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ABSTRACT

Learning long-term behaviors in chaotic dynamical systems, such as turbulent
flows and climate modelling, is challenging due to their inherent instability and
unpredictability. These systems exhibit positive Lyapunov exponents, which sig-
nificantly hinder accurate long-term forecasting. As a result, understanding long-
term statistical behavior is far more valuable than focusing on short-term accu-
racy. While autoregressive deep sequence models have been applied to capture
long-term behavior, they often lead to exponentially increasing errors in learned
dynamics. To address this, we shift the focus from simple prediction errors to
preserving an invariant measure in dissipative chaotic systems. These systems
have attractors, where trajectories settle, and the invariant measure is the proba-
bility distribution on attractors that remains unchanged under dynamics. Existing
methods generate long trajectories of dissipative chaotic systems by aligning in-
variant measures, but it is not always possible to obtain invariant measures for
arbitrary datasets. We propose the Poincaré Flow Neural Network (PFNN), a
novel operator learning framework designed to capture behaviors of chaotic sys-
tems without any explicit knowledge of the invariant measure. PFNN employs
an auto-encoder to map the chaotic system to a finite-dimensional feature space,
effectively linearizing the chaotic evolution. It then learns the linear evolution
operators to match the physical dynamics by addressing two critical properties
in dissipative chaotic systems: (1) contraction, the system’s convergence toward
its attractors, and (2) measure invariance, trajectories on the attractors follow-
ing a probability distribution invariant to the dynamics. Our experiments on
a variety of chaotic systems, including Lorenz systems, Kuramoto-Sivashinsky
equation and Navier–Stokes equation, demonstrate that PFNN has more accurate
predictions and physical statistics compared to competitive baselines including
the Fourier Neural Operator and the Markov Neural Operator (code available at
https://anonymous.4open.science/r/PFNN-F461/README.md).

1 INTRODUCTION

A View to Understand a Chaotic System. Imagine a box filled with 1024 identical gas molecules,
each with specific positions and momenta. Physicists (Szász, 1996; Zund, 2002) posed the question:

Suppose the system starts in a certain state; will it eventually return to a state arbitrarily close to the
initial one?

The question seems intractable for an enormous number (∝ 1024) of coupled Hamiltonian equations
governing the system evolution. However, Poincaré discovered that the system’s long-term behavior
could be understood without explicit solutions (Poincaré, 1928). He showed that in a closed system
with a finite measure, almost all initial states would eventually return close to their starting conditions
(detailed proof refers to C.1). This is shown to be the case because the probability measure of
the phase space is invariant under the dynamics. This led to the development of the mean ergodic
theorem (Birkhoff, 1927; Koopman & Neumann, 1932; Neumann, 1932a; Birkhoff & Koopman,
1932), which asserts that in ergodic systems, time averages converge to space averages. Standing on
the shoulders of these scientific giants, we recognize that while solving stepwise precise solutions for
chaotic dynamics may be intractable, adopting a measure-theoretic view can significantly simplify
the problem.
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Understanding the behaviour of chaotic systems remains crucial for applications in weather forecast-
ing, climate modelling, and fluid dynamics (Tang et al., 2020). Over the past decade, forecasting
the long-term behavior of chaotic systems has posed a substantial challenge to the machine learning
community (Yu et al., 2017; Mikhaeil et al., 2022; Wan et al., 2023). These dynamical systems are
characterized by instabilities and sensitivity to initial conditions. A small perturbation to any given
state can cause trajectories to diverge exponentially, a phenomenon attributed to positive Lyapunov
exponents. Consequently, accurately predicting the long-term trajectory of such systems is non-trivial.
To tackle these challenges, two primary streams have emerged in learning dynamical systems: 1)
deep sequence models, which leverage sequential neural networks to learn the temporal patterns,
and 2) operator learning, learning the integral-differential operators directly without knowing the
differential equations.

Deep Sequence Models. Previous studies have focused on predicting short-term dynamics, mainly
using deep sequence models by minimizing the mean squared error (MSE) of the next-step prediction.
Commonly used models include recurrent neural networks (RNNs) (Lipton et al., 2015; Vlachas
et al., 2020), long short-term memory networks (LSTMs) (Mikhaeil et al., 2022), reservoir computing
(Pathak et al., 2018; Tanaka et al., 2019) and Transformers (Woo et al., 2024). These approaches
have been applied to classic examples like the Lorenz 63 system (Lorenz, 1963) and turbulent flows
(Pathak et al., 2018). However, due to the instability of trajectories, these methods often suffer
from exponential error accumulation (Ribeiro et al., 2020), which hampers their ability to model
chaotic systems effectively. To stabilize predictions, various strategies have been proposed, such
as constraining the recurrence matrix to be orthogonal (Helfrich et al., 2018; Henaff et al., 2016),
skew-symmetric (Chang et al., 2019), or ensuring globally stable fixed point solutions (Kag et al.,
2020). However, these methods struggle with simulating chaotic systems since chaotic systems are
usually hyperbolic and aperiodic (Hasselblatt & Katok, 2002). To address this issue, specialized
models tailored to chaotic systems are necessary to accurately capture their complex patterns and
behaviors. Recognizing that dissipative chaotic systems with attractors exhibit ergodic behaviours,
new sequential models have been developed that go beyond simply minimizing MSEs. For instance,
Jiang et al. (2024); Schiff et al. (2024) improve the learning of chaotic systems by incorporating
transport distances to the invariant measure, which is assumed to be known. This ensures that the
model’s predictions are aligned with the true distribution of the system. The methods proposed
in these two papers (Jiang et al., 2024) generate samples directly from the neighborhood of the
attractors and estimate the invariant probability distribution from these generated samples. Schiff et al.
(2024) removed the need for knowledge of the invariant measure of underlying systems, enabling
direct measurement of the invariant distribution from trajectories. By incorporating the estimated
invariant distribution as a regularized transport term, they train deep sequence models by enforcing
long trajectories to match the estimated invariant distribution. However, a significant challenge for
these methods lies in accurately estimating the invariant measure on attractors from arbitrary datasets,
where this invariant distribution is usually unknown.

Operator Learning. Another prominent approach to studying the long-term behavior of dynamical
systems is through operator theory. Two classic methods in this domain are the transfer operator
(Demers & Zhang, 2011) and the Koopman operator (Bevanda et al., 2021). The transfer operator
captures the evolution of probability density functions in chaotic dynamical systems, making it a
powerful tool for analyzing statistical mechanics (Lagro et al., 2017), chaos (Jiménez, 2023), and
fractals (Ikeda et al., 2022). The Koopman operator, often considered the adjoint of the transfer
operator, focuses on the evolution of feature functions. Both of these methods primarily aim to
capture the long-term behaviors of chaotic dynamical systems with an invariant measure (Adams &
Quas, 2023; Das et al., 2021; Valva & Giannakis, 2023). Although the dynamics on invariant sets
govern long-term behavior (Mori & Kuramoto, 2013; Ornstein, 1989; Li et al., 2017), focusing solely
on ergodic behaviors can significantly distort short-term predictions. Traditionally, the Koopman
operator is approximated using kernel methods (Ikeda et al., 2022; Kostic et al., 2022) or dynamic
mode decomposition (DMD) (Williams et al., 2015; Takeishi et al., 2017). Recently, Koopman
learning has emerged as a prominent approach for modeling the dynamics of differential equations by
leveraging autoencoder architectures to approximate a finite-rank linear operator within a learned
feature space (Lusch et al., 2018; Nathan Kutz et al., 2018; Brunton & Kutz, 2023). This approach
has facilitated the development of various methods for capturing general dynamical behaviors, such
as time series (Wang et al., 2022; Liu et al., 2024) or graph dynamics (Mukherjee et al., 2022).
However, no specific Koopman learning framework has been designed to effectively capture the
behaviors of dissipative chaos. Integrating deep learning techniques with operator theory has led to
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the development of various neural operators aimed at solving differential equations. For instance,
Deep Operator Networks (DeepONet) (Lu et al., 2019) serve as universal approximators for initial
value problems, while Fourier Neural Operators (FNO) (Li et al., 2020; Kovachki et al., 2021) learn
deep Fourier features to minimize loss functions in Sobolev space, effectively solving differential
equations with high-order terms. Both DeepONet and FNO aim to capture accurate solution operators
for initial value problems in infinite-dimensional function space. However, chaotic systems often
require analysis beyond traditional initial value problems with unstable solutions, necessitating a
specialized architecture to address. To address this, the Markov Neural Operator (MNO) (Li et al.,
2022) improves long-term predictions for dissipative chaotic systems by introducing a concept called
an “absorbing ball.” This “absorbing ball” acts like a boundary that ensures the chaotic system does
not go completely off course over time, guiding it back to a stable range. However, choosing the right
size for this absorbing ball is tricky. If the ball is too large, it might make inaccurate predictions, as
the system could stray too far from the actual behavior.

To address the aforementioned challenges, we propose the Poincaré Flow Neural Network (PFNN)
established on Koopman learning, a novel model designed to capture both dynamics and long-term
behaviors of dissipative chaotic systems without requiring prior knowledge or assumptions of the
invariant measure from the raw data. Unlike the previous Koopman deep learning methods for
general dynamics (Li et al., 2017; Lusch et al., 2018; Nathan Kutz et al., 2018; Brunton & Kutz,
2023), our method is tailored to learn dissipative chaos by embedding intrinsic physical properties.
Specifically, dissipative chaos can be separated into two phases based on the physical properties: a)
Contraction Phase: where the system converges toward attractors due to energy dissipation, which
governs transient short-term dynamics; b) Measure-Invariant Phase: where the system fully explores
the bounded invariant set according to the invariant distribution over time, enabling the derivation
of statistical properties from time averages (ergodic behaviours). PFNN learns a linear contraction
operator and a unitary operator to accurately model in an infinite-dimensional feature space the
corresponding physical behaviors of the contraction phase and measure-invariant phase (as shown
Figure 1), respectively. Our approach avoids relying on a known invariant measure for guiding long-
term predictions. Instead, we employ simple one-step forward learning, regularized with physical
constraints (contraction and unitary) on the linear operators.

(a) Trajectory samples (b) The evolution of probability density function of three dimensions

Figure 1: Contraction and measure-invariant phase in chaotic dynamics (Lorenz 63 system): (a)
trajectories from random initial states all spiral toward attractors, ultimately moving within the
butterfly-shaped invariant set; (b) the probability density of the trajectories samples in each state
dimension keeps changing over the earlier evolution, which indicates a contraction phase in the
beginning; whilst the probability density becomes invariant over the later evolution, which echos the
states finally move consistently within the invariant set.

2 BACKGROUND AND PROBLEM FORMULATION

Notation. (X,B, µ) denotes the measure space, with set X , Borel σ−algebra B and measure µ. The
forward map on the state space is denoted as T . The Lebesgue space with p−norm is represented as
Lp(X,µ), which is abbreviated as Lp in this paper. Specifically, the Lebesgue space L2 is equipped
with an inner product structure as ⟨·, ·⟩. The functions ϕ, ψ are denoted as feature functions in
the L2 space. □T denotes the transpose of a real matrix, and □∗ denotes the conjugate transpose.
O(·) denotes an asymptotically tight upper bound while o(·) indicate that the upper bound is not
asymptotically tight. The ceiling function is denoted as ⌈x⌉ = min{n ∈ Z | x ≤ n}.
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Problem Setup. In what follows, we focus on forecasting dissipative chaotic dynamical systems that
can be described as

zk+1 = T (zk), z ∈ M ⊂ Rm, (1)
where zk denotes the state of the system at time k ∈ N and M is a bounded space. The forward map
T : M → M is nonlinear, pushing states from time k to time k + 1. The above model assumes the
states depend only on the current state zk regardless of information from long historical states.

To forecast future states, one might use a neural network to approximate the forward map T . However,
the resulting model ignores prior knowledge related to the problem, and it can be challenging to
analyze. In contrast, our model is based on learning the evolution of latent features ϕ ∈ L2 in a linear
way. This concept is fundamentally from the Koopman theory (Bevanda et al., 2021; Xiong et al.,
2024; Koopman, 1931) transforming the nonlinear dynamics by a combination of nonlinear basis.
In this framework, the evolution of the system becomes linear in the function space L2. Such an
evolution map is the so-called neural operator. Our model adopts the Koopman operator (Koopman,
1931), the forward map T induces a linear operator G as

Gϕ = ϕ ◦ T, (2)

where ϕ is the feature map as ϕ : M → R, with ϕ ∈ F ⊂ L2 being function space F on M.
Essentially, the operator G describes the linear evolution of factorized features. Consequently, future
states of the features can be obtained by iteratively applying G. More specifically, the feature ϕ(zk) is
mapped to ϕ(zk+1) under the operator G. The evolution of the entire feature space can be expressed
as a linear combination of features:

G(α1ϕ1 + α2ϕ2 + · · · ) = (α1ϕ1 + α2ϕ2 + · · · ) ◦ T, (3)

where αi ∈ R is the weight corresponding to the feature functions ϕi.

Definition 2.1 (Measure Preserving Transformation and Ergodicity (Walters, 2000)) Let
(X,B, µ, T ) be measure preserving transformation (MPT), meaning that for every E ∈ B, the
measure satisfies µ(T−1E) = µ(E). MPT is said to be ergodic if, for any invariant set E, either
µ(E) = 0 or µ(X \ E) = 0. In this case, µ is referred to as an ergodic measure.

Ergodicity T : X → X ensures that µ(T−1E) = µ(E) ⇔ µ(E) = {0, 1}, meaning the system
almost surely follows the behavior described by the invariant measure. Simply speaking, the ergodicity
implies that spatial statistics are the same as the temporal statistics.

Definition 2.2 (Global Attractor (Hasselblatt & Katok, 2002)) A compact, invariant set A is
called a global attractor if, for any bounded set B ⊂ M and existing a time k∗ ∈ N such that k > k∗

such that T k(B) is contained within the neighbourhood of A.

In this paper, we aim to forecast dissipative chaotic dynamical systems by considering invariant
measures on attractors. Given an arbitrary initial state, such systems typically converge to their
attractors (an interpretation of this can be found in Appendices B.1 and B.2). Due to the dissipative
nature of the dynamics, the phase space contracts, meaning that all trajectories will eventually
approach specific regions within the phase space. The contraction reflects energy dissipation from a
physical standpoint. Once the system enters the neighbourhood of an attractor, it becomes ergodic,
and the system’s trajectories distribute across the attractor following an invariant measure that does
not vary over time (see 2.1). Many dynamical systems have been proven to exhibit this property,
including the Lorenz 63 (Tucker, 1999), Lorenz 96 (Maiocchi et al., 2024) and Kuramoto-Sivashinsky
(Temam, 2012). In other words, the trajectory of a chaotic system will span the attractor in a way that
accurately reflects the statistical properties of the entire invariant set, as shown in Figure 1.

3 METHOD

In the following sections, we introduce the Poincaré Flow Neural Network (PFNN) designed for
forecasting dissipative chaotic dynamical systems. PFNN consists of two steps: first, mapping
the system into a finite-dimensional feature space using an auto-encoder (AE); second, embedding
physical properties in the finite-rank operator to capture behaviors in contraction and measure-
invariant phases.
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3.1 FINITE-RANK OPERATOR APPROXIMATION

A popular approach for operator learning G : L2 → L2 is to construct a finite-dimensional approxi-
mation. Specifically, a convergent approximation method for prediction problems can be developed
by utilizing the fact that G is a bounded (and therefore continuous) linear operator, without explicitly
considering its spectral properties. Given an arbitrary orthonormal basis {ϕ1, ϕ2, . . . } of L2, we
define the operator’s orthogonal projection as ΠL : L2 → span{ϕ1, . . . , ϕL}. The finite-rank opera-
tor is then given by GL = ΠLGΠL, where the operator GL is characterized by the matrix elements
Gij,L = ⟨ϕi,Gϕj⟩ with 1 ≤ i, j ≤ L. Due to the continuity of G, the sequential predictions of the
operator GL converge pointwise to those of G on L2.

The finite-dimensional feature space is spanned by learned adaptive features of the neural networks
used in this paper. The learned encoder and decoder are denoted as gen

θ1
and gde

θ2
, with parameters θ1

and θ2 respectively. Specifically, the encoder gen
θ1

functions as the projection operator onto the learned
latent feature space, effectively embedding the state space into the function space. The decoder gde

θ2
then maps the feature space back to the original space. In this setup, the operator G and θ1, θ2 are
learned jointly by minimizing the following loss function:

arg min
Ĝ,θ1,θ2

Ez∼ν

[
∥Ĝgen

θ1(zk)− gen
θ1(zk+1)∥+ γ∥gde

θ2 ◦ g
en
θ1(zk)− zk∥2

]
, (4)

where Ĝ is the approximated finite-rank operator, and ν is data distribution. The first term in Equation
4 represents the prediction loss, while the second term accounts for the reconstruction loss with
a coefficient γ denoted as Γrec. To ensure a consistent solution in the feature space, the auto-
encoder must satisfy the bijective property, meaning that encoder and decoder satisfy the constrained
relationship Id = gde

θ2
◦ gen

θ1
, where Id denotes the identity matrix. For the class of finite-rank

operators, we prove Theorem 3.1 regarding the PFNN. This result shows that the finite-rank operator
can approximate the infinite-dimensional operator with a sufficiently small error.

Theorem 3.1 (Convergence of Finite-Rank Operator) Let M ⊂ Rm be a compact set, the solu-
tion operator G : L2 → L2 associated to the dynamics is locally Lipschitz. Then, for a sufficient large
dimension L ∈ N and a sufficiently small number ϵ > 0, there exists an approximated finite-rank
operator Ĝ : L2 → L2 converging pointwise such that supz∈M ∥Ĝgen

θ1
(z)− Gϕ(z)∥2 ≤ ϵ.

The theorem reflects that the finite-rank operator, derived from the infinite-dimensional operator,
operates in a function space spanned by learned latent feature functions. By selecting a sufficiently
large L as the dimension of the latent feature space, stepwise prediction can be achieved (see the
procedure in Appendix C). While the existence of the finite-rank operator can be proven, relying solely
on this approximation for time-stepping can lead to exponential error accumulation. To address this,
long-term predictions can be improved by incorporating physical properties. In the following sections,
we introduce two loss functions designed to enhance long-term prediction accuracy. To distinguish
the different operators, those applied during the contraction phase and the measure-invariant phase
are denoted as Gc and Gm, respectively.

3.2 STAGE I: CONTRACTION PHASE

In accordance with the definition of attractors in Section 2.2, a dissipative system induces a contraction
operator (Lumer & Phillips, 1961) due to the presence of attractors. In this stage, there exists a
volume contraction. It means any bounded set B containing the invariant set A will contract towards
A. To characterize this contraction, we constrain the spectral properties of the operator Gc, ensuring
∥Gc∥ ≤ 1. Specifically, we focus on GT

c Gc instead of Gc because GT
c Gc is symmetric (Franklin, 2012)

with real, non-negative eigenvalues, and enforce the condition:

⟨Gcϕ,Gcϕ⟩ ≤ λ2∥ϕ∥22, 0 < λ ≤ 1. (5)

Eigenvalues of Gc with a modulus bounded by 1 reflect the contraction (refer to Lumer–Phillips theo-
rem in Appendix D). To enforce these contraction properties in practice, we introduce a specialized
loss function as

arg min
Ĝc,θ1,θ2

Ez∼ν

[
∥Ĝcg

en
θ1(zk)− gen

θ1(zk+1)∥+ γ1Γcon+γΓrec

]
, (6)
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where the contraction term is defined as Γcon := ReLU
(
σ(ĜT

c Ĝc − Id)
)
= max

(
σ(ĜT

c Ĝc − Id), 0
)

with coefficient γ1 ∈ (0, 1). σ(·) is denoted as eigenvalues of operator, and ReLU
(
σ(ĜT

c Ĝc − Id)
)

1 constraints the negative semidefinite of ĜT
c Ĝc − Id. The Γcon encourages the contraction of the

state space by making the eigenvalues of ĜT
c Ĝc no larger than one, based on Equation 5. The data

distribution ν is lying in the bounded set as M\ A, which encourages the state space to contract
towards the invariant set A from outside.

However, the invariant set of the global attractor is typically not directly observable in the raw dataset.
To address this, one can utilize the dissipation property to effectively truncate the dataset, preparing
it for training various operators. Dissipative chaotic systems take time to approach their invariant
distribution (Žnidarič, 2015), which corresponds to the relaxation time in physics (or mixing time in
ergodic theory). The relaxation time is bounded by the log-Sobolev time (Bauerschmidt & Dagallier,
2024; Mori & Shirai, 2020), which provides a stronger constraint on the convergence rate to the
invariant distribution. More specifically, the relaxation time estimates the time k required for a
system to approach its invariant distribution µ∗ over the invariant set A, starting from an arbitrary
initial state. The relaxation time can be computed using the log-Sobolev inequality, typically in
the form of an exponential rate decay O( 1

cLSI
log( 1ϵ )) (Feng & Iyer, 2019), where cLSI represents

the log-Sobolev constant and ϵ is the tolerance. In this case, the following holds: d(µk, µ∗) ≤ ϵ
after k ∝ ⌈ 1

cLSI
log( 1ϵ )⌉ steps, where d(·, ·) measures the total variation distance between the two

distributions. Although determining the log-Sobolev constant can be challenging, it can be inferred
that the probability of lying outside A is sufficiently small, such that the timestep k is proportional
to ⌈ 1

cLSI
log(∥ϕ∥2

ϵ )⌉. Note that ϕ is the feature function of state z. Thus, the empirical calculation

of relaxation time is ⌈ 1
cLSI

log(∥z∥2

ϵ )⌉ and the norm of state ∥z∥2 can be understood as energy-like
quantity in physics. As illustrated in Figure 1, the initial distribution contracts toward the invariant
distribution. Thus, it is feasible to use the trajectory data before k for the training of the contraction
phase.

3.3 STAGE II: MEASURE-INVARIANT PHASE

Once the system reaches the global attractor, it explores the bounded set A based on the invariant
measure, with spatial and long-term temporal statistics aligned. Von Neumann (Neumann, 1932b)
established that MPT induces a unitary operator on the corresponding Hilbert space L2. Consequently,
a unitary operator G can be learned to describe the system’s evolution with feature space.

Proposition 3.2 (Unitary Property) When the map T is MPT, the operator Gm is unitary on L2.
That is, for all ϕ, ψ ∈ L2,

⟨Gmϕ,Gmψ⟩ = ⟨ϕ, ψ⟩, (7)

where ⟨ϕ, ψ⟩ =
∫
X
⟨ϕ(z), ψ(z)⟩dµ is the inner product on L2.

Theorem 3.3 (Koopman-von Neumann (KvN) Ergodic Theorem (Neumann, 1932b)) Let
(X,B, µ, T ) be an MPT. If ϕ ∈ L2, then limN→∞

1
N

∑N−1
k=0 Gk

mϕ = limN→∞
1
N

∑N−1
k=0 ϕ◦T k = ϕ

where ϕ is invariant. If T is ergodic, then ϕ =
∫
ϕdµ.

The proof can be referred to Appendix C.3 and C.4. The KvN ergodic theorem shows that for an
ergodic MPT T , the associated operator G is unitary, preserving norms in L2. This means the time
averages of L2 functions converge to their space averages, ensuring the long-term predictability of
chaotic systems. The theorem links chaos with operator theory, providing a framework to study the
statistical behavior through Gm. The spectrum of the operator Gm lies on the complex unit circle
σ(Gm) ⊂ {r ∈ C | |r| = 1}, with a positive measure on both discrete and continuous spectrum for
chaotic systems (Koopman & Neumann, 1932). The presence of a continuous spectrum indicates
chaotic behavior, meaning the learned operator should have its spectrum densely distributed along
the unit circle. The validity of the learning results can be assessed by analyzing the spectrum of the
operator, as shown in Figure 2.

1PyTorch (2014) supports the auto-differentiation of eigenvalue function of symmetric matrix or Hermitian
matrix, which improves computational stability.
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(a) Lorenz eigenvalues (b) Lorenz energy spectrum (c) KS eigenvalues (d) KS energy spectrum

Figure 2: Operator eigenvalues and energy spectrum of the Lorenz 96 and KS equations: The
eigenvalues in subfigures (a) and (c) display the difference of eigenvalue distribution of learnt
operator layer from the aspect of the measure-invariant constraint. Red points represent the PFNN’s
eigenvalues in the measure-invariant phase, densely distributed near the unit circle in the complex
plane, indicating invariant measure under evolution. In contrast, blue points represent eigenvalues
without the measure-invariant constraint, showing values both inside and outside the unit circle,
leading to gradient vanishing and blow-up for long-term predictions. Subfigures (b) and (d) show the
corresponding energy spectrum for the Lorenz 96 and KS equations, illustrating the system’s energy
distribution across modes. The energy spectra of PFNN’s prediction fit the true energy spectra most
by the introduction of the measure-invariant constraint.

To determine the unitary operator in the ergodic state (see Proposition 3.2), we leverage the intrinsic
property that Gm and its conjugate transpose G∗

m satisfy G∗
mGm = Id. This property ensures that Gm

is unitary, preserving norms and inner products, and establishes a well-defined backward dynamic.
Specifically, the backward operator G−1

m is equal to G∗
m. This conjugate transpose relationship

guarantees that G∗
mGm = GmG∗

m = Id, indicating that Gm is invertible and the inversion is consistent
with unitarity (see theoretical aspects in Appendix D.3). To learn Gm effectively, we use a bi-
directional approach that captures both forward and backward dynamics. Gm predicts the forward
process, while G∗

m governs the reverse. Aligning the learning of Gm and G∗
m ensures the operator

remains unitary and accurately represents the system’s dynamics in both directions.

According to the estimated relaxation time, the trajectories of timestep k > ⌈ 1
cLSI

log(∥z∥2

ϵ )⌉ are
used to train the measure-invariant phase. The measure-invariant loss function becomes

arg min
Ĝm,θ1,θ2

Ez∼µ

[
∥Ĝmg

en
θ1(zk)− gen

θ1(zk+1)∥2︸ ︷︷ ︸
forward loss

+ ∥Ĝ∗
mg

en
θ1(zk+1)− gen

θ1(zk)∥2︸ ︷︷ ︸
backward loss

+γ2
(
∥Ĝ∗

mĜm − Id∥F + ∥ĜmĜ∗
m − Id∥F

)︸ ︷︷ ︸
consistent constraint

+γΓrec

]
,

(8)

where γ2 ∈ (0, 1) is the regularized coefficient, ∥ · ∥F is denoted as the Frobenius norm, and the
distribution of µ follows the distributions with timestep larger than integer k. The loss function of the
first line is represented as forward and backward prediction, respectively. The last term in Equation
8 is a consistency constraint on the backward and forward process of G. The combination of three
terms in Equation 8 implies the unitary evolution in ergodic theorem in Sections 3.2 and 3.3.

Equations 4, 6 and 8 will be used for training the corresponding operators to predict the distinct
chaotic behaviors. We provide the pseudocode in Appendix E.

4 NUMERICAL EXPERIMENTS AND ABLATION STUDY

In this section, we empirically evaluate the performance of PFNN in chaotic systems by comparing it
against four baselines: (a) LSTM (Vlachas et al., 2018), a type of RNN architecture designed to learn
long-term dependencies in sequential data; (b) Koopman operator (Pan et al., 2023), a linear operator
that represents the evolution of functions in a dynamical system; (c) Fourier neural operator (FNO)
(Kovachki et al., 2023), which uses fast Fourier transform (FFT) to efficiently parameterize integral
operators and learn the system evolution; and (d) Markov neural operator (MNO) (Li et al., 2022),
which enhances FNO by imposing a hard-coded constraint to better capture dissipative chaos. These
baselines cover both deep sequence models and operator learning methods.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Learning tasks. (1) Lorenz 63 (Lorenz, 1963): A 3-dimensional simplified model of atmospheric
convection, known for its chaotic behavior and sensitivity to initial conditions. (2) Lorenz 96 (Lorenz,
1996): A surrogate model for atmospheric circulation, characterized by the coupled differential
equations with periodic boundary conditions and varying state dimensions. To test PFNN across
different dimensionalities, we generated datasets with state dimensions of 9, 40, and 80, respectively.
(3) Kuramoto-Sivashinsky (KS) equation (Papageorgiou & Smyrlis, 1991): A fourth-order nonlinear
partial differential equation that models diffusive instabilities and chaotic behavior in systems, such as
fluid dynamics, and reaction-diffusion processes. In this case, we uniformly sub-sampled 128 states
from a dense spatial discretization during integration as system states. (4) Kolmogorov flow governed
by Navier–Stokes (NS) equation Temam (2012): A two-dimensional shear flow commonly used in
fluid dynamics to study turbulence, characterized by sinusoidal velocity fields in one direction and
external forcing in the perpendicular direction. In our experiments, we utilize a 64× 64 resolution
field for studying.

Training details. Given the generated trajectories, each trajectory was divided into two phases:
contraction and measure-invariant, with the split occurring at an estimated relaxation time. The data
from each stage was then segmented into single-step pairs of observations and true states, which were
subsequently shuffled to create the training data. All trajectories are sampled from random initial
states, with no prior statistical information available to guide the training process.

Evaluation metrics. The models are evaluated using specific metrics: (1) Normalized Root Mean
Square Error (NRMSE) for short-term performance, measuring prediction accuracy within a 10-step
roll-out; (2) Kullback–Leibler divergence (KLD), and (3) Maximum Mean Discrepancy (MMD) for
long-term performances, both of which compare the predicted and true distributions estimated from
roll-out samples of the models and the dataset; (4) Turbulent Kinetic Energy (TKE) is distribution of
turbulent energy districture, which reflects the error of TKE between the learned model and ground
truth. Notably, KL divergence can be problematic in high-dimensional spaces, where probability
distributions are overly spread out. To address this, we performed kernel principal component analysis
(KPCA) to identify a low-dimensional subspace (m = 3), and used kernel density estimation (KDE)
to estimate the predicted and true distributions. Further details on the learning tasks, training data,
evaluation metrics, and baseline models can be found in Appendix G.

Table 1: Performance comparison of models (FNO, LSTM, Koopman, MNO, and PFNN) across vari-
ous dynamical systems (Lorenz 63, Lorenz 96, Kuramoto-Sivashinsky, and Kolmogorov Flow) with
corresponding evaluation metrics: NRMSE, KL divergence, MMD, and TKE. The best performance
is highlighted in bold. The results are evaluated 50 times using all initial states the in test set, with the
uncertainties quantified as mean±standard deviation. m is the state dimension.

Metrics LSTM Koopman FNO MNO PFNN

Lorenz63 (m = 3)
NRMSE 1.83±0.85 0.67±0.33 0.53±0.24 0.44±0.20 0.49±0.26

KLD +∞ 0.66±1.21e− 02 0.61±1.71e− 02 0.37±3.51e− 03 0.29±7.37e-04
MMD 1.05±3.17e− 03 0.46±4.37e− 06 0.51±2.40e− 07 0.48±7.60e− 07 0.39±4.10e-07

Lorenz96 (m = 9)
NRMSE 1.57±0.44 0.61±0.23 0.42±0.36 0.28±0.09 0.21±0.14

KLD 3.49±1.19e− 02 2.61±8.29e− 03 2.12±5.53e− 03 2.01±2.47e− 03 1.87±2.23e-03
MMD 0.21±1.13e− 04 0.13±9.10e− 05 0.11±1.09e− 04 0.10±1.07e− 04 0.10±1.01e-04

Lorenz96 (m = 40)
NRMSE 4.77±2.15 0.74±0.12 0.09±0.07 0.15±0.04 0.11±0.06

KLD +∞ 0.16±2.32e− 04 0.12±1.25e− 04 0.11±1.78e− 04 0.11±1.03e-04
MMD 0.854±4.26e− 04 0.0239±8.62e− 06 0.015±2.08e− 06 0.011±3.11e− 06 0.011±1.73e-06

Lorenz96 (m = 80)
NRMSE 2.28±0.73 1.64±0.49 0.51±0.22 0.37±0.16 0.32±0.09

KLD 1.32±5.23e− 02 0.24±7.96e− 03 0.15±2.15e− 03 0.18±2.73e− 03 0.10±1.07e-03
MMD 0.056±1.94e− 06 0.0088±4.00e− 08 0.0094±2.90e− 07 0.0084±4.50e− 07 0.0083±3.40e-07

KS (m = 128)
NRMSE 13.87±4.69 1.71±0.35 0.53±0.29 0.31±0.07 0.25±0.05

KLD +∞ 52.51±2.06 142.73±7.63 24.53±1.38 9.37±0.57
MMD 0.996±1.11e− 03 0.204±3.10e− 06 0.915±2.91e− 03 0.031±8.18e− 04 0.011±6.31e-06

NS (m = 64× 64) NRMSE 10.65±4.09 10.06±4.23 4.22±4.23 3.81±4.48 3.42±3.79
TKE 2.29±4.07e− 02 1.81±3.91e− 02 2.10±2.55e− 02 1.58±2.87e− 02 1.36±2.20e-02

4.1 RESULTS AND COMPARISON

Table 1 presents the performance of all baseline methods and PFNN, evaluated using four metrics
across the selected learning tasks. PFNN consistently outperforms the baselines, particularly ex-
celling in KLD and MMD, which highlights its capability to capture the long-term dynamics of
complex, chaotic systems. For short-term prediction, both PFNN and MNO show better accuracy, as
reflected by the NRMSE metric. This is likely due to their ability to account for the initial phase of
energy dissipation, which characterizes transient behaviors. PFNN (contraction operator) and MNO
incorporate physical properties during this phase, resulting in predictions that more accurately reflect
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the system’s dissipative nature. However, MNO enforces a fixed dissipation rate and pre-defined
absorbing ball, which can reduce its effectiveness in short-term forecasting. Models like LSTM and
Koopman, are hard to capture transient behaviors for states lying outside attractors, exhibit large
deviations from the ground truth. Notably, while FNO uses FFT to extract features and provides
relatively accurate short-term predictions, its reliance on integer Fourier modes tends to produce
periodic behavior. This periodicity conflicts with the non-periodic nature of dissipative chaos.

In terms of long-term statistical properties, PFNN’s unitarity directly leads to an invariant distribution,
which results in better performance in KLD and MMD. In contrast, the periodic tendencies of integer
Fourier modes in FNO and MNO disrupt ergodicity, preventing a full exploration of the invariant sets.
This limitation is reflected in the higher KLD and MMD values for FNO and MNO. A key observation
that further validates this distinction is evident in the eigenvalue distribution of the learned unitary
operator Ĝm for the Lorenz 96 and KS systems. Specifically, the eigenvalues are densely distributed
along the unit circle in Figure 2. This distribution aligns with the presence of a continuous spectrum
in chaotic systems, as predicted by the KvN theorem, indicating a positive measure on the continuous
spectrum. Additionally, Figure 2 demonstrates the effectiveness of our consistent loss function in
maintaining the unitarity of the operator and accurately learning key invariant distributions, which
ensures stable long-term predictions in chaotic systems. In contrast, when the model is not constrained
by regularized terms in Equation 8, it results in unstable/stable modes. Empirically, this instability
causes rapid forecast divergence/convergence and failure to learn the invariant distribution, as shown
in the eigenvalue distributions (see blue points in Figure 2(a) and 2(c)). Furthermore, the unitarity of
the operator reflects underlying conservation laws, resulting in a more accurate energy spectrum, as
demonstrated in Figure 2(b), 2(d) and Figure 3. Due to the periodic behaviors in MNO and FNO,
the distribution of TKE is inconsistent with ground truth. More experimental details showcasing the
short- and long-term prediction and physical statistics are provdied in Appendix F.

Figure 3: Visualization of the prediction error for Kolmogorov flow trajectories in terms of TKE,
demonstrating the model’s accuracy in capturing the kinetic energy distribution. We compare the
model-predicted trajectories with the ground truth and plot the absolute error in TKE.
4.2 ABLATION STUDY

In this section, we revisited the KS system and conducted ablation studies to evaluate the effects of
key hyperparameters in PFNN, including the relaxation time k, the unitary regularized coefficient
γ2 (with γ1 fixed2), and the finite feature dimension L. Table 2 includes the evaluated metrics for
each configuration, providing insights into how these hyperparameters effect the short- and long-term
performances.

Regularized coefficient. We retrained each model, systematically varying γ2 and found that
γ2 ∈ [0.1, 0.5] consistently performs well and achieves a good balance between short-term precision
and long-term consistency. Outside this range, lower γ2 reduces long-term consistency, while higher
values overly constrain the model, degrading short-term accuracy.

Feature dimensions. We explored the impact of latent feature dimension L in the PFNN by varying
L while keeping other hyperparameters fixed. From Table 2, we found that L = 128, 256 consistently
perform well, while smaller values reduce the model’s expressiveness to capture complex patterns,
while larger values require more data for training and risk overfitting. This ablation study result
reflects a classic trade-off in deep learning between model complexity and data volume.

Log-Sobolev Constant. Systems exhibit varying dissipation rates, making it important to test
different relaxation times. In most dissipative chaotic systems (Garbaczewski & Olkiewicz, 2002),

2Since the γ1 does not affect long-term performance and is trained with a smaller dataset, we performed a
grid search over (0, 1] to determine its value.
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the approach to the invariant distribution follows an exponential contraction rate. In this experiment,
we varied the relaxation time k and constructed two corresponding datasets for training the contraction
and unitary operators in PFNN. During prediction, the model first applies the contraction operator
and then switches to the unitary operator after the specified relaxation time k ∝ ⌈ 1

cLSI
log ∥z∥2

ϵ ⌉
(see Section 3.2). Due to the logarithmic relationship, the ϵ has a weak effect on relaxation time
k. Therefore, we adjust the relaxation time by fixing ϵ = 0.01 and varying the constant term 1

cLSI
.

For the KS equation, dissipation occurs primarily in the higher Fourier modes, typically for wave
numbers larger than 1 (Papageorgiou & Smyrlis, 1991), and log-Sobolev constant can be bounded as

1
cLSI

≥ 1. We test the constant as 1
cLSI

= {1, 3, 5, 7, 9}, the model consistently performs well once
the k exceeds a certain threshold 1

cLSI
= 5 in KS system. Stable performance was observed when

1
cLSI

≥ 5, highlighting that an appropriate relaxation time is crucial: if too short, it introduces bias,
while if too long, many samples lie on the attractor, leading to data contamination from transient
behaviors. Furthermore, continuously increasing the parameter beyond this range does not have an
obvious effect on the long-term statistics. If the hyperparameter 1

cLSI
is set too high, the data volume

available for the measure-invariant phase in Equation 8 becomes insufficient for training. In other
experiments, we set the constant term 1

cLSI
= 5 obtaining a similar result. A more detailed ablation

study can be found in Appendix H.

Metrics
Parameters Regularized coefficient, γ2 Feature dimension, L Log-Sobolev Constant, 1

cLSI

0 0.1 0.3 0.5 1 64 128 256 512 1 3 5 7 9

NRMSE 100 steps 35.23 25.40 15.09 11.26 25.41 17.32 14.79 11.26 21.45 446.42 21.43 11.26 10.97 10.99
KLD 127.69 42.66 19.84 9.37 85.95 40.52 12.89 9.37 131.23 7471.44 33.66 9.37 10.94 11.28

Table 2: Ablation experiments showing the effect of varying PFNN hyperparameters. Short-term
metrics are measuring the NRMSE with standard deviation at step 100. Long-term metrics are
the KLD estimated with sample size 10000. Fixed hyperparameters are γ1 = 0.3, γ2 = 0.5, feature
dimension L = 256 and constant term 1

cLSI
.

5 CONCLUSIONS AND LIMITATIONS

Conclusions. Learning chaotic behavior poses a significant challenge due to the inherent instability
and unpredictability of these systems. To address this complexity, we adopt a physically informed
approach and introduced the Poincaré Flow Neural Network (PFNN), a novel operator learning frame-
work designed to capture both the contraction and measure-invariant phases of dissipative chaotic
systems. Our method outperforms traditional deep sequence models and neural operators, providing
superior short- and long-term predictions while ensuring more consistent statistical outcomes across
a variety of dissipative chaotic dynamical system experiments.

Limitations. We evaluate the limitations from both theoretical and practical perspectives. Theoreti-
cally, the assumption of ergodicity in the second stage does not apply to all chaotic systems, which
can lead to a breakdown in operator unitarity for non-ergodic cases. A promising direction for future
work is to extend the method to handle non-measure-preserving chaotic systems. Practically, the
bi-directional training results in slow convergence due to the high computational complexity of the
Frobenius norm. To alleviate this issue, future research could leverage the Hermitian properties of
unitary operators or employ Hutchinson’s trace estimation to optimize trace calculations and reduce
computational load. Lastly, a promising direction is to extend the discretized-grid input in PFNN to a
discretization-agnostic input.
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Marko Žnidarič. Relaxation times of dissipative many-body quantum systems. Physical Review E,
92(4):042143, 2015.

Joseph D Zund. George david birkhoff and john von neumann: A question of priority and the ergodic
theorems, 1931–1932. Historia Mathematica, 29(2):138–156, 2002.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Background and Problem Formulation 3

3 Method 4

3.1 Finite-Rank Operator Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Stage I: Contraction Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Stage II: Measure-Invariant Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Numerical Experiments and Ablation Study 7

4.1 Results And Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Conclusions and Limitations 10

A Table of Notations 18

B Dissipation and Conservation 19

C Proofs of Main Theorems 19
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A TABLE OF NOTATIONS

Notations Meaning

cLSI log-Sobolev constant
gen encoder
gde decoder
k time index
m dimension of state space
z state
A invariant set or attractor
B Borel σ−algebra
B bounded set
F function space
G forward operator on L2 space
Gc contraction operator
Gm unitary operator
Id identity matrix

L = D ×m finite rank of approximated operator
M bounded state space
O, o describes limiting behavior of a function
T nonlinear forward map
θ parameters of neural networks
ϕ, ψ feature functions in L2 space
µ Lebesgue measure
µ∗ invariant distribution
σ(·) eigenvalues of operators
d(·, ·) total variation distance of probability measures

Lp(X,µ) function spaces defined using a natural generalization of the p-norm
(X,B, µ) measure space
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The Appendix is organized into two main sections: the first three chapters delve into theoretical
analysis, while the subsequent chapters address empirical results and algorithm architectures.

We also encourage readers to spend time on the seminal monographs on ergodic theory (Birkhoff,
1927; Koopman & Neumann, 1932; Neumann, 1932a; Birkhoff & Koopman, 1932), as they offer
profound insights that enrich the theoretical foundations presented in the Appendix.

B DISSIPATION AND CONSERVATION

The reason we would like to discuss Poincaré’s claim is to offer a perspective on understanding
dissipative chaos from a macro-structural viewpoint. In statistical mechanics, contraction corresponds
to dissipative systems, while measure preservation corresponds to conservative systems. Below, we
introduce two key concepts.

Definition B.1 (Wandering Set (Hasselblatt & Katok, 2002)) Let T : X → X be a flow map in
topological space X . A point x ∈ X is said to be a wandering point if there is a neighbourhood U of
x and positive integer N such that for all k > N , the flow map is pairwise disjoint as

T k(U) ∩ U = ∅. (9)

Remark B.2 Wandering sets are transient. When a dynamical system has a wandering set of non-
zero measures, then the system is regarded as a dissipative system. This is the opposite of the
conservative system in Poincare’s claim. An intuitive way to understand the wandering set is: if a
portion of phase space “wanders away” during system evolution, and never visits again, then the
system is dissipative. A simple example is Lorenz 63, it will contract to the global attractor without
visiting the outside again. When the global attractor exists, the invariant set can be expressed as
ω−limit set as ω(x, T ) =

⋂∞
n=1

⋃∞
k=n{T k(x)}. The invariant set is thus non-wandering.

Theorem B.3 (Liouville’s Theorem in Hamiltonian (Agarwal, 2007)) Consider a Hamiltonian
dynamical system with canonical coordinates qi = (q1i , q

2
i , q

3
i ) and momenta pi = (p1i , p

2
i , p

3
i )

of i−th molecule for i = 1, . . . , N . Then the phase space distribution µ(p, q) determines the proba-
bility µ(p, q)dnqdnp that the system will be found in the infinitesimal phase space volume dnqdnp.
The Liouville equation governs the evolution of µ(p, q; t) in time t as

dµ

dt
=
∂µ

∂t
+

N∑
i=1

( ∂µ
∂qi

q̇i +
∂µ

∂pi
ṗi
)
= 0. (10)

Or we can say the distribution function is constant along any trajectory in phase space.

Remark B.4 In Hamiltonian mechanics, the phase space is a smooth manifold that comes naturally
equipped with a smooth measure (locally, this measure is the 6N -dimensional Lebesgue measure).
The theorem says this smooth measure is invariant under the Hamiltonian flow due to the preservation
properties of the symplectic form. By the language in ergodic theory, we can assert that the T : X →
X is a continuous conservative flow such that µ(E) = µ(T kE) for any E ⊂ X and k ∈ N.

C PROOFS OF MAIN THEOREMS

C.1 PROOF OF POINCARÉ’S CLAIM

Theorem C.1 (Poincaré’s Claim) Imagine a box filled with gas made of N identical molecules.
Classical mechanics says that if we know the positions qi = (q1i , q

2
i , q

3
i ) and momenta pi =

(p1i , p
2
i , p

3
i ) of i−th molecule for i = 1, . . . , N , the positions and momenta of each particles at

time t determines by the Hamiltonian’s equations as

ṗji (t) =
∂H

∂qji
,

q̇ji (t) =
∂H

∂pji
,

(11)
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where H(q1, . . . , qN , p1, . . . , pN ) is the Hamiltonian, measuring the total energy of the system.

The state of entire system is denoted as (q, p) = (q1, . . . , qN , p1, . . . , pN ). LetX denote the collection
of all possible states. If the Hamiltonian is bounded above, then the transformation of state can be
defined by a map as

Tt : (q, p) → (q(t), p(t)), (12)

where Tt push the state move towards after t steps. When the system is regular, there exist 6N
equations as shown in Equation11 coupled together. The problem can be regarded as an initial
value problem, and T satisfies the conservative law for the Hamiltonian system, which means
x(0) ∈ X ⇒ Tt(x(0)) ∈ X for all t.

When the system with enormous molecules, Poincaré claimed that the system starts at a certain state
(q(0), p(0)), it will eventually return to a state close to (q(0), p(0)) after a long enough time.

Proof. Here is Poincaré’s solution. Definite T := T1 and T k = Tk. Fix ϵ > 0 and consider the set
of W of all states x = (q, p) such that d(x, T k(x)) > ϵ for all k > 1, where d(·, ·) is the Euclidean
distance. Divide W into finitely many disjoint pieces as Wi of diameter less than ϵ.

For each fixed i, the sets T−k(Wi)(k ≥ 1) are pairwise disjoint, otherwise we can derive that
T−n(Wi)∩T−n−k(Wi) ̸= ∅ ⇒Wi∩T−k(Wi) ̸= ∅. In such a situation, this leads to a contradiction

• x ∈ T−k(Wi) implies that T k(x) ∈Wi, whence d(x, T kx) ≤ diam(Wi) < ϵ,

• x ∈Wi ⊂W implies that d(x, T kx) > ϵ by the initial settings of W .

So T−k(Wi) must be pairwise disjoint.

Since {T−kWi}k≥1 are pairwise disjoint, µ(X) ≥
∑

k≥1 µ(T
−kWi). However, by the Liou-

ville’s theorem in statistical mechanics in B.3 Agarwal (2007) 3, all T−k(Wi) have the same mea-
sure, and µ(X) < ∞, so a natural result must be µ(Wi) = 0 for all Wi. The summation of all
µ(
⋃

i∈NWi) = 0 means the measure zero of wandering set (Feldman, 2019). In summary, we can
infer µ(X \

⋃
i∈NWi) = 1, and the system will explore sufficiently for all possible set X \

⋃
i∈NWi.

Consequently, we have the property as d(T k(x), x) < ϵ for k ≥ 1.

Proposition C.2 Suppose (X,B, µ, T ) is an MPT on a complete measure space, then the following
are equivalent (Cornfeld et al., 2012):

• µ is ergodic;

• if E ∈ B and µ(T−1E∆E) = 0 4,then µ(E) = 0 or µ(X \ E) = 0;

• f : X → R is a measurable function and f ◦ T = f almost everywhere, then there is a
constant c ∈ R, s.t. f = c almost everywhere.

Proposition C.3 Mixing property implies ergodicity.

Proof. Suppose E is invariant, then the mixing property and measure preserving property imply
µ(E) = limk→∞ µ(E ∩ T−kE) → µ(E)2, whence µ(E)2 = µ(E). It follows that µ(E) = 0 or
µ(E) = 1 = µ(X). This result reflects the second item in C.2, and thus ergodicity.

Proposition C.4 A MPT (X,B, µ, T ) is strongly mixing iff for every ϕ, ψ ∈ L2, limk→∞
∫
ϕψ ◦

T kdµ→
∫
ϕdµ

∫
ψdµ, or equivalent to say limk→∞ Cov(ϕ, ψ ◦ T k) → 0.

Proof. The following fact can be easily derived as

• Fact 1. Since µ ◦ T−1 = µ, ∥ϕ ◦ T∥2 = ∥ϕ∥2, for all ϕ ∈ L2;

• Fact 2. |Cov(ϕ, ψ)| ≤ 4∥ϕ−
∫
ϕ∥2∥ψ −

∫
ψ∥2;

3The Liouville equation governs the evolution of probability space is invariant under the flow map as
µ(TtE) = µ(E) for E ⊂ X .

4∆ is the symmetric set difference such that A∆B = (A \B) ∪ (B \A).
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• Fact 3. The function Cov(ϕ, ψ) is bilinear.

The proof of proposition needs to indicate it as a necessary and sufficient condition.

(Necessary.) The condition that for ϕ, ψ ∈ L2, the mixing result reflects that ϕ, ψ can be regarded as
the indicator function as ϕ = 1E and ψ = 1F . By the property, we have limk→∞ Cov(ϕ, ψ◦T k) → 0
according to the mixing property. Consequently, the necessity is proved.

(Sufficient.) Let ϕ, ψ be the linear combination of indicator functions on the invariant set. Generally
ϕ, ψ ∈ L2, giving a small perturbation ϵ > 0, the finite linear combinations of indicators become ϕϵ,
ψϵ, satisfying ∥ϕ− ϕϵ∥2, ∥ψ − ψϵ∥2 < ϵ. Then, by the analysis tricks as

lim
k→∞

|Cov(ϕ, ψ ◦ T k)|

≤ lim
k→∞

|Cov(ϕ− ϕϵ, ψϵ ◦ T k)|+ lim
k→∞

|Cov(ϕϵ, ψϵ ◦ T k)|+ lim
k→∞

|Cov(ϕϵ, (ψϵ − ψ) ◦ T k)|

≤4ϵ∥ψ∥2 + o(1) + 4(∥ϕ∥2 + ϵ)ϵ,
(13)

where the result tells us limk→∞ Cov(ϕ, ψ ◦ T k) ≤ 4ϵ∥ψ∥2 + o(1) + 4(∥ϕ∥2 + ϵ)ϵ according to the
Fact 1, 2 and 3. When ϵ is sufficiently small, the limit becomes zero, the proof is finished.

C.2 PROOF OF 3.1

Since {ϕ1, ϕ2, . . . } is an orthonormal basis of L2, for L is large enough, we have a projection map
as gen := ΠLϕ approximates ϕ within ϵ−bound as

∥ϕL − ϕ∥2 ≤ ϵ. (14)

Since the forward operator G is locally Lipschitz bounded by a constant c, the following the inequality
holds

sup
z∈M

∥GϕL − Gϕ∥2 < sup
z∈M

c∥ϕL(z)− ϕ(z)∥ < cϵ. (15)

Now, ϕL is a function lying the space of L2 since it is a linear combination of {ϕi}i∈I . The encoder
map gen

θ1
learns the adaptive feature from the dataset. When the dataset is sufficiently large, there

exists a map as
gen
θ1 = ϕL, (16)

where gen spans a finite-dimensional linear space, the relation holds due to the universal property of
neural networks (Voigtlaender, 2023). In such case the learned operator Ĝ can be written as

Ĝ = ΠLGΠL, (17)

where the finite representation of the operator Ĝ is consistent with GL = ΠLGΠL. Consequently, we
have the inequality as

sup
z∈M

∥Ĝ ◦ gen
θ1(z)− G ◦ ϕ(z)∥2

≤ sup
z∈M

∥Ĝ ◦ gen
θ1(z)− Ĝ ◦ ϕ(z)∥2︸ ︷︷ ︸

strongly continuous property

+ sup
z∈M

∥Ĝ ◦ ϕ(z)− G ◦ ϕ(z)∥2︸ ︷︷ ︸
condition of strong operator topology

≤(c+ 1)ϵ.

(18)

The second line is from the triangle inequality. The third line holds due to the strongly continuous
operator5 and strong operator topology6 in Hilbert space (see D.1), then uniform limit of some
sequence of finite-rank operators exists. Therefore, we can assert that existing a finite rank L ∈ N to
approximate the operator G with arbitrary small error.

51. Suppose {xn} a sequence of elements in L2 that converges to x in the norm of the space, i.e.,
limn→∞ ∥xn −x∥ → 0. The strong continuity of G implies that the operator G is continuous with respect to the
norm topology when applied to sequences of vectors. Therefore, it must hold that limn→∞ ∥Gxn − Gx∥ → 0.

6Let L(X) be the space of all bounded, linear operators on Hilbert space X . A net {Gn} ⊂ L(X) converges
pointwise to G ∈ L(X) on (X, ∥ · ∥) (i.e., limn→∞ ∥Gnx−Gx∥ → 0, ∀x ∈ X) if and only if {Gn} converges
to G in the strong operator topology on L(X).
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C.3 PROOF OF 3.2

(Unitary property.) The unitary of G follows from the measure-preserving property of T . For
ϕ, ψ ∈ L2, we have

⟨Gϕ,Gψ⟩

=

∫
X

(G ◦ ϕ(x))(G ◦ ψ(x))dµ

=

∫
X

(ϕ(Tx))(ψ(Tx))dµ(x)

(19)

Using the change of variable y = Tx and dµ(T−1(X)) = dµ(X), we have∫
X

ϕ(y)ψ(y)dµ(y) = ⟨ϕ, ψ⟩. (20)

A more interesting way to prove the unitarity of G comes from the perspective of quantum mechanics
(Gyamfi, 2020). In measure-conserving systems, the Liouville operator is skew-Hermitian (as seen in
the discussion of the Liouville operator and Poisson brackets in (Karasev et al., 2012)), which implies
that the operator G is unitary.

C.4 PROOF OF 3.3

Fact from 3.2 - the MPT property of T implies the isometric transformation as ∥ϕ∥2 = ∥ϕ ◦ T∥2 for
all ϕ ∈ L2.

This convergence of MPT can be proved by the coboundary property 7 such that the function ϕ can
be set as ϕ = ψ−ψ ◦ T (both ϕ, ψ ∈ L2) (such function ψ can be regarded as transfer function from
the perspective of cohomology in Tao (2008b)), this is easy to see

lim
N→∞

∥∥ 1

N

N−1∑
k=0

ϕ ◦ T k
∥∥
2

= lim
N→∞

∥∥ 1

N

N−1∑
k=0

(ψ ◦ T k−1 − ψ ◦ T k)
∥∥
2

= lim
N→∞

1

N

∥∥ψ − ψ ◦ TN−1
∥∥
2

≤ lim
N→∞

2

N

∥∥ψ∥∥
2
→ 0.

(21)

Consequently,

lim
N→∞

1

N

N−1∑
k=0

Gkϕ→ ϕ. (22)

Thus it derived if holds for the element of subspace {ψ − ψ ◦ T | ψ ∈ L2}. Then by the analysis
tricks, choose a arbitrary function χ ∈ {ψ − ψ ◦ T | ψ ∈ L2} satisfying ∥χ − ϕ∥2 < ϵ. For the
sufficiently large N we have

lim
N→∞

∥∥ 1

N

N−1∑
k=0

ϕ ◦ T k
∥∥
2
≤ lim

N→∞

∥∥ 1

N

N−1∑
k=0

(ϕ− χ) ◦ T k
∥∥
2
+
∥∥ 1

N

N−1∑
k=0

χ ◦ T k
∥∥
2

≤ lim
N→∞

∥∥ 1

N

N−1∑
k=0

(ϕ− χ) ◦ T k
∥∥
2
+ ϵ < 2ϵ

(23)

The proof of the first part is completed.

7Coboundary of a dynamical system. This concept is developed from cohomology theory (an interesting
interpretation can be found in (Tao, 2008b)). Two functions f, g : X → C are said to be cohomology via a
transfer function h, if f = g + h− h ◦ T . A function which is cohomologous to zero is called a coboundary.
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In particular, ϕ̄ is invariant. If T is ergodic, ϕ̄ must be constant and ϕ̄ =
∫
ϕ̄dµ almost surely. Also,

since limN→∞
1
N

∑N−1
k Gkϕ→ ϕ̄, we have∫

ϕdµ = lim
N→∞

1

N

N−1∑
k=1

⟨1, ϕ ◦ T ⟩ = ⟨1, lim
N→∞

1

N

N−1∑
k=0

ϕ ◦ T k⟩ → ⟨1, ϕ̄⟩ →
∫
ϕ̄dµ (24)

The proof is different from the original proof in Neumann (1932b), Von Neumann started the proof
by factorizing the spectrum using Fourier analysis and Borel functional calculus and derived the only
non-trivial invariant subspaces are those consisting of constant functions.
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D ANALYSIS ON OPERATOR

Contraction and unitary operators in Hilbert spaces are key tools for predicting and understanding
chaotic systems in this paper. To make our work self-contained, we will provide a clear and formal
analysis of these two important types of operators. Generally, the analysis on the one-parameter group
is on Banach space. Since our paper is specifically defined on L2 space, we restrict our definitions
and analysis to Hilbert space.

Definition D.1 (C0−semigroup (Engel et al., 2000)) A strongly continuous one-parameter semi-
group on a Hilbert space L2 is a family G = {G(t) | t ∈ R+} of bounded linear operators G(t) on
L2 satisfying

• G(0) = Id, (the identity operator on L2)

• ∀t, s ∈ R+ : G(t+ s) = G(t)G(s),

• limt→t0 G(t)ϕ = G(t0)ϕ for t0 ∈ R+, ϕ ∈ L2.

The first two axioms are algebraic, and state that G is a representation of the semigroup (R+,+); the
last is topological, and states that the map G is continuous in the strong operator topology.

If, in addition, ∥G(t)∥ ≤ 1 for all t ∈ R+, then G is called a strongly continuous one-parameter
semigroup of contractions (or contraction operator).

In our paper, our target is to learn continuous linear operators on Hilbert space, which belong to
C0−semigroup.

Definition D.2 (Infinitesimal Generator (Engel et al., 2000)) The infinitesimal generator of a
strongly continuous one-parameter semigroup is the linear operator P on L2 defined by

Pϕ = lim
t→0

1

t
(G(t)− Id)ϕ, (25)

D(P ) =
{
ϕ ∈ L2 | limt→0

1
t (G(t)− Id)ϕ exists

}
.

The strongly continuous semigroup G(t) with generator P is often denoted by the symbol etP . This
notation is compatible with the notation of matrix exponentials. Generally, directly approximating
the operator P is more difficult than the operator G, since operator P is usually unbounded and is
defined on a dense subspace of L2, see the following proposition.

Proposition D.3 ((Schmüdgen, 2012)) The infinitesimal generator P is a densely defined closed
operator on L2 which determines the strongly continuous one-parameter semigroup G uniquely. We
have

d

dt
G(t)ϕ = PG(t)ϕ, ϕ ∈ D(P ) and t ∈ R+. (26)

D.1 THEORETICAL ASPECTS OF KOOPMAN OPERATOR

The Koopman operator G(t) (Koopman, 1931; Das et al., 2021; Ikeda et al., 2022) acts on a function
space by composing with the forward map T (also known as the flow map), effectively implementing
time shifts in the function ϕ. Various choices exist for the function space, such as L2 and spaces of
continuous functions. Specifically, for a function ϕ ∈ L2 and time t ∈ R, the Koopman operator
G(t) : L2 → L2 is defined as:

G(t)ϕ = ϕ ◦ T. (27)
According to Definition D.1, G(t) forms a semigroup.

In general, if T is a Ck8 flow for some k ≥ 0, then G(t) maps the space Cr into itself for every
0 ≤ r ≤ k. The infinitesimal generator P of the Koopman operator G(t) is defined by:

Pg := lim
t→0

1

t
(G(t)ϕ− ϕ) , ϕ ∈ D(P ), (28)

8Ck denotes the function space with k-th order differentiability.
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where D(P ) ⊆ C1 ∩ L2 is the domain of P , consisting of functions for which this limit exists.
Typically, P : C1 ∩ L2 → C0 ∩ L2 when T is smooth. However, merely considering the semigroup
property of the Koopman operator is insufficient for modeling the complex behavior of dissipative
chaotic systems. To account for the intrinsic physical properties of such systems, we incorporate
this physical knowledge into the learning framework. Specifically, we analyze two intrinsic physical
properties from spectral theory—contraction and unitarity—as detailed in Section D.4 and Appendix
D.3.

D.2 CONTRACTION OPERATOR ON HILBERT SPACE

Definition D.4 ((Schmüdgen, 2012)) We shall say that the operator B is accretive if
Re(⟨Bϕ, ϕ⟩) ≥ 0 for all ϕ ∈ D(B) thatB ism−accretive ifB is closed, acceretive, andR(B−λ0I)
is dense in L2 for some λ0 ∈ C, Re(λ0) < 0 9.

B is called dissipative if −B is accretive and m−dissipative if −B is m−accretive.

Theorem D.5 (Lumer–Phillips theorem in Hilbert space) A linear operator P on a Hilbert space
L2 is the generator of a strongly continuous one-parameter contraction semigroup if and only if P is
m−dissipative, or equivalently, −P is m-accretive.

Proof. If P is the generator of a contraction semigroup G, then in particular P is dissipative, and
hence Re(⟨Pϕ, ϕ⟩) for ϕ ∈ L2 by D.4. Thus, the latter fact can be easily derived directly. Indeed,
using that G(t) is a contraction in D.1, we obtain

Re(⟨(G(t)− Id)ϕ, ϕ⟩) = Re(⟨G(t)ϕ, ϕ⟩)− ∥ϕ∥2 ≤ ∥G(t)ϕ∥∥ϕ∥ − ∥ϕ∥2 ≤ 0 (29)

Dividing by t→ 0 and passing to the limit t→ 0+, we get ⟨Pϕ, ϕ⟩ ≤ 0.

Combining the D.3 and D.5 states the eigenvalues of infinitesimal generator P := limt→0+
Gtϕ−ϕ

t of
contraction operator G has non-positive real parts. However, the operator P is usually unbounded
and is defined on a dense subspace of L2 (Engel et al., 2000). Directly learning the infinitesimal
generator P can be more difficult than working with operator G. To simplify the problem, we can
consider eigenvalues of G within the unit disk in the complex plane during the contraction stage see
Equation 6.

Spectral Analysis on GTG. We define the operator norm as ∥G∥ := supϕ∈L2 ∥Gϕ∥2. Given that G is
contraction, we know

∥G∥ ≤ 1 ⇒ ∥GTG∥ ≤ ∥G∥2 ≤ 1. (30)

Since GTG is a positive operator (because GTG is self-adjoint and non-negative), the norm ∥GTG∥ is
equal to the spectral radius of GTG, and hence

σ(GTG) ⊂ [0, ∥GTG∥] ⊂ [0, 1]. (31)

This show that GTG is also a contraction operator, since ∥GTG∥ ≤ 1.

D.3 UNITARY OPERATOR

Definition D.6 (Unitary Operator (Schmüdgen, 2012)) A strongly continuous one-parameter uni-
tary group briefly a unitary group, is a family G = {G(t) | t ∈ R} of unitaries G(t) on Hilbert space
L2 such that

• G(t)G(s) = G(t+ s) for all t, s ∈ R,

• limh→0 G(t+ h)ϕ = G(t)ϕ for ϕ ∈ L2 and t ∈ R.

Axiom (i) in D.6 means that G is group homomorphism of the additive group R into the group of
unitary operators on L2. In particular, this implies that G(0) = Id and

G(−t) = G−1 = G∗ ∀t ∈ R. (32)

9Re(·) is denoted as the real part, and R(B) is the range of operator B.
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Axiom (ii) in D.6 is a strong continuity of G. It clearly suffices to require (ii) for t = 0 and for ϕ
from a dense subset of L2. Since the operators G(t) are unitaries, it is even enough to assume that
limt→0⟨G(t)ϕ, ϕ⟩ = ⟨ϕ, ϕ⟩ for ϕ from a dense subset of L2.

The generator P of the one-parameter unitary group G(t) satisfying the following relationship

G(t) = exp(itP ) ∀t ∈ R. (33)

The operator P governs the infinitesimal behavior of the group and is defined by the strong limit:

Pϕ = lim
t→0

Gϕ− ϕ

it
, (34)

for all ϕ in domain D(P ) of P , which consists of those functionals for which limit exists.

Since G(t) = exp(itP ) where P is skew-adjoint P ∗ = −P , the spectrum of G(t) must lie on the
unit circle.

Spectral Properties. For all G(t), t ∈ R, its spectrum σ(G(t)) lies on the complex unit circle T,
which is the set of complex numbers with absolute value 1

σ(G(t)) ⊂ {r ∈ C | |r| = 1}.

Physical Interpretation of Two Operators. During the contraction phase, changes in the probabil-
ity distribution inherently reflect the asymmetry of entropy with respect to time. This phenomenon is
explained by the second law of thermodynamics: the contraction operator, associated with energy
dissipation. However, with an invariant measure, the system’s evolution is governed by a unitary
operator if it satisfies the Liouville equation (in the classical setting) or the Liouville-von Neumann
equation (in the quantum setting) (see B.3), which makes the density matrix or the invariant measure
time-independent (Tao, 2008a), respectively. Consequently, a unitary operator and its conjugate
transpose can describe the forward and backward chaotic dynamics on the invariant set.
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E ALGORITHM

Algorithm 1 Poincaré Flow Neural Network
PFNN: Training
Require: Training data D = {{(sit, sit+1)}T−1

t=0 }Ni=0 with number of trajectories N and trajectory
length T , relaxation time k, training epochs Ntrain, learning rate α, regularized coefficients γ1, γ2
encoder gen

θ1
: M → RL, decoder gde

θ2
: RL → M with latent feature dimension L

(contraction phase) operator Ĝc ∈ RL×L

(measure invariant phase) forward operator Ĝm ∈ RL×L, backward operator Ĝ∗
m ∈ RL×L

1: Separate the dataset D into contraction phase dataset Dc = {{(sit, sit+1)}k−1
t=0 }Ni=0 and measure

invariant phase dataset Dm = {{(sit, sit+1)}T−1
t=k }Ni=0.

2: for training epoch e = 1, ..., Ntrain do
3: Compute contraction loss Lcontraction by Equation 6 with regularized coefficient γ1 on Dc.
4: Update Ĝc, θ1, θ2− = α∇Ĝc,θ1,θ2

Lcontraction

5: Compute measure invariant loss Lunitary by Equation 8 with regularized coefficient γ2 on Dm.
6: Update Ĝm, Ĝ∗

m, θ1, θ2− = α∇Ĝm,Ĝ∗
m,θ1,θ2

Lunitary

7: end for
8: return gen

θ1
, gde

θ2
, Ĝc, Ĝm, Ĝ∗

m
9:

PFNN: Evaluating
10: Given initial condition s0 ∈ M
11: for timestep t = 1, ..., k do
12: Predict using Ĝc, gen

θ1
(ŝt+1) = Ĝcg

en
θ1
(ŝt)

13: end for
14: Collection Dstatistics = {}
15: for timestep t > k do
16: Predict using Ĝm, gen

θ1
(ŝt+1) = Ĝmg

en
θ1
(ŝt) and ŝt+1 = gde

θ2
◦ gen

θ1
(ŝt+1)

17: Dstatistics ∪ {ŝt+1}
18: end for
19: Estimate required long-term statistics {µ, σ, ...} using Dstatistics
20: return long-term statistics {µ, σ, ...}
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F MORE EXPERIMENTAL RESULTS

F.1 LORENZ 63

The Lorenz 63 model (Lorenz, 1963), which consists of three coupled nonlinear ODEs,
dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz (35)

used as a model for describing the motion of a fluid under certain conditions: an incompressible fluid
between two plates perpendicular to the direction of the earth’s gravitational force. In particular, the
equations describe the rate of change of three quantities with respect to time: x is proportional to the
rate of convection, y to the horizontal temperature variation, and z to the vertical temperature variation.
The constants σ, ρ, and β are system parameters proportional to the Prandtl number, Rayleigh number,
and coupling strength. In this paper, we take the classic choices σ = 10, ρ = 28, and β = 8

3

which leads to a chaotic behavior with two strange attractors (
√
β(ρ− 1),

√
β(ρ− 1), ρ− 1) and

−(
√
β(ρ− 1),−

√
β(ρ− 1), ρ − 1). Its state is s = (x, y, z) ∈ R3 bounded up and below from

±30.

Lorenz 63
Components

KL Divergence

FNO LSTM Koopman MNO PFNN

x 0.5045 ∞ 0.8621 3.2241 0.2408
y 0.9339 ∞ 0.6975 2.6191 0.5155
z 0.3913 ∞ 0.4172 0.1996 0.1005

Table 3: KL Divergence for long-term prediction distributions of Lorenz 63 system

F.2 LORENZ 96

This system was introduced in (Lorenz, 1996) as a low-order model of atmospheric circulation
at a constant latitude circle. The system consists of K variables S = (S1, ..., SK) ∈ S ⊆ RK ,
representing the values of atmospheric velocity measured along a circle of K evenly spaced locations
on the certain latitude of the earth. The governing equations are given by,

dSk

dt
= −Sk−1(Sk−2 − Sk+1)− Sk + F, (36)

where the parameter F represents the forcing term. Here, the first term models advection, the second
term represents linear damping, and F is an external forcing. We choose the set of variables of
K = {9, 40, 80} and the external forcing F = 8, parameters where the system is chaotic with
the Lyapunov exponent is approximately 1.67. Its dynamics exhibit strong energy-conserving non-
linearity, and for a large F ≥ 10, it can exhibit strong chaotic turbulence and symbolizes the inherent
unpredictability of the Earth’s climate.

Data generation: we generated 1800 trajectories for training and 200 trajectories for testing,
where each trajectory contains 2000 timesteps with integration time 0.01 and a sample rate of 10.
Meanwhile, in the best alignment with real scenarios, the initial conditions for trajectories in the
training and testing set were drawn from a normal distribution.

Experiment setup: for PFNN models, when training the PFNN (consist) model, we discarded
the initial 1000 timesteps to avoid the dissipative process; whilst for training the PFNN (contract)
model, the initial steps were maintained to specialize the model in learning the dissipativity in the
early-stage emulation. For all other models, the initial 100 timesteps were discarded. In the model
prediction part, the PFNN (full) model autoregressively predicted the system states with the PFNN
(contract) model for the beginning 900 timesteps, and then switched to PFNN (consist) model to
predict the states for the rest 1000 timesteps. For all other models, the trajectory for 1900 timesteps
was predicted in the same autoregressive way.
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Figure 4: Visualization of long-term statistics of model predictions for Lorenz 63 system of 3
dimensions: we visualize the spatial correlation among 3 components of the velocity, focusing on
evaluating the learnt spatial correlation from the PFNN model’s long-term predictions compared with
the ground truth.

F.2.1 EXPERIMENT ON 9 DIMENSIONAL DATASET

Contents:

• Table of KL divergence (Table 4)
• Short-term prediction plot set (Figure 5)
• Long-term prediction plot set (Figure 6)

Principle
Components

(PC)

KL Divergence

FNO LSTM Koopman MNO PFNN

PC1 2.7491 2.2425 2.1491 1.8512 1.5920
PC2 2.5773 2.6774 2.1152 2.1392 1.9539
PC3 2.4614 5.5756 2.1090 2.1616 2.0637

Table 4: KL Divergence for long-term prediction distributions by models across 3 principal compo-
nents of Lorenz 96 system of 9-dimensional states

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) Prediction visualization. The ground truth trajectory is visualized in the middle of the leftmost side. The
predicted trajectories by baseline models and PFNN are shown in the first row. The corresponding absolute error
trajectories of the predictions against the ground truth are shown in the second row.

(b) Accuracy of prediction over 15s. (c) Accuracy of prediction over 100s.

Figure 5: Visualization of prediction error in NRMSE: we visualize the comparison of model
predictions of Lorenz 96 dynamics of 9 dimensions over 15 seconds (150 timesteps, short-term) and
100 seconds (1000 timesteps, mid-term).
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(a) Spatial correlation of PFNN in 3 principle components

Figure 6: Visualization of long-term statistics of model predictions for Lorenz 96 of 9 dimensions: we
visualize the spatial correlation among 3 principle components of the velocity, focusing on evaluating
the learnt spatial correlation from the PFNN model’s long-term predictions compared with the ground
truth.
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F.2.2 EXPERIMENT ON 40 DIMENSIONAL DATASET

Contents:

• Table of KL divergence (Table 5)
• Short-term prediction plot set (Figure 7)
• Long-term prediction plot set (Figure 8)

Principle
Components

(PC)

KL Divergence

FNO LSTM Koopman MNO PFNN

PC1 0.1427 62659.3087 0.1323 0.1654 0.0497
PC2 0.0987 62822.3591 0.0784 0.1309 0.0356
PC3 0.0767 64132.3089 0.0575 0.1755 0.1015
PC4 0.1309 63519.8891 0.1572 0.1982 0.797
PC5 0.1305 62346.3862 0.1247 0.1106 0.0556

Table 5: KL Divergence for long-term prediction distributions by models across 5 principal compo-
nents of Lorenz 96 system of 40-dimensional states

F.2.3 EXPERIMENT ON 80 DIMENSIONAL DATASET

Contents:

• Table of KL divergence (Table 6)
• Short-term prediction plot set (Figure 9)
• Long-term prediction plot set (Figure 10)

Principle
Components

(PC)

KL Divergence

FNO LSTM Koopman MNO PFNN

PC1 0.0785 1.3057 0.1650 0.2384 0.0733
PC2 0.1345 1.3413 0.2477 0.2268 0.0801
PC3 0.1746 1.4145 0.1613 0.0574 0.0524
PC4 0.1900 1.2329 0.2324 0.0394 0.1220
PC5 0.2651 1.2965 0.3733 0.3391 0.1724

Table 6: KL Divergence for long-term prediction distributions by models across 5 principal compo-
nents of Lorenz 96 system of 80-dimensional states
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(a) Prediction visualization. The ground truth trajectory is visualized in the middle of the leftmost side. The
predicted trajectories by baseline models and PFNN are shown in the first row. The corresponding absolute error
trajectories of the predictions against the ground truth are shown in the second row.

(b) Accuracy of prediction over 15s. (c) Accuracy of prediction over 100s.

Figure 7: Visualization of prediction error in NRMSE: we visualize the comparison of model
predictions of Lorenz 96 dynamics of 40 dimensions over 15 seconds (150 timesteps, short-term) and
100 seconds (1000 timesteps, mid-term).
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(a) Energy spectrum of velocity

(b) Spatial correlation of PFNN in 5 principle components

Figure 8: Visualization of long-term statistics of model predictions for Lorenz 96 system of 40
dimensions: we visualize density plots of each state dimension of the system velocity predicted
by all six models; and then we visualize the spatial correlation among 5 principle components of
the velocity, focusing on evaluating the learnt spatial correlation from the PFNN model’s long-term
predictions compared with the ground truth.
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(a) Prediction visualization. The ground truth trajectory is visualized in the middle of the leftmost side. The
predicted trajectories by baseline models and PFNN are shown in the first row. The corresponding absolute error
trajectories of the predictions against the ground truth are shown in the second row.

(b) Accuracy of prediction over 15s. (c) Accuracy of prediction over 100s.

Figure 9: Visualization of prediction error in NRMSE: we visualize the comparison of model
predictions of Lorenz 96 dynamics of 80 dimensions over 15 seconds (150 timesteps, short-term) and
100 seconds (1000 timesteps, mid-term).
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(a) Energy spectrum of velocity

(b) Spatial correlation of PFNN in 5 principle components

Figure 10: Visualization of long-term statistics of model predictions for Lorenz 96 system of 80
dimensions: we visualize density plots of each state dimension of the system velocity predicted
by all six models; and then we visualize the spatial correlation among 5 principle components of
the velocity, focusing on evaluating the learnt spatial correlation from the PFNN model’s long-term
predictions compared with the ground truth.
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F.3 KURAMOTO-SIVASHINSKY

The Kuramoto-Sivashinsky (KS) equation (Papageorgiou & Smyrlis, 1991), well-known for its
chaotic behavior, is a nonlinear PDE applied to studying pattern formation and instability in fluid
dynamics, combustion, and plasma physics. The dynamics in 1d spatial domain u(x, t) is given by

∂u

∂t
+ u

∂u

∂x
+
∂2u

∂x2
+
∂4u

∂x4
= 0, (37)

where x ∈ [0, L] with a periodic boundary condition. The interaction of high-order terms produces
complex spatial patterns and temporal chaos when the domain length L is large enough (Cvitanović
et al., 2010).

Dataset processing for training and testing: The dataset of Kuramoto-Sivashinsky simulations
we utilized was obtained from the public source, consisting of 1200 simulated trajectories with 512
spatial dimensions, u(x, t), on the periodic boundary. The simulations employed a pseudo-spectral
method with exponential time differencing (ETD) to evolve the dynamics. Each trajectory was
generated over 2000 timesteps with integration time 0.005s and sample rate of 10. We sampled
128-dimensional u and used 1000 trajectories for training and 200 trajectories for testing, where
each trajectory was truncated to 1990 timesteps to preserve the contraction phase before the system
reached the ergodic state. For model training, the full trajectory length (1990 timesteps) was used to
train baseline models, while the trajectory before the contraction step k was used to train the PFNN
contraction operator Ĝc, and the trajectory after k was used to train the PFNN measure-invariant
operators Ĝc and Ĝ∗

m. The determination of the contraction step k via the ablation study can be found
in Table 10. For model evaluation, the full trajectory length in the test set was applied to all models.

PFNN model architecture: The PFNN model is designed to incorporate three pairs of encoder-
decoder layers: one operator layer to represent the contraction dynamics, and two operator layers
to represent unitary characteristics in the measure-invariant forward and backward dynamics. The
model is implemented with PyTorch version 2.3.1, and the details of the layers are presented in Table
8.

Benchmarks for Kuramoto-Sivashinsky: We compare the PFNN model with classic recurrent
neural networks: the Long Short-Term Memory network (LSTM), Koopman Operator network,
Fourier Neural Operator (FNO), and Markov Neural Operator (MNO). We use the Adam optimizer
to minimize the relative L2 loss with a learning rate of 1e-4, and a step learning rate scheduler that
decays by half every 10 epochs, for a total of 100 epochs. Based on the provided code source in
Appendix G, (1) for LSTM, we chose 2 layers and a latent feature dimension of 2× 128; (2) for the
Koopman Operator, we chose 1 layer and a latent feature dimension of 4 × 128; (3) for FNO and
MNO, we set the width to 40, considering the down-sampled state dimension, and chose 30 Fourier
modes to improve their ability to learn high-frequency dynamics; (4) for PFNN, the latent feature
dimension is 8× 128 for both the contraction model and the measure-invariant model.

Principle
Components

(PC)

KL Divergence

FNO LSTM Koopman MNO PFNN

PC1 143.6508 ∞ 40.6045 27.8991 11.2828
PC2 133.1811 ∞ 43.0569 40.6271 14.8646
PC3 137.7399 ∞ 40.6242 31.9322 6.6711
PC4 122.4125 ∞ 29.3022 33.4713 4.6851
PC5 176.6664 ∞ 108.9509 33.7227 9.3462

Table 7: KL Divergence for long-term prediction distributions by models across principal components
of Kuramoto-Sivashinsky

Accuracy results: we provide more short-term and mid-term accuracy evaluations in 11. We
noted Figure Notes: Visualization of model prediction performance from the NRMSE of short-term
prediction to relevant statistics of long-term prediction. We used 200 test samples and plotted the
mean and standard deviation of all test results to obtain the NRMSE of the prediction.
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(a) Prediction visualization. The ground truth trajectory is visualized in the middle of the leftmost side. The
predicted trajectories by baseline models and PFNN are shown in the first row. The corresponding absolute
error trajectories of the predictions against the ground truth are shown in the second row.

(b) Accuracy of prediction over 15s. (c) Accuracy of prediction over 100s.

Figure 11: Visualization of prediction error in NRMSE: we visualize the comparison of model
predictions of Kuramoto-Sivashinsky dynamics over 15 seconds (150 timesteps, short-term) and 100
seconds (1000 timesteps, mid-term).
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(a) Energy spectrum of velocity

(b) Spatial correlation of PFNN in 5 principle components

Figure 12: Visualization of long-term statistics of model predictions for Kuramoto-Sivashinsky: we
visualize the energy spectrum of model predictions over 64 wavenumbers; and then we visualize the
spatial correlation among 5 principle components of PFNN long-term predictions over all test states
comparing with the spectrum of the ground truth.
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F.4 KOLMOGOROV FLOW

The Kolmogorov flow system, introduced by Arnold Kolmogorov, is a classic model for studying fluid
instabilities and turbulence in two-dimensional incompressible flows Temam (2012). It is described
by a nonlinear, incompressible Navier-Stokes equation driven by a sinusoidal forcing term.

∂u

∂t
+ (u · ∇)u+∇p− 1

Re
∇2u− sin(kx)ŷ = 0, (38)

where u(x, y, t) is the velocity field, p is the pressure, ν is the kinematic viscosity, and sin(kx)ŷ
represents the external forcing in the y-direction. The experiment setting follows the (Alieva et al.,
2021).

PFNN model architecture: The PFNN model for the 2-D task begins with Convolution2D layers
to do patch embedding of the input state, and employs the attention mechanism within Transformer
Blocks Dosovitskiy et al. (2021) to perform feature encoding. Then, one operator layer is used to
learn the contraction dynamics; and two operator layers are used to learn the unitary characteristics in
the measure-invariant forward and backward dynamics. The model is implemented with PyTorch
version 2.3.1, with detailed layer configurations provided in Table 9.

Short-term prediction accuracy: We compared the model performance in the short-term forecasting
accuracy by evaluating the absolute error of model predictions with the true states at timesteps 2, 4, 8,
16 and 32 in measure-invariant phase in Figure 13. The result showed PFNN exhibits the smallest
error across all steps, closely matching the ground truth and maintaining low errors even at Step 32.
We further evaluated the turbulent kinetic energy, which is defined as:

TKE =
1

2

(
u′2 + v′2

)
(39)

where u′, v′ are the fluctuating components of velocity compared to velocity mean over time in the
x and y directions respectively. The TKE measure in Figure14 demonstrates that the PFNN results
outperform other baseline models.

Estimating statistics in equilibrium: We compared PFNN predicted trajectories with other model
predicted trajectories and the true trajectories in Figure 3. The result showed PFNN predicted
trajectory preserved the internal physics statistics in (a) reproducing the turbulent kinetic energy
distribution; and (b) capturing the time-average state of a system in equilibrium. Plot (c) showed that
the PFNN predicted trajectory had the lowest absolute error (AE) of the predicted mean state against
the true mean state.
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Figure 13: Visualization of the absolute difference of model predictions from ground truth in short-
term steps {2, 4, 8, 16, 32}.

Figure 14: Visualization of the forecast trajectory sample of Kolmogorov Flow system in top row:
the turbulent kinetic energy, which illustrates the accuracy of model predictions in reproducing the
kinetic energy distribution; middle row: the mean state that demonstrated each model’s ability in
capturing the time-average velocity field of a system in equilibrium, where plot bottom row: the
absolute error (AE) outstands the difference the predicted mean state against the true mean state.
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G EXPERIMENT SETTINGS

G.1 NEURAL NETWORK ARCHITECTURE

Table 8: Neural network architecture for the one dimensional chaotic systems. d is the state dimension
and L is the latent feature dimension.

Components Layer Weight size Bias size Activation
Encoder Fully Connected m× 10m 10m ReLU
Encoder Fully Connected 10m× 10m 10m ReLU
Encoder Fully Connected 10m× L L

Forward operator Ĝc Fully Connected L× L 0

Forward operator Ĝm Fully Connected L× L 0

Backward operator Ĝ∗
m Fully Connected L× L 0

Decoder Fully Connected L× 10m 10m ReLU
Decoder Fully Connected 10m× 10m 10m ReLU
Decoder Fully Connected 10m×m m

Table 9: Model architecture for Kolmogorov Flow
Components Layer type Layer number Channels, (H,W ) Activation

Patch embedding Convolution2d 1 1 → 32, (64, 64)
Encoder Transformer Block 2 32 → 64, (32, 32) ReLU
Encoder Transformer Block 3 64 → 128, (8, 8) ReLU
Encoder Transformer Block 3 128 → 128, (2, 2) ReLU

Contraction
operator Ĝc

Fully Connected 1 128× 2× 2, -

Measure-invariant
operator Ĝm

Fully Connected 1 128× 2× 2, -

Backward
operator Ĝ∗

m

Fully Connected 1 128× 2× 2, -

Decoder Transformer Block 3 128 → 128, (8, 8) ReLU
Decoder Transformer Block 3 128 → 64, (32, 32) ReLU
Decoder Transformer Block 2 64 → 32, (64, 64) ReLU
Decoder Convolution2d 1 32 → 1, (64, 64)

G.2 DATASET.

(1) Lorenz 63: A 3-dimensional simplified model of atmospheric convection, known for its chaotic
behavior and sensitivity to initial conditions. To learn our models, we generated a dataset consisting
of 50 trajectories of 80,000 timesteps from random conditions. (2) Lorenz 96: A surrogate model for
atmospheric circulation, characterized by a chain of coupled differential equations. We generated
three datasets corresponding to 9, 40, and 80-dimensional states, respectively, each consisting of
2,000 trajectories with 1,500 timesteps. (3) Kuramoto-Sivashinsky equation: A fourth-order nonlinear
partial differential equation that models diffusive instabilities and chaotic behavior in systems, such as
fluid dynamics, and reaction-diffusion processes. We sampled a 128-dimensional dataset consisting
of 1,000 trajectories with 500 timesteps from the dataset 10. The description of the three dynamical
systems is listed in Appendix F).

10Dataset for Kuramoto-Sivashinsky: https://zenodo.org/records/7495555

42

https://zenodo.org/records/7495555


2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

G.3 TRAINING DETAILS AND BASELINES.

At a high level, PFNN and other baselines are implemented in Pytorch (Paszke et al., 2019). Both
the training and evaluations are conducted on multiple A100s and Mac Studio with a 24-core Apple
M2 Ultra CPU and 64-core Metal737 Performance Shaders (MPS) GPU. The evaluation is conducted
on the CPU.

• LSTM: The implementation is based on the provided code of https://github.com/
pvlachas/RNN-RC-Chaos.

• Koopman operator: The implementation is based on the provided code of https://
github.com/dynamicslab/pykoopman.

• FNO: The implementation is based on the provided code of https://pypi.org/
project/fourier-neural-operator/

• MNO: The implementation is based on the provided code of https://github.com/
neuraloperator/markov_neural_operator.

H ABLATION STUDY

Refer to Table 10 next page.
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