
HERMES: Human-to-Robot Embodied Learning from Multi-Source
Motion Data for Mobile Dexterous Manipulation

Leveraging human motion data to impart robots with versatile manipula-
tion skills has emerged as a promising paradigm in robotic manipulation.
Nevertheless, translating multi-source human hand motions into feasible
robot behaviors remains challenging, particularly for robots equipped with
multi-fingered dexterous hands characterized by complex, high-dimensional
action spaces. In this paper, we introduce HERMES, a human-to-robot learn-
ing framework for mobile bimanual dexterous manipulation. First, HERMES
formulates a unified reinforcement learning approach capable of seamlessly
transforming heterogeneous human hand motions from multiple sources
into physically plausible robotic behaviors. Subsequently, to mitigate the
sim2real gap, we devise an end-to-end, depth image-based sim2real transfer
method for improved generalization to real-world scenarios. Furthermore, to
enable autonomous operation in varied and unstructured environments, we
augment the navigation foundation model with a closed-loop Perspective-n-
Point (PnP) localization mechanism, ensuring precise alignment of visual
goals and effectively bridging autonomous navigation and dexterous manip-
ulation. Extensive experimental results demonstrate that HERMES consis-
tently exhibits generalizable behaviors across diverse, in-the-wild scenarios,
successfully performing numerous complex mobile bimanual dexterous ma-
nipulation tasks. Project Page https://hermes-manipulation.github.io/
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1 Introduction
Humans continuously generate diverse bimanual manipulation data,
inherently serving as natural guidance for robots to emulate human-
like behaviors. Several previous studies [Dan et al. 2025; Kim et al.
2025; Lum et al. 2025; Wang et al. 2023; Zhou et al. 2025] have at-
tempted to extract trajectories of human hands and manipulated
objects from video data, subsequently applying them to robotic ma-
nipulation tasks. Nevertheless, these methods have predominantly
targeted robots equipped with simple gripper-based end effectors,
failing to generalize effectively to dexterous hands due to the vastly
greater complexity of action space. Despite recent advances that
utilize kinematic retargeting approaches to produce human-like
robotic motions [Qin et al. 2023; Qiu et al. 2025; Shaw et al. 2023,
2024; Yang et al. 2025], these approaches still fall short in achieving
physically-aware pose retargeting and bridging the embodiment gap
to derive feasible robot actions capable of successfully accomplish-
ing the intended tasks. A critical limitation lies in the omission
of explicit modeling of interactions between robotic hands and
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manipulated objects, a fundamental component of manipula-
tion tasks. Consequently, neglecting these interactions undermines
the robot’s ability to fully understand and adapt to the dynamics of
manipulation scenarios.

Motivated by these challenges, we propose HERMES, a versatile
human-to-robot embodied learning framework tailored for mobile
bimanual dexterous hand manipulation. HERMES offers the fol-
lowing three advantages: 1. Diverse sources of human motion:
Our framework supports several human motion sources, including
teleoperated simulation data, motion capture (mocap) data, and
raw human videos. We also provide corresponding approaches for
data acquisition, enabling HERMES to efficiently transform varied
human motion data into robot-feasible behaviors through RL. Fur-
thermore, these tasks share a uniform set of reward terms, obviating
the necessity of designing intricate and task-specific reward func-
tions. In contrast to the methods that depend on collecting a large
amount of demonstrations, we can achieve generalizable policy by
editing a single reference human motion trajectory coupling with
RL training. 2. End-to-end vision-based sim2real transfer: HER-
MES facilitates robust vision-based sim2real transfer by employing
DAgger distillation, which converts state-based expert policies into
vision-based student policies. Moreover, we introduce a general-
ized, object-centric depth image augmentation and hybrid control
approach, effectively bridging the perception and dynamic sim2real
gap. 3. Mobile manipulation capability: Our method endows
robots with mobile manipulation skills. Building upon ViNT [Shah
et al. 2023], we develop a RGB-D based module for precise local-
ization wherein the task is modeled as a Perspective-n-Point (PnP)
problem and addressed through an iterative process. This ensures
seamless integration with subsequent manipulation tasks and un-
lock the policy’s capacity to operate autonomously across a broad
spectrum of real-world environments.

2 Method

2.1 Collect One-shot Human Motion
To validate the effectiveness and robustness of HERMES, we employ
three distinct sources of human motion: teleoperation in simulation,
motion capture data obtained from public datasets, and hand-object
poses extracted from raw videos. Moreover, by leveraging merely a
single human reference trajectory in conjunction with RL training,
we are able to derive the generalizable robot policy without the need
for collecting extensive demonstrations.
Synthesize multiple trajectories: To obtain a more general-

izable policy, we perform the trajectory editing for the one-shot
human motion reference by randomizing the object’s position and
orientation in a predefined range. The hand and object poses across
the augmented trajectories are transformed as follows:

Âpose [𝜏𝑘 ] = Ttrans · Apose [𝜏𝑘 ] . (1)

For any given frame 𝑘 in the trajectory 𝜏 , we apply a transformation
matrix Ttrans to alter its pose, where Apose may represent either the
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Fig. 1. The main pipeline of HERMES. HERMES comprises a four-stage pipeline for achieving mobile bimanual dexterous manipulation through sim2real
transfer. First, we acquire a one-shot human demonstration drawn from diverse sources. Then, in stage 2, we train a state-based RL teacher policy, then apply
DAgger to distill into a vision-based student policy. Following this, HERMES execute long-horizon navigation using ViNT, followed by real-time PnP to finely
adjust the robot’s pose and achieve precise alignment in stage 3. Once localization is achieved, the student policy is deployed in a zero-shot fashion directly in
the real world.

object pose or the hand pose. By editing the reference trajectory, we
enable spatial generalization from a single human motion demon-
stration, obviating the need to manually collect large numbers of
teleoped demonstrations.
Upon obtaining synthesized object and hand trajectories from

various data sources, we initially employ the DexPilot retargeting
method [Handa et al. 2020] to map the captured human hand poses
onto corresponding robot hand configurations. Subsequently, rein-
forcement learning is leveraged to refine and adapt the initialized
robot behaviors.

2.2 Generalizable Reward Design for Manipulation
Standard reinforcement learning typically relies on hand-crafted
reward functions tailored to each specific task. However, designing
such complicated reward structures often impedes scalability and
usability, particularly for the dexterous hand. To alleviate this is-
sue, we leverage one-shot human demonstration combined with a
generalizable reward formulation, enabling the reuse of a unified
reward function across tasks and facilitating the straightforward
construction of challenging, long-horizon manipulation tasks.
Object-centric Distance chain: Capturing the dynamic spa-

tial relationships between the human hands and the object stands
as a pivotal factor in enabling the policy to acquire fine-grained
hand-object interaction skills. We designate the coordinates of the

fingertips and palm of the hand, along with the center of the object’s
collision mesh, as keypoints. By modeling the temporal evolution
of vectors between these keypoints, we formulate the following
reward function:

𝑟chain =

{
exp

{
− 1
𝑛

∑𝑛
𝑖=1




®𝑟 (𝑖 )ref − ®𝑟 (𝑖 )



} , if 𝑁contact ≥ 𝑁num

0, otherwise
(2)

where ®𝑟 (𝑖 ) is the vector from object center to the fingertip or
palm. Furthermore, we incorporate contact information into this
reward term. Specifically, during the computation of the distance
chain, we also evaluate the number of contact points between the
fingertips and palms of both hand mesh Chand and the object’s
collision mesh Cobj. This reward component is activated only when
the number of contact points𝑁contact exceeds a predefined threshold
𝑁num, ensuring that the policy attends to physically meaningful
hand-object interactions.
We also incorporate an object trajectory tracking and a power-

penalty term to align the policy’s behavior with the target object’s
trajectory and enhance the smoothness of policy execution and to
alleviate the jittering actions. We adopt DrM [Xu et al. 2024], an
off-policy method, leverages a dormant ratio mechanism [Sokar
et al. 2023] to enhance exploration capabilities and demonstrates
high sample efficiency.
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Fig. 2. Depth image visualization. After applying our preprocessing pipeline, the depth representations of the hand and object exhibit a strong semantic
correspondence, highlighting the efficacy of HERMES in bridging the sim2real gap.

3 Sim-to-real Transfer
The training of state-based RL policies typically relies on privileged
information which is not accessible in real-world deployment sce-
narios. Consequently, it is imperative to distill the state-based policy
into a visual policy for achieving sim2real transfer. We leverage the
depth image as visual input.
DAgger Distillation Training: In DAgger training, the state-

based expert policy acts as the teacher to guide the learning of a
visual student policy. In contrast to prior approaches that distill
to object masks or segmented images, HERMES directly distills
the state into raw visual observations of entire visual scenarios.
This design obviates the need for explicit camera calibration and
facilitates the acquisition of the robot’s in-the-wild generalization
capabilities. Furthermore, we introduce a series of auxiliary design
choices aimed at enhancing both the asymptotic performance of
DAgger training.

Hybrid sim2real control: To mitigate the gap between simula-
tion and real-world dynamics as well as proprioceptive information,
we adopt a hybrid control strategy: real-world visual observations
are used to infer the actual action, which is then applied to the
simulation environment to perform a forward step. The updated
joint positions of the simulated robot are subsequently transferred
to the real robot for execution. By sharing the same Inverse Kine-
matics (IK) method and dynamic parameters across simulation and
the real world, this approach not only enables the policy to adapt
its behavior based on real-world environmental variations but also
effectively narrows the sim2real discrepancy.

4 Navigation Methodology
We choose ViNT [Shah et al. 2023] for achieving image-goal robotic
navigation. ViNT not only enables long-range, in-the-wild navi-
gation but also demonstrates effective zero-shot generalization ca-
pability without necessitating model fine-tuning. For our mobile
manipulation tasks, moderate discrepancies between the robot’s
final pose and the target pose can lead to the manipulation policy
failing to finish the task. However, ViNT does not guarantee termi-
nation within a sufficiently tight error bound. To address this, we
introduce a local refinement step after ViNT completes navigation:

a closed-loop Perspective-n-Point (PnP) localization algorithm is
employed to adjust the robot’s pose, ensuring closer alignment with
the goal image pose.

5 Sample Efficiency of HERMES
We evaluate the training sample efficiency of HERMES across seven
tasks. For each task, the source of the one-shot human motion
demonstration is indicated in the title of each sub-figure in Figure 3.
The vertical axis in the figure represents the proportion of the tra-
jectory length successfully executed by the current policy relative
to the total length of the trajectory. As demonstrated in Figure 3,
regardless of the origin of the human motion data, HERMES re-
liably succeeds in converting human hand and arm actions into
generalizable robot-executable behaviors.

Additionally, we compare training performanceswithObjDex [Chen
et al. 2024]. ObjDex defines its reward based on the tracking of
the object’s joint movement, translations, and orientations. We re-
implement this reward formulation within our own algorithmic
framework. Figure 3 indicates that HERMES exhibits superior per-
formance relative to ObjDex across all tasks. In tasks such as Bottle
Handover, Flower Vase, and Putoff Burner, where interactions involve
only a single object, ObjDex is able to complete the tasks; however,
HERMES can achieve higher sample efficiency during training. Fur-
thermore, in more intricate tasks involving multi-object interactions,
ObjDex consistently fails, irrespective of the type of human mo-
tion data provided. Contributed to our object-centric distance chain,
HERMES is capable of robustly acquiring diverse manipulation skills
even in long-horizon, multi-object environments. Moreover, HER-
MES demonstrates high sample efficiency and successfully learns
policies in 3M training steps.

6 Mobile Manipulation Experiments
To evaluate the mobile manipulation ability of HERMES, we in-
tegrate the entire pipeline across all tasks. Each trained policy is
tested over 10 runs. As illustrated in Figure 4, HERMES demonstrates
strong real-world navigation, precise localization, and dexterous
manipulation capabilities. We also apply the identical manipula-
tion policy equipped with ViNT as a baseline. Figure 4 reveals that,
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Fig. 3. The training curve of HERMES. The horizontal axis denotes the training steps, while the vertical axis represents the normalized task length
successfully accomplished by the policy. Teleop refers to one-shot human motion teleoperation in simulation, Human video denotes trajectories extracted from
video data, and Mocap corresponds to motion derived from mocap datasets. All results are evaluated across 3 seeds.
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Fig. 4. Real-world mobile manipulation results.

without closed-loop PnP localization, the policy cannot generalize
or successfully complete tasks when faced with significant posi-
tional and rotational shifts. Conversely, HERMES achieves a notable
+54.0% improvement in manipulation success rate compared to pure
ViNT. These findings underscore that closed-loop PnP localization is
the essential bridge linking navigation and manipulation, enabling
both modules to synergize for enhanced performance.
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