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Abstract

Human teaching effort is a significant bottleneck for the broader applicability of interactive
imitation learning. To reduce the number of required queries, existing methods employ
active learning to query the human teacher only in uncertain, risky, or novel situations.
However, during these queries, the novice’s planned actions are not utilized despite con-
taining valuable information, such as the novice’s capabilities, as well as corresponding
uncertainty levels. To this end, we allow the novice to say: “I plan to do this, but I am
uncertain.” We introduce the Action Inquiry DAgger (AIDA) framework, which leverages
teacher feedback on the novice plan in three key ways: (1) S-Aware Gating (SAG): Adjusts
the gating threshold to track sensitivity, specificity, or a minimum success rate; (2) Foresight
Interactive Experience Replay (FIER), which recasts valid and relabeled novice action plans
into demonstrations; and (3) Prioritized Interactive Experience Replay (PIER), which pri-
oritizes replay based on uncertainty, novice success, and demonstration age. Together, these
components balance query frequency with failure incidence, reduce the number of required
demonstration annotations, improve generalization, and speed up adaptation to changing
domains. We validate the effectiveness of AIDA through language-conditioned manipulation
tasks in both simulation and real-world environments. Code, data, and videos are available
at https://aida-paper.github.io.

1 Introduction

The promise of imitation learning is to enable individuals to teach robots to perform desired tasks, all without
the need for specialized knowledge in coding or robotics. This learning paradigm is beneficial when humans
possess the knowledge to solve a task but prefer not to do it themselves due to its repetitive, risky nature,
or when automation is more efficient. Specifically, demonstrating correct robot behavior in unstructured
environments can be simpler than engineering a controller. Imitation learning has demonstrated success
across various domains, such as autonomous driving (Pomerleau, 1988), helicopter aerobatics (Abbeel et al.,
2010), language-conditioned robotic manipulation (Jang et al., 2022; Shridhar et al., 2021), and generalist
robot policies (Brohan et al., 2022; Reed et al., 2022; Octo Model Team et al., 2024). Despite these successes
of behavioral cloning (BC), it can suffer from covariate shift. This issue arises when imitation learning is
naively posed as a standard supervised learning problem. In imitation learning, the data is not independent
and identically distributed because past predictions can influence future states (Ross et al., 2011). As a
result, a prediction error can lead to encountering states unseen in the training data, causing a cascade of
mistakes since errors in these unfamiliar states are even more likely.

Covariate shift issues can be alleviated with Interactive Imitation Learning (IIL) methods (Celemin et al.,
2022). These methods involve obtaining human demonstrations, corrections, and reinforcements interac-
tively. In a seminal work, Ross et al. (2011) introduced the Dataset Aggregation (DAgger) algorithm.
This approach alleviates the covariate shift problem by aggregating human input while executing the novice
policy. This enables the novice to learn to recover from failures, for instance. While having favorable per-
formance guarantees, the DAgger algorithm requires continuous teacher input and can have safety issues
as the novice policy is executed while learning to perform the task.
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To overcome these limitations of the DAgger algorithm, various extensions allow the novice to actively
query the teacher in risky (Hoque et al., 2022) or uncertain situations (Menda et al., 2019; 2017; Zhang &
Cho, 2017; Hoque et al., 2023). We refer to these data aggregation methods as active DAgger approaches,
as they integrate data aggregation with active learning. The benefit of this active learning strategy is twofold.
First, possible failures can be prevented during the interactive training phase since uncertainty is assumed
to be correlated with failures. Second, this strategy minimizes the number of demonstrations needed by
maximizing their meaningfulness. That is to say, it is a waste of resources if humans demonstrate behaviors
already mastered by novices. Instead, the teacher should only demonstrate what the robot novice can not
do to enable learning from as few demonstrations as possible.

Existing active DAgger methods hand over control when querying the human teacher. Instead, we allow
the novice to also communicate their planned action when they are uncertain. This allows the teacher to
validate or correct the novice plan, providing valuable feedback that can be leveraged in several ways. First,
it reveals the levels of uncertainty where the novice succeeds or fails. This information can be used to improve
gating by allowing dynamic threshold adjustments to maintain a desired sensitivity, specificity, or minimum
system success rate. This extends existing methods, which either require constant supervision (Kelly et al.,
2019), rely on heuristics (Zhang & Cho, 2017), or use a fixed query rate independent of novice performance
(Hoque et al., 2022). Second, validated novice actions can be aggregated into the demonstration dataset,
reducing the need for teacher demonstrations. Additionally, invalid plans may be useful demonstrations for
alternative goals if the teacher relabels them accordingly. Third, since not all demonstrations are created
equally, we can prioritize replay by considering the validity of the novice plan, the corresponding uncertainty
level, and the demonstration age. For example, the novice might learn more from a recent demonstration in
a situation where they failed rather than one where they acted successfully.

To this end, we introduce the Action Inquiry DAgger (AIDA) framework, a novel IIL method where the
robot novice actively communicates its planned actions when uncertain. An overview of AIDA is shown in
Fig. 1, and it is built on three key contributions: i) S-Aware Gating (SAG): Adjusts the gating threshold
to maintain a user-specified metric — sensitivity (true positive rate), specificity (true negative rate), or
minimum system success rate. ii) Foresight Interactive Experience Replay (FIER): aggregates valid and
relabeled novice action plans into the demonstration dataset. iii) Prioritized Interactive Experience Replay
(PIER): prioritizes replay based on uncertainty, novice success, and demonstration age.

Since AIDA relies on the novice communicating its planned actions for teacher feedback, the method is most
practical for moderate feedback frequencies. AIDA therefore targets mid- to high-level control tasks rather
than end-to-end policy learning. It is most applicable in scenarios where a robot has access to predefined
parameterizable skills such as grasping, walking, pushing, door opening, screwing, or inserting. In such
cases, the robot novice needs to learn the parameters and affordances of these skills given a user-specified
command. When querying the teacher, the robot novice can specify which skill they plan to use, along
with the parameterization of that skill. If the teacher deems the novice’s plan invalid, they can provide
a demonstration by annotating the appropriate skill and its parameters. For example, a pick skill can be
parameterized by a Cartesian pick position and orientation.

We make the following claims, considering an active data aggregation setting where the teacher can validate
novice action plans:

C1 SAG balances query count and system failures by tracking a user-specified metric value: desired
sensitivity, specificity, or minimum system success rate.

C2 FIER reduces the number of annotations needed to achieve a given success rate by recasting novice
actions to demonstrations.

C3 FIER enhances generalization to unseen scenarios by recasting failures to demonstrations.

C4 PIER improves the success rate and reduces the required annotations under domain shift compared
to uniform sampling.
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Figure 1: The Action Inquiry DAgger (AIDA) framework consists of three main components: S-Aware Gating
(SAG, detailed in Sec. 4.1), Foresight Interactive Experience Replay (FIER, detailed in Sec. 4.2), and Prioritized
Interactive Experience Replay (PIER, detailed in Sec. 4.3). In this interactive imitation learning framework, we
allow the novice to say: “I plan to do this, but I am uncertain.” The uncertainty gating threshold is set by SAG to
track a user-specified metric: sensitivity, specificity, or minimum system success rate. This facilitates the trade-off
between queries and failures. Teacher feedback is obtained with FIER, enabling demonstrations through validation,
relabeling, or annotation demonstrations. Lastly, PIER prioritizes replay based on novice success, uncertainty, and
demonstration age.

The remainder of this paper is structured as follows. Sec. 2 reviews related work. The problem formulation
is presented in Sec. 3. Our method is introduced in Sec. 4, followed by its experimental evaluation in Sec. 5.
Sec. 6 discusses the results and limitations, and Sec. 7 concludes the paper.

2 Related Work

Uncertainty-aware IIL: In a seminal work on IIL with active learning, Chernova & Veloso (2007) in-
troduced the Confidence-Based Autonomy (CBA) algorithm that combined the prediction confidence of a
Gaussian Mixture Model (GMM) with the nearest neighbor distance from demonstration data to quantify the
confidence of the novice policy. Based on this confidence measure, control is then gated between the novice
policy and the human expert. Several related strategies exist, primarily as safety- and/or uncertainty-aware
variants of the DAgger algorithm (Ross et al., 2011), which we refer to as active DAgger approaches. Like
CBA, these methods apply a form of active learning, i.e., actively querying in situations deemed informative
and/or risky. Such techniques include confidence measures based on prediction confidence (Grollman &
Jenkins, 2007), maximum mean discrepancy (Kim & Pineau, 2013; Laskey et al., 2016), predicted proximity
of novice actions to expert actions (Zhang & Cho, 2017), Monte Carlo dropout (Menda et al., 2017; Cui
et al., 2019), ensembles (Menda et al., 2019; Li & Silver, 2023; Li & Zhang, 2023), variational autoencoder
reconstruction error (Liu et al., 2024; Wong et al., 2021), value estimates (Hoque et al., 2022; Gokmen
et al., 2023), ambiguity (Franzese et al., 2020; Luijkx et al., 2022), divergence (Datta et al., 2023), and
diffusion policy training loss (Lee & Kuo, 2024). Outside the scope of IIL, robot-gating based on conformal
prediction theory was introduced as well (Ren et al., 2023). In contrast to these robot-gated techniques,
human-gated methods have also been proposed, requiring continuous human supervision, where the teacher
actively intervenes (Spencer et al., 2020; Kelly et al., 2019; Luo et al., 2024). There are also combinations
of robot and human gating (Celemin & Kober, 2023; Hoque et al., 2022). Our approach differs from ex-
isting methods by considering the novice’s actions during active queries, which we leverage in three ways.
First, it enables a sensitivity-/specificity-/success-aware gating strategy to balance query frequency with
error incidence while maintaining the desired metric value. Second, it allows novice actions to be recast
as demonstrations by validating the novice’s plan or relabeling the goal, inspired by Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017). Third, it enables replay prioritization based on novice success,
drawing inspiration from Prioritized Experience Replay (PER) (Schaul et al., 2015). Affordance Learn-
ing: As AIDA learns goal-conditioned affordances in the form of skill parameters, it relates to affordance
learning (Mo et al., 2021; Mazzaglia et al., 2024; Wang et al., 2022; Ning et al., 2023; Geng et al., 2023),
which focuses on predicting where and how a robot can successfully apply a skill, aiming for generalization
to unseen objects. Key differences are as follows. First, these affordance learning methods typically require
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reward signals for all interactions, whereas AIDA queries for demonstrations and requires teacher feedback
only for robot-gated queries. Second, AIDA learns a policy providing goal-conditioned affordances, avoiding
distribution mismatch by aligning training and policy observations. In contrast, existing affordance-learning
methods primarily focus on efficiently exploring the large affordance state-action space rather than directly
learning policies. Although these methods can learn from failures, they require extensive exploration and
may experience distribution mismatch during deployment. Reinforcement learning from human feed-
back (RLHF): As AIDA queries teacher demonstrations for uncertain novice actions, it is related to RLHF
(Kaufmann et al., 2025). The most closely related approaches also use uncertainty-based querying, e.g.,
via information gain (Cui et al., 2019; Lindner et al., 2021). However, AIDA differs in that it requests
new demonstrations when the teacher rejects a novice action, regulates the query rate through SAG, and
collects relabeled demonstrations. In contrast, these RLHF methods typically learn a reward model and
optimize the policy via reinforcement learning, whereas AIDA directly imitates expert actions. Another line
of RLHF work focuses on human-gated methods, where teacher interventions are interpreted as negative
rewards (Kahn et al., 2021; Luo et al., 2024). The main difference is that these methods require continuous
human supervision during the data collection phase. Finally, Kumar et al. (2022) compare learning policies
via behavioral cloning and offline RL from demonstrations. They conclude that the better choice depends
on demonstration quality and the presence of critical states. Given our assumption of high-quality expert
data and safety-critical decisions (e.g., skill misuse may damage the robot or its environment), our setting is
better suited for a behavioral cloning approach. Research gap: Existing uncertainty-aware IIL approaches
request expert queries based solely on uncertainty estimates. These gating methods do not take the novice’s
performance into account, as they discard the novice’s actions when querying. In contrast, AIDA incorpo-
rates teacher feedback on queried actions and leverages this information for adaptive gating, demonstration
collection, and prioritized replay for more efficient learning. Affordance learning methods aim to generalize
to unseen objects but require constant reward information and are usually trained off-policy, which can
lead to distribution mismatch at deployment. AIDA instead learns goal-conditioned affordances on-policy,
aligning training and execution distributions, while also not requiring constant reward information. RLHF
methods often rely on learning a reward model or require continuous human supervision. AIDA avoids both
by imitating expert actions and querying the teacher only when necessary, using validated or relabeled novice
actions to enhance generalization and allowing for user-specified gating strategies.

3 Problem Statement

We consider an IIL problem, where a (robot) novice is learning interactively from (human) teacher feedback.
The novice and teacher are denoted with subscripts N and T, respectively. The novice learns a policy
πN : O × G → A that maps observations ok

t ∈ O and goals gk ∈ G to actions ak
t ∈ A during episode k at

time step t. We focus on mid- to high-level control tasks, where the novice has access to a set of predefined
skills such as walking, grasping, or inserting. The novice learns from a demonstration dataset D = {τ k}K

k=0,
consisting of trajectories τ . These trajectories consist of the parameters of the demonstrated skills provided
by the teacher. Contrasting with existing works, we let the teacher optionally provide a reward rk

t indicating
whether the novice’s actions were appropriate considering a goal gk and the observation ok

t . Therefore, a
trajectory consists of tuples τ k = {(ok

t , ak
t , gk, rk

t )}Tk
t=0, where reward

rk
t =


1 if the teacher validates novice action;
−1 if the teacher rejects novice action and provides an annotation;
0 otherwise.

(1)

It is worth noting that rk
t is a teacher reward obtained during queries related to the novice’s actions, these

actions may be different than ak
t . In our interactive approach, we collect data while executing the novice

policy πk
N and iteratively update it with the dataset D, aggregating new demonstrations. Optionally, the

policy can be pre-trained with a BC dataset DBC. During this update, we aim to find the policy π∗ within
policy space Π that minimizes a loss measure L between the novice’s actions and the teacher’s actions,
given the distribution of observations in D: π∗ = argminπ∈Π L(π, D). Since we generally do not have full
state information, we consider ok

t to result from an observation mapping O : S → O and we observe the
state ok

t = O(sk
t ). We define the goal state set Sg ⊂ S to be the set of states that satisfy the constraints
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Algorithm 1: Action Inquiry DAgger (AIDA)
Input: BC dataset DBC, BC policy π0

N, teacher policy πT
Parameters: Gating mode mode ∈ {sensitivity, specificity, success}, desired gating mode value σdes, random query rate

prand, maximum number of episodes kmax
Output: πkmax

N
1 u← [ ], r ← [ ], k← [ ],D ← DBC
2 for episode k = 0 : kmax − 1 do
3 τ k ← ∅, ok

0 ← observe(), gk ← command(), done← False, t← 0
4 while not done do
5 ak

t ← πk
N(ok

t , gk)
6 uk

t ← quantify_uncertainty(πk
N, ok

t , gk)
7 γ ← SAG(u, r, k, σdes, prand, mode) // Set threshold to track σdes (Alg. 2)
8 ϵ ∼ U[0,1)
9 if uk

t ≥ γ or ϵ < prand then // Query actively and with probability prand
10 ak

t , τ k, rk
t ← FIER(ok

t , ak
t , πT, τ k, gk) // Collect demonstration (Alg. 3)

11 ok
t+1, done← act(ak

t )
12 else
13 ok

t+1, done← act(ak
t )

14 t← t + 1
15 D ← D ∪ τ k

16 P (i), w ← PIER(u, r, k) // Prioritize replay (Alg. 4)
17 πk+1

N ← update_model(πk
N,D, P (i), w)

18 return πkmax
N

of g. Therefore, an action ak
t leads to success if sk

t+1 ∈ Sg. The set of states that result in achieving
some goal is the union of all possible goal sets, i.e., SG =

⋃
g∈G Sg. We assume the goal gk is constant

throughout an episode, i.e., independent of the dynamics and actions taken. Therefore, a failure described
by transition (sk

t , ak
t , sk

t+1, gk, success = 0) can be “relabeled” to success (sk
t , ak

t , sk
t+1, g′, success = 1) if

sk
t+1 ∈ SG, i.e., if the action resulted in achieving some other goal g′ ∈ G. So, if the teacher can observe sk

t

and (predict) sk
t+1, and can infer whether sk

t+1 ∈ SG, the teacher can relabel failure transitions to successes.
Furthermore, we consider an active approach based on the policy’s prediction uncertainty. Therefore, we
require an uncertainty operator U : Π×O ×G → R[0,1] that provides the prediction uncertainty of the novice
policy, given the current observation and goal, i.e., uk

t = U(πN, ok
t , gk). Optionally, one can also take D into

account when quantifying uncertainty, e.g., to quantify the proximity of an observation to those in D.

4 Action Inquiry DAgger (AIDA) Framework

AIDA is an interactive imitation learning framework where the teacher is actively queried based on S-Aware
Gating (SAG). The teacher can provide feedback through Foresight Interactive Experience Replay (FIER)
in three modalities: validation, relabeling, or annotation demonstrations. We update the novice policy using
the demonstration dataset while we perform Prioritized Interactive Experience Replay (PIER). The main
training procedure of AIDA, summarized in Alg. 1, follows these steps: In each episode k, at every time
step t, the novice policy πk

N selects an action ak
t based on observation ok

t and goal gk. Besides inferring
its policy, the novice also quantifies the corresponding uncertainty uk

t (Alg. 1, lines 2-6). SAG then sets
a gating threshold γ to track the user-defined level of sensitivity, specificity or minimum system success
rate σdes (line 7). The teacher is queried if the novice uncertainty exceeds the gating threshold. Additional
queries are obtained with probability prand to enhance the performance of the SAG algorithm (detailed in
Sec. 4.1). During these queries the novice presents its planned action ak

t , allowing the teacher to validate,
relabel, and/or provide an annotation demonstration (lines 9-11). If the teacher is not queried, the novice
acts autonomously (lines 12-13). When the episode is done, e.g., because the goal constraints are satisfied
or a time-out is reached, the demonstration trajectory τ k is added to D. Finally, a model update can be
performed using PIER (lines 16-17). Note that we keep track of the update/episode counts k = [0, . . . , KT K ],
uncertainties u = [u0

0, . . . , uK
T K ], and rewards r = [r0

0, . . . , rK
T K ] during training with AIDA. The next sections
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will provide detailed descriptions of the subroutines from Alg. 1, i.e., SAG for gating (Alg. 2), FIER for
demonstration collection (Alg. 3) and PIER for replay prioritization (Alg. 4).

4.1 S-Aware Gating (SAG)

At each time step, the uncertainty of the novice policy determines whether it should act autonomously or re-
quest teacher feedback. We introduce SAG for this gating problem. It dynamically adjusts the gating thresh-
old γ to maintain a user-specified target: sensitivity (mode = sensitivity), specificity (mode = specificity),
or minimum system success rate (mode = success). In this context, queries are treated as positives and
autonomous actions as negatives. A false positive occurs when the teacher is queried despite the novice’s
action being valid, which reduces autonomy. A false negative occurs when the teacher is not queried despite
an invalid novice action, which results in system failure. Different gating modes are provided to suit varying
task requirements. If system failures (false negatives) are costly, one can choose a high desired sensitivity.
If unnecessary expert queries (false positives) are more costly, one can choose to ensure a high specificity.
Finally, when the overall system success rate is the primary concern, the success mode allows specifying a
minimum desired success rate. SAG continuously adjusts γ to ensure the success rate meets this target. If
the novice’s success rate falls below the threshold, more queries are issued to increase reliability via expert
interventions. If the success rate exceeds the threshold, queries are kept to a minimum, as the constraint is
already satisfied.

We formalize the gating problem as a semi-supervised logistic regression, using uncertainty u as the indepen-
dent variable and reward r as the indicator variable. The logistic regression assumption (the log-likelihood
ratio of class distributions is linear in the observations) holds for various exponential distributions, such as
normal, beta, and gamma distributions (Amini & Gallinari, 2002).

We summarize SAG in Alg. 2 and provide a visualization for more intuitive understanding in Fig. 2. For
computing the gating threshold γ, we maintain a window of the most recent values in uW , rW , and kW We
do this because, with each model update, the uncertainty and reward information becomes more outdated
(line 1 of Alg. 2). The window size is adjusted adaptively to ensure that the window contains at least Nmin
relevant labels. Relevant labels correspond to r = 1 in specificity mode, r = −1 in sensitivity mode, and
both are relevant in success mode. This is because, for instance, known failures (true positives) are essential
when approximating sensitivity (true positive rate). Since the failure distribution over uncertainty shifts
over time due to model updates, we normalize uW (lines 2-4 of Alg. 2) to match the expected uncertainty
at the current episode K. This is achieved by performing linear regression on kW and uW , then adjusting
for the expected difference in uncertainty between episode k and K. This is visualized in Fig. 2 A. Next,
we fit a logistic function to −rW and uW (line 5 of Alg. 2 and Fig. 2 B-C). We negate the rewards because,
in the context of sensitivity, positive cases typically represent costly events (novice failures). We capture
these failures by negating rW . If the teacher was not queried, we do not know whether the novice acted
successfully at (k, t). Since the uncertainty uk

t is known, we can obtain a pseudo-label by sampling from the
fitted logistic model at uk

t (line 11 and Fig. 2 D). This enables us to approximate true and false positive
rates for different threshold values.

Queries are not only made when uncertainty exceeds the threshold but also with probability prand. These
random queries ensure that labels are collected across the entire uncertainty range, not just in the high-
uncertainty regime. If random queries are not accounted for when setting the threshold, it will be too
conservative, as more queries are triggered than intended. Since prand is user-defined, we can incorporate
these random queries when determining the gating threshold.

The overall SAG procedure is identical across modes, with the only difference being how the threshold is
set (line 12). Here, we describe threshold selection for the sensitivity mode; for specificity- and success-
aware gating, see App. A.1 and App. A.2, respectively. The total sensitivity σsens can be computed by
considering both the true positives TPγ and false negatives FNγ resulting from active gating, along with the
true positives TPrand from random gating:

σsens = TPγ + TPrand

TPγ + FNγ
. (2)
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Algorithm 2: S-Aware Gating (SAG)
Input: Uncertainties u, rewards r, update counts k
Parameters: Gating mode mode ∈ {sensitivity, specificity, success}, desired value σdes, random query rate prand,

minimum number of negative labels Nmin, number of imputation repetitions Nrep
Output: Gating threshold γ

1 uW , rW , kW ← get_window(u, r, k, Nmin, mode)
2 wlin, blin ← LinRegres().fit(kW , uW ) // Linear regression for normalizing u

3 for uk
t ∈ uW do

4 uk
t ← uk

t + wlin(K − k) // Visualized in Fig. 2 A

5 wlog, blog ← LogRegres().fit(uW ,−rW ) // Logistic regression for imputation where rk
t = 0

6 γ ← [ ]
7 for i = 0 : Nrep − 1 do
8 fW ← −rW // Visualized in Fig. 2 B
9 for rk

t ∈ rW do
10 if rk

t == 0 then // If teacher was not queried
11 fk

t ∼ {−1, 1}, P (fk
t = 1) = sigmoid(wloguk

t + blog) // Visualized in Fig. 2 C

12 γi ← set_threshold(uW , fW , σdes, prand, mode) // Visualized in Fig. 2 D

13 γ ← median(γ)
14 return γ
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Figure 2: Visualization of the SAG algorithm (mode = sensitivity) with experimental data from Sec. 5.1. First, we
normalize the uncertainty values in uW using linear regression, as the uncertainty distribution shifts with the number
of updates (A). By negating the rewards rW , we obtain labels for novice failures, denoted as fW (B). Labels are
unavailable when the teacher was not queried (r = 0). However, since uncertainties at those time steps are known,
we generate pseudo labels by sampling from a logistic distribution fit to uW and fW (C). We then compute a gating
threshold γi using both the labels and pseudo labels (D). This sampling and threshold calculation process is repeated
Nrep times.

The number of TPrand are determined by which of FNγ are queried. These queries occur with probability
prand (see lines 8-9 of Alg. 1). Therefore, its expected value is FNγ · prand. This leads to:

Eϵ∼U[0,1) [σsens] = TPγ

TPγ + FNγ
+ FNγ · prand

TPγ + FNγ
(3)

= σsens
γ + prand(1 − σsens

γ ), (4)

where σsens
γ is the sensitivity for gating disregarding the random queries. Thus, we interpolate between

threshold values that best satisfy the desired sensitivity level σdes = σsens
γ + prand(1 − σsens

γ ) (line 12 of Alg. 2
and Fig. 2 D).

For each mode, the process of sampling pseudo labels is repeated Nrep times, and the final threshold γ is set
as the median of the thresholds obtained across repetitions.
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4.2 Foresight Interactive Experience Replay (FIER)

When the novice’s uncertainty exceeds the threshold set by SAG, feedback is requested from the teacher
through FIER. This method enhances demonstration collection by considering the novice’s planned actions
during queries and presenting them to the human teacher. The FIER procedure is summarized in Alg. 3.
FIER reduces the number of required teacher annotations by enabling the human teacher to provide two
additional feedback modalities. First, we allow the teacher to validate the proposed actions. If the teacher
considers the plan valid (r == 1 in line 2 in Alg. 3), we execute and add the novice’s planned actions
to the demonstration dataset. The novice plan can be valuable even if it is invalid. Inspired by HER
Andrychowicz et al. (2017), we can utilize invalid novice plans as demonstrations if they achieve another
goal (line 7 in Alg. 3). In this case, we can obtain a new demonstration by letting the teacher relabel the
goal. The benefit of relabeling demonstrations is twofold. First, there can be situations where relabeling
the goal is less demanding for the teacher than providing an annotation. In that case, it is possible to
collect additional demonstrations at a reduced cost. Secondly, it allows for the collection of demonstrations
for goals induced by the novice policy instead of collecting demonstrations only for goals induced by the
distribution of commands. This way, the novice can learn to perform tasks beyond the instructed commands
and possibly generalize better to novel scenarios. After providing the option to relabel the novice’s actions,
the teacher is asked to provide an annotation demonstration (line 6). To summarize, we can collect three
types of demonstrations with FIER: validation, relabeling, and annotation demonstrations.

4.3 Prioritized Interactive Experience Replay (PIER)

At the end of the episode, the demonstrations collected through FIER are aggregated into the demonstration
dataset, allowing the novice policy to be updated. Efficiently performing policy updates is particularly
important in interactive imitation learning, as this paradigm involves a human teacher providing online
feedback. Taking inspiration from PER (Schaul et al., 2015), we introduce an interactive equivalent, which
we call PIER (summarized in Alg. 4). PIER prioritizes the replay of the demonstration dataset based on
uncertainty, novice success, and demonstration age. We prioritize demonstrations where the novice fails over
successes. Those with low uncertainty receive the highest priority among failures, as they suggest confident
yet mistaken actions. While among successes, those with high uncertainty are prioritized to reduce the
novice’s uncertainty for those situations. Successes with low uncertainty, indicating proficient performance,
are given the lowest priority. Since the uncertainty and novice success information become outdated with
each model update, we diminish the prioritization based on the age of the demonstration. Alg. 4 shows how
these desired properties are integrated into our prioritized replay scheme. Similar to PER (Schaul et al.,
2015), we define the probability of sampling demonstration tuple of episode k at timestep t to be:

P (k, t) = (pk
t )α∑

i

∑
j(pi

j)α
. (5)

Here pk
t is the priority of the demonstration tuple from episode k at time step t and α ≥ 0. Increasing α results

in more prioritization, while α = 0 corresponds to uniform sampling. We define the prioritization exponent
as a linear combination of the uncertainty and the number of model updates since the demonstration was
added to the dataset, i.e., ck

t = λuk
t + (1 − λ)( K−k

K ). Here, 0 ≤ λ ≤ 1 scales prioritization based on the
uncertainty versus novelty of the sample. Finally, the priorities are:

pk
t = 1 − rk

t

b1−ck
t − 1

b − 1 , (6)

where b > 1 is the base. In this way, the priorities of old demonstrations with high novice uncertainty depend
little on novice success. In contrast, the priorities for recent demonstrations with low novice uncertainty
depend greatly on novice success. Having defined the priorities, we need to compensate for the bias that
prioritization introduces when minimizing the expectation of a loss function l, i.e., Ek,t∼P (k,t)L

(
πN, (ok

t , ak
t )

)
,

instead of sampling k, t according to the distribution of the dataset—i.e., k, t ∼ D(k, t). Again, following PER
(Schaul et al., 2015), we can mitigate the bias by introducing importance-sampling weights w = [w0

0, . . . ]
(see line 7 of Alg. 4). Here, β determines the level of bias compensation. The weights are normalized to
prevent numerical instabilities.
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Algorithm 3: Foresight Interactive Experi-
ence Replay (FIER)

Input: Observation o, novice action a, teacher
policy πT, trajectory τ , goal gk

Parameters: Goal set G
Output: Action a, trajectory τ

1 r, g′ ← query(o, a)
2 if r == 1 then // Validation tuple
3 τ ← τ ∪ (o, a, g = gk, r = 1)
4 else
5 a← πT(o) // Annotation tuple
6 τ ← τ ∪ (o, a, g = gk, r = −1)
7 if g′ ∈ G then // Relabeled tuple
8 τ ← τ ∪ (o, a, g = g′, r = 0)

9 return a, τ , r

Algorithm 4: Prioritized Interactive Experience
Replay (PIER)

Input: Uncertainties u, rewards r, update counts k
Parameters: Scale λ, base b, exponents α, β
Output: Sampling priorities p, weights w

1 w = [ ]
2 for k = 0 : K do
3 for t = 0 : T k do
4 ck

t = λuk
t + (1− λ) K−k

K

5 pk
t ← 1− rk

t
b

1−ck
t −1

b−1

6 P (k, t)← (pk
t )α∑

i

∑
j

(pi
j

)α

7 wk
t = (|k| · P (k, t))−β / maxi,j wi

j

8 return P (k, t), w

5 Experimental Evaluation

To support claims C1-4 from Sec. 1, we evaluate AIDA and its components in four sets of experiments. First,
we performed active dataset aggregation on the MNIST dataset (LeCun et al., 1998) using TorchUncertainty
(Lafage & Laurent, 2024) to validate SAG extensively. Second, we interactively trained CLIPort agents on
simulated language-conditioned tabletop manipulation tasks (Shridhar et al., 2021). Third, we conducted
experiments on a real-world assembly setup to demonstrate that these claims extend beyond simulation.
Finally, we showcase AIDA’s applicability by integrating it with built-in primitive actions on a Spot robot
to perform a sorting task.

5.1 MNIST Dataset Aggregation

To support claim C1 — SAG balances query count and system failures by tracking a user-specified metric
value: desired sensitivity, specificity, or minimum system success rate — we conducted experiments in which
we interactively trained digit classification models on the MNIST dataset (LeCun et al., 1998) 1. We selected
this setup due to its low computational requirements, enabling extensive ablations and easy reproducibility.
Additionally, existing packages such as TorchUncertainty (Lafage & Laurent, 2024) facilitate uncertainty
quantification in this setting. Since we focus on the SAG component, we follow the procedure described
in Alg. 1, but without demonstration collection via relabeling or replay prioritization. To validate whether
SAG can track a desired sensitivity, we performed interactive training for nine different sensitivity, specificity
and success rate values, i.e., σdes ∈ {0.1i}9

i=1, repeating the procedure ten times for each value of σdes.

These experiments proceed as follows. We sample a batch of 128 handwritten digit images from the MNIST
dataset at each timestep without replacement. This allows for 468 timesteps, as the dataset contains 60,000
samples. Although MNIST provides ground truth labels, we simulate an active learning scenario where labels
are queried if the prediction uncertainty exceeds the threshold γ set by SAG or randomly with probability
prand = 0.1. Uncertainty quantification is performed using Monte Carlo Dropout (MC Dropout) (Gal
& Ghahramani, 2016) with a dropout rate of 0.4 and 16 stochastic forward passes, forming an ensemble
C = {h1, . . . , h16}. For a sample x with label y, prediction uncertainty is computed as u = 1 − maxy PC(y|x),
where PC(y|x) = 1

16
∑16

i=1 Pi(y|x). Ground truth labels are obtained for the queried samples and added to
the training dataset. The model is updated every five timesteps using the aggregated dataset.

The results of these experiments are summarized in Fig. 3. The sensitivity and specificity plots in Fig. 3 A
and B show that SAG successfully tracks the desired levels for all nine values of σdes. In success-aware
mode, Fig. 3 C shows that when the novice success rate is low, SAG issues enough queries to maintain the
desired system success rate σdes. As the novice success rate increases, the query rate decreases, reaching a
minimum once the novice success rate exceeds σdes. The query rate plots in Fig. 3 also indicate that each

1The code and data from these experiments are available at https://github.com/aida-paper/aida_mnist.
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Figure 3: Results for various levels of σdes for sensitivity-aware (A), specficity-aware (B), and success-aware (C)
gating in active dataset aggregation with SAG on the MNIST (LeCun et al., 1998) dataset. Sensitivity in A and
specificity in B are calculated over a moving window of 1000 failures and successes, respectively. Novice and system
success rates are calculated over a window of 1000 samples (approximately eight steps). Mean and standard deviation
are shown for ten repetitions.

mode requires a different query pattern to track its respective metric. The success rate plots show that, in
all modes, the novice ultimately learns to perform the task.

5.2 CLIPort Benchmark Tasks

To support claims C1-3, we conducted experiments using AIDA to train CLIPort (Shridhar et al., 2021)
agents interactively 2. CLIPort is a language-conditioned imitation-learning agent for vision-based manip-
ulation. The observations in these experiments consist of an RGB-D image and a natural language text
command. CLIPort employs a two-stream architecture: a spatial stream and a semantic stream. The se-
mantic stream uses frozen CLIP encoders (Radford et al., 2021) to extract features from the RGB image
and the language command. The spatial stream is an untrained Transporter network (Zeng et al., 2021),
whose decoder layers are fused with features from the semantic stream. The model outputs pixel-wise value
estimates for both picking and placing. The demonstration dataset includes RGB-D images, language com-
mands, and expert actions in the form of Cartesian pick and place poses, represented as a pixel location with

2The code, data, videos, and a notebook are available at https://github.com/aida-paper/aida_cliport.
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"pack the alarm clock
in the brown box"

"pack all the orca plush toy
objects in the brown box"

"pack the triangle
in the brown box"

"put the cyan blocks
in a yellow bowl"

Figure 4: The CLIPort benchmark tasks from left to right: packing-google-objects-seq, packing-google-objects-group,
packing-shapes and put-blocks-in-bowls.

discretized orientation. We selected this setup because it allows novices to communicate their actions by in-
dicating planned pick-and-place locations on an image alongside a language command, making it well-suited
for AIDA.

We compared AIDA’s performance against an active DAgger baseline without both PIER and FIER to
provide evidence for claims C2-3. We also compare AIDA against SafeDAgger (Zhang & Cho, 2017) and
ThriftyDAgger (Hoque et al., 2022), which are also DAgger approaches that incorporate active learning.
Furthermore, we performed ablations with AIDA without PIER and AIDA without FIER to isolate the
effects of the individual components. The models trained with AIDA and active DAgger use SAG for
gating and rely on prediction entropy to quantify uncertainty for a fair comparison.

The comparison was conducted across a subset of tasks by Shridhar et al. (2021). These tasks are visualized
in Fig. 4. The CLIPort benchmark includes seen and unseen task settings. In the unseen setting, test-time
commands involve different objects, shapes, or colors than during training. For example, Tseen colors =
{yellow, brown, gray, cyan} and Tunseen colors = {purple, pink, white, black}. Some colors appear in both
settings, i.e., Tall colors = {red, green, blue}. A complete list of seen and unseen objects is provided in
Tab. 4 in App. A.8. We modified the tasks involving Google objects and shapes by sometimes introducing
unseen objects as distractors during training, as real-world scenarios also involve varying distractor objects.
Therefore, it is possible for AIDA to acquire demonstrations for the unseen set via relabeling with FIER when
the novice fails in a meaningful way. This setup allows us to provide evidence for claim C3 by evaluating
whether failures can be relabeled and whether this improves generalization to the unseen setting.

The following hyperparameters were used for both AIDA and the active DAgger baseline if applicable. For
SAG we used mode = sensitivity, σdes = 0.9, Nmin = 15, prand = 0.2 and for PIER α = 1.5, b = 10, β = 1 and
λ = 0.5. Each setting involved training ten CLIPort agents without BC pretraining, collecting 300 interactive
demonstrations, and evaluating checkpoints every 50 demonstrations. Model updates occur at the end of an
episode if a demonstration is collected. This way, we ensure that AIDA and the active DAgger baseline
had the same number of updates.

The cumulative rewards for evaluating checkpoints on tasks with seen and unseen objects are shown in Fig. 5.
While AIDA performs equally or better on all tasks, the number of teacher annotations is significantly lower,
as shown in Fig. 6. The performance gain of AIDA can be attributed to the composition of the demonstration
dataset. For the active DAgger baseline, all demonstrations consist of annotation tuples, whereas AIDA
collects many through validation and relabeling. The relabeled demonstrations explain AIDA’s superior
performance on unseen tasks: agents sometimes obtained demonstrations by relabeling novice failures, where
the intended pick was a distractor object from the unseen set. Fig. 6 also shows that AIDA requires fewer
annotation demonstrations than the active DAgger baseline. The corresponding sensitivity curves for AIDA
in Fig. 7 confirm that SAG maintains the desired sensitivity level across all tasks.

To support C4, we performed ablations with AIDA under domain shifts. We trained agents using AIDA,
AIDA without PIER (w/o PIER), and AIDA without FIER (w/o FIER) on a sequence of tasks with increas-
ing domain shifts: packing-seen-shapes, packing-unseen-shapes, and packing-seen-google-objects-seq. As shown in
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Figure 5: Cumulative rewards for evaluating checkpoints over 100 episodes on tasks with seen and unseen objects.
Mean and standard deviation are shown for ten policies using a moving window of 50 episodes. The results show
clear improvements with AIDA on the unseen scenarios.
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Figure 6: Composition of the demonstration datasets, showing mean values for ten policies. AIDA relies on fewer
annotation demonstrations and benefits from relabeling and validation demonstrations.

Fig. 8, AIDA and AIDA w/o PIER perform similarly on the initial task, while AIDA w/o FIER performs
slightly worse, likely due to the benefits of relabeling demonstrations. Moreover, AIDA w/o FIER re-
quires more annotation demonstrations (Fig. 8 D). After transitioning to packing-unseen-shapes, AIDA adapts
slightly faster to the domain shift initially, though performance is similar after 300 demonstrations across
all settings. This improved adaptation likely stems from FIER’s relabeling and PIER’s replay prioritization.
Upon shifting to packing-seen-google-objects-seq, AIDA and AIDA w/o FIER outperform AIDA w/o PIER,
highlighting the benefits of replay prioritization with PIER. This effect is more pronounced after the second
transition, as the shift from unseen-shapes to seen-google-objects-seq is larger than from seen to unseen shapes.

12



Under review as submission to TMLR

0 100 200 300

Demonstrations

0.75

1.00

S
en

si
tiv

ity

A

packing-google
objects-seq

0 100 200 300

Demonstrations

0.75

1.00

B

packing-google
objects-group

0 100 200 300

Demonstrations

0.75

1.00

C

packing-shapes

0 100 200 300

Demonstrations

0.75

1.00

D

put-block
in-bowl

Sensitivity Desired

Figure 7: Sensitivity during training for AIDA on the CLIPort tasks. Sensitivity is calculated over a moving window
of 50 failures. Mean and standard deviation are shown for ten policies.
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Figure 8: Novice success rate during training (A-C) and the number of collected annotation tuples (D-F) under
domain shifts. The success rate is computed over a moving window of 50 episodes, reinitialized after each domain
shift. The first 150 demonstrations are collected on packing-seen-shapes, the next 150 on packing-unseen-shapes, and
the final 150 on packing-seen-google-objects-seq. Mean and standard deviation are shown for ten policies.

Additionally, as the demonstration dataset grows, the probability of sampling a specific demonstration de-
creases for uniform sampling, further increasing PIER’s effect. Finally, AIDA’s improved performance on
the third task requires fewer annotation demonstrations, as more validation demonstrations are collected
(Fig. 8 F).

5.3 Real-World Engine Assembly

We conducted experiments on a real-world assembly task to demonstrate that our claims extend beyond
simulation and showcase AIDA’s applicability in real-world settings 3. This task is a simplified version of a
diesel engine assembly using 3D-printed models. The procedure is illustrated in Fig. 9. As shown in Fig. 9 A,
the setup includes a Franka Panda robot equipped with an in-hand RealSense D405 RGB-D camera and a
Franka hand with custom-printed fingers for grasping bolts. The control scheme is implemented using the
EAGERx framework (van der Heijden et al., 2024). The objective is to pick bolts from a holder and insert
them into specific locations on the engine block. We use pick-and-place primitives that rely on 2D Cartesian
positions, assuming a given height for picking and placing.

3A video of this experimental evaluation is available at https://aida-paper.github.io.
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A B C

D E F

Figure 9: Real-world implementation of AIDA on an engine assembly task. (A) The setup includes a Franka Panda
robot, an RGB-D camera, and 3D-printed parts. (B) The interface allows the operator to issue commands. (C)
When queried, the operator can validate, relabel, or reject the plan. (D) The operator relabels the plan. (E) The
operator provides an annotation demonstration. (F) The robot executes the demonstration.
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Figure 10: Results for the engine assembly task. (A) Success rates calculated over a window of 50 episodes. (B)
Composition of the demonstration dataset. (C) Sensitivity calculated over a moving window of 50 failures.
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A B C

Figure 11: Real-world implementation of AIDA on a sorting task with Spot (A). This demonstrates AIDA’s appli-
cability in scenarios where a robot has access to one or more skills, such as grasping (B), walking, and placing (C).

The task involves four bolt colors (red, yellow, green, and black) and seven insertion locations. The bolts
are randomly ordered and placed in a holder. The human operator interacts with the robot via the interface
shown in Fig. 9 B. This Gradio (Abid et al., 2019) interface allows command input via speech or text. In our
experiments, we generate random commands in the form: “Insert the [color] bolt at location number [location
number].” Upon receiving a command, a top-down RGB-D reconstruction is obtained following Zeng et al.
(2021), and the novice policy is evaluated. We use a CLIPort agent with the same hyperparameters as
in Sec. 5.2, but with a smaller batch size of three due to GPU memory constraints on our laptop. If the
prediction uncertainty exceeds the threshold γ set by SAG, or randomly with probability prand = 0.2, the
robot queries the human operator. This is shown in Fig. 9 C. The robot’s planned action is visualized in the
interface, allowing the operator to validate, relabel, or reject the plan. If validated, the robot executes the
plan and it is added to the dataset. If relabeling is required, as in Fig. 9 C, the operator is prompted to provide
corrections by selecting the correct bolt and location. This is shown in Fig. 9 D. The robot then executes
the annotation demonstration (Fig. 9 F) and aggregates the relabeling and annotation demonstrations into
the dataset. When a demonstration is collected, a model update is performed while the robot executes the
demonstration.

The results for collecting 150 demonstrations are summarized in Fig. 10. The novice and system success
rates in Fig. 10 A show that while the novice is learning to perform the task, the system can maintain a high
success rate by querying based on SAG. The composition of the dataset in Fig. 10 B shows a similar trend as
in the simulated experiments. This figure shows that AIDA can learn from mostly validation demonstrations
in the later stages of training. Also, it shows that relabeling demonstrations is possible not only in simulation
but also in real-world scenarios. The sensitivity in Fig. 10 C shows that SAG can track the desired sensitivity
level across the task.

5.4 Real-World Sorting Task

To further demonstrate AIDA’s applicability in real-world scenarios, we integrated it with Boston Dynamics
Spot quadruped’s built-in primitive skills to perform a sorting task 4. Since AIDA is designed to work
with any robot with one or more skills, we selected Spot for its built-in grasping, walking, and placing
capabilities. The task involves sorting objects into paper and organic waste bins, as illustrated in Fig. 11.
For this demonstration, we trained a CLIPort agent using an interface similar to Fig. 9 with the command
format: “Put the [object] in the [bin type] bin.” Since CLIPort requires a top-down RGB-D projection, we
use the in-hand RGB-D camera to scan the environment from different perspectives. With these images
we can obtain a top-down projection using the robot’s joint states, odometry, and camera intrinsics. The
teacher issues the command through a Gradio (Abid et al., 2019) interface at the beginning of an episode.
Similar to Sec. 5.3, the teacher is queried if the novice’s uncertainty exceeds the gating threshold, and the
interface shows the planned pick and place locations. The teacher can choose to validate or relabel the
novice’s actions. The teacher can provide annotation demonstrations by clicking where to pick and where to
place in the top-down projected image. Demonstrations are aggregated to the demonstration dataset at the
end of the episode, and the policy is updated. In the meantime, the robot walks back to its initial position
and rescans its environment.

4A video of this demonstration is available at https://aida-paper.github.io.
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6 Discussion

This section discusses the results from Sec. 5 by revisiting the claims in Sec. 1. We also examine the
limitations of the AIDA framework and its experimental evaluation.

6.1 Claims

Our experiments were designed to provide evidence for claims C1-4 from Sec. 1. First, we claim that
SAG balances query count and system failures by tracking a user-specified metric value: desired sensitivity,
specificity, or minimum system success rate (C1). We provide evidence for this claim by showing accurate
sensitivity, specificity, and system success rate tracking for multiple values of σdes on an MNIST dataset
aggregation task in Fig. 3. Moreover, we extend these results for the sensitivity-aware mode to simulated
and real-world robot tasks in Sec. 7 and Fig. 10 C. Secondly, we claim that FIER reduces the number of
annotations needed to achieve a given success rate (C2). We trained CLIPort agents on a set of benchmark
tasks in simulation for 300 demonstrations and evaluated the performance of checkpoints saved every 50
demonstrations. The results from these experiments support this claim. The evaluation results in Fig. 5 show
that AIDA performs equivalent or better compared to SafeDAgger (Zhang & Cho, 2017), ThriftyDAgger
(Hoque et al., 2022), and ActiveDAgger, while Fig. 6 shows that AIDA requires significantly fewer teacher
annotations. The results in Fig. 10 provide evidence that these results generalize to real-world tasks, as
we see a similar composition of the dataset and similar performance improvements. Thirdly, we claim that
FIER enhances generalization to unseen scenarios by recasting failures to demonstrations (C3). The results
in Fig. 5 provide evidence for this claim, as the AIDA checkpoints outperform the active baselines on the
unseen scenarios. This can be attributed to relabeling failures involving the distractor objects, resulting in
demonstrations for the unseen scenarios. Finally, we claim that PIER improves the success rate and reduces
the required annotations under domain shift compared to uniform sampling. Evidence for this claim is
provided by the results in Fig. 8, where PIER outperforms uniform sampling under domain shift regarding
success rate while requiring fewer annotations.

6.2 Limitations

AIDA is designed for tasks with sparse rewards and learning mid- to high-level control. While this covers
many problems, it does not extend to applications requiring high-rate feedback from the teacher. Thus, AIDA
is best suited for scenarios where a robot has access to predefined skills and can learn higher-level plans for
these skills. Additionally, AIDA can be integrated with methods that are better suited for learning low-level
control or longer-horizon reasoning. While FIER significantly improves performance, it relies on recasting
failures as successes, which can be challenging in some applications. Additionally, although AIDA reduces
the number of teacher annotations, it assumes the teacher can validate or relabel actions before execution.
This may not always be feasible. In such cases, relabeling and validation can still occur post-execution. The
impact of AIDA on teaching effort depends on both the task and the teaching interface. Nonetheless, we
provide an in-depth discussion in Sec. A.6, including timing measurements from Sec. 5.3 and cost scenarios
for Sec. 5.2. Tuning hyperparameters in real-world settings is challenging. However, our experiments show
that a single set of hyperparameters, without extensive tuning, generalizes effectively across different tasks,
suggesting that hyperparameter sensitivity is not strongly dependent on task descriptions. Finally, our
evaluations primarily used policies with a CLIPort (Shridhar et al., 2021) architecture, but AIDA is not
limited to this choice. It can be applied to any policy architecture where a teacher can determine the success
of actions and provide demonstrations.

7 Conclusion

We have introduced the AIDA framework, which consists of three components: a gating procedure SAG
that can track a desired sensitivity level; FIER for recasting novice actions to demonstrations; and PIER
to prioritize replay experience based on uncertainty, novice success, and age. Our experiments show that
AIDA allows for an effective balance between queries and failures based on a user-specified sensitivity level. It
significantly reduces the number of required annotated demonstrations while also improving its generalization
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capabilities to unseen scenarios. By utilizing demonstrations acquired through interactive relabeling and
validation, AIDA can reduce the number of annotation demonstrations needed. Additionally, it improves
adaptation to domain shifts by prioritizing replay.

For future work, several promising directions emerge for further enhancing the capabilities of AIDA. Ex-
tending this methodology to scenarios involving longer horizons and non-sparse rewards could improve its
applicability. Leveraging generative/foundation models and simulators for visualizing action plans and gen-
erating artificial demonstrations could also expand the application domain of AIDA, potentially improving
training efficiency and outcome predictability. Additionally, applying AIDA to higher-frequency, low-level
control tasks is another interesting future direction. Although relabeling and validation may become less
beneficial with higher query frequencies, SAG could still effectively query human teachers when robot exe-
cution is slowed, combining robot-driven queries with human interventions. Integrating robot-gated AIDA
for high-level affordance or skill learning with human-gated interventions for low-level control could create a
hierarchical structure. This integrated approach would allow simultaneous on-policy learning across multiple
control levels at different frequencies. Moreover, conducting participant studies would be vital to assess the
mental load associated with AIDA and refine user interfaces accordingly. Finally, adapting AIDA to environ-
ments characterized by heterogeneous or imperfect teachers could widen its applicability and effectiveness
in real-world settings.
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A Appendix

A.1 Specificity-Aware Gating

For Specificity-Aware Gating, the threshold in line 12 of Alg. 2 is set as follows. The total specificity σ can
be computed by considering the true negatives TNγ resulting from active queries, the false positives FPγ

resulting from random queries, along with the false positives FPγ from active querying:

σspec = TNγ − FPrand

TNγ + FPγ
. (7)

The number of FPrand are determined by which of TNγ are queried. These queries occur with probability
prand (see lines 8-9 of Alg. 1). Therefore, its expected value is TNγ · prand. This leads to:

Eϵ∼U[0,1) [σspec] = TNγ

TNγ + FPγ
− TNγ · prand

TNγ + FPγ
(8)

= σspec
γ (1 − prand), (9)

where σspec
γ is the specificity for gating disregarding the random queries. Thus, we interpolate between

threshold values that best satisfy the desired specificity level σdes = σspec
γ (1 − prand) (line 12 of Alg. 2).

A.2 Success-Aware Gating

The goal of Success-Aware Gating (SAG) is to minimize expert queries while maintaining a minimum system
success rate. If the novice’s success rate is below the desired success rate σdes, SAG increases expert queries
to ensure that the combined success rate of expert and novice meets σdes. We assume that expert actions are
always correct for this mode. If the novice’s success rate is already at or above σdes, SAG does not actively
query the expert to avoid redundant queries. The only case when the system fails is when the novice’s action
is invalid, while the expert is not actively queried and not randomly queried. Therefore, the system success
rate is:

σsucc = 1 − FNγ − TPrand

TPγ + FPγ + TNγ + FNγ
(10)

The number of TPrand are determined by which of FNγ are queried. These queries occur with probability
prand (see lines 8-9 of Alg. 1). Therefore, its expected value is FNγ · prand. This leads to:

Eϵ∼U[0,1) [σsucc] = 1 − FNγ

TPγ + FPγ + TNγ + FNγ
+ FNγ · prand

TPγ + FPγ + TNγ + FNγ
(11)

= σsucc
γ + prand(1 − σsucc

γ ), (12)

where σsucc
γ is the system success rate disregarding the random queries. Thus, we interpolate between

threshold values that best satisfy the desired system success rate σdes = σsucc
γ + prand(1 − σsucc

γ ) (line 12 of
Alg. 2).

A.3 SAG Ablations

SAG involves two regression steps, as shown in Alg. 2 and Fig. 2. The first step is linear regression to
normalize uW , and the second is logistic regression to impute pseudo labels for cases without teacher feedback
(r = 0). To evaluate the impact of these steps, we performed ablations in the same experimental setup as
described in Sec. 5.1 (mode = sensitivity). We conducted dataset aggregation on the MNIST handwritten
dataset under two conditions: one without normalization of uW (w/o Normalization) and one without
pseudo-label imputation (w/o Imputation). Fig. 12 and Tab. 1 compare these results to SAG with both
normalization and imputation.

The sensitivity plots and table show a clear performance degradation for SAG w/o Imputation. Without
imputing pseudo labels where success is unknown, the threshold is set too high, as gating results in labels
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Figure 12: Comparison of SAG, SAG without pseudo-label imputation (w/o Imputation), and SAG without uncer-
tainty normalization (w/o Normalization). Sensitivity is calculated over a moving window of 1000 failures. Mean and
standard deviation are shown for ten repetitions. The plots show that SAG w/o Imputation sets the threshold too
high, as it primarily uses labels from high-uncertainty regions. SAG w/o Normalization performs poorly in the early
training stages due to rapidly decreasing uncertainty, which also results in an overly high threshold. A threshold that
is too high will result in too low sensitivity, as not enough failures are prevented through querying.

Table 1: Comparison of SAG, SAG without pseudo-label imputation (w/o Imputation), and SAG without uncertainty
normalization (w/o Normalization). Sensitivity is calculated over the complete training duration. Mean and standard
deviation are shown for ten repetitions. Boldface is used to highlight the values corresponding to the best sensitivity
tracking.

σdes SAG SAG w/o Imputation SAG w/o Normalization
0.1 0.104 ± 0.003 0.114 ± 0.003 0.103 ± 0.002
0.2 0.207 ± 0.005 0.141 ± 0.005 0.190 ± 0.004
0.3 0.304 ± 0.009 0.171 ± 0.003 0.272 ± 0.006
0.4 0.397 ± 0.007 0.200 ± 0.005 0.365 ± 0.010
0.5 0.497 ± 0.008 0.236 ± 0.005 0.448 ± 0.010
0.6 0.598 ± 0.007 0.283 ± 0.009 0.548 ± 0.012
0.7 0.695 ± 0.005 0.350 ± 0.009 0.655 ± 0.013
0.8 0.793 ± 0.010 0.447 ± 0.008 0.764 ± 0.005
0.9 0.899 ± 0.004 0.628 ± 0.008 0.880 ± 0.007

for only the high-uncertainty regions. This leads to overly low sensitivity values. Tab. 1 also indicates
performance degradation when uW is not normalized. Fig. 12 suggests that this primarily results from poor
sensitivity tracking in the early training stages. Uncertainty drops rapidly during early training. Therefore,
failing to normalize uW causes the threshold to be set too high. As a result, sensitivity remains too low in
these early stages.

We also performed an ablation to study the influence of the value of the random query probability prand.
We compared the experiments from Sec. 5.1 with prand = 0.1 to training with prand = 0.05 and prand = 0.2.
The results of this comparison are shown in Fig. 13, Tab. 2 and Tab. 3. The sensitivity plots in Fig. 13 A-C
show that SAG can track multiple sensitivity levels for different values of prand. However, for prand = 0.2 and
σdes = 0.1 it fails. This results from SAG being unable to track sensitivities lower than prand. This follows
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from Eq. (3):

Eϵ∼U[0,1) [σsens] = σsens
γ + prand(1 − σsens

γ ) (13)
≥ prand, (14)

since 0 ≤ σsens
γ ≤ 1. The specificity plots in Fig. 13 D-F show that increasing prand results in lower specificity

values. This is also reflected in Tab. 3. This table shows the informedness values for the different values of
prand. The informedness is also known as the Youden’s J statistic and is calculated as:

informedness = sensitivity + specificity − 1. (15)

It quantifies the performance of a dichotomous diagnostic test:

• below zero means worse than random;

• 0 equals random performance;

• Above zero indicates some degree of informed decision-making.

In Tab. 3, we see that increasing prand results in lower informedness, as a higher percentage of queries results
from random querying, rather than from querying based on exceeding the uncertainty threshold.
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Figure 13: Comparison of SAG with different values of prand (0.05 shown, 0.1 and 0.2). Sensitivity in A-C and
specificity in E-F are calculated over a moving window of 1000 failures and successes, respectively. Mean and
standard deviation are shown for ten repetitions. SAG can track a desired sensitivity for different values of prand.
However, it fails for σdes = 0.1 when prand = 0.2. This happens because the minimum trackable sensitivity is equal
to prand. The plots E-F show that increasing prand leads to lower specificity values.
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Table 2: Comparison of SAG with different values of prand. Sensitivity is calculated over the complete training
duration. Mean and standard deviation are shown for ten repetitions. Boldface is used to highlight the values
corresponding to the best sensitivity tracking.

σdes sensitivity prand = 0.05 sensitivity prand = 0.1 sensitivity prand = 0.2
0.1 0.113 ± 0.006 0.104 ± 0.003 0.200 ± 0.003
0.2 0.198 ± 0.012 0.207 ± 0.005 0.202 ± 0.003
0.3 0.298 ± 0.010 0.304 ± 0.009 0.309 ± 0.005
0.4 0.399 ± 0.006 0.397 ± 0.007 0.406 ± 0.007
0.5 0.493 ± 0.009 0.497 ± 0.008 0.507 ± 0.007
0.6 0.591 ± 0.006 0.598 ± 0.007 0.599 ± 0.005
0.7 0.696 ± 0.010 0.695 ± 0.005 0.699 ± 0.005
0.8 0.799 ± 0.010 0.793 ± 0.010 0.799 ± 0.006
0.9 0.897 ± 0.003 0.899 ± 0.004 0.900 ± 0.006

Table 3: Comparison of SAG with different values of prand. Informedness (Youden’s J statistic = sensitivity +
specificity − 1) is calculated over the complete training duration. Mean and standard deviation are shown for ten
repetitions. Boldface is used to highlight the values corresponding to the best informedness.

σdes informedness prand = 0.05 informedness prand = 0.1 informedness prand = 0.2
0.1 0.055 ± 0.006 0.003 ± 0.004 −0.000 ± 0.004
0.2 0.126 ± 0.011 0.092 ± 0.004 0.002 ± 0.004
0.3 0.209 ± 0.012 0.170 ± 0.010 0.094 ± 0.007
0.4 0.284 ± 0.007 0.245 ± 0.007 0.171 ± 0.010
0.5 0.349 ± 0.013 0.311 ± 0.015 0.249 ± 0.010
0.6 0.410 ± 0.010 0.375 ± 0.013 0.308 ± 0.010
0.7 0.464 ± 0.011 0.427 ± 0.014 0.365 ± 0.011
0.8 0.483 ± 0.025 0.460 ± 0.019 0.407 ± 0.015
0.9 0.456 ± 0.027 0.445 ± 0.014 0.403 ± 0.016
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A.4 Prioritized Interactive Experience Replay (PIER) Intuition

Prioritized Interactive Experience Replay (PIER) prioritizes the replay of demonstrations based on novice
success, uncertainty, and demonstration age. In Fig. 14, we visualize Eq. (6) to provide a more intuitive
understanding of the prioritization scheme. The red lines correspond to novice failures (r = −1), while the
green lines correspond to novice successes (r = 1). The black lines indicate r = 0, which occurs, for example,
for relabeled demonstrations where the goal was relabeled, and we do not know whether the novice would
act correctly. In this figure, we observe that for values of b close to 1, the priorities converge almost linearly
to 1, while for higher values of b, they converge exponentially.

0.0 0.2 0.4 0.6 0.8 1.0

Prioritization Exponent c

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P
rio

rit
ie

s
p

b=1.001

b=1.001

b=10

b=10

b=1000

b=1000

r = -1
r = 0
r = 1

Figure 14: Visualization of Eq. (6) showing priorities p over prioritization exponents c for various values of base b.

In summary, we prioritize demonstrations in the following order (from highest to lowest):

1. Novice failure demonstrations that are recent and have low uncertainty.

2. Novice failure demonstrations that are either recent or have low uncertainty.

3. Novice failure demonstrations that are neither recent nor have low uncertainty.

4. Offline or relabeled demonstrations.

5. Novice success demonstrations that are neither recent nor have low uncertainty.

6. Novice success demonstrations that are either recent or have low uncertainty.

7. Novice success demonstrations that are both recent and have low uncertainty.

A.5 Foresight Interactive Experience Replay (FIER) Oracle

The oracle used in the experiments from Sec. 5.2 is based on Shridhar et al. (2021). We extend this oracle
to provide relabeling demonstrations. Instead of querying a human teacher about the validity of the novice’s
planned actions, we execute these actions in simulation to verify the plan and then reset the environment to
its previous state.
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A.6 Considerations on Demonstration Types, Times, and Effort

The AIDA framework supports data collection through three modalities: annotation, relabeling, and vali-
dation. Each modality poses distinct challenges and places different demands on the user in terms of time
and physical or cognitive effort. As in other imitation learning approaches in robotics, time efficiency is a
more meaningful metric than data efficiency for evaluating real-world robot learning performance (Johns,
2022). A large portion of the overall data collection time is spent on environment setup, action execution,
and resetting. We illustrate this with quantitative results from the experiments in Sec. 5.3. All reported
timings are approximate and based on a 45-minute video recording of one experiment.

We measured the time required to provide each demonstration type in the assembly task. On average,
validation took 3.7 ± 1.9 seconds, relabeling 7.5 ± 1.9 seconds, and annotation 7.0 ± 3.8 seconds. Based on
these values, one might conclude that relabeling is the most time-consuming, while validation is the fastest.
However, following Johns (2022), a time-efficiency analysis should also account for the full process involved
in producing a demonstration, including environment resetting, issuing robot commands, model inference,
and action execution. In our setup: Resetting the environment took 8 seconds and was required every four
actions, averaging 2 seconds per action. Command generation was automated and took about 1 second to
execute. CLIPort model inference (including sensor processing, preprocessing, and interface delays) took
roughly 5 seconds. Action execution took approximately 25 seconds. Accounting for these overheads, a
validation demonstration takes about 37 seconds in total, and an annotation demonstration takes about
40 seconds. In contrast, a relabeling demonstration can be provided when prompted during an annotation
query and does not require additional resets, executions, or inference. Thus, its effective cost remains close
to 8 seconds, making it the most time-efficient modality overall. Moreover, since relabeled demonstrations
are not executed, relabeling does not block robot execution and can be done in parallel. We emphasize
that these timings are highly task- and interface-dependent and are provided here as illustrative examples.
Furthermore, time is only one aspect of demonstration cost; cognitive load and mental effort of the human
demonstrator are also important factors.

As noted, the cost (teaching effort) of each demonstration type is task- and interface-dependent. Nonetheless,
we can consider different scenarios for the experiments described in Sec. 5.2 and evaluate them. We discuss
three such scenarios (these are not exhaustive and may differ in likelihood):

• Scenario 1: Annotation demonstrations dominate the demonstration cost.

• Scenario 2: Annotation and validation demonstrations are equally costly and dominate the overall
cost.

• Scenario 3: All demonstration types are equally costly.

Results for these scenarios are shown in Fig. 15. In Scenario 1, AIDA shows a clear advantage over other
methods, achieving higher success rates during training for the same number of annotation demonstrations.
In Scenario 2, performance differences during training are less pronounced. However, AIDA still outperforms
other methods on the unseen tasks, as shown in Fig. 5. In Scenario 3, where all demonstration types incur
the same cost, AIDA has the highest total demonstration cost during training. Nonetheless, since it still
generalizes better to unseen tasks, whether to collect relabeling demonstrations becomes a trade-off between
generalization performance and demonstration cost.

A.7 CLIPort Implementation

Our implementation of CLIPort agents builds on Shridhar et al. (2021) with modifications for interactive
imitation learning. Efficient model updates are essential in this setting, as saving multiple checkpoints and
performing evaluation rollouts after each update is impractical. Thus, training stability is a priority. We
replace rectified linear units (ReLUs) with leaky ReLUs to prevent vanishing gradients. We also use a larger
batch size (8 in simulation, 3 in real-world experiments) than the original (1) (Shridhar et al., 2021). Our
batch training implementation is based on Wu (2024). Since batch training increases memory requirements,
we reduce the model size by removing the two middle layers from the ResNet streams with lateral connections,
the first language fusion layer, and its associated upscaling and lateral fusion layers.
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Figure 15: Novice success rate during training as a function of the number of collected annotation tuples (top row),
annotation + validation tuples (middle row), and annotation + validation + relabeling tuples (bottom row). Mean
and standard deviation are computed over ten policies using a moving window of 50 episodes. The top row shows
that when annotation demonstrations are the dominant demonstration cost (scenario 1), AIDA achieves a clear
performance gain on both seen and unseen tasks, benefiting from validation and relabeling demonstrations. The
middle row shows that when annotation and validation demonstrations are equally costly and dominate the total cost
(scenario 2), all methods perform similarly relative to demonstration cost, with AIDA offering a performance gain
only on unseen tasks. Finally, the bottom row shows that when all demonstration types are equally costly (scenario
3), AIDA performs better on unseen tasks but requires more costly training on seen tasks.

A.8 CLIPort Tasks

The CLIPort (Shridhar et al., 2021) benchmark defines seen and unseen settings. In the seen setting, com-
mands are identical to those used during training. In the unseen setting, test-time commands involve different
objects, shapes, or colors. We use the same seen and unseen sets as in the experiments by Shridhar et al.
(2021). The only difference is that, for tasks involving shapes and Google objects, we include shapes and
objects from the unseen set as distractors during training. Tab. 4 provides a complete overview of the seen
and unseen sets.

A.9 THRIFTYDAGGER Implementation

Similar to Hoque et al. (2022), gating is based on novelty and riskiness in our implementations of
ThriftyDAgger. For our novelty measure, we take the mean entropy of the pixel-wise value estimates over 5
dropout evaluations with a dropout rate of 0.3. We define riskiness as one minus the maximum value of the
pixel-wise value estimates during evaluation without dropouts.
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Table 4: Specifications of the seen and unseen sets in the CLIPort benchmark tasks (Shridhar et al., 2021). Shapes
are from Zeng et al. (2021), and Google scanned objects are from Downs et al. (2022).

Seen Unseen All
Colors cyan, yellow, brown, gray pink, orange, purple, white green, red, blue
Shapes letter R shape, letter A letter E shape, letter L

shape, triangle, square, plus, shape, ring, hexagon, heart,
letter T shape, diamond, letter M shape
pentagon, rectangle, flower,
star, circle, letter G shape,
letter V shape

Google alarm clock, android toy, ball puzzle, black and blue
Scanned black boot with leopard print, sneakers, black shoe with
Objects black fedora, black razer green stripes, brown fedora,

mouse, black sandal, black dinosaur figure, hammer, light
shoe with orange stripes, bull brown boot with golden laces,
figure, butterfinger lion figure, pepsi max box,
chocolate, c clamp, can pepsi next box, porcelain
opener, crayon box, dog salad plate, porcelain spoon,
statue, frypan, green and red and white striped towel,
white striped towel, grey red cup, screwdriver, toy
soccer shoe with cleats, hard train, unicorn toy, white
drive, honey dipper, razer mouse, yoshi figure
magnifying glass, mario
figure, nintendo 3ds, nintendo
cartridge, office depot box,
orca plush toy, pepsi gold
caffeine free box, pepsi wild
cherry box, porcelain cup,
purple tape, red and white
flashlight, rhino figure,
rocket racoon figure,
scissors, silver tape, spatula
with purple head, spiderman
figure, tablet, toy school bus

A.10 SAFEDAGGER Implementation

In our experiments, SafeDAgger (Zhang & Cho, 2017) is implemented as follows. In the original formulation
of SafeDAgger, a safety classifier is learned that takes as input the observation and novice policy and outputs
a binary prediction of whether the novice will deviate from the teacher policy. Later, more general definitions
of SafeDAgger have been introduced, e.g., by Menda et al. (2019), who formalize SafeDAgger as a decision
rule based on a discrepancy measure between novice and teacher actions. In our implementation, the decision
rule is based on the Q-value of the pixel-wise value estimates of the CLIPort model, since Zhang & Cho
(2017) describe that the safety policy is similar to a value function in the case of sparse rewards.

A.11 CLIPort Ablation

The comparison of AIDA with the baselines in Fig. 4 shows a clear performance improvement on the unseen
tasks. We attribute this gain to the recasting of failures as demonstrations, enabled by FIER (claim C3).
To support this explanation, we conducted an ablation study where AIDA is run without relabeling (AIDA
w/o relabeling), the only change being the omission of relabeling. The results, shown in Fig. 16, confirm
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that the performance improvement on unseen tasks is indeed due to relabeling, thus supporting claim C3.
With relabeling, AIDA achieves an average evaluation reward improvement of 62% across the four unseen
tasks.
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Figure 16: Cumulative rewards for evaluating checkpoints over 100 episodes on tasks with seen and unseen objects.
Mean and standard deviation are shown for ten policies using a moving window of 50 episodes. The results show
that relabeling demonstrations improve the performance of AIDA on the unseen scenarios.

A.12 Comparison between AIDA and Affordance Learning with Where2Act

In this section, we highlight the difference between AIDA, an on-policy data aggregation strategy, and
affordance learning methods (Mo et al., 2021; Mazzaglia et al., 2024; Wang et al., 2022; Ning et al., 2023;
Geng et al., 2023), which are designed to efficiently explore the large state-action space of affordances. AIDA
collects on-policy, goal-conditioned data and is tailored to perform well on the distribution of states and goals
encountered by the novice policy. In contrast, affordance learning methods such as Where2Act (Mo et al.,
2021) aim not to provide accurate predictions for a specific state distribution induced by a policy, but to
cover a broad range of the state-action space and typically require constant reward information. In short,
AIDA optimizes for on-policy performance, while affordance learning methods like Where2Act prioritize
coverage and generalization. To illustrate these differing objectives, we compare AIDA with Where2Act on
a task where we finetune a Where2Act model for the skill pushing, trained on the 10 training categories
from Mo et al. (2021), to the single category StorageFurniture (see Fig. 18). For comparison, AIDA uses the
same model architecture as Where2Act, and we do not collect expert demonstrations of successful poses or
relabeling demonstrations. As we use the Where2Act model for the novice policy, we can also learn from
failures and aggregate those into the dataset as well. Its policy is based on the prediction-biased adaptive
data sampling strategy from Where2Act.

Therefore, the main differences between the two methods in this setting are: AIDA uses the PIER replay pri-
oritization method (while Where2Act samples successes and failures with equal probability), AIDA includes
the SAG gating mechanism, and Where2Act explores using random actions 50% of the time.
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We used the following settings and parameters. For both methods, we collect data from the same number of
interactions (800) with the same update-to-data ratio (4 update steps every 16 interactions). For AIDA, we
use the sensitivity mode, with σdes = 0.9. For AIDA, we quantify the uncertainty u based on a least confidence
approach (Settles, 2009) based on the state-action value function Q, i.e. u = |1{Q(o, a) > 0.5} − Q(o, a)|.
For PIER, we used α = 0.5, λ = 0.5, b = 10, and β = 0. Please note that these parameters were not tuned.

The results for these experiments are shown in Fig. 17. These plots clearly show the different objectives of
AIDA and Where2Act. While AIDA performs better on-policy and on the seen shapes, Where2Act explores
more and performs better on the unseen shapes.
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Figure 17: Training and evaluation sample success rates and F-scores (balance between precision and recall) are
shown for finetuning on a single object category (StorageFurniture) for a pushing skill. We also show evaluation
results on seen an unseen StorageFurniture shapes. Mean and standard deviation are shown for five repetitions.
Random actions from Where2Act are excluded when calculating sample success rates and F-scores during training.
For comparison, AIDA was trained without annotation or relabeled demonstrations. AIDA is designed for on-policy
learning and performs better on the seen set of shapes. On the other hand, Where2Act (Mo et al., 2021) is designed
to efficiently explore the state-action space, leading to better generalization to unseen shapes.

Figure 18: Visualization of value maps and high-value proposals from AIDA (left) and Where2Act (Mo et al., 2021)
(right). Results are shown after finetuning on a single object category for a pushing skill and evaluating on an unseen
shape from that category. AIDA is designed for on-policy learning and performs better during policy execution. On
the other hand, Where2Act (Mo et al., 2021) performs active exploration, leading to better generalization to unseen
shapes, as qualitatively shown in the figure.
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A.13 Compute Resources

The MNIST experiments (Sec. 5.1) and real-world experiments (subsection 5.3 and subsection 5.4) were
performed using an RTX 3080 Mobile graphics card. The CLIPort simulation benchmark experiments
(Sec. 5.2) were performed using multiple A40 graphics cards on a high-performance computing cluster.
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