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Abstract

Memorization in language models is a critical yet poorly understood phenomenon.
In this work, we investigate memorization in transformer-based language models
by analyzing their memorization dynamics during training over multiple epochs.
We find that memorization is neither a constant accumulation of sequences nor
simply dictated by the recency of exposure to these sequences. Instead, much like
generalization, memorization appears to be driven by pattern recognition. Tracking
memorization dynamics in mixed datasets, we observe that models memorize
different sub-datasets in distinct bursts, suggesting that each subset is associated
with unique underlying patterns, and that the model prefers to learn these patterns
in a consistent order. We also find that easily learnable patterns tend to support
generalization on unseen data, while more complex patterns do not. Furthermore,
in datasets with weak or absent patterns, larger models may delay memorization
relative to smaller ones, a behavior we term overthinking. Our results show that the
subset of sequences memorized by a model over time is not arbitrary, and give in-
sights into the internal processes a model goes through during training. Our code is
available at: https://github.com/mdrpanwar/memorization-patterns.

1 Introduction

Memorization, particularly in the sense of outputting entire training sequences verbatim, has been
observed in many large transformer models and is increasingly recognized as both a critical capability
and a potential liability [Hartmann et al., 2023]. In particular, prior work has shown that certain train-
ing examples—-including those containing personal identifiers or unique texts—can be memorized
and later extracted from a model’s output [Carlini et al., 2023b], and the phenomenon is seen as a
serious privacy concern [Yang et al., 2024].

This risk has motivated efforts to characterize and mitigate memorization in language models. For
example, Carlini et al. [2023b] demonstrated that large language models often memorize parts of
their training data verbatim, and that such memorization tends to grow with model size and training
data duplication, meaning some sequences are memorized over others. Other studies and defenses
consider memorization in a fully-trained model, defining it in various ways [Zhang et al., 2023,
Carlini et al., 2023c, Nasr et al., 2023b]. However, the mechanisms of the phenomenon itself, and in
particular how it emerges during training, remain underexplored.

So how does memorization happen? The taxonomy of memorization in Prashanth et al. [2025]
suggests that memorization can come from either recitation (memorizing a sequence with no regard
for its structural similarity to other data), reconstruction (using general patterns to fill in the gaps),
or recollection (memorization of rare sequences). In this work, we investigate both this distinction
and other mechanisms underlying memorization by tracking the memorization dynamics of different
models during training.
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By tracking when and what a model memorizes during training, we gain insight into its internal
learning process. We conduct experiments on data from both a real-world corpus (WikiText) and a set
of synthetic datasets where we control the presence and “difficulty” of patterns in the data. The mixed
dataset setting allows us to observe how a model handles easy-to-generalize data (reconstruction)
versus data that is more likely to be memorized as is (recitation). We find that memorization often
occurs in distinct bursts, where each burst tends to correspond to a subset of data with its own
characteristic pattern. This suggests that the model is effectively segmenting the training data by
patterns and fitting those subsets one at a time (reminiscent of a curriculum).

Overall, we find that memorization is far from being an arbitrary accumulation of sequences and is
fundamentally tied to how models learn. Commonly, memorization in a language model is seen as the
opposite extreme to that of generalization: the ability to extract and utilize patterns from the training
data to handle unseen examples. Yet, as we find in this work, memorization and generalization may
utilize the same pattern-seeking mechanisms. Transformers are highly adept at finding statistical and
linguistic regularities (“patterns”) in data. If meaningful patterns exist, the model will leverage them
to minimize loss (this yields generalization). In fact, deep networks are known to prioritize learning
simple patterns first, and only later fit noise or idiosyncratic data [Arpit et al., 2017a].

Ultimately, by understanding memorization from a training-dynamics perspective, we aim to guide
future work in balancing memorization and generalization for safer and more effective language
models. In particular, we suggest designing interventions targeting how models detect patterns, so
that they neither overfit noisy data nor overlook subtle structures.

Our main insight is that memorization is not trivial but rather tied to the availability of underlying
patterns in the data. It is suggested by the following key observations:

• Non-triviality of Memorization Dynamics (§4.1): We demonstrate that rather than steadily
accumulating examples, transformer models repeatedly forget them (non-monotonicity),
and the examples a model chooses to memorize at a given time are not simply those it saw
most recently (non-recency).

• Pattern-Dependent Memorization (§4.2): We show that the propensity to memorize is
highly dependent on the presence and types of patterns in the data. This reveals that what a
model memorizes is tightly linked to the data’s inherent patterns (or lack thereof).

• Generalization and Pattern Acquisition (§4.3): We find datasets where the model both
memorizes and generalizes on exact sequence completion, and others where the model only
memorizes despite the presence of patterns in the dataset. For the latter, we find some cases
where patterns in the datasets have nevertheless been picked up by the memorizing model.

• “Overthinking” in Larger Models (§4.4): We identify a behavior in larger transformer
models wherein they postpone memorization in settings with less-frequent patterns relative
to smaller models. We hypothesize that the increased capacity can amplify the model’s bias
toward pattern-seeking, leading to late memorization of examples with fewer patterns.

2 Terminology

We provide definitions for some of our terminology in this section.

Memorization There are many definitions of memorization [Zhang et al., 2023, Carlini et al.,
2023c, Nasr et al., 2023b, Hartmann et al., 2023]. Broadly speaking, the difference lies in whether we
have access to the training set or not. If we do, we can prompt with prefixes from training sequences
and check for matching completions (discoverable). If we do not, we must construct prompts that
can elicit completions corresponding to parts of training data (extractable).

Extractable memorization is relevant in the study of attacks that extract training data, which is beyond
the scope of this study. Hence we focus on discoverable memorization:

Discoverable Memorization (Nasr et al. [2023b]). For a model Gen and an example [p ∥ x] from
the training set X , we say that x is discoverably memorized if Gen(p) = x.

Patterns By pattern, we refer to any quality of a dataset that could be exploited by a sufficiently
expressive language model to more efficiently capture the data. This could range from simple
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qualities such as containing a high frequency of specific trigrams to more intangible qualities such as
containing only grammatically correct English sentences.

Pattern Acquisition We say that a model has acquired or learned a pattern in our dataset if its
predictions on new data adhere to that pattern, even if not necessarily being the overall correct
prediction for that data. For example, in a dataset where all sequences are either uniformly lower or
uppercase, and are lexicographically ordered (e.g., aaabbdfff, MMOSSST), a model that continues
cc with a has possibly acquired the case rule, but certainly not the lexicographic rule.

Generalization Classically, a model is said to have generalized when it obtains better-than-random
performance on unseen data drawn from the same distribution as the training set. This is tracked by
testing performance on held-out validation and testing sets. For this work, we consider a stricter inter-
pretation of generalization that requires successful predictions of multi-token sequence completions
(similar to how we measure memorization). This allows us to align the two measurements.

We generally see good generalization as an indication of successful pattern acquisition, but don’t
necessarily expect the converse to be true.

3 Experimental Setup

In this section, we detail the data, models, and evaluation strategies for our study of memorization.

3.1 Datasets and Tokenization

Natural Data We represent natural language with the help of samples from the WikiText-103
dataset [Merity et al., 2016], which we tokenize with the GPT-2 tokenizer. We build “natural-language”
datasets of different sizes as subsets of this dataset, filtering always to samples with lengths from
100-300 tokens.

Example: Troops are divided into five classes: Scouts, Engineers, ...

Synthetic Data We also use the following synthetic datasets. For these, we maintain the same
distribution of sequence lengths (100-300 tokens) and use a character-level tokenizer.

1. In-Context Mapping (ICM): Have a fixed mapping of 10 letters to sequences of 3 digits.
For each example, 3 letters (L) are selected. The example is then digit mappings of L,
random sequence of letters in L, and digit mapping for the random letter sequence. Example:
A:123<S>B:456<S>C:789<S>BBA<S>456456123

2. Monotonic Increasing (MI): Next digit is previous + 1 mod 10. Example: 7890123...

3. Monotonic Increasing with Jumps (MIJ): Monotonic increasing with 15% chance of a
random jump. Example: 234590123...

4. Monotonic Increasing with Jumps and Letters (MIJL): Similar to MIJ, but each jump
is followed by a letter; letters also follow a monotonic increasing sequence. Example:
90126K78902L...

5. Shuffled WikiText: Shuffle words in each WikiText sequence. Example: into divided
classes are Troops Engineers five : Scouts, ...

6. Random Digits: Randomly occurring digits. Example: 82671903...

7. Repeat 5 Tokens Ago: Random sequences with 10% chance of repeating a token from 5
places ago. Example: 762130653...

8. Every 7th Token Same: Either a random sequence, or (with 10% chance) a sequence where
one of the first 7 tokens repeats every 7th token. Example: 1863054396...

9. Random Seed Lookup: Each next digit is obtained by a lookup into the initial seed of
length (s). Lookup index is the addition modulo s of last m digits. We use s = 30, m = 8. An
example for s = 5, m = 2: 13820821...
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3.2 Selecting model configurations

We checked the model configurations of modern models and found that their architectures follow
an approximately fixed model width (E) to model depth (L) ratio across scales. The GPT-2 family
Radford et al. [2019] follows an E/L ratio between 30 and 70; Llama 3 [Grattafiori et al., 2024]
follows an E/L ratio between 100 and 130. Following this insight, for a given parameter count, we
select the models with an E/L ratio in the range [100, 130].

Moreover, scaling law papers either include the embedding layer in parameter count Hoffmann et al.
[2022] or present the laws for both (including and excluding embedding layer) settings Kaplan et al.
[2020]. The embedding layer constitutes a minute fraction of the total model capacity at real-world
scales. We study much smaller models, where the embedding layer (which has size corresponding to
the input vocabulary) constitutes 50-95% capacity of the entire model. Hence, we choose to exclude
them from the parameter count when dealing with WikiText data. Our synthetic datasets use a much
smaller vocabulary (less than 50 unique tokens) and the embedding layer need not be excluded.
Therefore, the parameter counts henceforth refers to non-embedding parameters in the model.

3.3 Models and training

We use a decoder-only GPT-2 [Radford et al., 2019] architecture for our models. The model
sizes studied are up to 12M non-embedding parameters; however, we do use GPT-2 small (85M
non-embedding parameters) for a few experiments. The number of layers and the model’s hidden
dimension are determined as indicated above. The number of attention heads (H) is kept as 11. As
stated, GPT-2 embeddings can be a very large fraction of model’s capacity at small scales. Since
we exclude them from parameter count, we must limit their contribution to model capacity while
training. Hence, for experiments involving WikiText, we initialize the embedding layer of our models
with that of the nearest (in parameter count) model from GPT-2 family and freeze it for the training.
Principal Component Analysis (PCA) is used to reduce the dimensionality to the desired size. For
experiments with synthetic data, the embedding layer is trained from scratch. Models are trained
on datasets with varying number of examples (called ‘ex’ for short), using the language modeling
(next-token-prediction) loss for 50k training steps with a batch size of 64. Adam optimizer is used
with a learning rate of 1e− 3. We train our models on NVIDIA A100 80 GB GPUs, and depending
on the model and dataset sizes, the runs can take from 2 to 20 hours.

3.4 Evaluation

To evaluate memorization, we generate 30-token completions given a 50-token prompt from each
sequence in the training data. We also measure performance on a held-out validation set when relevant
(discussed in §4.3). For the completion, we track the following metrics over the course of training: (1)
Exact match (EM), (2) Individual and Cumulative BLEU scores [Papineni et al., 2002], (3) METEOR
[Banerjee and Lavie, 2005], (4) 13-gram Jaccard Similarity, (5) Training and Validation loss on the
generated sequence. We note that all the metrics follow same trend, therefore, we choose EM as
our primary metric and only show its trend for brevity. (See Appendices §A.3 and §A.4 for further
clarification on these choices.) When EM over the training set is 1, the model has memorized its
training data (up to our completion prompt length). For model selection purposes, we take an EM
≥ 0.95 to denote memorization of training data. The smallest model that achieves this is said to be
the minimal model for that dataset size. As an aside, we find that for full memorization, the minimal
model size scales linearly with dataset size (see Appendix §C).

4 Experiments and Results

In this section, we present the main experiments from our study and the corresponding results on
various properties of memorization. We present our findings in the order stated in §1. We first
show that memorization is a non-trivial process, in that the set of memorized sequences is neither

1We validate our results on large models (Appendix §A.5), and with more attention heads (Appendix §A.6).
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Figure 1: Rate of memorization is not constant over training. The rate of memorization as
measured by exact match is shown for models of size 2M and 12M trained on a dataset of 400
examples. Memorization increases at a non-linear rate over training and the training loss decreases.
(Error averaged over 3 independent runs. 95% confidence intervals over 1000 bootstrap trials.)

200 ex; 1M 400 ex; 2M 800 ex; 4M 4000 ex; 12M
29.4 20.5 19.3 39.4

Table 1: Memorization of individual sequences is dynamic. We track the memorization state of
training sequences: memorized (EM = 1) or forgotten (EM = 0). Average number of times a sequence
is forgotten for various model configurations is shown. Note that each sequence is memorized and
forgotten many times.

constantly accumulated nor a cache of recently trained ones. Next, we show that memorization
exhibits differentiation along sub-datasets with different patterns. We then verify that our models have
generalized and not just memorized from some of our datasets, showing that this happens even when
simple memorization is an option. Finally, for certain tasks, we observe a delay in memorization for
larger models relative to small ones. We suspect that this phenomenon stems from failed attempts at
pattern acquisition before memorization begins, and thus term it overthinking.

4.1 Temporal Non-Monotonicity and Non-Recency

Result 1 Memorization is neither a constant accumulation of sequences nor recency-biased.

In Fig. 1, we show the training loss and EM for models trained on WikiText for 400 examples and
two model sizes. We note that the rate of memorization as denoted by EM is non-linear. When the
model has sufficient capacity for the dataset that it is trained on, most of the dataset is memorized
early on during training (an EM score of 0.8 reached in under 50% of the training time required to
reach an EM of 1). The sequences memorized at the end (or ones that were never memorized) tend to
sometimes contain numbers (e.g., years). Note that we do not always observe such difference; yet, it
suggests that the order of memorization may be related to the perceived difficulty or the amount of
randomness in the sequence (which we touch upon in §4.2).

While the number of sequences memorized seem to increase over time (Fig. 1), the memorization
of individual sequences is dynamic. To study the memorization of individual sequences, we track
whether a sequence is memorized (EM = 1) or forgotten (EM = 0) by the model every 100 training
steps during training. We find that individual sequences continue to be forgotten and re-memorized
throughout training (Table 1). Using a ‘softer’ measure of forgetting (whether the sequence is among
the top generations when sampling many times) also leads to the same conclusion (See Appendix
§D.2). The above two insights denoting the non-linear rate and dynamism allow us to conclude that
the memorization is not a constant accumulation of sequences (Result 1).

Since the model is not accumulating sequences, another plausible hypothesis is for memorization
to be governed by the recency of sequences seen. In Table 2, we show the intersection between
the number of newly memorized sequences and the recent batch as a fraction of both. We find that
both of these are low across all scales, suggesting that the sequences a model chooses to memorize
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200 ex, 1M 400 ex, 2M 800 ex, 4M 1000 ex, 4M 4000 ex, 12M
% of new mem. in last batch 3.7 14.7 7.9 5.5 1.488
% of last batch in new mem. 6.54 4.37 4.2 10.0 8.32

Table 2: Memorization is not governed by the recency of sequences. We track the percentage of
newly memorized sequences (whose EM changed from 0 to 1 in the last train step) from the last
batch and vice versa. Both of these metrics are low across different scales.

100 ex; 0.5M 200 ex; 1M 400 ex; 2M 800 ex; 4M 2000 ex; 8M
Baseline 0.96 0.96 0.96 0.98 0.95
Shuffled 0.68 0.63 0.70 0.69 0.72

Table 3: Presence of patterns increases the memorization rate. (Training on shuffled word order
data reduces exact match.) We train different models and dataset sizes on both WikiText and Shuffled
WikiText (where words in each sequence are randomly shuffled) for same amount of training time. A
drop in EM of ∼ 30% is observed for the latter, signifying that the linguistic patterns increase the
rate of memorization.

at a particular training step are not necessarily the ones it has most recently seen in the last batch.
Therefore, recency of sequences does not govern memorization.

4.2 Differentiation

Result 2 Models exhibit different memorization profiles for different datasets, both when
trained independently on a single dataset and on data mixtures.

Next we ask: Is all memorization alike (across datasets)? We find the answer is No. We start by
constructing a simple variant of the WikiText dataset: for each sequence, we shuffle the order of
words randomly, leading to a new shuffled sequence. We find that models trained on this dataset for
the same amount of time as original WikiText show a drop in EM by about 30% (Table 3). We also try
other shuffle variants (Appendix §B.1) and have consistent findings. This implies that (linguistic)
patterns affect the memorization rate.

To further investigate this finding, we design various datasets with different amounts of randomness
and patterns (§3.1). We train models of size 4M on these datasets of size 500 examples. The
EM curves for the models are plotted in Fig. 2a. We note that different datasets have different
memorization profiles: with "Random Digits" on the far right and MI on far left. We also observe
two distinct type of curves: sudden jump and gradual rise, which is another characteristic feature of
the data the model is trained on. Both of these observations inform us that patterns beyond unigram
statistics are taken into consideration for memorization.

In Appendix §B.2, we present more experiments to examine the effects of changing different
hyperparameters in our synthetic datasets and make consistent observations.

Further, we check whether the same insight holds for models trained on data mixtures. We train
models on two data mixtures: (a) mixture of monotonically increasing sequences with different
amounts of randomness and random digits sequences, (b) WikiText mixed with random digits
sequences. In both cases, we train three models each and plot the average metrics. The datasets have
equal proportion of all component sub-datasets.

For (a), we train 4M-parameter models on dataset of 500 examples. We plot in Fig. 2b the number of
epochs needed to achieve different levels of exact match for all component sub-datasets. We find that
the model memorizes them in the order of gradual increase in the randomness from MI to "Random
Digits". (For unbounded sequences, the probability of a jump in both MIJ and MIJL sequences would
be the same. However, sequences in both of these datasets have fixed lengths and follow same length
distribution. Therefore, MIJL is less random as the interleaved sequence of letters is deterministic
after the first letter, making a larger portion of these sequences deterministic.)

For (b), we train 8M-parameter models on dataset with 2000 examples and plot the EM over time
for both sub-datasets in Fig. 3 (Left). We observe that memorization happens in phases: almost all
of WikiText is memorized before the memorization of random sequences starts. This agrees with
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Figure 2: Models exhibit different memorization profiles and the order of memorization for
different datasets when trained on them independently (left) or simultaneously (right). Left: The
exact match for various datasets for models of size 4M trained on 500 examples. Right: Number of
epochs required to achieve different exact match values for each sub-dataset are shown for a model of
size 4M trained on 500 examples equally distributed across the four different datasets (MI, MIJ, MIJL,
and Random Digits). Note that the datasets with more randomness take longer to be memorized.

the insight in §4.1 where we noted sequences of numbers preferentially being memorized at the
end. Moreover, in Fig. 3 (Right), we plot overall (combined) EM and training loss for an 8M model
trained on 2000 examples for different mixture compositions of WikiText and random digits datasets.
The phase changes in loss and EM are evident. Note the position at which the phase corresponding
to memorization of random digits starts: the less the amount of random digits data, the later their
memorization starts. These phase shifts are reminiscent of disjoint, yet qualitatively similar results in
Chen et al. [2025], where they note sudden drops in loss for syntax acquisition.

These observations suggest that the order and speed of memorization of different datasets are
related to the extent and type of patterns contained in them, leading to different memorization
profiles.

4.3 Generalization and Pattern Acquisition

Result 3 Models generalize fixed mapping-based patterns on unseen data.

Do models generalize these patterns to an unseen validation set? For this, we test our models on
datasets with deterministic patterns such as MI and ICM on a disjoint validation set. Since there are
only 10 unique monotonically increasing sequences (one each with a different starting digit), to test
generalization, we held out the sequence starting with digit ‘7’. Models of different sizes trained on
different data sizes were able to successfully complete sequences starting with ‘7’. For ICM dataset,
the "500 ex; 4M" model when evaluated on an unseen validation set of 500 examples, achieves an
EM = 1. The underlying letter-to-digits mapping is same across all sequences in train and validation
sets. Note that both of these datasets have sequences with static lookup patterns. In MI, the next digit
is deterministic based on the previous digit (bigram lookup), while the ICM sequences require lookup
from a fixed letter-to-digits mapping by definition. This implies that the models can generalize to
datasets with static lookups. The patterns in these datasets can therefore be acquired, and hence, the
model uses reconstruction to memorize them.

To test the extent of generalization of lookup-based patterns, we test on "Random Seed Lookup"
dataset. We also design a dynamic version of the ICM dataset where the letter-to-digits mapping
is dynamic across sequences. We train 4M-parameter models on 500 examples each from these
datasets. While the models memorize these datasets perfectly (EM = 1), the EM on the validation set
remains identically zero. Therefore, we find that for more complicated and dynamic lookups, the
models fail to generalize. So, we suspect that this pattern was not acquired by the model, and the
performance on training set corresponded to the recitation of those examples.
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Figure 3: Phase shifts corresponding to the memorization of a mixture of WikiText and Random
Digits data. Left: EM for the two sub-datasets for an 8M model trained on 2000 examples (an
equal mixture of WikiText and random digits). Memorization of random sequences start after most
of WikiText portion has been memorized. Right: EM for all training sequences (all sub-datasets
combined) for "2000 ex; 8M" models with different fractions of random data. The length of each
phase is proportional to the amount of the corresponding sub-data.

But what about generalization in datasets that partially contain deterministic patterns with some
amount of randomness? To answer this question, we check how often do the models trained on MIJ
dataset follow the monotonically increasing pattern on an unseen validation set. Given 50-token
prompts from sequences in this validation set, we generated 30-token completions for 4M and 8M
models (both trained on 500 sequences). For every bigram (xt−1, xt) in completions, we measured
how often is it monotonically increasing (i.e., xt = (xt−1 + 1)%10). We find this number to be
97.3% and 98.1% for the two models respectively. This is much larger than the random chance (10%)
of generating a monotonically increasing next digit. Therefore, despite there being randomness (15%
random jumps), the model acquires the monotonically increasing pattern.

These results demonstrate models’ affinity toward patterns for memorization, and the general-
ization of static lookup-based patterns to unseen sequences.

4.4 Overthinking

Result 4 (Overthinking): On datasets with weak or absent patterns, large models memorize
slower than smaller models.

While investigating our central thesis (pattern-seeking behavior in memorization), we made an
interesting observation: on certain datasets without patterns or with less-frequent patterns, the
memorization in larger models can be delayed relative to small models. We believe it is caused by
the models’ inherent affinity to patterns, which potentially backfires when patterns cannot be found.

In Fig. 4, we plot the EM for a small and a larger model trained on 500 examples each from different
datasets. The model sizes are mostly 4M and 8M respectively, with the exception of dataset with
weak patterns (repeat some previous token with low probability), where the larger model is GPT-2
small 2. We note that for dataset with abundant patterns (linguistic patterns such as in WikiText,
or static mapping-based ones for ICM and MI family), the larger model is either better or on par
with small model. However, for models with large amounts of randomness (weak pattern datasets,
"Random Digits"), or complex dynamic lookups ("Random Seed Lookup"), larger models have a
much worse memorization rate. Therefore, a larger model is not always better or faster. We
call this behavior overthinking, and hypothesize its cause being model’s pattern-seeking behavior
which may lead to a delay when patterns are missing or not present in abundance.

2For weak patterns, the effect was only evident at a higher model scale.
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Figure 4: Overthinking. EM for a small and larger model trained on dataset of size 500 examples is
shown across many datasets. Larger model is slower for data with absent (Random Digits) and weak
(repeating a previous token with low probability) patterns, and for complex dynamic lookups.

5 Related Work

Memorization has been a central topic in machine learning since the earliest neural networks. We
organize prior work into six themes: (1) classical and associative memory models, (2) memorization
in modern language models, (3) privacy and data extraction, (4) memorization versus generalization
and pattern-seeking behavior, (5) interpretability and training dynamics, and (6) related learning
phenomena such as forgetting and curricula.

Classical and Associative Memory Models The study of neural associative memories began
with Hopfield networks Hopfield [1982], which showed that recurrent networks could store discrete
patterns as stable attractors. These systems, along with bidirectional associative memories Kosko
[1988] and sparse distributed memory Kanerva [1988], were designed to explicitly encode and
retrieve stored patterns from the network’s weights. Recent surveys emphasize that modern LLMs
behave differently from these classical models, exhibiting implicit memory through distributed
representations, attention mechanisms, and in-context learning rather than explicit associative storage
Zhang et al. [2024]. This shift motivates a fresh look at memorization in the transformer era.

Memorization in Transformer Language Models Large-scale studies demonstrate that transform-
ers memorize exact sequences from their training data, starting with early extraction experiments on
GPT-2 Carlini and Trumpler [2021]. Subsequent work confirmed that unique or duplicated examples
can be reproduced verbatim Carlini et al. [2023b], Nasr et al. [2023a], Jagielski et al. [2022], Ippolito
et al. [2022]. Empirical evidence indicates that memorization grows with model scale, dataset du-
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plication, and training length; strategies such as deduplicating training data mitigate this tendency
Lee et al. [2021]. Alternative framings include counterfactual memorization Zhang et al. [2021]
and adversarial compression Schwarzschild et al. [2024]. Memorization is also observable across
modalities, including diffusion models Carlini et al. [2023a], code models Yang et al. [2023], and
vision models Lukasik et al. [2023].

Privacy and Data Extraction Memorization poses privacy and IP risks: it can lead to unintended
data leakage, including PII and copyrighted text Carlini and Trumpler [2021], Carlini et al. [2022,
2023b], Nasr et al. [2023a], Ippolito et al. [2022]. Large-scale attacks show thousands of training
examples can be extracted cheaply Nasr et al. [2023a], and model-stealing setups remain vulnerable
even with API-only access Carlini et al. [2024].

Memorization vs. Generalization and Pattern-Seeking Behavior While memorization is often
viewed as the opposite of generalization, research shows that networks can memorize random labels
Zhang et al. [2017], yet tend to learn simpler patterns first before memorizing irregularities Arpit
et al. [2017b]. The inductive bias to capture structure first is evident in language models through
frequency-driven rule acquisition Wei et al. [2021], memorization-generalization continua Dankers
et al. [2023], and long-tail memorization dynamics McCoy et al. [2020]. Taxonomies such as
recitation vs. reconstruction highlight multiple modes of memorization Prashanth et al. [2024].
Grokking shows sudden generalization after overfitting Power and et al. [2022]; notably, memory can
serve as a form of compression Schwarzschild et al. [2024]. Our results align with these dynamics.

Interpretability and Training Dynamics Training-dynamics studies highlight phase transitions
where models abruptly acquire structural knowledge Chen et al. [2023]. Representation analyses
reveal that linguistic features emerge in progressive layers Hewitt and Manning [2019]. Beyond
training, methods for updating models with knowledge explore the interplay between memorization
and reasoning post hoc Li and Goyal [2025].

Related Learning Phenomena: Forgetting and Curricula Early work on catastrophic forgetting
documents how models overwrite prior knowledge McCloskey and Cohen [1989], Ratcliff [1990].
This persists in modern models, where fine-tuning can cause forgetting of memorized examples
Jagielski et al. [2022]. Continual memorization research aims to avoid this trade-off Chen et al.
[2024]. Curriculum learning shows that ordering training from easy to hard promotes generalization
over rote memorization Bengio et al. [2009]. Our observations suggest a natural analog: transformers
tend to memorize in ordered bursts aligned with data patterns.

6 Limitations

Our study is conducted on relatively small models under a multi-epoch training regime, which
does not directly reflect the large-scale, single-epoch training used for modern foundation models,
but does provide relevant insights. Additionally, while synthetic datasets can be designed with
the intent of diversity in type and “difficulty” of patterns in mind, identifying and quantifying
patterns in real-world language modeling data (e.g., WikiText) remains challenging. Finally, our
evaluation of memorization is based on 30-token completions, which may not capture subtler forms
of memorization or longer-span dependencies.

7 Conclusion

In this work, we studied how memorization arises in transformer language models through the
lens of training dynamics. We showed that memorization is not a monotonic or recency-based
accumulation, but a pattern-driven process: models memorize in bursts, generalize when possible,
and delay memorization when patterns are ambiguous. Larger models often “overthink” low-pattern
data, suggesting a strong inductive bias toward structure. These findings suggest that memorization
and generalization emerge from a shared mechanism of pattern-seeking. Several questions remain
open. What kinds of patterns are most conducive to memorization? Can we impose a hierarchy over
them, and understand how the model prioritizes one over another during training? Another direction
is to understand the mechanistic underpinnings of overthinking, and whether this behavior can be
encouraged or mitigated based on downstream goals.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We ensured that all claims made in abstract and introduction are well supported
by our results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have a “Limitations” section, where we discuss limitations of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper includes no theorems or other non-empirical claims.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Besides explaining all experimental details, we also provide the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the code with the paper. We either used open-source data or
synthetic data. Code for generating the latter is also included.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all relevant details, and also include the code for reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars across multiple training runs for each result.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We state compute requirements under "Experimental Setup" section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is foundational research on neural networks, and we anticipate no societal
impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not see any risk of misuse of data or models from our research.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use the GPT-2 Small model and WikiText-103 dataset, both of which we
cite. We use no other existing models or data.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code for running experiments and generating data are properly documented.
No other assets have been created.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper involves no crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper involves no crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methods of this research do not involve LLMs as any important,
original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experimental Setup Details

A.1 Examples from WikiText and Sequence Length Distribution

Some examples from the WikiText dataset are shown in Table 4. As mentioned in §3.1, we filter the
dataset based on the length of sequences The resulting distribution of lengths is plotted in Fig. 5. For
consistency, we maintain the same sequence length distribution across our synthetic datasets.

Example Text

Example 1

Cicely Mary Barker ( 28 June 1895 – 16 February 1973 ) was
an English illustrator best known for a series of fantasy
illustrations depicting fairies and flowers . Barker ’s art
education began in girlhood with correspondence courses and
instruction at the Croydon School of Art . Her earliest
professional work included greeting cards and juvenile
magazine illustrations , and her first book , Flower Fairies
of the Spring , was published in 1923 ...

Example 2

The Gregorian Tower ( Italian : Torre Gregoriana ) or Tower
of the Winds ( Italian : Torre dei Venti ) is a round tower
located above the Gallery of Maps , which connects the Villa
Belvedere with the Apostolic Palace in Vatican City . The
tower was built between 1578 and 1580 to a design by the
Bolognese architect Ottaviano Mascherino ( who was credited
with building the Apostolic Palace ) mainly to promote the
study of astronomy for the Gregorian Calendar Reform which
was commissioned by Pope Gregory XIII and promulgated in
1582 . It was then also known as the Tower of Winds . The
tower is now called the " Specola Astronomica Vaticana " ,
the Vatican Observatory ...

Table 4: Some examples from the WikiText dataset.

Figure 5: Distribution of sequence lengths in the WikiText dataset after filtering.
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A.2 Selecting Model Configurations

Our model configurations follow the model width-over-depth (E/L) ratio from Llama 3 [Grattafiori
et al., 2024] family of models. We plot E-L contours corresponding to non-embedding parameters
for each desired parameter count. Next, we plot the lines corresponding to different, fixed E/L
values. We then choose the model configurations nearest to the intersection between each contour
and these lines. The contours, E/L lines and the selected model configurations are shown in Fig. 6.

# Params L E
0.5M 2 144
1M 2 204
2M 3 235
4M 3 333
8M 4 408

12M 4 500
20M 5 577
32M 6 666

Figure 6: Selecting model configurations. Left: To select the model configurations for different
model sizes, we choose model width (E) and number of layers (L) such that the E/L ratio is between
100 and 130 (following Llama 3), i.e., models lying at the intersection of contours and lines. The
number of heads (H) is 1 in all chosen configurations. Right: Chosen E and L values across different
model sizes.
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Figure 7: Ablation on the prompt and generation lengths used for evaluation for "200 ex; 1M"
model. Left: Prompt length is 50 tokens and results for generation lengths of 10 and 30 are shown.
Right: Two prompt and generation length combinations are shown: the default (50-30) and (30-70).
Note that the trends still continue to be the same across all these choices.

A.3 Choice of Prompt and Generation Lengths

In §3.4, we stated our choice of evaluating different memorization metrics on 30-token completions
given a 50-token prompt. We now show that these specific choices do not fundamentally change
the results we observe. In Fig. 7, we plot EM in two scenarios: (a) keeping the prompt length as
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Figure 8: Ablation on the prompt and generation lengths used for evaluation for "2000 ex; 8M"
model. Left: Prompt length is 50 tokens and results for generation lengths of 10 and 30 are shown.
Right: Two prompt and generation length combinations are shown: the default (50-30) and (30-70).
Note that the trends still continue to be the same across all these choices.

50 tokens and plotting results for generation lengths of 10 and 30; (b) varying both the prompt and
generation lengths. We try two configurations: (50-30) and (30-70). Fig. 8 shows the same plots for
"2000 ex; 8M" model. The trends still continue to be the same across all these choices.
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Figure 9: Different metrics for memorization. Many metrics are plotted to track memorization for
"200 ex; 1M" (Left) and "2000 ex; 8M" model (Right). Note that all the metrics follow the same
trend.

A.4 Other Metrics for Memorization

In Fig. 9, we plot different metrics we track for memorization for "200 ex; 1M" and "2000 ex; 8M"
models trained on WikiText. All metrics we tracked follow the same trend and hence we choose to
only show EM for brevity.

A.5 Model Sizes

We experiment with larger models to show evidence for the applicability of our findings to larger
model scales. We replicated our setup on model sizes 100M, 200M, 500M, and 1B, on datasets
"Every 7th token same (10% sequences)" and "Monotonic Increasing with Jumps." We consistently
observe that larger models take longer (aka ‘overthinking’) before starting to memorize sequences in
these datasets (same as Fig. 4). Please note that these training runs demonstrating overthinking can
be very computationally expensive for larger models, as they take much longer to start memorizing
those datasets, limiting the model sizes we can include in the study. However, these results up to 1B
scale conclude that overthinking does hold at large scales.
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We also trained 200M and 500M models on the following datasets (one at a time): "Monotonic
Increasing", "Monotonic Increasing with Jumps", "In-Context Mapping", and "Random Digits". We
observed different memorization profiles (same as Fig. 2a), with "Random Digits" sequences being
memorized last.

Hence, differentiation and overthinking are both applicable at larger model scales.

A.6 Attention Heads

In our initial experiments, we observed that the number of attention heads does not impact the results,
and hence we chose to use a single attention head. We did more experiments with models having 12
attention heads and found that our results still hold. Specifically, we train a 4M-parameter model
having 12 attention heads on 500 examples each from "Monotonic Increasing" and "Monotonic
Increasing with Jumps" datasets. We observed different memorization profiles (same as Fig. 2a).
We also trained models with 4M and 8M parameters on 500 examples of "Random Digits" data and
noticed delayed memorization in the 8M model (like Fig. 4). Hence the main results of our study
(‘differentiation’ and ‘overthinking’) are not impacted by a change in the number of attention heads.

B Dataset ablations

B.1 Controlling the Degree of Shuffed-ness

In Table 3, we show that the memorization of the dataset drops by 30% when the WikiText data is
shuffled at the word level. We also check the effect of varying the degree of shuffled-ness between
the original and word-level shuffled states. We shuffle at the sentence and multi-sentence levels.
Moreover, we try a shuffle variant where we preserve the 2- and 3-grams in the top 50th percentile (in
terms of occurrence counts) as one unit and shuffle them with the rest of the sequence. This lets us
control the extent of patterns in the dataset. We present the ‘exact match’ results on 0.5M (trained on
100 examples) and 1M (trained on 200 examples) models in Table 5. Consistent with our claims, we
observe that the memorization capacity of a model is dependent on the extent of exploitable structure
present in the data. With reduced structure (increased degree of shuffled-ness), the model memorizes
less data.

Shuffle variant 100 ex; 0.5M 200 ex; 1M
Baseline (original WikiText) 0.96 0.96
Shuffle 2-sentence units 0.94 0.95
Shuffle sentences 0.93 0.92
Preserve top 50% 3-grams 0.78 0.78
Preserve top 50% 2-grams 0.72 0.73
Word-level shuffled 0.68 0.63

Table 5: Effect of different shuffling strategies on memorization (exact match scores are shown).

B.2 Further Studies with Synthetic Datasets

To understand memorization dynamics more clearly, we do some more in-depth studies with our
synthetic datasets by varying the different dataset hyperparameters. We present the results from these
experiments with 4M models trained on 500 examples from the indicated datasets.

1. Vary the jump probability in MIJ dataset. We check for the following jump probabilities
(in %): 10, 15, 20, 40, 50. As the probability of jumps increases (thereby increasing
randomness), it takes longer to memorize the dataset, which is consistent with our claims.

2. Use 2 or 3 letters instead of just 1 after each jump for MIJL dataset. When more letters
are used after the jump, memorization is faster. As the sequences are of finite length, with
an increased number of monotonically increasing letters, the randomness decreases, making
the sequences easier to memorize.
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Figure 10: Minimal model size for memorization scales linearly with dataset size. Maximum
Exact Match and final training loss across different model and dataset sizes are plotted. When models
have enough capacity to memorize the dataset, the exact match is close to 1 (red region). When the
models lack sufficient capacity, the exact match is close to 0 (blue region). Minimal models for each
dataset size lie at the boundary of these two regions.

3. Check for 4/5/6/8 tokens ago as in the "Repeat 5 Tokens Ago" dataset. Exact Match
curves for all these runs (4/5/6/8 tokens ago) jump from 0 to 1 in the range of [230, 280]
epochs without any particular order. This denotes that there is no significant difference in
the difficulty of these datasets in terms of memorizability.

400 ex; 2M 4000 ex; 12M

Figure 11: First Memorized and First Forgotten statistics for models trained on WikiText. First
row denotes the model configurations. The percentage of total sequences that make up each bar is
also written on top of it. We note that models memorize most sequences for the first time early on;
larger models do it faster. Also, first forgotten and first memorized statistics are similar.
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C Note on Scaling

While the main subject of our study is the training dynamics of memorization, we make an interesting
observation regarding how it scales. We trained models of different sizes on datasets of different sizes
until the training loss saturated, and found that the size of the smallest model needed to memorize the
training data (EM ≥ 0.95) scales linearly with the dataset size (Fig. 10).

D Further Dynamics of Memorization

D.1 First-Memorized and First-Forgotten Statistics

In §4.1, we saw that memorization is dynamic and sequences switch between memorized and forgotten
states. We also track the epoch when a sequence is first memorized and first forgotten. These two
distributions are plotted in Fig. 11 for "400 ex; 2M" and "4000 ex; 12M" configurations trained on
WikiText. We make two observations: (a) models do prefer to (first) memorize most sequences early
on, with larger models (first) memorizing in fewer epochs; (b) first-memorized and first-forgotten
distributions are similar. We also plot these metrics for mixtures of WikiText and Random Digits
datasets for "2000 ex; 8M" model in Fig. 12, and make same observations. Additionally, we observe
the two distinct phases (as in Fig. 3) corresponding to the memorization of WikiText and random
data.

0.25 0.5

Figure 12: First Memorized and First Forgotten statistics for 8M-parameter models trained
on a mixture of WikiText and Random Digits data. Topmost row denotes the fraction of random
data in the mixture. The percentage of sequences (out of 2000) memorized across epochs is plotted.
WikiText sequences are (first) memorized prior to Random Digits sequences.

D.2 Using Softer Metrics to Measure the Dynamic Nature of Memorization

We showed that sequences continue to be forgotten and re-memorized throughout training (i.e.,
memorization is dynamic) by using exact match as the metric. Here, we check if the same observation
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Epochs Topics

< 500

Topic 0: for to and they that males be it are episode
Topic 1: the was in by and to for of on it
Topic 2: the of and in to was on as that with
Topic 3: of is her and an she for the as to
Topic 4: is and to his it at that with he on

500− 2000

Topic 0: 16 1961 21 22 24 27 28 29 31 36
Topic 1: 16 1961 21 22 24 27 28 29 31 36
Topic 2: 16 1961 21 22 24 27 28 29 31 36
Topic 3: the of and size castles distinctive has great
geography for
Topic 4: 16 1961 21 22 24 27 28 29 31 36

Table 6: Topic modeling results (top 5 topics) on sequences memorized at different points during
training for the "2000 ex; 8M" model.

S. No. Sequence

1.

1915 – 16, 1917 – 18, 1918 – 19, 1920 – 21, 1921 – 22, 1923
– 24, 1926 – 27, 1927 – 28, 1928 – 29, 1930 – 31, 1935 – 36,
1936 – 37, 1948 – 49, 1949 – 50, 1950 – 51, 1955 – 56, 1957
– 58, 1959 – 60, 1961 – 62, 1963 – 64,

2.

The size of these castles varied depending on the geography
of the site, the decisions of the builder and the available
resources. Analysis of the size of mottes has shown some
distinctive regional variation ; East Anglia, for example,
saw much larger mottes being built than the Midlands or
London. while motte @-@ and @-@ bailey and ringwork castles
took great effort to

Table 7: Sequences not memorized by a "4000 ex; 12M" model.

holds under a “softer” metric. We track the fraction of times a sequence is sampled (out of 5
generations) with a temperature of 0.5. We call this sampling accuracy (sacc). We also track the
status of each sequence at a given timestep: 0 (forgotten), 1 (memorized), as found via exact match.
We report our findings on the configurations: "100 ex; 0.5M", "200 ex; 1M", and "400 ex; 2M".

We average status and sacc across sequences and note that their trend across epochs is similar to Fig.
1 (rising from 0 to 1) and that they almost overlap. This suggests that the assignment of sequence
status using exact match agrees with this softer sampling accuracy metric.

The average sacc across the sequences with status 0 (forgotten) was about 10 − 15%, while the
average sacc across the sequences with status 1 (memorized) was about 99%. This strongly suggests
that sequences that tend to be forgotten, as detected by exact match, also tend to have a low chance of
being generated by the model.

Also, we use exact match since softer measures are not relevant in the context of PII or copyright
infringement, which are real-world memorization issues.

D.3 Sequences Memorized across Different Epochs

To understand what type of sequences are memorized at different points during training, we perform
topic modeling on different epoch buckets. The topics so obtained for the "2000 ex; 8M" model
are shown in Table 6. Note that the topics for epochs > 500 primarily have numbers. Moreover,
we observe that the sequences that are never memorized also sometimes happen to be abundant in
numbers. In Table 7, we show such sequences for the "4000 ex; 12M" model.
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D.4 Metrics for Non-Memorized Sequences

We also track memorization metrics for sequences that are not memorized (EM = 0) at any given
point during training. We show three such metrics in Fig. 13 for "400 ex; 2M" model, and make two
observations: (a) Initially, when nothing is memorized, the model gradually memorizes parts of each
sequence; (b) Later on, as more sequences get memorized, the ones that are being forgotten still have
most of their parts memorized.

Figure 13: Metrics for non-memorized sequences. Individual and Cumulative 4-gram BLEU, and
13-gram Jaccard Similarity are shown for "400 ex; 2M" model. Note that all metrics gradually rise
until saturation.
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