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ABSTRACT

Diffusion-based graph generative models have recently obtained promising results
for graph generation. However, existing diffusion-based graph generative models
are all one-shot generative models that apply Gaussian diffusion in the dequan-
tized adjacency matrix space. Such a strategy can suffer from difficulty in model
training, slow sampling speed, and incapability of incorporating constraints. We
propose an autoregressive diffusion model for graph generation. Unlike existing
methods, we define a node-absorbing diffusion process that operates directly in
the discrete graph space. For forward diffusion, we design a diffusion ordering
network, which learns an optimal node absorbing ordering from graph topology.
For reverse generation, we design a denoising network that uses the reverse node
ordering to efficiently reconstruct the graph by predicting one row of the adja-
cency matrix at a time. Based on permutation invariance of graph generation, we
show that the two networks can be jointly trained by optimizing a simple lower
bound of data likelihood. Our experiments on six diverse datasets show that our
model achieves better or comparable generation performance with previous state-
of-the-art, and meanwhile enjoys fast generation speed.

1 INTRODUCTION

Generating graphs from a target distribution is a fundamental problem in many domains such as
drug discovery (Li et al., 2018), material design (Maziarka et al., 2020), social network analysis
(Grover et al., 2019), and public health (Yu et al., 2020). Deep generative models have recently
led to promising advances in this problem. Different from traditional random graph models (Erdos
et al., 1960; Albert & Barabási, 2002), these methods fit graph data with powerful deep generative
models including variational auto-encoders (Simonovsky & Komodakis, 2018), generative adversar-
ial networks (Maziarka et al., 2020), normalizing flows (Madhawa et al., 2019), and energy-based
models (Liu et al., 2021). These models are learned to capture complex graph structural patterns and
then generate new high-fidelity graphs with desired properties.

Recently, the emergence of probabilistic diffusion models has led to interest in diffusion-based graph
generation (Jo et al., 2022). Diffusion models decompose the full complex transformation between
noise and real data into many small steps of simple diffusion. Compared with prior deep gener-
ative models, diffusion models enjoy both flexibility in modeling architecture and tractability of
the model’s probability distributions. To the best of our knowledge, there are two existing works
on diffusion-based graph generation: Niu et al. (2020) model the adjacency matrices using score
matching at different noise scales, and uses annealed Langevin dynamics to sample new adjacency
matrices for generation; Jo et al. (2022) propose a continuous-time graph diffusion model that jointly
models adjacency matrices and node features through stochastic differential equations (SDEs).

However, existing diffusion-based graph generative models suffer from three key drawbacks: (1)
Generation Efficiency. The sampling processes of Niu et al. (2020); Jo et al. (2022) are slow, as Niu
et al. (2020) requires a large number of diffusion noising levels and Jo et al. (2022) needs to solve a
complex system SDEs. (2) Continuous Approximation. They convert discrete graphs to continuous
state spaces by adding real-valued noise to graph adjacency matrices. Such dequantization can
distort the distribution of the original discrete graph structures, thus increasing the difficulty of
model training. (3) Incorporating constraints. They are both one-shot generation models and hence
cannot easily incorporate constraints during the one-shot generation process.
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We propose an autoregressive graph generative model named GRAPHARM via autoregressive diffu-
sion on graphs. Autoregressive diffusion (ARM) (Hoogeboom et al., 2022a) is an absorbing diffu-
sion process (Austin et al., 2021) for discrete data, where exactly one dimension of the data decays
to the absorbing state at each diffusion step. In GRAPHARM, we design node-absorbing autoregres-
sive diffusion for graphs, which diffuses a graph directly in the discrete graph space instead of in the
dequantized adjacency matrix space. The forward pass absorbs one node in each step by masking
it along with its connecting edges, which is repeated until all the nodes are absorbed and the graph
becomes empty. We further design a diffusion ordering network in GRAPHARM, which is jointly
trained with the reverse generator to learn an optimal node ordering for diffusion. Compared with
random ordering as in prior ARM models (Hoogeboom et al., 2022a), the learned diffusion ordering
not only provides a better stochastic approximation of the true marginal graph likelihood, but also
eases generative model training by leveraging structural regularities.

The backward pass in GRAPHARM recovers the graph structure by learning to reverse the node-
absorbing diffusion process with a denoising network. The reverse generative process is autore-
gressive, which makes GRAPHARM easy to handle constraints during generation. However, a key
challenge is to learn the distribution of reverse node ordering for optimizing the data likelihood. We
show that this difficulty can be circumvented by just using the exact reverse node ordering and op-
timizing a simple lower bound of likelihood, based on the permutation invariance property of graph
generation. The likelihood lower bound allows for jointly training the denoising network and the
diffusion ordering network using a reinforcement learning procedure and gradient descent.

The generation speed of GRAPHARM is much faster than the existing graph diffusion models (Jo
et al., 2022; Niu et al., 2020). Due to the autoregressive diffusion process in the node space, the
number of diffusion steps in GRAPHARM is the same as the number of nodes, which is typically
much smaller than the sampling steps in (Jo et al., 2022; Niu et al., 2020). Furthermore, at each
step of the backward pass, we design the denoising network to predict one row of the adjacency
matrix at one time. The edges to be predicted follow a mixture of Bernoulli distribution to ensure
dependencies among each other. This makes GRAPHARM much more efficient than most previous
autoregressive graph generation models.

Our key contributions are as follows: (1) To the best of our knowledge, our work is the first autore-
gressive diffusion-based graph generation model, underpinned by a new node self-absorbing diffu-
sion process. (2) GRAPHARM learns an optimal node generation ordering and thus better leverages
the structural regularities for autoregressive graph diffusion. (3) We validate our method on both
synthetic and real-world graph generation tasks, on which we show that GRAPHARM outperforms
existing graph generative models and is efficient in generation speed.

2 BACKGROUND

Diffusion Model and Absorbing Diffusion Given a training instance x0 ∈ RD sampled from
the underlying distribution pdata(x0), a diffusion model defines a forward Markov transition kernel
q(xt|xt−1) to gradually corrupt training data until the data distribution is transformed into a simple
noisy distribution. The model then learns to reverse this process by learning a denoising transition
kernel parameterized by a neural network pθ(xt−1|xt).

Most existing works on diffusion models use Gaussian diffusion for continuous-state data. To apply
Gaussian diffusion on discrete data, one can use dequantization method by adding small noise to the
data. However, dequantization distorts the original discrete distribution, which can cause difficulty
in training diffusion-based models. For example, dequantization on graph adjacency matrices can
destroy graph connectivity information and hurt message passing. Austin et al. (2021); Hoogeboom
et al. (2021) introduce several discrete state space diffusion models using different Markov transition
matrices. Among them, the absorbing diffusion is the most promising one due to its simplicity and
strong empirical performance.
Definition 1 (Absorbing Discrete Diffusion). An absorbing diffusion is a Markov destruction pro-
cess defined in the discrete state space. At transition time step t, each element x(i)

t in dimension i is
independently decayed into an absorbing state with probabilities α(t).

The absorbing state can be a [MASK] token for texts or gray pixel for images (Austin et al., 2021).
The diffusion process will converge to a stationary distribution that has all the mass on the absorbing
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state. The reverse of the absorbing diffusion is learned with categorical distribution to generate the
original data. Typically, the decaying probabilities α(t) need to be small and the diffusion steps T
need to be large to attain good performance.

Autoregressive Diffusion Model Although absorbing diffusion directly operates on the discrete
data, it still needs a large number of diffusion steps and thus its generation process can be slow.
Autoregressive diffusion model (ARM) (Hoogeboom et al., 2022a) describes a fixed absorbing dif-
fusion process where the generative steps is equal to the dimensionality of the data, e.g., the number
of pixels in an image or the number of tokens in a piece of text.

Definition 2 (Autoregressive Diffusion). An autoregressive diffusion is a stochastic absorbing pro-
cess where exactly one dimension decays to the absorbing state at a time. The absorbing diffusion
is repeated until all the D dimensions are absorbed.

An equivalent way to describe this process is to first sample a permutation σ ∈ SD, where SD

represents the set of all permutations of the dimension indices 1, · · · , D. Then each dimension of
the data decays in that order towards the absorbing state. The corresponding generative process then
models the variables in the exact opposite order of the permutation. ARM amounts to absorbing
diffusion with continuous time limit, as detailed in Appendix A.2.

While ARM offers an efficient and general diffusion framework for discrete data, two key questions
remains to be addressed for applying ARM for graphs: (1) How do we define absorbing states for
inter-dependent nodes and edges in graphs without losing the efficiency of ARM? (2) While ARM
imposes a uniform ordering for arriving at an order-agnostic variational lower bound (VLB) of like-
lihood, a random ordering fails to capture graph topology. How do we obtain a data-dependent
ordering that leverages graph structural regularities during generation? In the next section, we ad-
dress these two challenges in our proposed GRAPHARM model.

3 METHOD

A graph is represented by the tuple G = (V,E) with node set V = {v1, · · · , vn} and edge set
E = {(vi, vj)|vi, vj ∈ V )}. We denote by n = |V | and m = |E| the number of nodes and edges
in G respectively. Our goal is to learn a graph generative model from a set of training graphs. We
assume the graphs are unattributed and focus on graph topology generation.

3.1 AUTOREGRESSIVE GRAPH DIFFUSION PROCESS

Due to the dependency between nodes and edges, it is nontrivial to apply absorbing diffusion (Austin
et al., 2021) in the discrete graph space. We first define absorbing node state on graphs as follows:

Definition 3 (Absorbing Node State). When a node vi enters the absorbing state, (1) it will be
masked and (2) it will be connected to all the other nodes in G by masked edges.

Instead of only masking the original edges, we connect the masked node vi to all the other nodes
with masked edges as we cannot know vi’s original neighbors in the absorbing state. With the ab-
sorbing node state defined, we then need a node decay ordering for the forward absorbing pass. A
naı̈ve strategy is to use a random ordering sampled from a uniform distribution as in (Hoogeboom
et al., 2022a). In the reverse generation process, the variables will be generated in the exact reverse
order, which also follows a uniform distribution. However, such a strategy is problematic for graphs.
First, different graph datasets have different structural regularities, and it is key to leverage such reg-
ularities to ease generative learning. For example, community-structured graphs typically consist
of dense subgraphs that are loosely overlapping. For such graphs, it is an easier learning task to
generate one community first and then add the others, but a random node ordering cannot leverage
such local structural regularity, which makes generation more difficult. Second, to compute the like-
lihood, we need to marginalize over all possible node orderings due to node permutation invariance.
It will be more sample efficient if we can use an optimized proposal ordering distribution and use
importance sampling to compute the data likelihood.

To address this issue, we propose to use a diffusion ordering network qϕ(σ|G0) such that, at each
diffusion step t, we sample from this network to select a node vσ(t) to be absorbed and obtain the
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Figure 1: The autoregressive graph diffusion process. In the forward pass, the nodes are autoregres-
sively decayed into the absorbing states, dictated by an ordering generated by the diffusion ordering
network qϕ(σ|G0). In the reverse pass, the generator network pθ(Gt|Gt+1) reconstructs the graph
structure using the reverse node ordering.

corresponding masked graph Gt (Figure 1). This leads to the following definition of our graph
autoregressive diffusion process:

Definition 4 (Autoregressive Graph Diffusion Process). In autoregressive graph diffusion, the node
decay ordering σ is sampled from a diffusion ordering network qϕ(σ|G0) parameterized by ϕ. Then,
exactly one node decays to the absorbing state at a time according to the sampled diffusion ordering.
The process proceeds until all the nodes are absorbed.

The diffusion ordering network follows a recurrent structure qϕ(σ|G0) =
∏

t qϕ(σt|G0, σ(<t)).
At each step t, the distribution of the t-th node σt is conditioned on the original graph G0 and
the generated node ordering up to t − 1, i.e.,σ(<t). We use a graph neural network (GNN) to
encode the structural information in the graph. To capture the partial ordering, we add positional
encodings into node features (Vaswani et al., 2017) as in (Chen et al., 2021). We denote the updated
node embedding of node vi after passing the GNN as hd

i , and parameterize qϕ(σt|G0, σ(<t)) as a
categorical distribution:

qϕ(σt|G0, σ(<t)) =
exp(hd

i )∑
i′ /∈VM

exp(hd
i′
)
, (1)

where VM is the set of node indices that have been masked.

With qϕ(σ|G0), GRAPHARM can learn to optimize node ordering for diffusion. However, this also
requires us to infer the reverse generation ordering in the backward pass. Inferring such a reverse
generation ordering is difficult since we do not have access to the original graph G0 in intermediate
backward steps. In Section 3.3, we show that it is possible to circumvent inferring this generation
ordering by leveraging the permutation invariance of graph generation.

3.2 THE REVERSE GENERATIVE PROCESS

In the generative process, a denoising network pθ(Gt|Gt+1) will denoise the masked graph in the
reverse order of the diffusion process. We design pθ(Gt|Gt+1) as a graph attention network (GAT)
(Veličković et al., 2018; Liao et al., 2019) parameterized by θ, so that the model can distinguish the
masked and unmasked edges. For clarity, we use the vallina GAT to illustrate the computing process.
However, one can adopt any advanced graph neural network with attentive message passing.

At time t, the input to the denoising network pθ(Gt|Gt+1) is the previous masked graph Gt+1. A
direct way is to use Gt+1 which contains all the masked nodes with their corresponding masked
edges. However, during the initial generation steps, the graph is nearly fully connected with masked
edges. This has two issues: (1) the message passing procedure will be dominated by the masked
edges which makes the messages uninformative. (2) Storing the dense adjacency matrix is memory
expensive, which makes the model unscalable to large graphs. Therefore, during each generation
step, we only keep the masked node to be denoised with its associated masked edges, while ignoring
the other masked nodes. We refer the modified masked graph as G

′

t, as shown in Figure 2.

The denoising network first uses an embedding layer to encode each node vi into a continuous
embedding space, i.e., hi = Embedding(vi). At l-th message passing, we update the embedding of
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Figure 2: The generation procedure at step t with the denoising network pθ(Gt|Gt+1).

node vi by aggregating the attentive messages from its neighbor nodes:

αi,j =
exp(LeakyReLU(aT [Whi||Whj ])∑

k∈Ni
exp(LeakyReLU(aT )[Whi||Whj ])

, hi = ReLU

∑
j∈Ni

αi,jWhj

 , (2)

where W is the weight matrix, a is the attention vector. In Eq.2, the attention mechanism enables
the model to distinguish if the message comes from a masked edge. After L rounds of message
passing, we obtain the final embedding hL

i for each node, then we predict the edges between the
new node vσ(t) with all previously denoised nodes {vσ(>t)}. One choice is to sequentially predict
these edges as in (You et al., 2018b; Shi et al., 2020). However, this sequential generation process
takes O(n2) steps, which is inefficient. Instead, we predict the connections of the new node to all
previous nodes at once using a mixture of Bernoulli distribution as in (Liao et al., 2019). The mixture
distribution can capture the dependencies among edges to be generated and meanwhile reduce the
autoregressive generation steps to O(n).

3.3 TRAINING OBJECTIVE

We use approximate maximum likelihood as the training objective for GRAPHARM. We first derive
the variational lower bound (VLB) of likelihood as:

log pθ(G0) = log

(∫
p(G0:n)

q(G1:n|G0)

q(G1:n|G0)
dG1:n

)
≥ Eq(G1:n|G0) (log p(G1:n) + log p(G0|G1:n)− log q(G1:n|G0))

= Eq(σ1,··· ,σn|G0)

∑
t

log pθ(Gt|Gt+1)− KL(q(σ1, · · · , σn|G0)|p(σ1, · · · , σn|Gn)),

(3)

where G0:n denotes all values of Gt for t = 0, · · · , n and p(σ1, · · · , σn|Gn) is the distribution of
the generation ordering. A detailed derivation of Eq. 3 is given in Appendix A.3

As we can see from Eq. 3, introducing the diffusion ordering network requires to infer a reverse gen-
eration ordering p(σ1, · · · , σn|Gn). This is difficult as we do not have the original graph G0 in the
intermediate generation process. However, since graph generation is node permutation invariant, we
do not need to learn such a generation ordering explicitly. Note that the first term in Eq.3 encourages
the model to generate the nodes in the exact reverse ordering of the diffusion process. This pushes the
generation ordering p(σ1, · · · , σn|Gn) close to the diffusion ordering qϕ(σ1, · · · , σn)|G0) during
training and the KL-divergence term will converge to 0. Therefore, we can ignore the KL-divergence
term and finally arrive at a simple training objective:

Ltrain = Eσ1,··· ,σn∼qϕ(σ1,··· ,σn|G0)

∑
t

pθ(Gt|Gt+1). (4)

Compared with the random diffusion ordering, our design has two benefits: (1) We can automati-
cally learn the optimal node generation ordering which leverages the structural information in the
graph. (2) We can consider the diffusion ordering network as an optimized proposal distribution
of importance sampling for computing the data likelihood, which is more sample-efficient than an
uniform proposal distribution.
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3.4 PARAMETER OPTIMIZATION

Learning the parameters of GRAPHARM is challenging, because we need to evaluate the expecta-
tion of the likelihood over the diffusion ordering network. We use a reinforcement learning (RL)
procedure by sampling multiple diffusion trajectories, thereby enabling training both the diffusion
ordering network qϕ(σ|G0) and the denoising network pθ(Gt|Gt+1) using gradient descent.

Specifically, at each training iteration, we explore the diffusion ordering network by creating
M diffusion trajectories for each training graph G

(i)
0 . Each trajectory is a sequence of graphs

{G(i,m)
t }1≤t≤n where the node decay ordering is sampled from qϕ(σ|G0). The denoising network

pθ(Gt|Gt+1) is then trained to minimize the negative VLB using stochastic gradient descent (SGD):

θj ← θj−1 −
η1
M
∇

∑
i∈Btrain

∑
m

∑
t

log pθ(G
(i,m)
t |G(i,m)

t+1 ), (5)

where Btrain is the a minibatch sampled from the training data.

To evaluate the current diffusion ordering network, we create M trajectories for each validation
graph and compute the negative VLB of the denoising network to obtain the corresponding rewards
Rm

t = −
∑

i∈Bval

∑
t logpθ(G

(i,m)
t |G(i,m)

t+1 ). Then, the diffusion ordering network can be updated
with common RL optimization methods, e.g., the REINFORCE algorithm (Williams, 1992):

ϕj ← ϕj−1 −
η2
M

∑
m

Rm
t ∇ log qϕ(σ|G0). (6)

In practice, one can also explore other advanced RL technique, e.g., PPO2, (Schulman et al., 2017)
but we find that the simple REINFORCE algorithm has already achieved outstanding performance.
The detailed training procedure is summarized in Algorithm 1 in Appendix. A.4.

3.5 COMPARISON WITH OM

OM (Chen et al., 2021) also models the node ordering for autoregressive graph generation, but our
method differs from OM in two aspects. (1) The motivations are different. Our method is motivated
by autoregressive diffusion and treats the graph sequences in the diffusion process as the latent
variable; OM treats the node ordering as the latent variable and infers its posterior distribution in
a way similar to Variational autoencoder (VAE). (2) Our training objective is much simpler than
OM. First, we do not need to compute the complicated graph automorphism, which requires some
approximation algorithms to compute. Second, our training objective does not involve the entropy
of the node ordering distribution. Existing works (Lucas et al., 2019b;a) have shown that the entropy
term in the VAE objective can easily cause posterior collapse.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We evaluate the performance of GRAPHARM on six diverse graph generation benchmarks,
covering both synthetic and real-world graphs from different domains: (1) Community-small (You
et al., 2018b), (2) Caveman (You, 2018), (3) Cora (Sen et al., 2008), (4) Breast (Gonzalez-Malerva
et al., 2011), (5) Enzymes (Schomburg et al., 2004) and (6) Ego-small (Sen et al., 2008). For each
dataset, we use 80% of the graphs as training set and the rest 20% as test sets. Following (Liao et al.,
2019), we randomly select 20% from the training data as the validation set. We generate the same
amount of samples as the test set for each dataset. More details can be seen in Appendix.A.8.

Baselines. We compare GRAPHARM with the following baselines: DeepGMG (Li et al., 2018)
and GraphRNN (You et al., 2018b) are RNN-based autoregressive graph generation models.
GraphAF (Shi et al., 2020) and GraphDF (Luo et al., 2021) are flow-based autoregressive models.
GRAN (Liao et al., 2019) is an autoregressive model conditioned on blocks. OM (Chen et al., 2021)
is an autoregressive model that infers node ordering using variational inference. GraphVAE (Si-
monovsky & Komodakis, 2018) is an one-shot model based on VAE. EDP-GNN (Niu et al., 2020)
and GDSS (Jo et al., 2022) are scored-based one-shot methods.
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Model Community-small Caveman Cora

Deg. Clus. Orbit Time/s Deg. Clus. Orbit Time/s Deg. Clus. Orbit Time/s

DeepGMG 0.220 0.950 0.400 496.6 1.752 1.642 0.2122 530.2 - - - -
GraphRNN 0.080 0.120 0.040 16.4 0.371 1.035 0.033 27.0 1.689 0.608 0.308 33.3
GraphAF 0.180 0.200 0.020 19.3 0.269 0.587 0.422 20.5 0.176 0.080 0.094 108.5
GraphDF 0.060 0.120 0.030 10.3 0.077 0.373 0.051 18.5 0.454 0.074 0.256 129.7
GraphVAE 0.350 0.980 0.540 0.2 1.402 1.086 1.391 0.2 1.521 1.740 0.788 0.3
GNF 0.200 0.200 0.110 - - - - - - - - -
GRAN 0.060 0.110 0.050 1.8 0.043 0.130 0.018 2.5 0.125 0.272 0.127 5.1
OM 0.047 0.130 0.008 2.0 0.032 0.076 0.027 3.0 0.249 0.201 0.145 5.6
EDP-GNN 0.053 0.144 0.026 2898.7 0.032 0.168 0.030 1823.4 0.093 0.269 0.062 4655.1
GDSS 0.045 0.086 0.007 435.1 0.019 0.048 0.006 514.0 0.160 0.376 0.187 421.4
GRAPHARM 0.038 0.090 0.003 1.9 0.048 0.022 0.014 2.7 0.281 0.134 0.114 4.5

Model Breast Enzymes Ego-small

Deg. Clus. Orbit Time/s Deg. Clus. Orbit Time/s Deg. Clus. Orbit Time/s

DeepGMG - - - - - - - - 0.040 0.100 0.020 477
GraphRNN 0.103 0.138 0.005 31.0 0.017 0.062 0.046 19.2 0.090 0.220 0.003 18.7
GraphAF 0.111 0.407 0.003 53.1 1.669 1.283 0.266 28.6 0.030 0.110 0.001 6.9
GraphDF 0.283 0.078 0.035 62.4 1.503 1.061 0.202 39.8 0.040 0.130 0.010 10.2
GraphVAE 1.591 1.993 1.050 0.2 1.369 0.629 0.191 0.7 0.130 0.170 0.050 0.3
GNF - - - - - - - - 0.030 0.100 0.001 -
GRAN 0.073 0.413 0.010 2.1 0.054 0.078 0.017 3.2 0.030 0.029 0.014 1.2
OM 0.042 0.140 0.005 2.8 0.051 0.083 0.024 2.4 0.024 0.035 0.018 1.4
EDP-GNN 0.131 0.038 0.019 3694.2 0.023 0.268 0.082 2155.5 0.052 0.093 0.007 3851.9
GDSS 0.113 0.020 0.003 858.4 0.026 0.061 0.009 443.0 0.021 0.024 0.007 260.9
GRAPHARM 0.031 0.046 0.002 2.3 0.033 0.059 0.019 3.5 0.016 0.014 0.012 1.2

Table 1: Generation results on the six datasets for all the methods. We report the MMD distance
between the test datasets and generated graphs. Best results are bold and the second best values are
underlined (smaller the better). “-” denotes out-of-resources that take more than 10 days to run.

Parameter Settings. We use ADAM with β1 = 0.9 and β = 0.999 as the optimizer. The learn-
ing rate is set for 10−4 and 5 × 10−4 for the denoising network and diffusion ordering network
respectively on all the datasets. For fair comparison, our denoising network uses the same graph
attention network architecture as the baseline GRAN; the diffusion ordering network uses the same
graph attention network architecture as the baseline OM. As OM is compatible with any existing
autoregressive methods, we use the strongest autoregressive baseline GRAN as its backbone. More
implementation details and parameter settings are provided in in Appendix A.6.

Evaluation metrics. Following previous work (You et al., 2018b; Jo et al., 2022), we measure
generation quality using the maximum mean discrepancy (MMD) as a distribution distance between
the generated graphs and the test graphs. Specifically, we compute the MMD of degree distribution,
clustering coefficient, and orbit occurrence numbers of 4 nodes between the generated set and the
test set. We also report the generation time of different methods.

4.2 EXPERIMENTAL RESULTS

Main Results Table 1 shows the generation performance on the six benchmarks for all the meth-
ods. (1) As we can see, our method can outperform or achieve competitive performance compared
with the baselines. In terms of efficiency, our model is on par with the most efficient autoregressive
baseline GRAN, and 10-100X faster than other baselines except for the one-shot baseline Graph-
VAE. However, GraphVAE’s generation quality is much worse than ours as it generates all edges
independently from the latent embedding and cannot well capture complex edge dependencies. (2)
GDSS is the strongest baseline. However, its generation is extremely slow as it needs to solve a
complex SDE system in the reserve process. Our GRAPHARM model is more than 100 times faster
than GDSS in generation on almost all the datasets. The other graph diffusion model EDP-GNN
is even slower than GDSS as its generation process uses annealed Langevin Dynamics with many
different noise levels. (3) GRAPHARM also outperforms existing autoregressive graph generative
models by large margins. This is because they adopt a fixed node ordering when training the gener-
ative model while GRAPHARM automatically learns an optimal generation ordering for the graph.
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Though OM also learns a node ordering distribution, GRAPHARM consistently outperforms it on all
the datasets. This is because OM uses the VAE objective which may suffer from posterior collapse,
while GRAPHARM has a much simpler training objective based on autoregressive diffusion.

Method Validity Deg. Clus. Orbit

EDP-GNN 39% - - -
GDSS 34% - - -
GRAN 100% 0.208 0.231 0.158
OM 100% 0.190 0.168 0.132
GRAPHARM 100% 0.179 0.135 0.141

Table 2: Constrained graph generation results on
the Caveman dataset.

Constrained Graph Generation In this set
of experiments, we study GRAPHARM’s capa-
bility in constrained graph generation by com-
paring it with the strongest one-shot and autore-
gressive baselines. We use the Caveman dataset
for constrained graph generation, with the con-
straint that the maximum node degree is no
larger than 6. The detailed setup is in Appendix
A.7. Table. 2 shows the constrained generation
performance on the Caveman dataset. GDSS
and EDP-GNN are both one-shot generative
model and thus they cannot guarantee the con-
straints are satisfied during sampling. We find that more than half of their generated samples are
invalid. For autoregressive baselines, we apply the degree checking procedure on the two strongest
baselines, i.e.,GRAN and OM. As we can see, GRAPHARM can generate constrained samples that
are closer to the data distribution. This is useful for many real-world applications. For example,
when designing the contact networks of patients and healthcare workers in hospitals, a constraint
of degrees for healthcare workers can help avoid superspreaders and potential infectious disease
outbreaks (Jang et al., 2019; Adhikari et al., 2019).

Community-small Breast

GRAN 23.04 247.18
OM 16.82 187.22
EDP-GNN N/A N/A
GDSS N/A N/A
GRAPHARM 15.79 190.34

Table 3: Test set negative log-likelihood (NLL) on
Community-small and Breast datasets. N/A repre-
sents the model cannot provide the NLL.

Evaluation of Log likelihood We further
evaluate the expected negative log-likelihood
(NLL) across node permutations on the test
sets. For GRAN, we sample 1000 node per-
mutations from the uniform distribution. For
OM and GRAPHARM, we sample 1000 node
permutations from the ordering network. Ta-
ble 3 shows the expected NLL on the test
sets for Community-small and Breast. As
shown, GRAPHARM can achieve competitive
results with OM and outperform GRAN by
large margins. This is because both OM and
GRAPHARM learn an optimal node ordering
distribution; sampling from this distribution is more sample efficient than the uniform distribution.
Though GDSS and EDP-GNN are also diffusion based graph generative model, they cannot provide
the likelihood. Note that GDSS involves a system of SDEs and we cannot directly use the proba-
bility flow ODE in (Song et al., 2021) to compute the likelihood. This can be a drawback in some
density-based downstream tasks, e.g., outlier detection.

Deg. Clus. Orbit Counts

OA-ARM 0.159 0.372 0.291 6.9
GRAPHARM 0.038 0.090 0.003 2.6

Table 4: Generation performance and node gener-
ation ordering of GRAPHARM and OA-ARM on
the Community-small dataset. Counts represents
the average number of nodes that cross different
clusters during the generation procedure.

Effect of Diffusion Ordering We further val-
idate the superiority of the learned diffusion
ordering in GRAPHARM over random node
ordering for graph generation. We compare
GRAPHARM with an ablation OA-ARM, which
uses random node ordering (Hoogeboom et al.,
2022a) for graph generation. Table 4 shows
the generation performance and generation or-
dering of GRAPHARM and OA-ARM on the
Community-small dataset. As shown, with
the random generation ordering, the generation
performance drops significantly. This is be-
cause a random generation ordering fails to leverage the structural regularities in the graphs and
thus learning the generative model is much more difficult. To evaluate the node generation order-
ing, we use the spectral graph clustering method to partition the nodes into two clusters for each
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generated graph and then count the cross-cluster steps during the generation procedure. As we
can see, the average number of nodes that cross different clusters of our method is much smaller
than OA-ARM. This demonstrates that our method tends first to generate one cluster and then adds
another cluster while OA-ARM just randomly generates the graph. Therefore, the generation or-
dering of GRAPHARM can better capture graph topology regularity than OA-ARM. Figure 3 (in
Appendix A.1) visualize the graph generative process of GRAPHARM and OA-ARM. As we can
see, GRAPHARM first generates one community and then moves to another; while OA-ARM ran-
domly generates the graph and fails to capture the underlying graph distribution.

5 ADDITIONAL RELATED WORK

Graph Generation. One-shot graph generative models generate all edges between nodes at once.
Models based on VAEs (Simonovsky & Komodakis, 2018; Liu et al., 2018; Ma et al., 2018) and
GANs (Cao & Kipf, 2022; Maziarka et al., 2020) generate all edges independently from latent em-
beddings. This independence assumption can hurt the quality of the generated graphs. Normalizing
flow models (Zang & Wang, 2020; Madhawa et al., 2019) are restricted to invertible model archi-
tectures for building a normalized probability. The other class is autoregressive graph generative
models, which generate a graph by sequentially adding nodes and edges. Autoregressive generation
can be achieved using recurrent networks (Li et al., 2018; You et al., 2018b; Popova et al., 2019),
VAEs (Liu et al., 2018; Jin et al., 2018; 2020), normalizing flows (Shi et al., 2020; Luo et al., 2021),
and RL (You et al., 2018a). By breaking the problem into smaller parts, these methods are more apt
at capturing complex structural patterns and can easily incorporate constraints during generation.
However, a key drawback of them is that their training is sensitive to node ordering. Most exist-
ing works pre-define a fixed node ordering by ad-hoc such as random breadth-first search (BFS)
ordering (You et al., 2018b; Shi et al., 2020; Luo et al., 2021), which cannot preserve permutation
invariance and also be suboptimal for generation.

Diffusion and Score-Based Generation. Diffusion models have emerged as a new family of pow-
erful deep generative models. Denoising diffusion probabilistic modeling (DDPM) (Sohl-Dickstein
et al., 2015; Ho et al., 2020) perturbs the data distribution into a Gaussian base distribution through
an forward Markov noising process, and then learns to recover data distribution via the reverse tran-
sition of the Markov chain. Closely related to DDPM is score-based generation (Song & Ermon,
2019), which perturbs data with gradually increasing noise, and then learns to reverse the perturba-
tion via score matching. Song et al. (2021) generalize diffusion models to continuous-time diffusion
using forward and backward SDEs. Diffusion and score-based models has been successfully devel-
oped for problems including image synthesis (Dhariwal & Nichol, 2021), text-to-image synthesis
(Ramesh et al., 2022; Saharia et al., 2022), and molecular conformation modeling (Xu et al., 2021;
Hoogeboom et al., 2022b). Few works have studied diffusion-based graph generation. To the best of
our knowledge, Niu et al. (2020); Jo et al. (2022) are the only two works in this line. Different from
these two works, our model is the first autoregressive diffusion model for graph generation, which
defines diffusion directly in the discrete graph space.

6 LIMITATIONS AND DISCUSSION

We have proposed a new autoregressive diffusion model for graph generation. The proposed model
GRAPHARM defines a node-absorbing diffusion process that directly operates in the discrete graph
spaces. We designed a diffusion ordering network that learns an optimal ordering for this diffu-
sion process, coupled with a reverse denoising network that performs autoregressive graph recon-
struction. We derived a simple variational lower bound of the likelihood, and showed that the two
networks can be jointly trained with reinforcement learning. Our experiments have validated the
generation performance and efficiency of GRAPHARM.

We discuss several limitations and possible future extensions of GRAPHARM: (1) Generating at-
tributed graphs. Our work has been focused on generating graph structures only. However, it is
possible to extend GRAPHARM for attributed graph generation by changing the Bernoulli-mixture
distribution to multinomial-mixture distribution. (2) Handling more complex constraints. We have
shown that the autoregressive procedure of GRAPHARM can handle constraints better than one-
shot generative models. However, practical graph generation applications can involve complex
constraints on global-level properties such as graph spectrum. How to handle such global-level
constraints remains challenging for our model and existing graph generative models.
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Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative Models,
(arXiv:1805.11973), 2022. doi: 10.48550/arXiv.1805.11973.

Xiaohui Chen, Xu Han, Jiajing Hu, Francisco Ruiz, and Liping Liu. Order matters: Probabilis-
tic modeling of node sequence for graph generation. In International Conference on Machine
Learning, pp. 1630–1639. PMLR, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.
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A APPENDIX

A.1 VISUALIZATION OF GENERATION ORDERING

Figure 3 shows the graph generative process of GRAPHARM and OA-ARM. As we can see,
GRAPHARM first generates one community and then moves to another; while OA-ARM randomly
generates the graph and fails to capture the underlying graph distribution.
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Figure 3: The graph generative process of GRAPHARM and OA-ARM for community generation.
As we can see, GRAPHARM first generates one community and then adds another one, which show
that GRAPHARM captures graph structural topology for generation. In contrast, OA-ARM generates
the graph with a random order.

A.2 CONNECTION BETWEEN AUTOREGRESSIVE DIFFUSION AND ABSORBING DIFFUSION

While ARM appears different from classic diffusion, it amounts to absorbing diffusion with contin-
uous time limit. Starting from state x0, we can define a continuous-time absorbing process, where
each element x(i)

t independently decays into an absorbing state with continuous-time probabilities
α(t). This stochastic process is equivalent as using a finite set of D random transition times {τi}Di=1

for recording the time where x
(i)
t was absorbed. It was shown by Hoogeboom et al. (2022a) that

modeling the reverse generation of this process does not need to be conditioned on the precise values
of the transition times τi. Hence, when training the reverse generative model, we only need to model
xτi based on xτi+1 while ignoring τi. This allows for writing the variational lower bound (VLB) of
likelihood as an expectation over an uniform ordering in an autoregressive form:

logp(x0) ≥ Eσ∼U(Sd)

D∑
i

logp(xσ(i)|xσ(<i)). (7)

A.3 DERIVATION OF EQ. 3

Following (Chen et al., 2021), let us define Π (G1:n) as the set of all node orderings that give the
same graph sequence G1:n, i.e., Π (G1:n) = {σ1:n : Gt(σ1:t) = Gt,∀t = 1, · · · , n}where Gt(σ1:t)
is the masked graph at time step t under the node ordering σ1:t. Following (Chen et al., 2021),
the conditional p(σ1:n|G1:n) is a uniform distribution, i.e., p(σ1:n|G1:n) = 1

|Π (G1:n)| ,∀σ1:n ∈
Π (G1:n). Then, we have the following two equations (Chen et al., 2021):

pθ(G1:n, σ1:n) =
1

|Π (G1:n)|
pθ(G1:n), (8)

qϕ(G1:n|G0) = |Π (G1:n)|qϕ(σ1:n|G0). (9)

To derive the VLB, we first prove that for any function of G0:n, i.e., f(G0:n), its expectation over
the diffused graph sequence is equal to the expectation over the node diffusion orderings. That is:

Eqϕ(G1:n|G0)f(G0:n) = Eqϕ(σ1:n|G0)f(G0:n). (10)
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Proof.

Eqϕ(G1:n|G0)f(G0:n) =
∑
G1:n

f(G0:n)qϕ(G1:n|G0)

=
∑
G1:n

1

|Π (G1:n)|
∑

σ1:n∈Π (G1:n)

f(G0:n)qϕ(G1:n|G0)

Eq. 9
=

∑
G1:n

1

|Π (G1:n)|
∑

σ1:n∈Π (G1:n)

f(G0:n)|Π (G1:n)|qϕ(σ1:n|G0)

=
∑
G1:n

∑
σ1:n∈Π (G1:n)

f(G0:n)qϕ(σ1:n|G0)

=
∑
σ1:n

f(G0:n)qϕ(σ1:n|G0)

=Eqϕ(σ1:n|G0)f(G0:n). (11)

The third last row is because iterating over the double loops of all the graph sequences and the
corresponding node orderings is equal to iterating over all possible node orderings.

Then, our VLB can be written as:

log pθ(G0) = log

(∫
pθ(G0:n)

qϕ(G1:n|G0)

qϕ(G1:n|G0)
dG1:n

)
≥Eqϕ(G1:n|G0) (log pθ(G1:n) + log pθ(G0|G1:n)− log qϕ(G1:n|G0))

Eq. 10
= Eqϕ(σ1:n|G0) (log pθ(G1:n) + log pθ(G0|G1:n)− log qϕ(G1:n|G0))

Eq. 8
= Eqϕ(σ1:n|G0) (log |Π (G1:n)|pθ(G1:n, σ1:n) + log pθ(G0|G1:n)− log qϕ(G1:n|G0))

Eq. 9
= Eqϕ(σ1:n|G0) (log |Π (G1:n)|pθ(G1:n, σ1:n) + log pθ(G0|G1:n)− log |Π (G1:n)|qϕ(σ1:n|G0))

=Eqϕ(σ1:n|G0)(log |Π (G1:n)|pθ(G1:n−1|σ1:n)p(σ1:n|Gn)p(Gn) + log pθ(G0|G1:n)

− log |Π (G1:n)|qϕ(σ1:n|G0))

=Eqϕ(σ1:n|G0)(log pθ(G1:n−1|σ1:n) + log pθ(G0|G1:n) + log p(σ1:n|Gn) +�����:0
log p(Gn)

− log qϕ(σ1:n|G0) + log |Π (G1:n)| − log |Π (G1:n)|)
=Eqϕ(σ1:n|G0)(log pθ(G0:n−1|σ1:n, Gn) + log p(σ1:n|Gn)− log qϕ(σ1:n|G0))

=Eqϕ(σ1:n|G0) (log pθ(G0:n−1(σ1:n)|Gn) + log p(σ1:n|Gn)− log qϕ(σ1:n|G0))

=Eqϕ(σ1:n|G0) (log pθ(G0:n−1(σ1:n)|Gn) + log p(σ1:n|Gn)− log qϕ(σ1:n|G0))

=Eqϕ(σ1:n|G0)

n−1∑
t=0

log pθ(Gt(σ1:n))|Gt+1(σ1:n))− KL(qϕ(σ1:n|G0)|p(σ1:n|Gn)).

(12)

We use Gt(σ1:n) to denote the masked graph at time step t under the node ordering σ1:n. In the
fifth last row, we have log p(Gn) = 0 because Gn is a deterministic graph wherein all the nodes are
masked. For brevity, we directly use pθ(Gt|Gt+1) to represent pθ(Gt(σ1:n)|Gt+1(σ1:n)) in Eq. 3
since σ1:n already appears in the expectation over qϕ(σ1:n|G0).

A.4 TRAINING ALGORITHM OF GRAPHARM

We use a reinforcement learning (RL) procedure by sampling multiple diffusion trajectories,
thereby enabling training both the diffusion ordering network qϕ(σ|G0) and the denoising network
pθ(Gt|Gt+1) using gradient descent.

Specifically, at each training iteration, we explore the diffusion ordering network by creating
M diffusion trajectories for each training graph G

(i)
0 . Each trajectory is a sequence of graphs
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{G(i,m)
t }1≤t≤n where the node decay ordering is sampled from qϕ(σ|G0). The denoising network

pθ(Gt|Gt+1) is then trained to minimize the negative VLB using stochastic gradient descent (SGD):

θj ← θj−1 −
η1
M
∇

∑
i∈Btrain

∑
m

∑
t

log pθ(G
(i,m)
t |G(i,m)

t+1 ), (13)

where Btrain is the a minibatch sampled from the training data.

To evaluate the current diffusion ordering network, we create M trajectories for each validation
graph and compute the negative VLB of the denoising network to obtain the corresponding rewards
Rm

t = −
∑

i∈Bval

∑
t logpθ(G

(i,m)
t |G(i,m)

t+1 ). Then, the diffusion ordering network can be updated
with common RL optimization methods, e.g., the REINFORCE algorithm (Williams, 1992):

ϕj ← ϕj−1 −
η2
M

∑
m

Rm
t ∇ log qϕ(σ|G0). (14)

The detailed training procedure is summarized in Algorithm 1.

Algorithm 1 Training procedure of GRAPHARM

Require: Diffusion ordering network qϕ(σ|G0), Denoising network pθ(Gt|Gt+1)
1: for # training iterations do
2: Sample a minibatch B from the training set
3: for each i ∈ Btrain do
4: for each m ∈ [1,M ] do
5: σ1, · · · , σt ∼ qϕ(σ|G0)

6: Obtain corresponding diffusion trajectories {G(i,m)
t }1≤t≤n

7: end for
8: θj ← θj−1 − η1

M∇
∑

i∈Dtrain

∑
m

∑
t logpθ(G

(i,m)
t |G(i,m)

t+1 )
9: end for

10: Sample a minibatch from the validation set
11: for each i ∈ Bval do
12: for each m ∈ [1,M ] do
13: σ1, · · · , σt ∼ qϕ(σ|G0)

14: Obtain corresponding diffusion trajectories {G(i,m)
t }1≤t≤n

15: end for
16: Compute the reward Rm

t = −
∑

i∈Dval

∑
t logpθ(G

(i,m)
t |G(i,m)

t+1 )

17: ϕj ← ϕj−1 − η2

M

∑
m Rm

t ∇logqϕ(σ|G0).
18: end for
19: end for

A.5 EXTENDED RELATED WORK

Graph Generation. One-shot graph generative models generate all edges between nodes at once.
Models based on VAEs (Simonovsky & Komodakis, 2018; Liu et al., 2018; Ma et al., 2018) and
GANs (Cao & Kipf, 2022; Maziarka et al., 2020) generate all edges independently from latent em-
beddings. This independence assumption can hurt the quality of the generated graphs. Normalizing
flow models (Zang & Wang, 2020; Madhawa et al., 2019) are restricted to invertible model archi-
tectures for building a normalized probability. Another drawback shared by all one-shot generation
models is that they cannot incorporate constraints during generation due to the one-shot process.
The other class is autoregressive graph generative models, which generate a graph by sequentially
adding nodes and edges. Autoregressive generation can be achieved using recurrent networks (Li
et al., 2018; You et al., 2018b; Popova et al., 2019), VAEs (Liu et al., 2018; Jin et al., 2018; 2020),
normalizing flows (Shi et al., 2020; Luo et al., 2021), and RL (You et al., 2018a). By breaking
the problem into smaller parts, these methods are more apt at capturing complex structural patterns
and can easily incorporate constraints during generation. However, a key drawback of them is that
their training is sensitive to node ordering. Most existing works pre-define a fixed node ordering by
ad-hoc such as random breadth-first search (BFS) ordering (You et al., 2018b; Shi et al., 2020; Luo
et al., 2021), which cannot preserve permutation invariance and also be suboptimal for generation.
Chen et al. (2021) propose to learn the node generation ordering using variational inference (VI).
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Diffusion and Score-Based Generation. Diffusion models have emerged as a new family of pow-
erful deep generative models. Denoising diffusion probabilistic modeling (DDPM) (Sohl-Dickstein
et al., 2015; Ho et al., 2020) perturbs the data distribution into a Gaussian base distribution through
an forward Markov noising process, and then learns to recover data distribution via the reverse tran-
sition of the Markov chain. Closely related to DDPM is score-based generation (Song & Ermon,
2019), which perturbs data with gradually increasing noise, and then learns to reverse the perturba-
tion via score matching. Song et al. (2021) generalize diffusion models to continuous-time diffusion
using forward and backward SDEs. Diffusion and score-based models has been successfully devel-
oped for problems including image synthesis (Dhariwal & Nichol, 2021), text-to-image synthesis
(Ramesh et al., 2022; Saharia et al., 2022), and molecular conformation modeling (Xu et al., 2021;
Hoogeboom et al., 2022b).

A few works have proposed discrete diffusion models that operate directly in discrete state spaces
through multinomial diffusion that uses categorical noise (Hoogeboom et al., 2021), discrete ab-
sorbing diffusion (Austin et al., 2021), or autoregressive diffusion (Hoogeboom et al., 2022a). Our
GRAPHARM model extends autoregressive diffusion in two ways: (1) It defines autoregressive ab-
sorbing diffusion processes on graphs; (2) It learns an optimal absorbing node ordering via the
permutation invariance property in graph generation. Few works have studied diffusion-based graph
generation. To the best of our knowledge, Niu et al. (2020); Jo et al. (2022) are the only two works in
this line. Niu et al. (2020) perturb the adjacency matrices with gradually increasing noise levels, and
Jo et al. (2022) model diffusion on both the adjacency matrices and node features using continuous-
time SDE-based diffusion. Different from these two works, our model is the first autoregressive
diffusion model for graph generation, which defines diffusion directly in the discrete graph space.

A.6 IMPLEMENTATION DETAILS

Model optimization: We use ADAM with β1 = 0.9 and β = 0.999 as the optimizer. The learn-
ing rate is set for 10−4 and 5 × 10−4 for the denoising network and diffusion ordering network
respectively on all the datasets. We perform model selection based on the average MMD of the three
metrics on the validation set.

Network architecture: For fair comparison, our denoising network uses the same graph attention
network architecture as the baseline GRAN which has 7 layers and hidden dimensions 128; the
diffusion ordering network uses the same graph attention network architecture as the baseline OA
which is a vallina GAT (Veličković et al., 2018) that has 3 layers with 6 attention heads and residual
connections. The hidden dimension is set to 32. As OM is compatible with any existing autoregres-
sive methods, we use the strongest autoregressive baseline GRAN as its backbone.

Hyper-parameters: We set the number of trajectories M as 4 for all the datasets. Both
GRAPHARM and GRAN use 20 as the number of Bernoulli mixtures. For GRAN, we
use block size 1 and stride 1 to achieve the best generation performance. For GDSS, we
choose the best signal-to-noise ratio (SNR) from {0.05, 0.1, 0.15, 0.2} and scale coefficient from
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} based on the average MMD of degree, clustering co-
efficient and orbit as in Jo et al. (2022). For EDP-GNN, we use 6 noise levels {σi}Li=1 =
[1.6, 0.8, 0.6, 0.4, 0.2, 0.1] as suggested in the original work (Niu et al., 2020). For OM, we use
4 as the sample size for variational inference as suggested in the original work (Chen et al., 2021)

A.7 EXPERIMENT SETUP FOR CONSTRAINED GRAPH GENERATION

We use the Caveman dataset for the constrained generation experiment. We set the constraint as
that the maximum node degree is no larger than 6. To generate graphs under this constraint with
GRAPHARM, we add a degree checking into the generation process. Specifically, when generating a
new node and its connecting edges, we first check whether the constraint will be violated on previous
nodes as new edges are added to them. If so, the corresponding edges will be dropped; otherwise
we proceed to check the constraint on the new generated node and randomly remove the extra edges
that exceed the limit.
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A.8 DATASET STATISTICS

We evaluate the performance of GRAPHARM on six diverse graph generation benchmarks, covering
both synthetic and real-world graphs from different domains: (1) Community-small (You et al.,
2018b), containing 100 graphs randomly generated community graphs with 12 ≤ |V | ≤ 20; (2)
Caveman (You, 2018), containing 200 caveman graphs synthetically generated with 5 ≤ |V | ≤ 10;
(3) Cora, containing 200 sub-graphs with 9 ≤ |V | ≤ 87, extracted from Cora network (Sen et al.,
2008) using random walk; (4) Breast, including 100 chemical graphs with 12 ≤ |V | ≤ 18, sampled
from Gonzalez-Malerva et al. (2011); (5) Enzymes, including 563 protein graphs with 10 ≤ |V | ≤
125 from BRENDA database (Schomburg et al., 2004); (6) Ego-small, containing 200 small sub-
graphs with 4 ≤ |V | ≤ 18 sampled from Citeseer Network Dataset (Sen et al., 2008). For each
dataset, we use 80% of the graphs as training set and the rest 20% as test sets. Following (Liao et al.,
2019), we randomly select 25% from the training data as the validation set.

A.9 APPROXIMATION ERROR OF THE KL-DIVERGENCE TERM IN EQ. 3.

To evaluate the approximation error, we compute the KL-divergence between the diffu-
sion ordering and the generation ordering at each time step and then sum together, i.e.,
Approximation error=

∑
t KL

(
q(σt|G0, σ(<t))|p(σt|Gt)

)
. Specifically, at each time step t, we use

GRAPHARM to first generate a graph G0 and record the corresponding node generation ordering
σ. Since we do not explicitly model distribution of the node index during the generation procedure,
we determine the index of the generated node in G0 by its connectivity to the unmasked nodes in
Gt. Finally, we forward the generation network multiple times to obtain an empirical distribution
for p(σt|Gt). Table 5 provides the approximation error versus the training iterations. As we can
see, with the training progresses, the approximation error indeed becomes smaller and approaches
to zero.

Training iterations 0 100 200 500 2000 3000

Appriximation error 0.343 0.262 0.131 0.093 0.061 0.049

Table 5: Approximation error between the generation ordering and the diffusion ordering on the
community-small dataset.
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