
Published as a conference paper at ICLR 2026

SERE: SIMILARITY-BASED EXPERT RE-ROUTING FOR
EFFICIENT BATCH DECODING IN MOE MODELS

Juntong Wu1,2,*, Jialiang Cheng1,*,†, B, Fuyu Lv1, Ou Dan1, Li Yuan2, B

1 Taobao & Tmall Group of Alibaba
2 Shenzhen Graduate School, Peking University
Correspondence: jichen.cjl@alibaba-inc.com, yuanli-ece@pku.edu.cn

ABSTRACT

Mixture-of-Experts (MoE) architectures employ sparse activation to deliver faster
training and inference with higher accuracy than dense LLMs. However, in pro-
duction serving, MoE models require batch inference to optimize hardware effi-
ciency, which may cause excessive expert activation and thus slow the memory-
bound decoding stage. To address the fundamental tension between batch decod-
ing and expert sparsity, we present SERE, a Similarity-based Expert Re-routing
method for Efficient batch decoding in MoE models. SERE dynamically reduces
the number of active experts in an input-aware manner by re-routing tokens from
secondary experts to their most similar primary counterparts. It also leverages sim-
ilarity patterns to identify and preserve critical experts, thereby preventing capabil-
ity loss. Notably, SERE avoids static expert pruning or merging, instead enabling
dynamic expert skipping based on batch-level expert redundancy. Additionally,
we provide an efficient custom CUDA kernel for SERE, enabling plug-and-play
use in vLLM with only a single-line code change.1 Extensive experiments on var-
ious complex reasoning benchmarks demonstrate that SERE achieves up to 2.0×
speedup with minimal quality loss, providing a practical solution for cost-efficient
and latency-sensitive large-scale MoE deployment.

1 INTRODUCTION

1 8 16 32 48 64 80 96 112 128
Batch Size

0

20

40

60

80

100

120

Av
er

ag
e A

ct
iv

at
ed

 E
xp

er
ts

8.0

35.1

50.8

66.0

77.1 78.9
84.5 87.9 90.1 93.4

Min-Max Range
Average Activation

8 24 40 56 72 88 104 120
Active Experts

0

100

200

300

400

500

Av
er

ag
e

M
oE

 T
im

e
(

s)

BS=16
BS=32
BS=48

BS=64
BS=80
BS=96

Figure 1: Larger batches activate
more experts. With a fixed batch size,
more experts increase decoding time.

Large Language Models (LLMs) have shown remarkable
performance across various applications. Recently, the
Mixture-of-Experts (MoE) paradigm has emerged as a lead-
ing framework for scaling LLMs (Yang et al., 2025a; Liu
et al., 2024b; Touvron et al., 2023; Jiang et al., 2024). Un-
like dense LLMs that activate the entire feed-forward net-
work (FFN) for every token, an MoE layer consists of mul-
tiple lightweight FFN experts, where a learnable router as-
signs each token to a small subset. By maintaining low
per-token computation, sparse activation enables the model
to incorporate numerous specialized experts, scaling its ca-
pacity while preserving training and inference efficiency.

Despite the theoretical efficiency of MoE architectures,
their practical gains are often limited by a mismatch be-
tween selective activation and batched inference (Kwon
et al., 2023; Agrawal et al., 2024; Gupta et al., 2024). In
real-world services, multiple user requests are batched to
improve hardware utilization (Kwon et al., 2023). How-
ever, tokens within a batch often require different experts,
leading to a total number of activated experts far above the
per-token budget (Agrawal et al., 2024; Yun et al., 2024).
As depicted in Figure 1, even with strict limits (e.g., 8 out

* Equal contribution † Project Lead B Corresponding author
1 Code implementation of SERE can be found in https://github.com/JL-Cheng/SERE.

1

mailto:jichen.cjl@alibaba-inc.com
mailto:yuanli-ece@pku.edu.cn
https://github.com/JL-Cheng/SERE

Published as a conference paper at ICLR 2026

44.4

28.0

Qwen3
30B-A3B

39.2

DeepSeek
V2-Lite

26.3

18.5

Qwen1.5
A2.7B

Origin LYNX SERE

(b) Time Per Output Token (ms) for Different Models

19.6

36.8%
33.8

(a) Accuracy Maintained for Different Methods

Origin LYNX SERE Origin LYNX SERE

50.2% 29.6%
24.9 20.0HC-SMoE

SERE (Ours.)

Qwen3-30B-A3B

SERE (Ours.)

Qwen3-30B-A3B

LYNX

BBH

BoolQMATH

GSM8K

MATH401 MBPP

HumanEval

84.8

90.2

76.7

78.4

87.2

72.2

89.2

79.0
64.0

53.254.8

54.2

53.4

65.4

64.5

16.9

3.3
10.1

10.4
CMMLU

6.9

(K=8)

(K=2)

(48 Exps.)

(K=1)

 (K=2)

 (K=1)

(a) Accuracy Maintained

44.4

28.0

Qwen3
30B-A3B

39.3

DeepSeek
V2-Lite

26.4

18.5

Qwen1.5
A2.7B

Origin LYNX SERE

(b) Time Per Output Token (ms) for Different Models

19.6

36.8%
33.8

(a) Accuracy Maintained for Different Methods

Origin LYNX SERE Origin LYNX SERE

50.2% 29.6%

20.6
20.0HC-SMoE

SERE (Ours.)

Qwen3-30B-A3B

SERE (Ours.)

Qwen3-30B-A3B

LYNX

BBH

BoolQMATH

GSM8K

MATH401 MBPP

HumanEval

84.8

90.2

76.7

78.4

87.2

72.2

89.2

79.0
64.0

53.254.8

54.2

53.4

65.4

64.5

16.9

3.3
10.1

10.4
CMMLU

6.9

(K=8)

(K=2)

(48 Exps.)

(K=1)

 (K=2)

 (K=1)

(b) Time Per Output Token (ms)

Figure 2: Visualizations of SERE’s Performance. (a) Across all tasks, SERE (K=2) exhibits negli-
gible performance loss, while SERE (K=1) still outperforms all baselines. (b) SERE significantly
reduces batch decoding time, achieving up to 2× acceleration.

of 128 in Qwen3-30B-A3B (Yang et al., 2025a)), a moderately diverse batch can still activate a ma-
jority of the experts simultaneously. Moreover, the training-time load-balancing objectives further
increase the expert diversity within a batch (Lepikhin et al., 2021; Liu et al., 2024b). This issue is
particularly acute during decoding (Yun et al., 2024), where sequential token generation makes the
process memory-bandwidth-bound. As also can be seen from Figure 1, activating excessive experts
during decoding raises communication and memory-access overhead and thus increases latency.
Addressing the conflict between batched inference and sparse expert activation is therefore crucial
for unlocking the practical scalability of MoE architectures (Zoph et al., 2022; Liu et al., 2024b).

To address the problem mentioned above, various expert-reduction methods are proposed, which
can generally be classified into static model compression and dynamic expert skipping. Static meth-
ods typically remove or merge experts in a fixed, pre-defined manner (Yang et al., 2024; Liu et al.,
2024c; Chen et al., 2025; Ai et al., 2025). While these methods can efficiently reduce the memory
footprint, they typically involve significant computational costs, rely on task-specific insights, and
might reduce the model’s capacity and ability to generalize. Dynamic methods modify expert ac-
tivation at runtime based on token-level signals (Zhong et al., 2024; Huang et al., 2024; Lu et al.,
2024; Gupta et al., 2024; Yang et al., 2025b). These methods depend solely on router scores, over-
look intrinsic expert characteristics, and often require extra training or threshold tuning. Moreover,
their complex token-by-token operations or modification of the decoding process hinder integration
with high-performance inference frameworks, such as vLLM (Kwon et al., 2023), which limits their
practicality in large-scale deployment.

Starting with these observations, we propose SERE, a Similarity-based Expert Re-routing method
for Efficient batch decoding in MoE models. SERE is motivated by three key observations. First,
many experts within an MoE layer exhibit high functional similarity. Therefore, SERE re-routes
tokens from a subset of experts to their most similar counterparts, reducing the number of active
experts with minimal capacity loss. Second, a small set of high-ranked primary experts dominate
gating weights and output contributions, whereas secondary experts contribute little. SERE retains
all primary experts and only re-routes secondary ones, thereby preserving dominant contributors
while minimizing redundancy. Third, certain critical experts are highly dissimilar to others and
specialize in unique input patterns. SERE preserves these experts to prevent capability degradation
during re-routing. In summary, SERE employs a dynamic, input-aware strategy that jointly consid-
ers token characteristics and inter-expert similarity, skipping more experts when redundancy is high
and fewer when diversity is essential for accuracy. The expert similarity matrix is pre-computed
once from a general calibration set, requiring no retraining or task-specific tuning. For deployment,
we implement an efficient custom CUDA kernel for SERE that can be seamlessly integrated into
the widely used vLLM framework (Kwon et al., 2023), enabling plug-and-play use with only a
single-line code change.

The contributions of our work are summarized as follows:

1. We propose SERE, a similarity-based expert re-routing method for accelerating batch decoding
in MoEs. SERE significantly reduces the number of active experts while maintaining model
performance, enabling faster decoding.

2. We develop an efficient, plug-and-play CUDA kernel for SERE that works with various MoE
models and can be easily integrated into the vLLM framework (Kwon et al., 2023).

2

Published as a conference paper at ICLR 2026

3. We perform extensive experiments on multiple state-of-the-art MoE models. (Bai et al., 2023;
Liu et al., 2024a; Yang et al., 2025a). As shown in Figure 2, SERE achieves up to 2.0× speedup
with minimal impact on output quality.

2 RELATED WORK

Recent work on expert reduction can be mainly divided into two categories: static model compres-
sion and dynamic expert skipping.

Static Model Compression methods leverage redundancy among experts to perform pruning or
merging operations. For example, MoE-I2 (Yang et al., 2024) reduces the size of MoE models
via a two-stage process of inter-expert pruning and intra-expert low-rank decomposition. EEP (Liu
et al., 2024c) employs an evolutionary search that prunes experts and merges their knowledge into
the remaining subsets. HC-SMoE (Chen et al., 2025) applies hierarchical clustering based on expert
similarity to iteratively merge similar experts. Other approaches, such as DeRS (Zhang et al., 2025a),
D2-MoE (Gu et al., 2025), and ResMoE (Ai et al., 2025), represent experts with shared weights
augmented by low-rank residuals. While effective in reducing model size, these methods often incur
high computation costs, rely heavily on calibration data and task-specific priors, and risk reducing
the model’s capacity and generalization ability due to decreased expert diversity.

Dynamic Expert Skipping aims to reduce the number of activated experts during inference dynam-
ically. For instance, Top-p routing (Huang et al., 2024) selects experts dynamically based on the
confidence scores for each input. AdaMoE (Zhong et al., 2024) and MoE++ (Jin et al., 2025) enable
token-adaptive routing via introducing null experts. Yang et al. proposes a layer-wise and fine-
grained top-k reduction strategy to improve inference efficiency. NAEE (Lu et al., 2024) skips less
critical experts via token-wise analysis of router weights, and LYNX (Gupta et al., 2024) employs
batch-aware confidence estimation to filter out less relevant experts for unimportant tokens. While
effective in reducing computation, these methods often require extra training, operate at coarse
granularity, and overlook intrinsic expert characteristics by relying solely on router scores. Their
per-token operations also incur overhead and are challenging to integrate with high-performance
inference frameworks, limiting their practical benefits in large-scale deployment.

3 METHOD

Expert 1

Expert 2

Expert 3

Expert 4

R
outer

Token 1

Token 2

Token 3

Token 4

Logits 1

Logits 2

Logits 3

Logits 4

Input

Input

Input

Input

Output

Output

Output

Output

Route
Top-2

…

…

…

Expert 1

Expert 2

Expert 3

Expert 4

Expert 1

Expert 2

Expert 3

Expert 4

Expert 1

Expert 2

Expert 3

Expert 4

Re-route

Similarity Matrix

Original Route SERE (Top-1)

Expert 1

Expert 2

Expert 3

Expert 4

Primary Expert

Secondary Expert

Secondary Expert

Primary Expert

𝒔 > 𝝆✅

❌ 𝒔 < 𝝆

Retain

Argmax

Argmax

Figure 3: Illustration of SERE with 4 tokens and 4 experts as example. Tokens are first routed to
top-2 experts. SERE preserves the primary experts (1 and 4) and re-routes the secondary experts (2
and 3). As a result, Expert 2 is replaced by Expert 1, while Expert 3 remains active as its similarity
to all active experts falls below the threshold.

To accelerate batched decoding in MoE models, we propose SERE, a dynamic, input-aware expert
skipping method. As illustrated in Figure 3, SERE preserves the primary experts for all tokens as
well as the critical experts within each layer, and re-routes tokens from secondary experts to their
most similar retained counterparts. This dynamic strategy achieves substantial decoding speedups
while maintaining model performance. In the remainder of this section, we introduce the design
motivations and technical components of SERE. We begin with expert similarity estimation (Sec.

3

Published as a conference paper at ICLR 2026

3.1), then describe the similarity-based dynamic re-routing mechanism (Sec. 3.2), and finally
present the implementation of a high-performance CUDA kernel for integration into large-scale
inference frameworks (Sec. 3.3).

3.1 EXPERT SIMILARITY ESTIMATION

3.1.1 SIMILARITY MATRIX COMPUTATION

We adopt a data-driven approach to measure expert similarity in MoE models. Consider an MoE
model with L layers, where each layer l contains M experts {E(l)

1 , . . . ,E
(l)
M }. Using a calibration

dataset Dcalib, we process N batches and aggregate the results to obtain robust similarity estimates.
For each batch i ∈ [1, N], let X(0)

i denote the input embeddings. In each layer l, expert activa-

tions are obtained as A
(l)
i,j = E

(l)
j

(
X

(l−1)
i

)
, after which pairwise similarities are computed via a

predefined similarity function Sim(·, ·):

S(l)
p,q += Sim

(
A

(l)
i,p, A

(l)
i,q

)
, 1 ≤ p, q ≤M. (1)

Common choices of Sim(·, ·) include Cosine Similarity, Frobenius norm, and centered kernel align-
ment (CKA) (Kornblith et al., 2019). More details can be found in Appendix A.2.

After all N iterations, the accumulated similarity matrices are normalized to obtain the average
layer-wise similarity: S(l) = S(l)/N . The resulting set {S(l)}Ll=1 provides a quantitative view of
the similarity relationships between experts within the same layer. High similarity values indicate
potentially redundant experts, while low values reflect diverse expert specialization. The pseudocode
is provided in Algorithm 1 in Appendix A.4.

3.1.2 SIMILARITY MATRIX INSIGHTS

0 25 50 76 101 127 0 25 50 76 101 127 0 25 50 76 101 127

0

25

50

76

101

127

0

25

50

76

101

127

0

25

50

76

101

127

1.0

0.8

0.6

0.4

0.2

0.0

Average Similarity

0 6 12 18 24 30 36 42

E
xp

er
t I

nd
ex

Layer 47Layer 6Layer 1

Expert Index Expert Index Expert Index Layer Index

1.0

0.8

0.6

0.4

0.2

0.0

Figure 4: Visualization of the expert similarity matrices and the average expert similarity across all
layers in Qwen3-30B-A3B (Yang et al., 2025a).

We computed the expert similarity matrices for all layers of the Qwen3-30B-A3B model (Yang et al.,
2025a), with representative heatmaps and layer-wise average statistics shown in Fig. 4. The results
reveal three notable patterns. First, within each layer, groups of experts exhibit consistently high
pairwise similarity, indicating functional redundancy. Second, similarity patterns vary substantially
across layers — Layer-1 has the highest average similarity, with nearly all pairs above 0.9, while
Layer-6 has the lowest average similarity, with most pairs below 0.4. Third, every layer contains crit-
ical experts whose similarity to all others is exceptionally low, as indicated by heatmaps that display
distinct horizontal and vertical stripes. Even in Layer 1, Expert 92 stands out as a critical expert, with
a similarity of less than 0.1 to all others. These observations illustrate the balance between redun-
dancy and specialization in MoE architectures, highlighting that certain experts contribute uniquely
to model capacity while others may provide overlapping functionality. More visualization results of
expert similarity matrices for different MoE models are provided in Appendix C.3. These results
demonstrate that high expert similarity is common in MoE models, regardless of whether upcycling
initialization (Komatsuzaki et al., 2023) is employed.

4

Published as a conference paper at ICLR 2026

Key Insights:
1. Layer-wise redundancy: Within each layer, groups of experts exhibit high pairwise similarity.
2. Cross-layer variation: Average expert similarity varies substantially across layers.
3. Critical experts: Each layer contains critical experts with uniformly low similarity to all others.

3.2 SIMILARITY-BASED EXPERT RE-ROUTING MECHANISM

3.2.1 DESIGN MOTIVATION

Top1 Top2 Top3 Top4
0.0

0.2

0.4

Pe
rc

en
ta

ge
 (%

)

 0.415

0.258
0.182

0.142

Top-k Expert Probability

Figure 5: Weights Distribution

To accelerate batch decoding in MoE models by reduc-
ing the number of active experts, two key questions arise:
(1) Which active experts should be skipped? and (2) How
should they be handled?

For the first question, analysis of router weights distribution
(Fig. 5) reveals that top-ranked (primary) experts dominate
output activations and should therefore be retained, whereas
low-ranked (secondary) experts contribute less and are nat-
ural skip candidates. To address the second question, we
leverage insights from Sec. 3.1.2. Because layers contain
groups of highly similar experts, tokens from a skipped sec-
ondary expert can be re-routed to its most similar retained primary expert, thus mitigating disruption
to output activations. However, the analysis also identifies critical experts whose removal would de-
grade performance. We therefore introduce a similarity threshold that ensures such critical experts
are always retained.

3.2.2 RE-ROUTING PROCESS

Building upon the observations and motivation, we now present our SERE method in detail. Let
R(l)(·) denote the router function in layer l of the MoE model. For a token t ∈ T , R(l)(t) =

(E
(l)
r1 ,E

(l)
r2 , . . . ,E

(l)
rK) is the ordered list of K experts selected for t by descending router weight,

and rk ∈ {1, . . . ,M} denotes the index of the k-th ranked expert.

Step 1: Primary expert selection. We identify the primary expert set in layer l as the union of the
Top-S experts over all tokens in the current batch:

E(l)p =
⋃
T

{
E(l)

rk

∣∣ 1 ≤ k ≤ S
}
. (2)

Here, S ∈ [1,K) is a hyperparameter controlling the size of the primary expert set. Smaller S

leads to fewer activated experts and higher acceleration, but may degrade quality. Experts in E(l)p are
considered important and are always retained.

Step 2: Similarity-based re-routing for secondary experts. For each secondary expert E(l)
u ∈(⋃

t∈T R(l)(t)
)
\ E(l)p , we use the similarity matrix S(l) to find its most similar primary expert:

sim∗
u = max

E
(l)
v ∈E(l)

p

S(l)
u,v, v∗u = argmax

E
(l)
v ∈E(l)

p

S(l)
u,v. (3)

If sim∗
u ≥ ρ, where ρ ∈ [0, 1] is a similarity threshold, we re-route all tokens originally assigned

to E
(l)
u to the most similar primary expert E(l)

v∗
u

. If sim∗
u < ρ, E(l)

u is determined as a critical expert
and preserved to avoid unsafe substitutions. It should be noted that the re-routing process does not
modify the router weights. The formulaic expression is as follows:

∀ tj : E(l)
u ∈ R(l)(tj) ∧ sim∗

u ≥ ρ =⇒ E(l)
u ← E

(l)
v∗
u
. (4)

Step 3: Final execution. After re-routing, the final active expert set in layer l is:

E(l)final = E
(l)
p ∪ {E(l)

u | sim∗
u < ρ}, (5)

which contains all primary experts and any preserved critical secondary experts. The MoE layer
then utilizes this updated token-to-expert mapping to produce the output activations.

5

Published as a conference paper at ICLR 2026

3.3 HIGH-PERFORMANCE KERNEL IMPLEMENTATION

We further develop a high-performance, hardware-friendly, and plug-and-play CUDA kernel for
SERE. The implementation is model-agnostic, compatible with a wide range of MoE architectures,
and can be integrated seamlessly into the vLLM framework (Kwon et al., 2023) without requiring
modifications to its core execution pipeline. The pseudocode is outlined in Algorithm 2 in Appendix.

In practice, this CUDA-accelerated SERE achieves substantial speedups in batch decoding while
preserving model accuracy, making it readily deployable in both research and production environ-
ments. Besides, enabling SERE requires only a single additional line of code, ensuring effortless
adoption in existing MoE inference pipelines.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Models We evaluate SERE on three representative MoE models: Qwen1.5-MoE-A2.7B-Chat (Bai
et al., 2023), DeepSeekV2-Lite (Liu et al., 2024b), and Qwen3-30B-A3B (Yang et al., 2025a).

Baselines We compare SERE against several SOTA methods, including HC-SMoE (Chen et al.,
2025), Top-K reduction (Yang et al., 2025b), and LYNX (Gupta et al., 2024). All baselines are
implemented using official code or reproduced in strict accordance with the original papers to ensure
a fair comparison.

Benchmarks For accuracy evaluation, we use reasoning tasks from OpenCompass (Contribu-
tors, 2023) across three domains: Exam (CMMLU (Li et al., 2024), BoolQ (Clark et al., 2019),
BBH (Suzgun et al., 2023)), Math (Math (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021),
Math 401 (Yuan et al., 2023)), and Code (HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021)). CoT mode is used for CMMLU and BoolQ. For acceleration evaluation, we measure Time
per Output Token (TPOT) under varying Queries per Second (QPS) using vLLM (Kwon et al.,
2023), with each model deployed on a single GPU. Input/output lengths are fixed at 128/32 tokens.

Hyper-Parameters We use the Frobenius norm as the similarity metric and FineWeb-Edu (Lozhkov
et al., 2024) (400 sequences×128 tokens) as the calibration dataset. For expert merging methods,
pruning rates are chosen to match the TPOT of expert skipping methods for a fair comparison. All
experiments are conducted on NVIDIA H20 GPUs.

For more detailed settings, please refer to Appendix B.

4.2 ACCURACY COMPARISON

We comprehensively evaluate SERE and competitive baselines on the aforementioned models and
benchmarks, Table 1, 2, and 3 present both accuracy and per-token decoding latency (TPOT).

Methods \Tasks Exam Math Code Avg.
(Acc. ↑)

TPOT
(ms. ↓)cmmlu boolq bbh math gsm8k math401 heval mbpp

Qwen1.5-A2.7B top4 69.58 80.46 34.97 14.38 51.86 60.60 45.73 30.60 48.52 17.29

Qwen1.5-A2.7B top2 66.69 75.87 32.26 12.92 44.28 51.36 32.02 27.40 42.85 13.53
HC-SMoE 40 experts 45.11 74.95 29.01 4.26 27.67 42.64 4.88 1.80 28.79 14.20
LYNX top2 42.57 78.62 23.59 9.56 29.57 34.41 8.54 7.40 29.28 14.49
SERE top2; ρ=0.0 68.12 80.15 33.16 14.06 50.19 58.35 46.95 26.20 47.15 13.83
SERE top2; ρ=0.3 68.49 79.97 34.61 14.66 51.63 58.35 42.68 27.60 47.25 13.93

Qwen1.5-A2.7B top1 45.12 48.35 29.47 5.24 26.16 46.13 15.85 14.80 28.89 11.47
HC-SMoE 30 experts 7.93 34.19 29.14 1.72 8.95 29.18 0.61 0.00 13.97 13.30
LYNX top1 16.60 77.68 15.10 0.68 2.12 10.22 0.00 0.20 15.33 12.95
SERE top1; ρ=0.0 60.09 79.85 32.71 7.58 33.36 52.12 17.07 20.20 37.87 12.13
SERE top1; ρ=0.3 65.83 78.69 33.62 9.74 39.88 53.12 17.07 20.60 39.82 12.95

Table 1: OpenCompass and TPOT (QPS=16) results on Qwen1.5-MoE-A2.7B. Bold for the best.

6

Published as a conference paper at ICLR 2026

Methods \Tasks Exam Math Code Avg.
(Acc. ↑)

TPOT
(ms. ↓)cmmlu boolq bbh math gsm8k math401 heval mbpp

DeepSeekV2-Lite top6 53.34 82.39 49.37 23.82 59.14 70.32 54.27 45.40 54.76 26.35

DeepSeekV2-Lite top2 36.91 73.67 42.51 15.90 52.39 65.84 40.85 34.80 45.36 19.51
HC-SMoE 48 experts 39.74 80.70 41.97 9.16 47.92 45.14 10.98 7.00 35.33 22.36
LYNX top2 16.32 68.62 19.68 9.06 31.92 33.67 10.37 2.40 24.01 22.07
SERE top2; ρ=0.0 53.13 82.11 48.67 23.04 61.03 71.07 56.10 45.80 55.12 21.60
SERE top2; ρ=0.3 53.04 82.02 49.11 23.80 60.50 69.83 58.54 47.00 55.48 23.12

DeepSeekV2-Lite top1 19.41 58.90 33.81 2.56 17.82 48.88 7.93 7.60 24.61 18.02
HC-SMoE 32 experts 26.51 63.06 33.48 0.94 6.29 13.97 0.00 0.80 18.13 20.28
LYNX top1 2.16 49.91 3.96 0.14 1.29 2.00 0.00 0.00 7.43 20.00
SERE top1; ρ=0.0 53.81 82.11 48.69 23.74 58.53 72.32 57.93 45.40 55.32 18.54
SERE top1; ρ=0.3 53.49 82.63 48.90 22.94 59.36 71.32 59.15 47.20 55.62 20.59

Table 2: OpenCompass and TPOT (QPS=16) results on DeepSeekV2-Lite. Bold for the best.

Methods \Tasks Exam Math Code Avg.
(Acc. ↑)

TPOT
(ms. ↓)cmmlu boolq bbh math gsm8k math401 heval mbpp

Qwen3-30B-A3B top8 84.88 90.21 76.70 72.28 89.23 79.05 87.20 78.40 82.24 44.40

Qwen3-30B-A3B top2 10.01 60.52 10.48 3.38 6.97 16.96 3.66 2.40 14.30 30.97
HC-SMoE 80 experts 45.62 83.94 65.11 59.86 79.23 64.84 86.59 70.20 69.42 39.14
LYNX top2 81.36 90.12 72.27 69.10 80.44 76.81 84.15 73.40 78.46 38.21
SERE top2; ρ=0.0 81.24 89.79 71.33 70.22 82.41 80.80 82.93 63.80 77.82 32.12
SERE top2; ρ=0.5 81.51 90.37 74.15 72.06 85.97 81.55 85.37 72.00 80.37 32.82

Qwen3-30B-A3B top1 0.00 61.68 4.89 0.08 0.91 1.25 0.00 0.00 8.60 27.28
HC-SMoE 48 experts 32.78 64.53 51.66 34.36 40.79 54.86 49.39 44.20 46.57 33.45
LYNX top1 70.76 88.26 59.08 44.28 48.37 47.88 55.49 46.00 57.52 33.38
SERE top1; ρ=0.0 60.53 85.08 57.64 46.98 52.08 52.12 32.32 31.40 52.27 28.04
SERE top1; ρ=0.5 77.89 89.76 65.45 53.40 54.28 54.86 64.02 53.20 64.11 33.10

Table 3: OpenCompass and TPOT (QPS=16) results on Qwen3-30B-A3B. Bold for the best.

SERE consistently achieves the best trade-off between accuracy and inference efficiency. With
aggressive expert skipping (e.g., Top-2), SERE maintains over 97% of the original model’s accuracy
across all tasks, while reducing decoding latency by up to 1.6× on Qwen3 and 1.4× on Qwen1.5
and DeepSeekV2. In contrast, direct Top-K reduction yields the lowest latency but causes severe
performance degradation (up to 90% accuracy drop), indicating a significant loss of model capacity.

HC-SMoE and LYNX achieve competitive performance on Qwen3 but show significant accuracy
drops on Qwen1.5 and DeepSeekV2, particularly for math and code tasks. This may stem from ar-
chitectural differences: Qwen3 contains more fine-grained and redundant experts, allowing greater
tolerance to merging or skipping, whereas Qwen1.5 and DeepSeekV2 have fewer, more special-
ized experts and are thus more sensitive to expert selection. Methodologically, HC-SMoE’s static
merging reduces expert diversity, while LYNX ignores expert characteristics, thereby both impairing
reasoning capability. In contrast, SERE incorporates both inter-expert similarity and the preserva-
tion of critical experts into its dynamic skipping strategy, removing redundancy while safeguarding
essential capacity, thereby delivering consistently superior performance across all models and tasks.

Furthermore, we can observe that SERE performs well even without preserving critical experts
(ρ = 0), while preservation (ρ > 0) brings further accuracy gains with negligible latency. The
similarity threshold provides fine-grained control over the trade-off between capability and speed.

4.3 ACCELERATION COMPARISON

In this section, we compare the acceleration performance of different methods across multiple mod-
els and QPS settings. As shown in Figure 6, SERE consistently achieves substantial reductions in
decoding latency under all evaluated QPS conditions. For Qwen3 and DeepSeekV2, SERE yields a
1.2× to 1.6× speedup, while for Qwen1.5, the acceleration ratio reaches up to 2.0×when QPS= 24,
with almost no performance loss (See Section 4.2). Moreover, the CUDA-implemented SERE de-

7

Published as a conference paper at ICLR 2026

K=4 K=2 K=1

8

10 9.9
9.3 9.5

8.9
(1.1×)

8.7 9.0
8.3

(1.2×)

QPS = 8

K=4 K=2 K=1
10

15

17.3
15.4 16.0

13.8
(1.3×)

13.2 13.6
12.1
(1.4×)

QPS = 16

K=4 K=2 K=1

20

30

40 39.3

25.0 25.7
22.9
(1.7×)

20.6 22.1
19.7
(2.0×)

QPS = 24

K=4 K=2 K=1

30

40

50

41.7
45.0 43.9

39.0
(1.1×)

34.9
37.3

31.0
(1.3×)

QPS = 32

K=6 K=2 K=1

10

12

14

16

14.3

12.5 12.7
11.9
(1.2×)

12.0 11.7
10.9
(1.3×)

QPS = 8

K=6 K=2 K=1
15

20

25

30

26.4

22.1 23.2
21.6
(1.2×)

20.0
21.3

18.5
(1.4×)

QPS = 16

K=6 K=2 K=1

40

50
51.8 50.9 50.9

45.9
(1.1×)

40.2
44.9

38.7
(1.3×)

QPS = 24

K=6 K=2 K=1

80

100

120 110
116 117

100
(1.1×)

93.3
103

80.2
(1.4×)

QPS = 32

K=8 K=2 K=1

15

20 19.5
18.2 17.4 17.0

(1.1×)
16.2 16.9

14.7
(1.3×)

QPS = 8

K=8 K=2 K=1

30

40

50
44.4

38.2
41.7

32.8
(1.4×)

33.8

40.0

28.0
(1.6×)

QPS = 16

K=8 K=2 K=1

75

100

125

93.4
99.6

120

84.7
(1.1×)

87.3
101

72.6
(1.3×)

QPS = 24

K=8 K=2 K=1

150

200 196
208 217

189
(1.0×)

191
205

164
(1.2×)

QPS = 32

Qwen1.5-A2.7B

DeepSeekV2-Lite

Qwen3-30B-A3B

Baseline LYNX SERE (PyTorch) SERE (CUDA)

Figure 6: Batched Inference Latency between different methods in different QPS and Top-K.

livers approximately 1.5× speedup over the PyTorch version. Besides, as shown in Figure 7c, the
additional re-routing overhead is negligible relative to expert computation and remains stable across
batch sizes. These results confirm the efficiency of the custom CUDA kernel.

We further analyze the variation in the average activated expert count under different Top-K settings.
As shown in Fig. 7a, the count grows logarithmically with batch size for all Top-K values, and
larger K consistently leads to more activations. The results indicate that the primary activated
experts for different tokens are highly concentrated, which explains why SERE achieves significant
acceleration. Furthermore, Fig. 7b shows that the inter-layer differences in activated expert count
become more pronounced as K increases, highlighting the importance of dynamic expert skipping,
where more aggressive skipping is applied to layers with higher activations.

We also examine how SERE behaves in the prefill stage, with details presented in Appendix C.2.

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Batch Size

0

20

40

60

80

100

Av
er

ag
e A

ct
iv

at
ed

 E
xp

er
ts

Top-1
Top-2
Top-3
Top-4

Top-5
Top-6
Top-7
Top-8

(a) Activated No. vs. Batch Size.

0 4 8 12 16 20 24 28 32 36 40 44 48
Layer ID

0

20

40

60

80

Av
er

ag
e A

ct
iv

at
ed

 E
xp

er
ts

Top-1
Top-2

Top-3
Top-4

Top-5
Top-6

Top-7
Top-8

(b) Activated No. vs. Layer No.

Batch Attn SERE MLP

16 115 6 137
24 117 6 186
32 119 6 227
64 119 6 233

(c) Computation cost breakdown.

Figure 7: (a)&(b) Average activated expert count of Qwen3-30B-A3B under different Top-K: vari-
ation with batch size and across layers (batch size=32). (c) Computational cost breakdown (µs) of
key MoE operations for Qwen3-30B-A3B at varying batch sizes.

4.4 ABLATION STUDY

Ablation on Similarity Threshold We conduct experiments under both Top-1 and Top-2 settings,
varying the threshold from 0.0 to 1.0, where ρ = 1.0 corresponds to the original model without
any expert skipping. The resulting speedup and average accuracy for the three models are shown in
Figure 8. Up to a point, increasing the threshold improves accuracy while adding only negligible
decoding latency. Beyond that point, accuracy continues to rise, but the speedup drops sharply, in-
dicating that too many active experts are being retained. In practice, the threshold at this inflection
point offers a good balance between accuracy and latency. For example, in the case of Qwen3-30B-
A3B, a threshold of 0.5 achieves this balance. We also notice that DeepSeekV2 maintains relatively
stable performance across different settings, whereas Qwen3 and Qwen1.5 exhibit notable perfor-

8

Published as a conference paper at ICLR 2026

mance fluctuations. This finding highlights the substantial architectural and functional differences
among different MoE models. More analysis on threshold can be found in Appendix C.1.

Threshold

Qwen3-30B-A3B

Sp
ee

dU
p

 (x
)

Qwen1.5-A2.7B DeepSeekV2-Lite

Threshold Threshold

A
vg

. P
er

fo
rm

an
ce

 (%
)

Figure 8: Speedup and Performance (Acc) under different similarity thresholds across models.

Ablation on Similarity Matrix Computation We investigate how different similarity metrics,
parameter-based similarity measures, calibration datasets, and calibration data volumes used to com-
pute the expert similarity matrix can potentially affect the overall performance and stability of SERE
across downstream tasks. For similarity metrics, we compare Frobenius similarity, cosine similarity,
and CKA-based similarity (Kornblith et al., 2019). For the data-free, parameter-based similarity
computation methods, we follow Zhang et al. (2025b) and adopt two strategies for combining expert
parameters: (1) Concat method that directly concatenates the three weight matrices {θ1, θ2, θ3},
and (2) Logic method that constructs a composite weight as θ3(θ1 · θ2). For calibration datasets,
we use general datasets including FineWeb-Edu (Lozhkov et al., 2024), C4 (Raffel et al., 2020), and
WIKI (Merity et al., 2017), together with domain-specific datasets derived from specific domains
(Exam, Math, Code) and the mixed domains (OpenCompass). For calibration data volume, we ex-
periment with three configurations: 200× 64, 400× 128, and 800× 256. Additional experimental
details can be found in Appendix A.3 and Appendix B.4.

Table 4 shows that SERE is highly robust to different similarity metrics, and Frobenius provides the
fastest calibration. By comparing Table 4 with Table 5, we observe that the parameter-based sim-
ilarity computation methods perform significantly worse than the activation-based methods. This
suggests that capturing functional similarity through dynamic activations is more effective than com-
puting similarity based on static expert parameters.

Table 6 reports the performance of SERE under different calibration datasets and calibration data
volumes. When K = 2, the performance remains highly consistent across different calibration
datasets and data volumes, indicating that SERE is robust with respect to both the type and the
scale of calibration data. We also find that even when calibrated with domain-specific data, SERE
maintains strong performance on other domains, which suggests that the similarity matrix captures
transferable expert relationships rather than overfitting to a particular domain. Furthermore, when
K = 1, domain-specific calibration provides slightly better results than general calibration, indicat-
ing that in high skipping rate settings, using domain-specific calibration data can further improve
the performance of SERE.

Balancing calibration efficiency, effectiveness, and universality, we choose Frobenius Similarity and
the FineWeb-Edu calibration dataset as our final implementation.

K=1 K=2 TimeMethod Exam Math Code AVG Exam Math Code AVG Cost (s.)

Frobenius 57.55 31.02 18.64 37.87 60.48 40.87 36.58 47.15 28
Cosine 57.90 26.57 17.16 35.96 60.49 38.57 33.62 45.55 75
CKA-RBF 58.39 31.29 19.98 38.62 60.94 40.84 34.74 46.85 16064
CKA-Poly 57.50 29.59 20.26 37.72 60.63 40.68 32.59 46.13 13459
CKA-Linear 58.12 29.77 19.46 37.83 60.57 40.31 35.18 46.62 541
Mean±Std 57.89±0.36 29.65±1.84 19.10±1.20 37.60±0.94 60.62±0.18 40.25±0.93 34.54±1.54 46.46±0.60 /

Table 4: Comparisons across different similarity metrics on Qwen1.5-MoE-A2.7B.

Ablation on Re-Routing Methods We further evaluate model performance under three re-routing
strategies: to the most similar expert, to a random expert, and to the least similar expert. As shown
in Table 7, re-routing to the most similar expert consistently outperforms random expert selection,

9

Published as a conference paper at ICLR 2026

K=1 K=2Combine Metric Exam Math Code AVG Exam Math Code AVG

Concat Frob 58.41 24.09 19.54 34.01 60.69 39.01 35.72 45.14
Concat Cosine 58.74 25.38 13.70 32.61 60.76 39.88 34.32 44.99
Concat CKA-L 58.24 30.20 18.54 35.66 60.76 40.06 33.82 44.88
Concat CKA-R 58.34 30.53 19.77 36.21 60.67 39.55 32.60 44.27
Concat CKA-P 58.73 30.52 20.26 36.50 60.80 39.60 30.37 43.59
Mean±Std / 58.49±0.21 28.14±2.82 18.36±2.40 35.00±1.47 60.74±0.05 39.62±0.36 33.37±1.80 44.57±0.57

Logic Frob 58.94 23.52 17.03 33.16 61.00 38.36 33.41 44.26
Logic Cosine 58.89 29.19 17.74 35.27 60.61 40.43 31.69 44.24
Logic CKA-L 58.02 28.91 18.55 35.16 60.72 39.52 31.77 44.00
Logic CKA-R 57.76 28.55 17.13 34.48 60.57 38.24 35.34 44.72
Logic CKA-P 58.42 28.49 16.92 34.61 60.89 40.29 32.60 44.59
Mean±Std / 58.41±0.47 27.73±2.12 17.47±0.61 34.54±0.75 60.76±0.16 39.37±0.93 32.96±1.34 44.36±0.26

Table 5: Comparisons across different data-free similarity measures on Qwen1.5-MoE-A2.7B.

Calibration K=1 K=2
Dataset Volume Exam Math Code AVG Exam Math Code AVG

Fineweb 400×128 57.55 31.02 18.64 37.87 60.48 40.87 36.58 47.15
C4 400×128 57.42 30.82 17.54 37.85 60.87 41.21 35.24 47.09
WIKI 400×128 57.64 30.93 18.34 37.90 60.70 40.92 35.65 47.02
Mean±Std / 57.54±0.11 30.92±0.10 18.17±0.57 37.87±0.03 60.68±0.20 41.00±0.18 35.82±0.69 47.09±0.07

Exam 400×128 58.20 33.34 22.88 38.14 60.80 40.26 35.34 45.47
Math 400×128 58.15 32.48 23.50 38.04 60.88 40.25 36.43 45.85
Code 400×128 58.58 33.06 23.70 38.45 60.71 40.63 36.75 46.03
OpenCompass 400×128 57.67 32.07 24.60 38.11 61.16 41.65 37.78 46.86
Mean±Std / 58.15±0.38 32.74±0.50 23.67±0.63 38.19±0.15 60.89±0.18 40.70±0.61 36.58±1.03 46.05±0.61

Fineweb 200×64 57.54 30.93 17.54 37.56 60.82 40.20 35.12 46.66
Fineweb 400×128 57.55 31.02 18.64 37.87 60.48 40.87 36.58 47.15
Fineweb 800×256 57.95 31.88 17.53 38.06 60.44 40.87 34.34 46.58
Mean±Std / 57.68±0.23 31.28±0.53 17.90±0.64 37.83±0.25 60.58±0.22 40.65±0.38 35.35±1.12 46.80±0.31

Table 6: Comparisons across different calibration datasets on Qwen1.5-MoE-A2.7B.

whereas choosing the least similar expert severely degrades performance. We also provide a theoret-
ical analysis showing that similarity-based re-routing method yields a tighter upper bound on output
perturbation (Appendix A.5). These results demonstrate the critical role of the similarity matrix in
guiding effective expert selection.

K=1 K=2Method Exam Math Code AVG Exam Math Code AVG

Most Sim 57.55 31.02 18.64 37.87 60.66 40.87 36.58 47.15
Random 45.18 21.41 11.09 27.74 57.12 34.91 28.66 41.68
Dis Sim 11.03 1.55 0.00 4.72 38.77 28.05 9.65 28.74

Table 7: Comparisons across different re-routing methods on Qwen1.5-MoE-A2.7B.

5 CONCLUSION

In this work, we investigate the challenges faced by MoE models during batched inference. We an-
alyze the expert similarity patterns and activation weight distributions in MoE models. Building on
the insights, we propose SERE, a novel method for accelerating batched decoding in MoE models.
SERE dynamically re-routes tokens assigned to secondary experts toward their most similar primary
experts, thereby reducing the number of active experts, while preserving critical experts to safeguard
model capability. We further develop a customized, efficient CUDA kernel for SERE. Extensive ex-
periments demonstrate that SERE achieves up to 2× speedup with only a slight impact on model
quality. Our study provides new insights into MoE inference optimization, highlighting re-routing
as a promising direction beyond traditional approaches such as pruning or quantization, and sets the
stage for future work on dynamic expert selection and efficient MoE deployment.

10

Published as a conference paper at ICLR 2026

ACKNOWLEDGEMENT

This work was supported in part by the Natural Science Foundation of China (No. 62332002,
62425101), and Shenzhen Science and Technology Program (KQTD20240729102051063).

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. The full implemen-
tation of SERE, including the efficient CUDA kernel, is available in the supplementary mate-
rial and will be released upon publication. All experimental details, including model configu-
rations, hyperparameters, and evaluation benchmarks, are thoroughly documented in Section 4.1
and Appendix B. The expert similarity matrices were computed using standard metrics (Frobe-
nius, Cosine, CKA), as described in Appendix A.2. The calibration datasets (FineWeb, C4, WIKI,
OpenCompass) are publicly available. Pseudocode for both similarity estimation (Algorithm 1)
and the re-routing mechanism (Algorithm 2) is provided to facilitate replication. Our results
can be reproduced using the described setup, and all relevant code and scripts can be found in
https://github.com/JL-Cheng/SERE.

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani,
Alexey Tumanov, and Ramachandran Ramjee. Taming {Throughput-Latency} tradeoff in {LLM}
inference with {Sarathi-Serve}. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pp. 117–134, 2024.

Mengting Ai, Tianxin Wei, Yifan Chen, Zhichen Zeng, Ritchie Zhao, Girish Varatkar, Bita Darvish
Rouhani, Xianfeng Tang, Hanghang Tong, and Jingrui He. Resmoe: Space-efficient com-
pression of mixture of experts llms via residual restoration. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining V.1, KDD ’25, pp. 1–12, New
York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400712456. doi:
10.1145/3690624.3709196. URL https://doi.org/10.1145/3690624.3709196.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

I-Chun Chen, Hsu-Shen Liu, Wei-Fang Sun, Chen-Hao Chao, Yen-Chang Hsu, and Chun-Yi Lee.
Retraining-free merging of sparse moe via hierarchical clustering. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
hslOzRxzXL.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

11

https://github.com/JL-Cheng/SERE
https://doi.org/10.1145/3690624.3709196
https://openreview.net/forum?id=hslOzRxzXL
https://openreview.net/forum?id=hslOzRxzXL

Published as a conference paper at ICLR 2026

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
https://aclanthology.org/N19-1300/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Hao Gu, Wei Li, Lujun Li, Zhu Qiyuan, Mark G. Lee, Shengjie Sun, Wei Xue, and Yike Guo. Delta
decompression for moe-based LLMs compression. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=ziezViPoN1.

Vima Gupta, Kartik Sinha, Ada Gavrilovska, and Anand Padmanabha Iyer. Lynx: Enabling efficient
moe inference through dynamic batch-aware expert selection. arXiv preprint arXiv:2411.08982,
2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao, Chen Zhang, Yang Jin, Kun Xu, Kun Xu,
Liwei Chen, Songfang Huang, and Yansong Feng. Harder task needs more experts: Dynamic
routing in MoE models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 12883–12895, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.acl-long.696. URL https://aclanthology.org/2024.
acl-long.696/.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Peng Jin, Bo Zhu, Li Yuan, and Shuicheng YAN. Moe++: Accelerating mixture-of-experts methods
with zero-computation experts. In The Thirteenth International Conference on Learning Repre-
sentations, 2025. URL https://openreview.net/forum?id=t7P5BUKcYv.

Dongwan Kim and Bohyung Han. On the stability-plasticity dilemma of class-incremental learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20196–20204, 2023.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa,
Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training
mixture-of-experts from dense checkpoints. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=T5nUQDrM4u.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–
3529. PMlR, 2019.

12

https://aclanthology.org/N19-1300/
https://github.com/open-compass/opencompass
https://openreview.net/forum?id=ziezViPoN1
https://aclanthology.org/2024.acl-long.696/
https://aclanthology.org/2024.acl-long.696/
https://openreview.net/forum?id=t7P5BUKcYv
https://openreview.net/forum?id=T5nUQDrM4u

Published as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. {GS}hard: Scaling giant models with condi-
tional computation and automatic sharding. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=qrwe7XHTmYb.

Ang Li, Ben Liu, Binbin Hu, Bing Li, Bingwei Zeng, Borui Ye, Caizhi Tang, Changxin Tian, Chao
Huang, Chao Zhang, et al. Every activation boosted: Scaling general reasoner to 1 trillion open
language foundation. arXiv preprint arXiv:2510.22115, 2025.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Tim-
othy Baldwin. CMMLU: Measuring massive multitask language understanding in Chinese.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for
Computational Linguistics: ACL 2024, pp. 11260–11285, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.671. URL
https://aclanthology.org/2024.findings-acl.671/.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024b.

Enshu Liu, Junyi Zhu, Zinan Lin, Xuefei Ning, Matthew B Blaschko, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Efficient expert pruning for sparse mixture-of-experts language
models: Enhancing performance and reducing inference costs. arXiv preprint arXiv:2407.00945,
2024c.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hong-
sheng Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts
large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 6159–6172, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.acl-long.334. URL https://aclanthology.org/2024.
acl-long.334/.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Evan Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela,
Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. OLMoe:
Open mixture-of-experts language models. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=xXTkbTBmqq.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

13

https://openreview.net/forum?id=qrwe7XHTmYb
https://aclanthology.org/2024.findings-acl.671/
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://aclanthology.org/2024.acl-long.334/
https://aclanthology.org/2024.acl-long.334/
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=xXTkbTBmqq
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Published as a conference paper at ICLR 2026

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=B1ckMDqlg.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. In Findings of the Association for Computational Lin-
guistics: ACL 2023, pp. 13003–13051, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang, Yu Gong, Yuanlin Duan, Wenqi Jia, Miao Yin,
Yu Cheng, and Bo Yuan. MoE-i2: Compressing mixture of experts models through inter-expert
pruning and intra-expert low-rank decomposition. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024,
pp. 10456–10466, Miami, Florida, USA, November 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.findings-emnlp.612. URL https://aclanthology.org/
2024.findings-emnlp.612/.

Haoqi Yang, Luohe Shi, Qiwei Li, Zuchao Li, Ping Wang, Bo Du, Mengjia Shen, and Hai Zhao.
Faster moe llm inference for extremely large models, 2025b. URL https://arxiv.org/
abs/2505.03531.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, and Songfang Huang. How well do large lan-
guage models perform in arithmetic tasks?, 2023. URL https://arxiv.org/abs/2304.
02015.

Longfei Yun, Yonghao Zhuang, Yao Fu, Eric P Xing, and Hao Zhang. Toward inference-optimal
mixture-of-expert large language models, 2024. URL https://arxiv.org/abs/2404.
02852.

Zeliang Zhang, Xiaodong Liu, Hao Cheng, Chenliang Xu, and Jianfeng Gao. Diversifying the
expert knowledge for task-agnostic pruning in sparse mixture-of-experts. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association
for Computational Linguistics: ACL 2025, pp. 86–102, Vienna, Austria, July 2025a. Association
for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.4.
URL https://aclanthology.org/2025.findings-acl.4/.

Zeliang Zhang, Xiaodong Liu, Hao Cheng, Chenliang Xu, and Jianfeng Gao. Diversifying the
expert knowledge for task-agnostic pruning in sparse mixture-of-experts. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association
for Computational Linguistics: ACL 2025, pp. 86–102, Vienna, Austria, July 2025b. Association
for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.4.
URL https://aclanthology.org/2025.findings-acl.4/.

Shuzhang Zhong, Ling Liang, Yuan Wang, Runsheng Wang, Ru Huang, and Meng Li. Adapmoe:
Adaptive sensitivity-based expert gating and management for efficient moe inference. In Pro-
ceedings of the 43rd IEEE/ACM International Conference on Computer-Aided Design, pp. 1–9,
2024.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022. URL
https://arxiv.org/abs/2202.08906.

14

https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://aclanthology.org/2024.findings-emnlp.612/
https://aclanthology.org/2024.findings-emnlp.612/
https://arxiv.org/abs/2505.03531
https://arxiv.org/abs/2505.03531
https://arxiv.org/abs/2304.02015
https://arxiv.org/abs/2304.02015
https://arxiv.org/abs/2404.02852
https://arxiv.org/abs/2404.02852
https://aclanthology.org/2025.findings-acl.4/
https://aclanthology.org/2025.findings-acl.4/
https://arxiv.org/abs/2202.08906

Published as a conference paper at ICLR 2026

A APPENDIX ON METHOD

A.1 PRELIMINARIES ON MOES

The MoE architecture enhances model capacity and computational efficiency by conditionally acti-
vating only a subset of parameters for each token (Shazeer et al., 2017). An MoE layer consists of a
set of expert networks {E1,E2, . . . ,EM} and a router network R. Given an input token embedding
x, the router produces routing logits R(x), which are transformed into a probability distribution
over experts. The output activation y of an MoE layer can be expressed as:

y =

M∑
i=1

Pi(x) ·Ei(x), (6)

E(x) = (σ(xWgate)⊙ (xWup))Wdown, (7)

where Wgate,Wup ∈ Rdh×dm , Wdown ∈ Rdm×dh , σ(·) denotes the activation function,⊙ denotes
element-wise multiplication, and Pi(x) denotes the normalized routing weight assigned to expert
Ei. In practice, a top-k gating strategy is often adopted to reduce computation. Specifically, only
the k experts with the largest routing logits are selected:

Pi(x) = Softmax(Top-k(Ri(x))). (8)

MoE architectures achieve efficient scaling while maintaining strong performance, making them a
widely adopted paradigm in modern large-scale Transformer-based models (Bai et al., 2023; Liu
et al., 2024b; Yang et al., 2025a; Agarwal et al., 2025). Our proposed SERE method builds on
standard MoE architectures and changes only the decoding-time routing targets, preserving all pa-
rameters and layer structures.

A.2 EXPERT SIMILARITY METRICS

A.2.1 COSINE SIMILARITY

Given activation matrices XE,XF ∈ Rn×d from two experts E and F, the cosine similarity is
computed by averaging the instance-wise cosine similarities between their outputs. For each input
i, let x(i)

E and x
(i)
F denote the i-th row vectors of XE and XF. The overall cosine similarity is

computed by

Mcos(E,F) =
1

n

n∑
i=1

⟨x(i)
E , x

(i)
F ⟩

∥x(i)
E ∥2 ∥x

(i)
F ∥2

. (9)

A.2.2 FROBENIUS SIMILARITY

We measure Frobenius similarity between two experts E and F by first calculating the Frobenius
norm of the difference between their activation matrices, and then normalizing this value by the
maximum norm across all expert pairs. Let

xE,F = ∥XE −XF∥F , (10)

and let max(x) denote the maximum xE,F among all pairs (E,F). The normalized Frobenius
similarity is then given by

Mfro(E,F) = 1− xE,F

max(x)
. (11)

This formulation ensures that the most similar expert pair achieves a score close to 1, while the least
similar pair approaches 0.

A.2.3 CENTERED KERNEL ALIGNMENT

Centered Kernel Alignment (CKA) (Kornblith et al., 2019) is a widely used metric for quantifying
the similarity between neural representations, as it is invariant to isotropic scaling and orthogo-
nal transformations. CKA computes the similarity between two sets of expert representations by
comparing their Gram matrices constructed with a chosen kernel function. In our experiments, we
consider three types of kernels: linear, RBF (Gaussian), and polynomial.

15

Published as a conference paper at ICLR 2026

Given XE,XF ∈ Rn×d, the CKA similarity is defined by

MCKA(E,F) =
HSIC(KE,KF)√

HSIC(KE,KE)HSIC(KF,KF)
, (12)

where KE and KF are n× n Gram matrices computed by kernel k(·, ·):

• Linear Kernel:
KE = XEX

⊤
E , KF = XFX

⊤
F . (13)

• RBF (Gaussian) Kernel:

[KE]ij = exp

(
−
∥x(i)

E − x
(j)
E ∥22

2σ2

)
, [KF]ij = exp

(
−
∥x(i)

F − x
(j)
F ∥22

2σ2

)
, (14)

where σ is the bandwidth parameter.
• Polynomial Kernel:

[KE]ij =
(
x
(i)⊤
E x

(j)
E + c

)d
, [KF]ij =

(
x
(i)⊤
F x

(j)
F + c

)d
, (15)

where c is a constant and d is the degree of the polynomial.

Here, HSIC denotes the Hilbert-Schmidt Independence Criterion, which measures the dependence
between two Gram matrices. For practical implementation, we use the unbiased HSIC estimator as
introduced by Kim & Han (2023), which provides O(n2) computational complexity.

A.3 PARAMETER-BASED SIMILARITY COMPUTATION METHODS

We implement some data-free, parameter-based methods for computing expert similarities to com-
pare against the activation-based methods. Considering each expert consists of three weight matri-
ces, namely θ1 = Wup, θ2 = Wgate, and θ3 = Wdown, we follow Zhang et al. (2025b) and apply
two parameter combination strategies to merge these weights:

• Concat: The three weight matrices are directly concatenated: {θ1, θ2, θ3}. This method treats all
weights equally without considering their functional roles in expert computation.

• Logic: The three weight matrices are combined according to the computational structure of an
MoE expert, expressed as θ3(θ1 · θ2). This approach reflects the structural dependency among the
three components.

After obtaining the combined expert weights, we compute the similarity matrices using the similarity
metrics described in Appendix A.2. As discussed in Section 4.4, the parameter-based methods
perform noticeably worse than the activation-based methods. Although parameter-based approaches
are data-free, they are less effective at capturing the functional redundancy among experts.

A.4 PSEUDOCODE

We provide the pseudocode for expert similarity estimation (Algorithm 1) and the
CUDA-accelerated implementation of SERE (Algorithm 2) to facilitate readers’ understanding of
our approach. The pseudocode presents the key computational steps, helping to bridge the gap
between the conceptual description and its practical realization.

A.5 THEORETICAL ANALYSIS

In this section, we provide the theoretical justification that similarity-based expert re-routing can
better preserve model capabilities.
Definition 1 (MoE Layer Structure). Consider a MoE model composed of k MoE layers, where the
i-th layer consists of M experts {E(i)

1 ,E
(i)
2 , . . . ,E

(i)
M }. For an input z ∈ Rd, the layer output is a

convex combination:

Ni(z) =

M∑
m=1

w(i)
m (z) ·E(i)

m (z), (16)

16

Published as a conference paper at ICLR 2026

where w
(i)
m (z) ≥ 0 and

∑M
m=1 w

(i)
m (z) = 1 are routing weights determined by a router function.

Let D0 denote the input data distribution, and Di be the induced distribution of inputs to layer i,
obtained by propagating samples x ∼ D0 through the preceding layers.

Definition 2 (Expert Similarity). For two experts E(i)
a and Ẽ

(i)
a at position a in layer i, their simi-

larity under the input distribution Di is defined as:

δ(E(i)
a , Ẽ(i)

a) = Ez∼Di

[
∥E(i)

a (z)− Ẽ(i)
a (z)∥2

]
. (17)

Theorem 1 (Expert Substitution Error Bound). We consider replacing a single expert E(i)
a in layer

i with another expert Ẽ(i)
a while keeping all other experts and routing weights unchanged, yielding a

modified layer Ñi. Let F = Nk ◦ · · · ◦N1 be the original network, and F̃ = Nk ◦ · · · ◦ Ñi ◦ · · · ◦N1

be the network with expert E(i)
a replaced by Ẽ

(i)
a . Assume each downstream module Nj for j =

i + 1, . . . , k is Lipschitz continuous with constant Lj , and define Λ =
∏k

j=i+1 Lj . Let w(i)
a (z) be

the routing weight assigned to expert a. Then the substitution error satisfies

E(Ẽ(i)
a , i) ≤ Λ · Ez∼Di

[
w(i)

a (z) · ∥E(i)
a (z)− Ẽ(i)

a (z)∥2
]
≤ Λ · δ(E(i)

a , Ẽ(i)
a), (18)

where the substitution error is

E(Ẽ(i)
a , i) = Ex∼D0

[
∥F(x)− F̃(x)∥2

]
. (19)

Proof. For any x ∼ D0, let zi = (Ni−1 ◦ · · · ◦ N1)(x) ∼ Di. The layer output difference is

Ni(zi)− Ñi(zi) = w(i)
a (zi)

(
E(i)

a (zi)− Ẽ(i)
a (zi)

)
. (20)

Let G = Nk ◦ · · · ◦ Ni+1, which is Λ-Lipschitz. Then,

∥F(x)− F̃(x)∥2 =
∥∥G(Ni(zi))− G(Ñi(zi))

∥∥
2

≤ Λ · ∥Ni(zi)− Ñi(zi)∥2
= Λ · w(i)

a (zi) · ∥E(i)
a (zi)− Ẽ(i)

a (zi)∥2. (21)

Taking expectation over x ∼ D0 gives

E(Ẽ(i)
a , i) ≤ Λ · Ezi∼Di

[
w(i)

a (zi) · ∥E(i)
a (zi)− Ẽ(i)

a (zi)∥2
]

≤ Λ · Ezi∼Di

[
∥E(i)

a (zi)− Ẽ(i)
a (zi)∥2

]
= Λ · δ(E(i)

a , Ẽ(i)
a), (22)

where the second inequality follows from 0 ≤ w
(i)
a (zi) ≤ 1. This completes the proof.

This analysis shows that the error bound of expert substitution is jointly determined by the structural
stability of downstream layers (Λ) and the similarity between experts (δ(·, ·)). Therefore, under a
fixed model architecture, re-routing tokens to a more similar expert yields a tighter upper bound on
output perturbation. The above analysis provides theoretical support for the SERE method.

17

Published as a conference paper at ICLR 2026

Algorithm 1 Expert Similarity Estimation
Input: Calibration dataset Dcalib;
Number of iterations N ;
Mixture-of-Experts (MoE) model with L layers, each containing M experts E(l)

1 , . . . ,E
(l)
M ;

Similarity function Sim(·, ·)
Output: Layer-wise similarity matrices {S(l) ∈ RM×M}Ll=1

for l← 1 to L do
S(l) ← 0M×M ; // Initialize similarity matrix for layer l

end
for i← 1 to N do
B ← the i-th batch from Dcalib; // Load calibration dataset
X(0) ← B; // Input to the first layer
for l← 1 to L do

for j ← 1 to M do
A

(l)
j ← E

(l)
j

(
X(l−1)

)
; // Calculate activation for all experts.

end
for p← 1 to M do

for q ← p to M do
s← Sim

(
A

(l)
p ,A

(l)
q

)
; // Accumulate pairwise similarities

S(l)[p, q] += s;
S(l)[q, p] += s; // Ensure symmetry

end
end
X(l) ← MoE(l)

(
X(l−1)

)
; // Standard MoE forward to get next layer input

end
end
for l← 1 to L do

S(l) ← S(l)/N ; // Normalize by number of iterations
end
return {S(l)}Ll=1

B APPENDIX ON EXPERIMENT SETTINGS

B.1 MODELS

We evaluate SERE on three representative MoE models: Qwen1.5-MoE-A2.7B-Chat (Bai et al.,
2023), DeepSeekV2-Lite (Liu et al., 2024b), and Qwen3-30B-A3B (Yang et al., 2025a).

Qwen1.5-MoE-A2.7B-Chat: Each token activates 4 shared experts and 4 routed experts (out of 60)
in each layer.

DeepSeekV2-Lite: Each token activates 2 shared experts and 6 routed experts (out of 64) in each
layer.

Qwen3-30B-A3B: Each token activates 8 routed experts (out of 128) in each layer.

More details can be found in Table 8.

B.2 HYPER-PARAMETERS

For expert skipping, we evaluate two configurations that retain the Top-1 and Top-2 experts as the
primary experts. For expert merging, we select pruning rates that yield TPOT comparable to that of
expert skipping methods, ensuring a fair comparison. For SERE, similarity matrices are computed
using the Frobenius norm on a calibration subset of FineWeb-Edu (Lozhkov et al., 2024) (400 se-

18

Published as a conference paper at ICLR 2026

Algorithm 2 CUDA-Accelerated SERE

Input: Top-K expert weights W(l) ∈ RT×K ;
Top-K expert indices I(l) ∈ ZT×K ;
Expert similarity matrix S(l) ∈ RM×M ;
Retain count S ∈ [1,K);
Similarity threshold ρ ∈ [0, 1]
Output: Re-routed expert indices I′(l) ∈ ZT×K

I′(l) ← I(l);H ← 0M ; // Initialization
for t← 1 to T and s← 1 to S do
H[I(l)t,s]← 1; // Mark current (primary) expert as retained

end
Rtotal ← T × (K − S); // All secondary experts to be re-routed.
for each CUDA thread tid ∈ [0, Rtotal) in parallel do

t← ⌊tid/(K − S)⌋;
k ← S + (tid mod (K − S)) ; // Current token index

if t ≥ T or k ≥ K then return;
eorig ← I

(l)
t,k; // Original expert

ifH[eorig] = 1 then
I
′(l)
t,k ← eorig ; // No change if already retained

continue;
end
sbest ← −∞, ebest ← 0 ; // Init maximum similarity and best matched expert
for e← 0 to M − 1 do

ifH[e] = 1 then
scurr ← S(l)[eorig, e] ; // Pairwise similarity with retained experts
if scurr > sbest then

sbest ← scurr, ebest ← e ; // Update best similarity
end

end
end
if ρ > 0 and sbest < ρ then

I
′(l)
t,k ← eorig ; // Keep original if below threshold

else
I
′(l)
t,k ← ebest ; // Re-route to the best matched retained expert

end
end
return I′(l)

quences× 128 tokens). The similarity matrices are normalized to [0, 1], where larger values indicate
higher similarity between experts.

Tables 8 summarize the main inference configurations for all MoE models studied in this work.
For the SERE method, the parameters select top k and threshold are tuned according to
ablation and experimental requirements. All calibration and experiments are performed on NVIDIA
H20 GPUs

B.3 BENCHMARKS

For accuracy comparison, we select a diverse set of complex reasoning tasks from the OpenCompass
benchmark (Contributors, 2023), covering multiple domains: Exam (CMMLU (Li et al., 2024),
BoolQ (Clark et al., 2019), and BBH (Suzgun et al., 2023)); Math (Math (Hendrycks et al., 2021),
GSM8K (Cobbe et al., 2021), and Math 401 (Yuan et al., 2023)); and Code (HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021)). Because CMMLU and BoolQ are multiple-choice tasks,
we adopt the CoT mode to evaluate the models’ decoding capabilities. Details and examples of these
tasks are provided in Table 9.

19

Published as a conference paper at ICLR 2026

Model Config Qwen1.5-A2.7B-Chat DeepSeekV2-Lite Qwen3-30B-A3B

Total Params (B) 14.3 16 30
Activated Params (B) 2.7 2.4 3
MoE Layers / Total Layers 24/24 26/27 48/48
Experts per MoE Layer 60 64 128
Activated Experts per Token 4 (selected) + 4 (shared) 6 (selected) + 2 (shared) 8
hidden size 2560 2048 2048
intermediate size 5632 10944 6144
Vocabulary Size 151936 102400 151936

Inference Setting Qwen1.5-A2.7B-Chat DeepSeekV2-Lite Qwen3-30B-A3B

Temperature 0.7 0.3 0.7
Top-p 0.8 0.95 0.8
Top-k 20 50 20
Repetition Penalty 1.05 1.00 1.00
Max Output Tokens 1024 1024 2048
Batch Size 16 16 16

Table 8: Main inference hyperparameters for each model.

For acceleration comparison, we measure the online inference speed of different models under var-
ious methods using vLLM (Kwon et al., 2023). Each model is deployed on a single GPU, and we
record the Time per Output Token (TPOT, in ms) across different Queries per Second (QPS) settings
to emulate real-world service scenarios. The input and output sequence lengths are fixed at 128 and
32 tokens, respectively, and each test processes a total of 5,000 requests.

B.4 CALIBRATION DATASET

In this work, we employ several calibration datasets to estimate expert similarity within MoE mod-
els, including three general datasets: FineWeb-Edu (Lozhkov et al., 2024), WIKI (Merity et al.,
2017), C4 (Raffel et al., 2020), and four Domain-Specific datasets: Math, Code, Exam, and Open-
Compass . These calibration sets are used to perform forward passes through the model, collecting
activation values for each expert at every layer. The resulting activations are then utilized to compute
inter-expert similarity metrics, which guide subsequent rerouting strategies.

FineWeb-Edu (Lozhkov et al., 2024) is a large-scale, high-quality English web corpus designed
for pre-training and evaluation of language models. It contains diverse and well-filtered content,
making it a representative resource for general-purpose calibration.

WIKI (Merity et al., 2017) refers to the English Wikipedia dump, a widely adopted dataset in
NLP research. Its encyclopedic coverage and high linguistic quality make it suitable for calibrating
models on general knowledge and formal text.

C4 (Colossal Clean Crawled Corpus) (Raffel et al., 2020) is a massive web-crawled dataset filtered
for high-quality English text. It is commonly used in large-scale language model pre-training and
serves as a robust calibration set for open-domain language understanding.

Math is a domain-specific dataset constructed from Math (Hendrycks et al., 2021), GSM8K (Cobbe
et al., 2021), and Math401 (Yuan et al., 2023) within OpenCompass. We randomly sample prompts
and answers from these benchmarks and shuffle them to form the calibration set.

Code is a domain-specific dataset constructed from HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) within OpenCompass. We randomly sample prompts and answers from
these benchmarks and shuffle them to form the calibration set.

Exam is a domain-specific dataset constructed from CMMLU (Li et al., 2024), BoolQ (Clark et al.,
2019) and BBH (Suzgun et al., 2023) within OpenCompass. We randomly sample prompts and
answers from these benchmarks and shuffle them to form the calibration set.

OpenCompass combines the three domain-specific calibration datasets above and generates the
calibration data through uniform sampling.

20

Published as a conference paper at ICLR 2026

Task Domain/Format Description / Example

CMMLU (Li
et al., 2024)

Exam / Multiple-
Choice

A comprehensive Chinese multi-subject exam benchmark
with 57 subjects.

Example: 关系数据库中数据的逻辑结构是（A）树结
构（B）维度表（C）层次结构（D）形状结构

BoolQ (Clark
et al., 2019)

Exam / Multiple-
Choice (Yes/No)

Reading comprehension questions with yes/no answers
based on a passage.

Example: Property tax – Property tax or ‘house tax’ is a
local tax ... Is house tax and property tax are same?

BBH (Suzgun
et al., 2023)

Exam / Diverse
Reasoning

Big-Bench Hard, a collection of challenging tasks covering
logical, symbolic, and commonsense reasoning.

Example: Which sentence has the correct adjective or-
der: \n(A) medium-size archaic prismlike purple American
car\n(B) archaic purple prismlike American medium-size
car

Math
(Hendrycks
et al., 2021)

Math / Open-Ended A dataset of high school-level mathematical problems re-
quiring step-by-step solutions.

Example: A positive multiple of 45 less than 1000 is ran-
domly selected. What is the probability that it is a two-digit
integer? Express your answer as a common fraction.

GSM8K
(Cobbe et al.,
2021)

Math / Open-Ended Grade school math word problems with a focus on multi-
step reasoning.

Example: Shiloh is 44 years old today. In 7 years, he will
be three times as old as his nephew. How old is his nephew
today?

Math 401
(Yuan et al.,
2023)

Math / Open-Ended MATH 401 is a benchmark dataset specifically designed to
evaluate the arithmetic capabilities of large language mod-
els through a variety of arithmetic expressions and detailed
performance analysis.

Example: 7.3947**2.5384=

HumanEval
(Chen et al.,
2021)

Code / Code Gener-
ation

Python programming problems requiring function imple-
mentation based on a natural language description.

Example: Write a function that returns the sum of two num-
bers.

MBPP (Austin
et al., 2021)

Code / Code Gener-
ation

Mostly Basic Python Problems: Short Python programming
tasks with input-output examples.

Example: Write a function to check if a string is a palin-
drome.

Table 9: Overview of OpenCompass tasks used for evaluation.

For each calibration dataset, we randomly sample N sequences and select a fixed number of tokens
(Length) from each sequence. FineWeb-Edu, WIKI, and C4 are used as general-purpose calibra-
tion sets to evaluate SERE’s performance under broad, diverse language phenomena, while Math,
Code, Exam, and OpenCompass serve as task-specific calibration sets, aimed at testing whether
downstream-oriented calibration data can further enhance SERE’s capabilities, as well as the gener-
alization or stability across different domains.

21

Published as a conference paper at ICLR 2026

C APPENDIX ON EXPERIMENTS

C.1 DETAILED ANALYSIS ON SIMILARITY THRESHOLD

To better understand the relationship between the similarity threshold ρ and model performance, we
conduct a fine-grained empirical study on Qwen3-30B-A3B under K = 1 setting. Table 10 sum-
marizes the performance across a range of ρ values. The experimental results show that reasoning
intensive tasks, such as mathematical problem solving and code generation, require higher similarity
threshold compared with knowledge oriented tasks such as exam. For example, when ρ reaches 0.5,
the performance on Exam benchmarks is already close to the baseline, while the performance on
Math and Code benchmarks still exhibits a noticeable gap. This suggests that complex reasoning
relies more critically on high-fidelity expert routing than factual recall.

Threshold cmmlu boolq bbh math gsm8k math401 heval mbpp avg TPOT
0.0 60.53 85.08 57.64 46.98 52.08 52.12 32.32 31.40 52.27 28.04
0.1 60.79 85.20 56.55 46.54 51.10 54.11 34.15 34.20 52.83 29.19
0.2 62.83 85.90 58.46 47.28 52.08 51.62 35.37 32.60 53.27 30.72
0.3 65.24 85.60 59.17 47.90 53.37 54.11 39.63 32.40 54.68 29.21
0.4 72.11 87.61 61.78 48.56 53.30 54.61 45.12 34.20 57.16 29.81
0.5 77.89 89.76 65.45 53.40 54.28 54.86 64.02 53.20 64.11 33.10
0.6 80.77 89.91 71.33 59.56 63.00 63.34 83.54 68.80 72.53 34.28
0.7 80.92 90.31 74.87 70.24 88.40 82.04 86.59 74.20 80.95 35.37
0.8 84.08 89.94 76.10 70.92 89.39 81.30 86.59 76.60 81.86 38.92
0.9 84.33 89.82 76.66 72.42 89.61 79.05 86.59 75.60 81.76 46.02
1.0 84.92 89.82 76.62 72.46 88.93 81.30 88.41 78.00 82.56 44.54

Table 10: Performance of Qwen3-30B-A3B under K = 1 setting across different thresholds.

In summary, the similarity threshold serves as a principled mechanism to balance efficiency and
model performance. The empirical results suggest that setting ρ to moderate or high values signif-
icantly improves performance on challenging tasks, primarily by eliminating a part of detrimental
set of low-similarity rerouting decisions.

C.2 DETAILED ANALYSIS ON PREFILLING STAGE

SERE is primarily designed to accelerate the batched decoding phase of MoE models. By reducing
the number of activated experts, it lowers the memory-communication overhead and thus speeds up
the memory-bound decoding process. Because it does not reduce the computation FLOPs, it is not
expected to provide noticeable speedups in the compute-bound prefill stage. Nevertheless, to give
a more comprehensive understanding of SERE, we additionally conduct experiments evaluating its
impact on the prefill stage, including its effect on prefill latency and the quality of the KV cache.

We first evaluated the Time To First Token (TTFT) of three MoE models: Qwen1.5-A2.7B-Chat,
Qwen3-30B-A3B, and DeepSeekV2-Lite, under different QPS settings. As shown in Table 11,
SERE achieves slightly lower TTFT than the baseline, but the improvement is marginal. The results
are consistent with our expectations and also indicate that our CUDA-based re-routing implemen-
tation is highly efficient, introducing no additional overhead even when processing a large number
of tokens during the prefill stage. In a typical generation scenario (e.g., 128 input tokens followed
by 256 output tokens), prefill accounts for less than 1% of the total latency, and this proportion will
be even smaller when the outputs become longer. Therefore, we consider acceleration during the
decoding stage to be substantially more impactful than acceleration during prefill.

We further examined whether SERE affects the KV cache generated during the prefill stage, since
this could influence the quality of subsequent decoding. We first analyzed the proportion of primary
experts among all activated experts under some typical batch settings. As shown in Table 12, for
MoE models with fewer experts, such as Qwen1.5-A2.7B-Chat and DeepSeekV2-Lite, all activated
experts are primary experts (100%). Even for Qwen3-30B-A3B that has a larger number of experts,
more than 80% of the activated experts are retained as primary experts. These results indicate that
nearly all activated experts are preserved as primary experts during prefill. Besides, the small number
of secondary experts that require re-routing can also find similar substitutes more easily because the
pool of primary experts is large. As a result, the impact on KV cache quality is minimal.

22

Published as a conference paper at ICLR 2026

Model / QPS 8 16 24 32

Qwen1.5-A2.7B-Chat 33.64 40.62 45.33 51.43
SERE (K = 2) 33.57 38.53 45.24 50.24
SERE (K = 1) 32.48 37.64 42.58 48.10

Qwen3-30B-A3B 66.72 81.08 96.02 114.03
SERE (K = 2) 65.09 78.52 92.69 104.36
SERE (K = 1) 64.94 78.62 92.25 107.44

DeepSeekV2-Lite 67.06 82.57 93.12 106.44
SERE (K = 2) 66.03 79.99 91.10 108.23
SERE (K = 1) 66.04 79.60 92.67 107.61

Table 11: TTFT(ms) under varying QPS settings.

Model / Batch Config 32×128 16×64 4×256

Qwen1.5-A2.7B-Chat 100% 100% 100%
Qwen3-30B-A3B 94.53% 86.71% 81.65%
DeepSeekV2-Lite 100% 100% 100%

Table 12: Percentage of primary experts retained during prefill.

Methods \Tasks Exam Math Code Avg.
(Acc. ↑)cmmlu boolq bbh math gsm8k math401 heval mbpp

Qwen3-30B-A3B top8 84.88 90.21 76.70 72.28 89.23 79.05 87.20 78.40 82.24

Qwen3-30B-A3B top2 10.01 60.52 10.48 3.38 6.97 16.96 3.66 2.40 14.30
SERE top2; ρ=0.0 81.24 89.79 71.33 70.22 82.41 80.80 82.93 63.80 77.82
SERE (decode-only) top2; ρ=0.0 80.31 89.42 71.81 69.60 82.41 80.80 84.15 63.60 77.33
SERE top2; ρ=0.5 81.51 90.37 74.15 72.06 85.97 81.55 85.37 72.00 80.37
SERE (decode-only) top2; ρ=0.5 81.65 90.12 73.50 71.22 84.38 81.05 87.20 70.20 79.78

Qwen3-30B-A3B top1 0.00 61.68 4.89 0.08 0.91 1.25 0.00 0.00 8.60
SERE top1; ρ=0.0 60.53 85.08 57.64 46.98 52.08 52.12 32.32 31.40 52.27
SERE (decode-only) top1; ρ=0.0 62.96 85.02 57.56 46.32 50.95 52.37 37.80 32.60 51.20
SERE top1; ρ=0.5 77.89 89.76 65.45 53.40 54.28 54.86 64.02 53.20 64.11
SERE (decode-only) top1; ρ=0.5 78.68 89.82 65.60 52.48 53.68 53.62 66.46 51.00 63.34

Table 13: SERE vs. decode-only variant on Qwen3-30B-A3B across OpenCompass benchmarks.

To directly understand how SERE affects the KV cache produced during the prefill stage, we im-
plemented and evaluated a decode-only variant in which all activated experts are preserved during
prefill and re-routing is applied only during decoding. We tested this setting on the Qwen3-30B-
A3B model across OpenCompass benchmarks, and the results are shown in Table 13. Surprisingly,
across different skipping rates and thresholds, the decode-only variant consistently underperforms
the original SERE method. We consider this may be because inconsistent expert selection between
prefill and decoding stages introduces a distribution shift that particularly affects reasoning tasks
that rely on stable internal representations.

In summary, although SERE does not provide significant acceleration during the prefill stage, it can
be applied safely without degrading KV cache quality or overall performance.

C.3 SIMILARITY MATRICES VISUALIZATION

In this section, we present a detailed visualization of the expert similarity matrices for
Qwen1.5-2.7B (Bai et al., 2023), DeepSeekV2-Lite (Liu et al., 2024a), Qwen3-30B-A3B (Yang
et al., 2025a), DeepSeekMoE (Dai et al., 2024), Ling-mini-2.0 (Li et al., 2025), and OLMoE-1B-
7B-0125-Instruct (Muennighoff et al., 2025), as shown in Figure 9 to Figure 14, respectively. These
visualizations reveal that different MoE architectures exhibit distinct similarity patterns across lay-
ers, i.e., some layers display highly clustered experts with strong intra-group similarity, whereas
others show more uniform or dispersed similarity distributions. Such layer-specific variation in-
dicates that the functional roles and redundancy levels of experts vary not only between models

23

Published as a conference paper at ICLR 2026

but also across different layers within the same model, highlighting the importance of layer-wise
analysis when designing expert routing or pruning strategies.

D LLM USAGE STATEMENT

In preparing this manuscript, we used LLMs solely to aid in polishing the writing, such as improv-
ing grammar, clarity, and readability. All substantive contributions to the research, including the
conception of ideas, experimental design, data analysis, and so on, were made exclusively by the
authors. The authors have thoroughly reviewed and taken responsibility for all content in the paper.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18

Layer 19 Layer 20 Layer 21 Layer 22 Layer 23 Layer 24

Layer 25 Layer 26

0.0

0.2

0.4

0.6

0.8

1.0

Similarity Matrices Heatmaps for DeepSeekV2-Lite

Figure 9: Visualization of expert similarity matrices of DeepSeekV2-Lite model.

24

Published as a conference paper at ICLR 2026

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17

Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23

0.0

0.2

0.4

0.6

0.8

1.0

Similarity Matrices Heatmaps for Qwen1.5-A2.7B

Figure 10: Visualization of expert similarity matrices of Qwen1.5-A2.7B model.

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

Layer 12 Layer 13 Layer 14 Layer 15

0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: Visualization of expert similarity matrices of OLMoE-1B-7B-0125-Instruct model.

25

Published as a conference paper at ICLR 2026

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18

Layer 19 Layer 20 Layer 21 Layer 22 Layer 23 Layer 24

Layer 25 Layer 26 Layer 27

0.0

0.2

0.4

0.6

0.8

1.0

Figure 12: Visualization of expert similarity matrices of DeepSeekMoE model.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18

Layer 19

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Visualization of expert similarity matrices of Ling-mini-2.0 model.

26

Published as a conference paper at ICLR 2026

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17

Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23

Layer 24 Layer 25 Layer 26 Layer 27 Layer 28 Layer 29

Layer 30 Layer 31 Layer 32 Layer 33 Layer 34 Layer 35

Layer 36 Layer 37 Layer 38 Layer 39 Layer 40 Layer 41

Layer 42 Layer 43 Layer 44 Layer 45 Layer 46 Layer 47

0.0

0.2

0.4

0.6

0.8

1.0

Similarity Matrices Heatmaps for Qwen3-30B-A3B

Figure 14: Visualization of expert similarity matrices of Qwen3-30B-A3B model.

27

	Introduction
	Related Work
	Method
	Expert Similarity Estimation
	Similarity Matrix Computation
	Similarity Matrix Insights

	Similarity-based Expert Re-routing Mechanism
	Design Motivation
	Re-routing Process

	High-performance kernel implementation

	Experiments
	Experiment Settings
	Accuracy Comparison
	Acceleration Comparison
	Ablation Study

	Conclusion
	Appendix on Method
	Preliminaries on MoEs
	Expert Similarity Metrics
	Cosine Similarity
	Frobenius Similarity
	Centered Kernel Alignment

	Parameter-based Similarity Computation Methods
	Pseudocode
	Theoretical Analysis

	Appendix on Experiment Settings
	Models
	Hyper-Parameters
	Benchmarks
	Calibration Dataset

	Appendix on Experiments
	Detailed Analysis on Similarity Threshold
	Detailed Analysis on Prefilling Stage
	Similarity Matrices Visualization

	LLM Usage Statement

