignment trend. In other words, when the representations for
one-hop data and the target bridge collapse into the same subspace, the second hop can reliably latch
onto the correct features and composition succeeds.

Mechanistically, both small initialization and weight decay alleviates the pain of the model perform-
ing two-hop reasoning only through shared memory. Under higher complexities, We need to further
use the information of the bridge entity to enable the model to correctly identify the corresponding
object. The alignment of the hidden state allows the model to more directly use the second-hop data
to restore positive OOD margins and two-hop generalization.
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Figure 6: T-SNE visualization of hidden states with respect to one-hop data and corresponding
bridge entity. Six samples are selected for each setting, where the star represents the hidden state of
the bridge entity and the circle represents the hidden state of the first hop data (e1, ri) at position ri.
Colors from light to dark represent hidden states from shallow to deep.

(a1) (a2)

(b1) (b2)

Figure 7: Alignment analysis along the training steps for small initialized GPT-2 with complexity=
2. The two images correspond to when the memorization on 1-hop ends but OOD generalization
ability is missing, and the moment when OOD generalization is completed. Figure (a1) and (b1)
shows the relationship between the input ai and the output logits of ci, similarly to Fig. 3. Figure
(a2) and (b2) is the T-SNE visualization of hidden states like Fig. 6.

4.5 REAL TASK ANALYSIS

In this section, we consider the mechanism of two-hop reasoning in real large models. As pointed
out in Press et al. (2022), despite the existence of a combinatorial gap, real large models still have
two-hop reasoning capabilities. We finetune pretrained models on TWOHOPFACT dataset which
was introduced by Yang et al. (2024) to verifying our theoretical results. We filtered the data based
on the bridge entity to ensure the OOD characteristics of the test data. Although fine-tuning can
improve the two-hop reasoning ability of the model to a certain extent, the accuracy improvement
brought by the identity mapping is not significant. However, we can still verify the theoretical results
on a large model.

For large models, since the parameters have been fully pre-trained, the alignment phenomenon is
unlikely to be observed from the hidden state. The model should basically rely on the implicit
regularization induced by the gradient descent algorithm to complete the task. In order to observe
this mechanism, we extract the following three datasets based on the two-hop results for analysis:
Dcorrect consists of data with correct two-hop reasoning whether fine-tuning or not, Dpartial contains
the data that are wrong in the first two hops of fine-tuning but correct after fine-tuning, and Dincorrect
contains the data of fine-tuning the errors of the two-hop task.

As Fig. 8 shown, after training on the single-hop task, even without seeing the corresponding two-
hop data, for the correct data after training, when we use prompts such as (e1, r2), such as “the
novel was born in the city of” but omit the “author” relation, the model still establishes a strong cor-
relation between the subject and the object, suggesting that the model actually implicitly establishes

8
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Figure 8: The probability of the model outputting the alternative city token when using the prompt
corresponding to (e1, r2) before and after fine-tuning on datasets. The red box indicates the answer
to the corresponding two-hop reasoning data. The bar chart shows the change in the probability of
the corresponding two-hop answer when using the prompt (e1, r2) for different datasets.

the identity bridge during the pre-training process. We calculated the probability change of labels
corresponding to two-hop data using this type of prompt. The results from different models consis-
tently show that completing two-hop reasoning depends on improving the probability of the subject
to the object. For the data that still got it wrong after fine-tuning, we found that the probability of
the corresponding object was slightly improved.

5 DISCUSSIONS

Conclusion. We revisited two-hop compositional generalization and showed that the identity
bridge on bridge entities reliably lifts OOD two-hop accuracy across model families (GPT-2 vari-
ants and Emb–MLP) and dataset complexities. Empirically, identity supervision aligns the first-hop
subject to bridge representation with the second hop, enabling composition; stronger regularization
(small initialization or weight decay) further tightens this alignment and restores OOD performance
in high-complexity regimes.

Limitations. Our theory is developed in a simplified Emb–MLP (uniform-attention) setting and
does not model attention dynamics explicitly. Nevertheless, it captures the key phenomena ob-
served in standard GPT-2—latent-space sharing, alignment under identity bridge, and failure with-
out it—providing a sufficient explanatory account of the empirical trends we report.

LLM USAGE

In this work, the LLMs are employed to correct grammatical errors and inappropriate words.

9
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A THEORETICAL DETAILS

This appendix completes the proofs of Theorems 1 and 2. We first collect several standard tools
and assumptions from the literature that will be used throughout the arguments, and then give the
proofs via a detailed analysis of the nuclear-norm program—combining a constructive step with a
contradiction argument.

A.1 AUXILIARY RESULTS FROM THE LITERATURE

We restate the external lemmas and assumptions needed in our proofs, in formulations specialized
to our notation. Proofs are omitted and can be found in the cited references.
Lemma 1 (Existence of a restricted form solution to (2), Huang et al. (2025) Lemma 3). Suppose
W is the solution to the optimization problem (2) with identity task. There exists a solution with
parameter a1, a2, b1, b2, c1, c2, d1, d2, e, f, g, h such that

W ⊺ =

(
a1In + a2En b1In + b2En e1n f1n

c1In + c2En d1In + d2En g1n h1n

)
. (3)

The parameters follow the following constraints:

a1, d1 ≥ 1,

a1 + a2 + e ≥ c1 + c2 + g + 1,

d1 + d2 + h ≥ b1 + b2 + f + 1.

(4)

In addition, after introducing the identity mapping, the problem gains additional constraints:

b1 ≥ 1,

b1 + b2 ≥ d1 + d2 + 1.
(5)

To analyze the optimal solution of optimization problem 2, we need an explicit formula of the
nuclear norm. After block multiplication, W ⊺W can be written as:

W ⊺W =

(
CA1In + CA2En CB1In + CB2En

CB1In + CB2En CD1In + CD2En

)
, (6)

where the coefficients are:

CA1 = a21 + b21

CA2 = 2a1a2 + na22 + 2b1b2 + nb22 + e2 + f2

CD1 = c21 + d21

CD2 = 2c1c2 + nc22 + 2d1d2 + nd22 + g2 + h2

CB1 = a1c1 + b1d1

CB2 = a1c2 + a2c1 + na2c2 + b1d2 + b2d1 + nb2d2 + eg + fh.

The proof of Lemma 1 can be found in Huang et al. (2025). Readers can also refer to the proof of
Lemma 4, the proof ideas are similar.

Through direct calculation, we have the following explicit expression for the nuclear norm of W .
Lemma 2. The W in restricted form 7 has the nuclear norm ∥W ∥∗.

(n− 1)
√
CA1 + CD1

+ 2|a1d1 − b1c1|

+

√
CA1 + nCA2 + CD1

+ nCD2 + 2
√
(CA1 + nCA2)(CD1

+ nCD2)− (CB1 + nCB2)2.
(7)

To fully characterize the properties of the optimal solution to optimization problem 2, existence
alone is not enough. Huang et al. (2025) introduces the following assumption and proves the unique-
ness of the solution to the optimization problem.
Assumption 1. Suppose that W is a solution to optimization problem (2), but takes a different form
from (3). Then we assume that 1⊺

2nW
⊺ ̸= 0⊺

nm+2.
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A.2 PROOF FOR THEOREM 1

We now prove Theorem 1. The proof steps are as follows: First, with the help of Assumption 2,
we add constraints and simplify the problem. Next, we introduce slack variables to transform the
problem into an equivalent form. Finally, under certain assumptions, we analyze the local minimum
of the relaxed problem and complete the proof.

On the basis of the observations from numerical experiments, we introduce the following assumption
which can be seen as a supplement to Assumption 1.
Assumption 2. Suppose that W is a solution to optimization problem (2) with restricted form (6).
Then we assume that 1⊺

2nW
⊺ = 0⊺

2n+2.

Under Assumption 2, the nuclear norm minimization problem (2) can be simplified to a more
tractable form. The following lemma provides this equivalent formulation.
Lemma 3. Suppose Assumption 2 holds. Then, the optimization (2) problem is equivalent to the
following optimization problem.

min
ai,bi,ci,di,e,f,g,h

(n− 1)
√

M1 +
√
2M2

s.t. a1, b1, d1 ≥ 1,

a1 + a2 + e ≥ c1 + c2 + g + 1,

b1 + b2 ≥ d1 + d2 + 1,

d1 + d2 + h ≥ b1 + b2 + f + 1,

a1 + c1 = −n(a2 + c2), b1 + d1 = −n(b2 + d2),

e = −g, f = −h,

(8)

where the terms M1 and M2 are defined as

M1 = a21 + b21 + c21 + d21 + 2|a1d1 − b1c1|,
M2 = (a1 + na2)

2 + (b1 + nb2)
2 + ne2 + nf2.

Proof. The proof consists of two main steps. First, we establish several key identities among the
problem’s coefficients that arise from Assumption 2. Second, we substitute these identities into the
nuclear norm expression from (7) to derive the simplified objective function.

Step 1: Deriving Identities from Assumption 2. The four equality constraints presented in the
lemma statement are a direct consequence of the structural properties imposed by Assumption 2.
Their derivation involves straightforward algebraic manipulation and is omitted for brevity.

These equalities lead to two crucial identities for the aggregated coefficients. First, we show that
CA1 + nCA2 = CD1 + nCD2. By expanding the terms, we have:

CA1 + nCA2 = a21 + b21 + n
(
2a1a2 + na22 + 2b1b2 + nb22 + e2 + f2

)
= (a1 + na2)

2 + (b1 + nb2)
2 + ne2 + nf2.

Using the equality constraints like a1 + c1 = −n(a2 + c2), the expression above is equivalent to
(c1 + nc2)

2 + (d1 + nd2)
2 + ng2 + nh2, which is precisely the expansion of CD1 + nCD2.

Second, we analyze the cross-term CB1 + nCB2:

CB1 + nCB2 = a1c1 + b1d1 + n(a1c2 + a2c1 + na2c2 + b1d2 + b2d1 + nb2d2 + eg + fh)

= (a1 + na2)(c1 + nc2) + (b1 + nb2)(d1 + nd2) + neg + nfh.

Applying the equality constraints again, this simplifies to:

CB1 + nCB2 = −(a1 + na2)
2 − (b1 + nb2)

2 − ne2 − nf2 = −M2.

Step 2: Simplifying the Nuclear Norm. The second term of original objective function (2) can
be simplified based on extra equality constraints. We introduce coefficients A = CA1 + nCA2,
D = CD1 + nCD2, and B = CB1 + nCB2. From Step 1, we have established that A = D = M2

and B = −M2.

13
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Consequently, the discriminant term AD −B2 becomes:

AD −B2 = (M2)(M2)− (−M2)
2 = M2

2 −M2
2 = 0.

When the discriminant is zero, the original nuclear norm expression (likely involving square roots
of eigenvalues) simplifies significantly, yielding the objective function stated in (8). The remaining
constraints are carried over directly, which completes the proof.

To avoid introducing a discussion of the subderivative, we consider an equivalent form of problem
(8) which simplifies the proof process. We give the following proposition.
Proposition 1 (Equivalent Reformulation). Let the original optimization problem (8), denoted as
(Porig), be defined over the feasible set X = {x = (a1, a2, . . . , g, h)}. The objective function can
be rewritten as:

Forig(x) = (n− 1)
√
M1(x, |u(x)|) +

√
2M2(x),

where u(x) := a1d1− b1c1, M1(x, v) := a21+ b21+ c21+ d21+2v, and M2(x) is a term independent
of u(x).

We introduce an auxiliary variable t to construct a reformulated problem, denoted as (Pref). Its
feasible set is X̃ = {(x, t) | x ∈ X , t ≥ |u(x)|}, and its objective function is:

Fref(x, t) = (n− 1)
√

M1(x, t) +
√
2M2(x).

Assume that n > 1 and M1(x, t) > 0 over the feasible set X̃ . Then, the two problems are equivalent
in the following senses:

1. Their optimal values are equal: infx∈X Forig(x) = inf(x,t)∈X̃ Fref(x, t).

2. Their sets of optimizers correspond to each other via the mapping x∗ 7→ (x∗, |u(x∗)|). Specifi-
cally, if x∗ is an optimizer for (Porig), then (x∗, |u(x∗)|) is an optimizer for (Pref). Conversely,
if (x∗, t∗) is an optimizer for (Pref), then it must hold that t∗ = |u(x∗)|, and x∗ is an optimizer
for (Porig).

Proof. The proof proceeds in three steps. First, we show that the optimal value of (Pref) is less
than or equal to that of (Porig). Second, we prove the reverse inequality. Finally, we establish the
one-to-one correspondence between the sets of optimizers.

Step 1: Showing infX̃ Fref ≤ infX Forig

Let x be an arbitrary feasible point in X . We can construct a corresponding point in X̃ by setting
tx := |u(x)|. Since x ∈ X and tx = |u(x)| ≥ |u(x)|, the point (x, tx) is feasible for (Pref), i.e.,
(x, tx) ∈ X̃ .

By substituting tx into the objective function of (Pref), we find:

Fref(x, tx) = (n− 1)
√

M1(x, |u(x)|) +
√
2M2(x)

= Forig(x).

Since the infimum of a function over a set is less than or equal to its value at any point in that set,
we have:

inf
(x′,t′)∈X̃

Fref(x
′, t′) ≤ Fref(x, tx) = Forig(x).

This inequality holds for any arbitrary x ∈ X . Therefore, by taking the infimum over all x ∈ X on
the right-hand side, we obtain:

inf
(x,t)∈X̃

Fref(x, t) ≤ inf
x∈X

Forig(x). (9)

Step 2: Showing infX̃ Fref ≥ infX Forig

Now, let (x, t) be an arbitrary feasible point in X̃ . By definition, x ∈ X and t ≥ |u(x)|. The
objective function Fref(x, t) depends on t only through the term

√
M1(x, t). Let us define a function

14
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ϕ(v) :=
√
v. Since we assumed M1(x, t) > 0, and the coefficient n − 1 > 0, the function

v 7→ (n− 1)ϕ(v) is strictly increasing for v > 0.

Given that t ≥ |u(x)| ≥ 0, we have:√
M1(x, t) =

√
a21 + · · ·+ 2t ≥

√
a21 + · · ·+ 2|u(x)| =

√
M1(x, |u(x)|).

Multiplying by the positive constant (n − 1) and adding the non-negative term
√
2M2(x) to both

sides preserves the inequality:

(n− 1)
√
M1(x, t) +

√
2M2(x) ≥ (n− 1)

√
M1(x, |u(x)|) +

√
2M2(x).

This is equivalent to:
Fref(x, t) ≥ Forig(x).

This inequality holds for any arbitrary (x, t) ∈ X̃ . The right-hand side, Forig(x), is the value of the
original objective at a point in its feasible set X . Therefore, its value must be greater than or equal
to the infimum of the original problem:

Fref(x, t) ≥ Forig(x) ≥ inf
x′∈X

Forig(x
′).

By taking the infimum over all (x, t) ∈ X̃ on the left-hand side, we get:

inf
(x,t)∈X̃

Fref(x, t) ≥ inf
x∈X

Forig(x). (10)

Combining inequalities (9) and (10), we conclude that the optimal values of the two problems are
equal:

inf
(x,t)∈X̃

Fref(x, t) = inf
x∈X

Forig(x).

Step 3: Correspondence of Optimizers

Let p∗ = infX Forig = infX̃ Fref be the common optimal value.

(⇒) Suppose x∗ is an optimizer for (Porig), meaning x∗ ∈ X and Forig(x
∗) = p∗. Let t∗ = |u(x∗)|.

As shown in Part 1, the point (x∗, t∗) is in X̃ and Fref(x
∗, t∗) = Forig(x

∗) = p∗. Since p∗ is the
infimum for (Pref), the point (x∗, t∗) must be an optimizer for (Pref).

(⇐) Conversely, suppose (x∗, t∗) is an optimizer for (Pref), meaning (x∗, t∗) ∈ X̃ and
Fref(x

∗, t∗) = p∗. From the chain of inequalities derived in Part 2, we know that for any feasi-
ble point (x, t):

Fref(x, t) ≥ Forig(x) ≥ inf
x′∈X

Forig(x
′) = p∗.

Applying this to our optimizer (x∗, t∗):

p∗ = Fref(x
∗, t∗) ≥ Forig(x

∗) ≥ p∗.

This forces all inequalities in the chain to hold with equality. Therefore, we must have Forig(x
∗) =

p∗, which proves that x∗ is an optimizer for (Porig).

Furthermore, we must also have the first inequality hold with equality:

Fref(x
∗, t∗) = Forig(x

∗).

Substituting the definitions of the objective functions, this equality becomes:

(n− 1)
√
M1(x∗, t∗) = (n− 1)

√
M1(x∗, |u(x∗)|).

Since the function v 7→ (n − 1)
√
M1(x∗, v) is strictly increasing (as n > 1 and M1 > 0), the

equality of function values implies the equality of their arguments. Thus, it must hold that:

t∗ = |u(x∗)|.

In conclusion, the sets of optimizers for the two problems are in a one-to-one correspondence via
the mapping x∗ 7→ (x∗, |u(x∗)|). This completes the proof.
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We restate the optimization problem after reformulate and label each constraint to prepare for the
optimal solution later.

min
ai,bi,ci,di,e,f,g,h,t

(n− 1)
√
a21 + b21 + c21 + d21 + 2t

+
√
2
√

(a1 + na2)2 + (b1 + nb2)2 + ne2 + nf2,

(11)

The inequality constraints are

g1(x, t) : a1 − 1 ≥ 0,

g2(x, t) : a1 + a2 + 2e− c1 − c2 − 1 ≥ 0,

g3(x, t) : b1 − 1 ≥ 0,

g4(x, t) : b1 + b2 − d1 − d2 − 1 ≥ 0,

g5(x, t) : d1 − 1 ≥ 0,

g6(x, t) : d1 + d2 − b1 − b2 − 2f − 1 ≥ 0,

g7(x, t) : t− (a1d1 − b1c1) ≥ 0,

g8(x, t) : t+ (a1d1 − b1c1) ≥ 0,

g9(x, t) : t ≥ 0.

The equality constraints are

h1(x, t) : a1 + c1 + n(a2 + c2) = 0,

h2(x, t) : b1 + d1 + n(b2 + d2) = 0.

Having established an equivalent, continuously differentiable formulation of our problem in (11), we
now give the proof of Theorem 1. We first give a proof of the theorem under the following conditions
and then prove that this condition holds for the optimal solution of the optimization problem (11) in
the following discussion. We assume that an optimal solution satisfies

a1 = 1, a1 + a2 + 2e− c1 − c2 − 1 = 0 (12)

Proof of Theorem 1. Thanks to Assumption 2, to prove q(X, y) > 0 for all OOD query (X, y) =
((ai, r1, r2), ci), we just need to show that

c1 + c2 + g + h > a1 + a2 + e+ f. (13)

This is because
s(X,y),bj = c1 + c2 + g + h−max{a1, 0} − a2 − e− f, ∀j ∈ [N ]

s(X,y),cj = c1, ∀j ̸= i.
(14)

Based on Assumption 4 and inequality constraint a1 ≥ 0, we just need to prove (13). Using the
constraints e+ g = 0 and f + h = 0, inequality (13) can be reformulated as

c1 + c2 − (a1 + a2) > 2e+ 2f. (15)

Utilizing condition (12), The left side of the inequality is simplified to

c1 + c2 − (a1 + a2) = a1 + a2 + 2e− 1− (a1 + a2)

= 2e− 1.
(16)

As a result, inequality (15) holds if and only if

f < −1

2
. (17)

However, we get an better upper bound by combining inequality constraints g4 with g6

b1 + b2 ≥ d1 + d2 + 1

≥ b1 + b2 + 2f + 2,
(18)

which implies that
f ≤ −1. (19)

As a result, inequality (15) holds which implies q(X, y) > 0 for all OOD query.
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Finally, we prove that condition (12) holds. Our approach is to analyze its solution structure using
the Karush-Kuhn-Tucker (KKT) framework. First we review the definition of KKT conditions.

Consider the following optimization problem (P) for x ∈ Rd:

min f(x)

s.t. gn(x) ≥ 0 ∀n ∈ [N ]

hm(x) = 0 ∀m ∈ [M ]

where f, gn, hm are continuously differentiable functions. We say that x ∈ Rd is a feasible point of
(P) if x satisfies gn(x) ≤ 0 for all n ∈ [N ] and hm(x) = 0 for all m ∈ [M ].
Definition 2 (KKT point). A feasible point x of (P) is a KKT point if x satisfies KKT conditions:
there exists λ1, . . . , λN ≥ 0 and µ1, . . . , µM ∈ R such that

1. Stationarity: ∇f(x)−
∑N

n=1 λn∇gn(x)−
∑M

m=1 µm∇hm(x) = 0.

2. Complementary slackness: ∀n ∈ [N ] : λngn(x) = 0.

In general, global minimizers of (P) need not meet KKT condition. But with appropriate regular-
ity assumption, the KKT conditions become necessary. To ensure the validity and specificity of
following analysis, we introduce the following standard assumptions.
Assumption 3 (Regularity Assumption). Any optimal solution to the reformulated optimization
problem (11) satisfies the Karush-Kuhn-Tucker (KKT) conditions.

Since the optimization problem characterizes the behavior of the network’s normalized parameters,
we introduce the following assumptions to rule out degeneracies.
Assumption 4 (Solution Non-degeneracy). Any optimal solution (a∗1, . . . , h

∗, t∗) of the reformu-
lated optimization problem (11) is non-degenerate, which means the coefficient c∗1 is strictly positive
and solution does not degenerate as n increases, i.e., a∗1, . . . , h

∗, t∗ = Θ(1).

The non-degeneracy assumption is motivated by the underlying nuclear norm minimization objec-
tive. Intuitively, given the constraints a1, b1, d1 ≥ 1, a solution where c1 ≤ 0 would imply a
significant imbalance in the matrix structure, likely leading to a suboptimal, larger nuclear norm.
Our analysis therefore focuses on the more representative case where c1 > 0.

With the help of the Assumption 3, we get the useful proposition which provides identity relation-
ships between parameters.
Proposition 2. Suppose Assumption 3 holds. All optimal solution (x∗, t∗) of reformulated optimiza-
tion problem satisfy:

a∗1 + na∗2 = e∗, c∗1 + nc∗2 = −e∗ (20)

Proof. Using stationarity property for parameter c2, a2 and e, we find that the optimal solution
satisfies

c2: 0 + λ2 − µ1n = 0 ⇒ λ2 = µ1n. (S1)

a2:
√
2
n(a∗1 + na∗2)√

M2

− λ2 − µ1n = 0. (S2)

e:
√
2

e∗√
M2

− 2λ2 = 0. (S3)

Substitute equation S1 into equations S2 and S3 respectively, we get

a∗1 + na∗2 = e∗.

Another equality comes from the equality constraint a1 + c1 + n(a2 + c2) = 0.

To prove condition 12, we start from the following binary proposition and strengthen it at the end.
Proposition 3. Suppose Assumption 3 and Assumption 4 hold, for all optimal solution (x∗, t∗) of
reformulated optimization problem, at least one of the following two inequality constraints is tight:

g1 : a1 − 1 ≥ 0,

g2 : a1 + a2 + 2e− c1 − c2 − 1 ≥ 0.
(21)
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Proof. We prove by contradiction. We show that if both two constraints are not tight, there is a
feasible perturbation of this optimal point such that object value is strictly smaller.

We take
∆a1 = −αε, ∆b1,∆b2,∆d1,∆d2 = 0, ∆e,∆f,∆t = 0 (22)

By proposition 2, we take the following variables as

∆a2 =
α

n
ε, ∆c1 = −γε, ∆c2 =

γ

n
ε. (23)

Since we take ∆t = 0, we need to maintain ∆u = 0. It establishes the following relation between
α and γ:

∆u = ∆a1d1 − b1∆c1

= −(d1α− b1γ)ε.

It implies that d1α − b1γ = 0. Next we show that by choosing appropriate parameter α, we can
construct a feasible descent direction.

Step 1: Descent direction.

To prove that this direction is actually a descent direction, we consider the first-order approximation
of the object function. We find that

∆M1 = 2a1∆a1 + 2c1∆c1

= −2αε(a1 +
c1d1
b1

)

∆M2 = 0.

(24)

As a result, it implies that

∆F = −(n− 1)εα(a1 +
c1d1
b1

). (25)

Since c1 > 0 by Assumption 4 and constraints a1, b1, d1 ≥ 1, we have a1+ c1d1

b1
> 0 which ensures

that this is a descent direction.

Step 2: Feasible direction.

For inequality constraints g1 and g2, we can take ε small enough to ensure that they can’t hit the
boundary. Inequality constraints g3 to g6 and equality constraint h2 still hold since the relevant
variables have not changed. Inequality constraints g7 to g9 and equality constraint h1 still hold due
to our choice for a1, a2, c1, c2. As a result, the construction is a feasible direction.

We strengthen the above proposition by further analyzing the KKT conditions, thus proving that the
conditions must hold for the optimal point.
Proposition 4. Suppose Assumption 3 and Assumption 4 hold, for all optimal solution (x∗, t∗) of
reformulated optimization problem, both of the following two constraints are tight:

g1 : a1 − 1 ≥ 0,

g2 : a1 + a2 + 2e− c1 − c2 − 1 ≥ 0.
(26)

Proof. According to Proposition 7, we classify and discuss the following two situations.

Case 1: g1 is tight, but g2 is not.

Based on complementary slackness of KKT condition, we know that λ2 = 0. However, based on
equation S1, we get

µ1 =
λ2

n
= 0.

Furthermore, due to equation S2, we get

e =
n
√
2√
B

(λ2 + µ1n) = 0

18
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However, it makes an contradiction since the following constraints are violated due to Assumption
4:

a1 + a2 + 2e− c1 − c2 − 1 = 1− 1

n
− c1 +

1

n
c1 − 1 < 0. (27)

Case 2: g2 is tight, but g1 is not.

We write the stationary condition for a1, a2, c1, c2, t and note that complementary slackness of KKT
condition implies λ1 = 0 since g1 is not tight.

(Sc2 ) λ2 − nµ1 = 0,

(Sc1 ) (n− 1)
c1√
A

+ λ2 − µ1 + b1(λ8 − λ7) = 0,

(Sa2 )
√
2
n(a1 + na2)√

B
− λ2 − nµ1 = 0,

(Sa1
) (n− 1)

a1√
A

+
√
2
a1 + na2√

B
− λ2 − µ1 + d1(λ7 − λ8) = 0,

(St) (n− 1)
1√
A

− (λ7 + λ8 + λ9) = 0,

(28)

Substituting Sc2 into Sc1 , we get the first expression of λ7 − λ8.

λ7 − λ8 =
n− 1

b1

(
c1√
A

+
1

n
λ2

)
. (29)

Substituting Sc2 into Sa2 , we get

λ2 =

√
2n(a1 + na2)

2
√
B

. (30)

So we can simplify condition about Sa2 and get

λ7 − λ8 =
n− 1

d1
(
1

n
λ2 −

a1√
A
). (31)

Using two forms of λ7 − λ8, we get

λ2 =
n(d1c1 + a1b1)

(b1 − d1)
√
A

. (32)

However, we note that λ2 = n(d1c1+a1b1)

(b1−d1)
√
A

and λ2 =
√
2n(a1+na2)

2
√
B

. It implies that

√
2e
√
A(b1 − d1) = 2

√
B(d1c1 + a1b1). (33)

Based on Assumption 4, the right hand is Ω(
√
n) but the left hand is O(1), it makes an contradiction.

A.3 PROOF FOR THEOREM 2

We begin our proof with the following lemma, which makes fuller use of the symmetry of the
problem.

Lemma 4 (Existence of symmetry solution). Suppose W is the solution to the optimization problem
2 without identical task. There exists a solution with a1, a2, b1, b2 and α, β such that

W ⊺ =

(
a1In + a2En b1In + b2En α1n β1n

b1In + b2En a1In + a2En β1n α1n

)
. (34)

The parameters follow the following constraints:

a1 ≥ 1,

a1 + a2 + α ≥ b1 + b2 + β + 1.
(35)
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Proof. We show that some orthogonal transformation of W ⊺ remains a solution to the optimization
problem. Let σ be an arbitrary permutation of 1, . . . , n, and let Pσ ∈ Rn×n denote the associated
permutation matrix. Now, consider a permutation of the logit matrix.

σ(W ⊺) =

(
Pσ 0
0 Pσ

)
W ⊺ diag{Pσ,Pσ, 1, 1}.

We find that σ(W ⊺) is still an optimal solution of the optimization problem. To verify this, we
consider

s(ai,r1),bj (σ(W
⊺)) = s(aσ−1(i),r1),bσ−1(j)

(W ⊺) ≥ 1, ∀j ∈ [n]− {i},

s(ai,r1),cj (σ(W
⊺)) = s(aσ−1(i),r1),cσ−1(j)

(W ⊺) ≥ 1, ∀j ∈ [n],

s(bi,r1),bj (σ(W
⊺)) = s(bσ−1(i),r1),bσ−1(j)

(W ⊺) ≥ 1, ∀j ∈ [n],

s(bi,r1),cj (σ(W
⊺)) = s(bσ−1(i),r1),cσ−1(j)

(W ⊺) ≥ 1, ∀j ∈ [n]− {i}.

Moreover, σ(W ⊺) is another solution since orthogonal transformation does not change the nuclear
norm. Consider the average over all possible permutations:∑

σ σ(W
⊺)

n!
=

(
a1In + a2En b1In + b2En e1n f1n

c1In + c2En d1In + d2En g1n h1n

)
.

We further exploit the symmetry and consider the following transformation

τ(W ⊺) =

(
0 I
I 0

)
W ⊺ diag

{(
0 I
I 0

)
,

(
0 1
1 0

)}
.

Similar verification shows that τ(W ⊺) is still the solution to the optimization problem. Taking the
sum of W ⊺ and τ(W ⊺), we finish the proof.

Under Assumption 2, we consider the problem

F = (n− 1)
√

2(a21 + b21) + 2|a21 − b21| + 2
√
(a1 + na2)2 + nα2 (36)

subject to 
a1 ≥ 1,

a1 + a2 + α ≥ b1 + b2 − α+ 1,

a1 + b1 + n(a2 + b2) = 0.

(37)

To prove Theorem 2, we just need to prove the following condition holds for the optimal solution of
optimization problem 36:

b1 + b2 < a1 + a2 (38)

Proof of Theorem 2. Step 0: Structural simplification. Using the identity

a2 + b2 + |a2 − b2| = 2max{a2, b2},
the first square root in equation 36 reduces to√

2(a21 + b21) + 2|a21 − b21| = 2max{|a1|, |b1|}.

Since a1 ≥ 1 > 0, the objective becomes

F = 2(n− 1)max{a1, |b1|}+ 2
√
X2 + nα2, X = a1 + na2.

Meanwhile, the linear constraint rewrites as

X = −(b1 + nb2).

Step 1. Necessary condition at optimum. Fixing (a1, a2) (so X is fixed), we can vary (b1, b2)
while preserving b1 + nb2; this leaves X and the second term unchanged. If |b1| > a1, then
decreasing |b1| towards a1 reduces the first term and relaxes or maintains the inequality constraint,
hence cannot be optimal. Therefore,

|b1| ≤ a1,
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and the first term simplifies to 2(n− 1)a1.

Step 2. KKT analysis in the strict case |b1| < a1. In this regime, the objective is independent of
b1, b2. We write down the stationary condition for b1, b2:

λ2 − µ1 = 0

λ2 − nµ1 = 0.
(39)

Thus, we get λ1 = µ1 = 0. Then we consider stationary condition for a2:

2n
X√

X2 + nα2
− λ2 − nµ1 = 0. (40)

It implies X = 0. Finally, we consider a1:

2(n− 1) + 2
X√

X2 + nα2
− λ1 − λ2 − µ1 = 0. (41)

As a result λ1 = 2(n− 1). Based on complementary slackness, we have a1 = 1. Thus,

a2 = − 1

n
, b2 = −b1

n
, b1 + nb2 = 0.

Consequently,

a1 + a2 = 1− 1

n
, b1 + b2 = (1− 1

n )b1,

and since |b1| < 1, we obtain

b1 + b2 < 1− 1

n
= a1 + a2.

Step 3. Boundary case |b1| = a1. We first find that a1 = 1. Otherwise, we can perturb a1, a2, b1, b2
to lower the objective function while keeping X fixed. The first term of the optimization object is
2(n− 1). Moreover, we can consider another solution

a1 = 1, a2 = − 1

n
, b1 = − 1

n− 1
, b2 =

1

n(n− 1)
, α = 0. (42)

Direct verification shows that the constraints are satisfied and the value of the objective function is
2(n − 1). Thus, if we can find optimal solution in this case, the second term of objective function
must be zero. As a result, we have

a1 + na2 = 0, α = 0. (43)

Moreover, it implies that

a2 = − 1

n
, b1 + nb2 = 0 (44)

Then we consider the following cases:

(i) b1 = −a1 = −1. We have b2 = 1
n and a1 + a2 = 1− 1

n > b1 + b2.

(ii) b1 = a1 = 1. It contradicts with the constraint a1 + a2 + α ≥ b1 + b2 − α+ 1.
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B EXPERIMENTAL DETAILS

B.1 ARCHITECTURE DETAILS

Transformer (GPT-2 style). We use a standard decoder-only transformer with pre-norm residual
blocks. Let dvocab be the vocabulary size, dm the model width, dk the per-head query/key dimension,
H the number of heads, L the number of layers, and T the context length. Tokens x1:T are embedded
by a lookup matrix E ∈ Rdvocab×dm and summed with learned positional embeddings. Each layer
ℓ = 1, . . . , L applies

Z(ℓ) = X(ℓ) +MHA
(
LN
(
X(ℓ)

))
,

X(ℓ+1) = Z(ℓ) +MLP
(
LN
(
Z(ℓ)

))
,

where MHA is causal multi-head attention with H heads (queries/keys/values computed by lin-
ear maps in Rdm×Hdk and output projection in RHdk×dm ), and MLP is a two-layer feed-forward
network with GELU activation and hidden size 4dm. LayerNorm (LN) is applied in the pre-norm
configuration; dropout is disabled unless stated. The language-model head shares weights with E
(tied embeddings) and projects to logits in Rdvocab .

C EXPERIMENTS COMPUTE RESOURCES

The experiments were conducted on a server with the following configuration:

• 48 AMD EPYC 7352 24-Core Processors, each with 512KB of cache
• 251GB of total system memory
• 8 NVIDIA GeForce RTX 4080 GPUs with 16GB of video memory each
• The experiments were run using Ubuntu 22.04 LTS operating system
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