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Abstract

Multi-task learning (MTL) jointly learns a set of tasks by sharing parameters among
tasks. It is a promising approach for reducing storage costs while improving task
accuracy for many computer vision tasks. The effective adoption of MTL faces two
main challenges. The first challenge is to determine what parameters to share across
tasks to optimize for both memory efficiency and task accuracy. The second chal-
lenge is to automatically apply MTL algorithms to an arbitrary CNN backbone with-
out requiring time-consuming manual re-implementation and significant domain
expertise. This paper addresses the challenges by developing the first programming
framework AutoMTL that automates efficient MTL model development for vision
tasks. AutoMTL takes as inputs an arbitrary backbone convolutional neural network
(CNN) and a set of tasks to learn, and automatically produces a multi-task model
that achieves high accuracy and small memory footprint simultaneously. Experi-
ments on three popular MTL benchmarks (CityScapes, NYUv2, Tiny-Taskonomy)
demonstrate the effectiveness of AutoMTL over state-of-the-art approaches as well
as the generalizability of AutoMTL across CNNs. AutoMTL is open-sourced and
available at https://github.com/zhanglijun95/AutoMTL.

1 Introduction

AI-powered applications increasingly adopt Convolutional Neural Networks (CNNs) for solving
many vision-related tasks (e.g., semantic segmentation, object detection), leading to more than one
CNNs running on resource-constrained devices. Supporting many models simultaneously on a device
is challenging due to the linearly increased computation, energy, and storage costs. An effective
approach to address the problem is multi-task learning (MTL) where a set of tasks are learned
jointly to allow some parameter sharing among tasks. MTL creates multi-task models based on
CNN architectures called backbone models, and has shown significantly reduced inference costs and
improved generalization performance in many computer vision applications [24, 37].

The effective adoption of MTL faces two main challenges. The first challenge is the resource-efficient
architecture design–that is, to determine what parameters of a backbone model to share across tasks
to optimize for both resource efficiency and task accuracy. Many prior works [20, 22, 13, 24, 36] rely
on manually-designed MTL model architectures which share several initial layers and then branch
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out at an ad hoc point for all tasks. They often result in unsatisfactory solutions due to the enormous
architecture search space. Several recent efforts [43, 1, 19] shift towards learning to share parameters
across tasks. They embed policy-learning components into a backbone CNN and train the policy to
determine which blocks in the network should be shared across which task or where to branch out
for different tasks. Their architecture search spaces lack the flexibility to dynamically adjust model
capacity based on given tasks, leading to sub-optimal solutions as the number of tasks grows.

The second major challenge is the automation. Manual architecture design calls for significant
domain expertise when tweaking neural network architectures for every possible combination of
learning tasks. Although neural architecture search (NAS)-based approaches automate the model
design to some extent, the implementation of these works is deeply coupled with a specific backbone
model. Some of them [1, 43, 4, 19] could theoretically support broader types of CNNs. They,
however, require significant manual efforts and expertise to re-implement the proposed algorithms
whenever the backbone changes. Our user study (Section 4.2) suggests that it takes machine learning
practitioners with proficient PyTorch skills 20 to 40 hours to re-implement Adashare [43], a state-
of-the-art NAS-based MTL approach, on a MobileNet backbone. The learning curve is expected
to be much longer and more difficult for general programmers with less ML expertise. The lack of
automation prohibits the effective adoption of MTL in practice.

In this paper, we address the two challenges by developing AutoMTL, the first programming frame-
work that automates resource-efficient MTL model development for vision tasks. AutoMTL takes as
inputs an arbitrary backbone CNN and a set of tasks to learn, and then produces a multi-task model
that achieves high task accuracy and small memory footprint (measured by the number of parameters).
A backbone CNN essentially specifies a computation graph where each node is an operator. The key
insight is to treat each operator as a basic unit for sharing. Each task can select which operators to
use to determine the sharing patterns with other tasks. The operator-level sharing granularity not only
enables the automatic support of arbitrary CNN backbone architectures, but also leads to a stretchable
architecture search space that contains multi-task models with a wide range of model capacity. To our
best knowledge, we are the first work considering parameter sharing in MTL at the operator level.

AutoMTL features a source-to-source compiler that automatically transforms a user-provided back-
bone CNN to a supermodel that encodes the multi-task architecture search space in the operator-level
granularity. It also offers a set of PyTorch-based APIs to allow users to flexibly specify the input
backbone model. AutoMTL then performs gradient-based architecture searches on the supermodel to
identify the optimal sharing patterns among tasks. Our experiments on several MTL benchmarks
with a different number of tasks show that AutoMTL could produce efficient multi-task models with
smaller memory footprint and higher task accuracy compared to state-of-the-art methods. AutoMTL
also automatically supports arbitrary CNN backbones without any re-implementation efforts and
improves the accessibility of MTL to general programmers.

The main contributions of our work are as follows:

• We propose a Multi-Task Supermodel Compiler (MTS-Compiler), which transforms a user-
provided backbone CNN into a multi-task supermodel that encodes the architecture search
space. The compiler decouples architecture search with the backbone CNN, removing the
manual efforts in re-implementing MTL on new backbone models.

• We propose a Stretchable Architecture Search Space that offers flexibility in deriving multi-
task models with a wide range of model capacity based on task difficulties and interference.
We further propose a novel data structure called Virtual Computation Node to encode the
search space and enable compiler-based multi-task supermodel transformation.

• Built on top of the supermodel, we adopt the Gumbel-Softmax approximation and standard
back-propagation to jointly optimize sharing policies and network weights. Under this
context, we propose a policy regularization term on the sharing policy to promote parameter
sharing for high memory efficiency.

• We implement the AutoMTL system that seamlessly integrates the MTS-Compiler, a set of
PyTorch-based APIs, the architecture search algorithm, and a training pipeline. AutoMTL
provides an easy-to-use solution for resource-efficient multi-task model development.

• Experiments on three popular MTL benchmarks (CityScapes [10], NYUv2 [41], Tiny-
Taskonomy [50]) using three common CNNs (Deeplab-ResNet34 [7], MobileNetV2 [39],
MNasNet [45]) demonstrate that the multi-task model produced by AutoMTL outperforms
state-of-the-art approaches in terms of model size and task accuracy.
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2 Related Work

Multi-task learning (MTL) uses hard or soft parameter sharing [37, 5, 2, 47, 52]. In hard parameter
sharing, a set of parameters in the backbone model are shared among tasks. In soft parameter sharing
[34, 38, 18], each task has its own set of parameters. Task information is shared by enforcing the
weights of the model for each task to be similar. In this paper, we focus on hard parameter sharing as
it produces memory-efficient multi-task models.

Manual Design and Task Grouping. One of the widely-used hard parameter sharing strategies is
proposed by Caruana [6, 5], which shares the bottom layers of a model across tasks. Following this
paradigm, early works [32, 35, 44, 9, 25, 26] rely on domain expertise to decide which layers should
be shared across tasks and which ones should be task-specific. Due to the enormous architecture
search space, such approaches are difficult to find an optimal solution. In recent years, several
methods attempt to integrate task relationships or similarities to facilitate multi-task model design.
What-to-Share [46] measures the task affinity by analyzing the representation similarity between
independent models, then recommending the architecture with the minimum total task dissimilarity.
Some other works [42, 16] focus on identifying the best task groupings in terms of task performance
under the memory budget, whose architectures share the feature extractors within each group.

NAS-based Approach. Recent works attempt to learn the sharing patterns across tasks. Deep
Elastic Network (DEN) [1] and Stochastic Filter Groups (SFGs) [3] determine whether each filter
in convolutions should be shared via reinforcement learning or variational inference respectively.
AdaShare [43] learns task-specific policies that select which network blocks to execute for a given
task. However, these works cannot dynamically adapt multi-task model capacity based on given
tasks. BMTAS [4] and Learn to Branch [19] focus on constructing tree-like structures for multi-task
models via differentiable neural architecture search. Some other works [17, 48] explore feature fusion
opportunities across tasks. It is worth mentioning that existing studies focus on search algorithms
but ignore the ease of programming and extensibility. Their implementation is highly coupled
with specific backbone models. It is time-consuming for general programmers to re-implement the
algorithms once the backbone models change, hindering their adoption in broader applications.

MTL Optimization. Significant efforts have been invested to improve multi-task optimization
strategies, an orthogonal direction to architecture design. There are two major branches to solve
such a multi-objective optimization problem [40, 28]. Some works study a single surrogate loss
consisting of linear combination of task losses, in which the suitable task weights are derived from
different criteria, such as task uncertainty[23], task loss magnitudes [31], dynamic task relationships
[30]. Other works focus on directly modifying task gradients during the multi-task model training
[8, 49, 29]. Note that, on top of our AutoMTL framework, users are free to use existing optimization
methods to further improve the task performance of multi-task models.

3 AutoMTL

AutoMTL allows users to provide an arbitrary backbone CNN and a set of vision tasks, and then
automatically generate a multi-task model with high accuracy and low memory footprint by sharing
parameters among tasks. Figure 1 illustrates the workflow of AutoMTL. Given a backbone model
(Figure 1(a)), a user can specify the model using either the AutoMTL APIs or in the prototxt format
(Figure 1(b)). The model specification will be parsed by the MTS-compiler to generate a multi-task
supermodel that encodes the entire search space (Figure 1(c)). AutoMTL then identifies the optimal
multi-task model architecture (Figure 1(d)) from the supermodel using gradient-based architecture
search algorithms implemented in the Architecture Search component. AutoMTL supports the model
specification in the format of prototxt as it is general enough to support various CNN architectures
and also simple for our compiler to analyze. prototxt files are serialized using Google’s Protocol
Buffers serialization library. AutoMTL API is currently implemented on top of PyTorch. We next
elaborate on the two major components of this framework, MTS-Compiler and Architecture Search.

3.1 Multi-Task Supermodel Compiler

The Multi-Task Supermodel Compiler (MTS-Compiler) transforms the input backbone model into a
multi-task supermodel that encodes the architecture search space. The challenge is how to design
the architecture search space and the multi-task supermodel so that (1) the search space allows the
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class my_model(mtl_model):
def __init__(tasks):
VCN_Conv1()
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VCN_Conv3()
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Layer: 

name: "𝑜𝑝1"

bottom: "data"

Layer: 

name: "𝑜𝑝2"

bottom: "𝑜𝑝1"

Layer:

name: "𝑜𝑝3"
bottom: "𝑜𝑝1"

bottom: "𝑜𝑝2"

(*.prototxt)

(b) Model Specification

AutoMTL APIs

OR

Figure 1: Illustrations of (a) an input backbone model, (b) two types of model specifications, (c)
the multi-task supermodel with search space produced by our AutoMTL APIs and the proposed
MTS-Compiler, and (d) the final multi-task model found by AutoMTL. V CN1 ∼ V CN3 represent
the proposed data structure Virtual Computation Node (VCN). In each VCN, op is the original
operator in the backbone model, while spti and skti are the task-specific copy of op and the skip
connection for task ti respectively. Pti is a variable (a.k.a policy) that determines which operator
will be executed for task ti.

multi-task model capacity to be flexibly adjusted based on the set of tasks to avoid task interference
and (2) the transformation can be fully automated and support an arbitrary CNN backbone.

To address the challenge, we propose a Stretchable Architecture Search Space that contains multi-task
models with a wide range of model capacities by treating each operator in the backbone model as the
basic unit for sharing. The compiler duplicates each operator in the backbone model so that each
task can determine whether it wants to share parameters with other tasks by selecting which operator
to use. We further design a novel data structure called Virtual Computation Node to embed the
search space and enable compiler-based automatic transformation of an arbitrary CNN to a multi-task
supermodel.

Stretchable Architecture Search Space. As shown in Figure 1(c), for each operator in the backbone
model, each task can choose from one of the three options to indicate whether it wants to share
the operator with other tasks: (1) the backbone operator, (2) a task-specific copy of the backbone
operator, and (3) a skip connection. Skip connection is an identify function if the input and output
dimension match or a down-sample function otherwise. The motivation for a skip connection option
is that a task can skip the operator to improve inference efficiency.

Formally, assume a set of N tasks T = {t1, t2, ..., tN} defined over a dataset. For the i-th task ti and
the l-th backbone operator opl, the task may select the backbone operator itself, implying that it can
share the parameters in this operator with other tasks. Otherwise, it can select the task-specific copy
sptil , or the skip connection sktil , as shown in Figure 1(c). Given a set of N tasks and a backbone
model with L operators, the size of our search space is 3N×L. Suppose the backbone capacity is C
(measured by the number of parameters), the capacity of a multi-task model in our search space would
be in the range of (0, C ×N ], where C ×N indicates all tasks choose to use their own operators
(i.e., independent models) while 0 represents all the skip connections are selected.

The proposed search space has the following three major benefits compared to existing NAS-based
MTL methods. First, compared to AdaShare [43] and DEN [1] which attempt to pack multiple
tasks into a single CNN backbone, it can extend the representation power of the backbone model if
needed by preserving more task-specific operators. This capability effectively avoids performance
degradation caused by task interference as the number of tasks increases (See Section 4.2). Second,
compared to a more general search space [48] that is defined without requiring a user-provided
backbone model, it still provides users a certain degree of control over the size of the searched
multi-task model – one can specify a smaller backbone model if the computation resource is limited.
Last but not least, in terms of search efficiency, although our search space is larger than AdaShare,
we still have a comparable low search cost by adopting gradient-based search algorithms. When
comparing to a general search space in FBNetV5 [48], our search space can be explored 13 ∼ 133X
faster (Detailed in Section 4.2).

Multi-Task Supermodel. A suitable multi-task supermodel abstraction is necessary to allow au-
tomatic transformation of an arbitrary CNN backbone to a multi-task supermodel. Our idea is to
represent the multi-task supermodel as a computation graph whose topology remains the same as
that of the backbone model but nodes are replaced with Virtual Computation Nodes (VCNs). The
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MTS-Compiler first parses the input backbone into a list of operators and then iterates the operators
to initialize the corresponding VCNs.

Specifically, for each operator in the given backbone model, the corresponding VCN in the multi-task
supermodel contains: (1) a list of parent VCN nodes, recording where inputs come from; (2) the
backbone operator; (3) task-specific copies of the backbone operator, one for each task; (4) skip
connections, one for each task; (5) policy variables, one for each task determining which operator to
execute for each task. (1) and (2) encode the computation graph of the backbone model. (2), (3), and
(4) together encode the architecture search space. (5) determines the sharing patterns across tasks.
Figure 1(c) illustrates a multi-task supermodel. Details about the policy variable will be presented in
Section 3.2.

3.2 Architecture Search

The architecture search component aims at efficiently exploring the search space encoded in the
multi-task supermodel. We adopt the differentiable policy approximation to enable joint training of
sharing policy and the supermodel. Under this context, we propose a policy regularization mechanism
to promote parameter sharing for memory efficiency.

Policy Approximation. We introduce a trainable policy variable Pti
l to determine which operator to

use for the i-th task ti and the l-th VCN in the multi-task supermodel. Pti
l is zero if the backbone

operator opl is used for the task, one if the task-specific copy sptil is adopted, and two if the
skip connection sktil is selected. Architecture search is to find the optimal sharing policy P =

{Pti
l |l ≤ L, i ≤ N}, that yields the best overall performance over the set of N tasks T given a

multi-task supermodel with L VCNs. As the number of potential configurations for P is 3N×L

(i.e., the size of the search space) which grows exponentially with the number of operators and
tasks, it is not practical to manually find such a P to get the optimal sharing pattern. Therefore, we
adopt a gradient-based architecture search algorithm that optimizes the sharing policy P and the
multi-task model parameters jointly via standard back-propagation. Gradient-based searches usually
allow faster architecture search compared with traditional reinforcement learning [1] or evolutionary
algorithm-based approaches [27].

Because the policy variable P ∈ P is discrete and thus non-differentiable, we apply Gumbel-Softmax
Approximation [21] and derives a soft differentiable policy:

P ′(k) =
exp((Gk + log(πk))/τ)∑

k∈{0,1,2} exp((Gk + log(πk))/τ)
, (1)

where k ∈ {0, 1, 2} represents the three operator options, Gk ∼ Gumbel(0, 1).

After learning the distribution π, the discrete task-specific policy P is sampled from the learned π to
decide which operator to execute in each VCN for each task and the multi-task architecture can be
constructed accordingly. Figure 1(d) illustrates a multi-task model given a sharing policy.

Policy Regularization. We propose a policy regularization term Lreg to encourage sharing operators
across tasks to reduce the memory overhead. Specifically, for the soft policy P′ = {P ′ti

l |l ≤ L, i ≤
N}, we minimize the sum of the SoftPlus [12] of P ′ti

l (1)− P ′ti
l (0) and P ′ti

l (2)− P ′ti
l (0) for each

task in each VCN, where P ′ti
l (0),P ′ti

l (1),P ′ti
l (2) are the probability of selecting the shared operator,

the task-specific copy, and the skip connection for the i-th task in the l-th VCN respectively. To
further reduce the computation cost, the regularization term is weighted for different operators to
promote the parameter sharing of bottom layers. More formally, we define Lreg as,

Lreg =
∑
i≤N

∑
l≤L

L− l

L

{
ln(1 + expP

′ti
l (1)−P′ti

l (0)) + ln(1 + expP
′ti
l (2)−P′ti

l (0))
}
, (2)

where ln(1+ expx) is the SoftPlus function. l is the depth of the current VCN and L is the maximum
depth. Finally, the overall loss L is defined as,

L =
∑
i

λiLi + λregLreg, (3)

where Li represents the task-specific loss, λi is a hyperparameter controlling how much each task
contributes to the overall loss, and λreg is a hyper-parameter balancing task-specific losses and Lreg .
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Training Pipelines. AutoMTL implements a three-stage training pipeline to generate a well-trained
multi-task model. The first stage pre-train aims at obtaining a good initialization for the multi-task
supermodel by pre-training on tasks jointly [51]. During pre-training, for each task, the output of each
VCN is the average of the three operator options (i.e, the backbone operator, the task-specific copy,
and the skip connection) so that all the parameters could get warmed up together. The second stage
policy-train jointly optimizes the sharing policy and the model parameters. The model parameters
and the policy distribution parameters are trained alternately to stabilize the training process. After
the policy distribution parameters converge, AutoMTL samples a sharing policy from the distribution
to generate a multi-task model. The last stage post-train trains the identified multi-task model until it
converges. The model parameters are trained from scratch while the sharing policy is fixed.

4 Experiments

We conduct a set of experiments to examine the superiority of AutoMTL compared to several
state-of-the-art approaches in terms of task accuracy, model size, and inference time.

4.1 Experiment Settings

Datasets and Tasks. Our experiments use three popular datasets in multi-task learning (MTL),
CityScapes [10], NYUv2 [41], and Tiny-Taskonomy [50]. CityScapes contains street-view images
and two tasks, semantic segmentation and depth estimation. The NYUv2 dataset consists of RGB-
D indoor scene images and three tasks, 13-class semantic segmentation defined in [11], depth
estimation whose ground truth is recorded by depth cameras from Microsoft Kinect, and surface
normal prediction with labels provided in [14]. Tiny-Taskonomy contains indoor images and its five
representative tasks are semantic segmentation, surface normal prediction, depth estimation, keypoint
detection, and edge detection. All the data splits follow the experimental settings in AdaShare [43].

Loss Functions and Evaluation Metrics. Semantic segmentation uses a pixel-wise cross-entropy
loss for each predicted class label. Surface normal prediction uses the inverse of cosine similarity
between the normalized prediction and ground truth. All other tasks use the L1 loss. Semantic
segmentation is evaluated using mean Intersection over Union and Pixel Accuracy (mIoU and Pixel
Acc, the higher the better) in both CityScapes and NYUv2. Surface normal prediction is evaluated
using mean and median angle distances between the prediction and the ground truth (the lower
the better), and the percentage of pixels whose prediction is within the angles of 11.25◦, 22.5◦
and 30◦ to the ground truth as [14] (the higher the better). Depth estimation uses the absolute and
relative errors between the prediction and the ground truth are computed (the lower the better). In
addition, the percentage of pixels whose prediction is within the thresholds of 1.25, 1.252, 1.253 to
the ground truth, i.e. δ = max{ppred

pgt
,

pgt

ppred
} < thr, is used following [15] (the higher the better).

Tiny-Taskonomy is evaluated using the task-specific loss of each task directly, as in [43].

Because evaluation metrics from different tasks have different scales, we also use a single relative
performance metric [33] with respect to the single-task baseline to compare different approaches.
The relative performance ∆ti of a method A on task ti is computed as follows,

∆ti =
1

|M |
∑
j=0

(−1)sj (MA,j −MSTL,j)/MSTL,j × 100%,

where sj is 1 if the metric Mj is the lower the better and 0 otherwise. MA,j and MSTL,j are the values
of the metric Mj for the method A and the Single-Task baseline respectively. Besides, the overall
performance is the average of the above relative values over all tasks, namely ∆t = 1

N

∑
i=1 ∆ti,

where N is the number of tasks. The model size is evaluated using the number of model parameters.

Baselines for Comparison. We compare with following baselines: the Single-Task baseline where
each task has its own model and is trained independently, the vanilla Multi-Task baseline [5] where
all tasks share the backbone model but have separate prediction heads, popular MTL methods (e.g.,
Cross-Stitch [34], Sluice [38], NDDR-CNN [18], MTAN [31]), and state-of-the-art NAS-based MTL
methods (e.g. DEN [1], AdaShare [43], and Learn to Branch1 [19]). We use the same backbone

1We implemented its tree-structured multi-task model for Taskonomy based on the architecture reported in
the paper by ourselves since there is no public code.
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Table 1: Quantitative Results on CityScapes. (Abs. Prf. & Rel. Prf.)

Model
# Params ↓ Semantic Seg. Depth Estimation

∆t ↑Abs. (M) Rel. (%) mIoU ↑ Pixel
Acc. ↑ ∆t1 ↑ Error ↓ δ, within ↑

∆t2 ↑
Abs. Rel. 1.25 1.252 1.253

Single-Task 42.569 - 36.5 73.8 - 0.026 0.38 57.5 76.9 87.0 - -
Multi-Task 21.285 -50.0 42.7 68.1 +4.6 0.026 0.39 58.8 80.5 89.9 +1.5 +3.1

Cross-Stitch 42.569 +0.0 40.3 74.3 +5.5 0.017 0.34 70.0 86.3 93.1 +17.2 +11.4
Sluice 42.569 +0.0 39.8 74.2 +4.8 0.018 0.35 68.9 85.8 92.8 +15.3 +10.1

NDDR-CNN 44.059 +3.5 41.5 74.2 +7.1 0.018 0.35 69.9 86.3 93.0 +15.9 +11.5
MTAN 51.296 +20.5 40.8 74.3 +6.2 0.017 0.36 71.0 86.3 92.8 +16.4 +11.3
DEN 23.838 -44.0 38.0 74.2 +2.3 0.018 0.41 68.2 84.5 91.6 +11.3 +6.8

AdaShare 21.285 -50.0 40.6 74.7 +6.2 0.018 0.37 71.4 86.8 93.1 +15.5 +10.9

AutoMTL 28.819 -32.3 42.8 74.8 +9.3 0.018 0.33 70.0 86.6 93.4 +17.1 +13.2

Table 2: Results on NYUv2. (Rel. Prf.)

Model # Params
(%) ↓ ∆t1 ↑ ∆t2 ↑ ∆t3 ↑ ∆t ↑

Multi-Task -66.7 -11.4 +2.0 +4.3 -1.7
Cross-Stitch +0.0 -2.6 +8.7 +3.9 +3.3

Sluice +0.0 -6.2 +7.1 +3.3 +1.4
NDDR-CNN +5.0 -12.9 +7.0 -4.4 -3.5

MTAN +3.7 -1.8 +11.5 +2.9 +4.2
DEN -62.7 -7.7 +5.6 -38.9 -13.7

AdaShare -66.7 -4.3 +9.3 +6.2 +3.8

AutoMTL -45.1 +0.2 +8.0 +7.8 +5.3

Table 3: Results on Taskonomy. (Rel. Prf.)

Models # Params
(%) ↓ ∆t1 ↑∆t2 ↑∆t3 ↑∆t4 ↑∆t5 ↑∆t ↑

Multi-Task -80.0 -3.7 -1.4 -4.5 +0.0 +4.2 -1.1
Cross-Stitch +0.0 +0.9 -3.5 +0.0 -1.0 -2.4 -1.2

Sluice +0.0 -3.7 -1.5 -9.1 +0.5 +2.4 -2.3
NDDR +8.2 -4.2 -0.9 -4.5 +0.5 +4.2 -1.0
MTAN -9.8 -8.0 -2.5 -4.5 +0.0 +2.8 -2.4
DEN -77.6 -28.2 -2.6 -22.7 +2.5 +4.2 -9.3

AdaShare -80.0 +2.3 -0.6 -4.5 +3.0 +5.7 +1.2
Learn to B. -71.2 +9.4 +5.3 -4.5 -2.5 -2.4 +1.1

AutoMTL -50.1 +3.0 +8.2 +0.0 +3.0 +7.1 +4.3

t1: Semantic Seg., t2: Surface Normal, t3: Depth Est., t4: Keypoint Det., t5: Edge Det..

model in all baselines and in our approach for fair comparisons. We use Deeplab-ResNet-34 as the
backbone model and the Atrous Spatial Pyramid Pooling (ASPP) architecture as the task-specific
head [7]. Both of them are popular architectures for pixel-wise prediction tasks. We also evaluate the
effectiveness of AutoMTL on MobileNetV2 [39], and MNasNet [45].

4.2 Results

Performance Comparison. Table 1∼3 report the task performance on each dataset respectively. For
CityScapes, both the absolute and the relative performance of all metrics are reported (see Table 1).
Due to the limited space, only the relative performance is reported for NYUv2 and Tiny-Taskonomy
(see Table 2 and 3).

According to Table 1, AutoMTL outperforms all the baselines on 4 metrics (bold) and is the second-
best on 2 metrics (underlined) in terms of task performance. With 17.7% increase in the number of
model parameters, the task performance of AutoMTL is far better than the vanilla Multi-Task baseline.
Compared to the soft-parameter sharing methods, Cross-Stitch, Sluice, and NDDR-CNN, which
are unable to reduce the memory overhead, AutoMTL could achieve higher task performance with
fewer parameters. When comparing with DEN and AdaShare, the most competitive approaches in
MTL, AutoMTL is better in terms of the task performance but with more parameters (11.7%/17.7%).
This is because, unlike DEN and AdaShare which pack tasks into the given backbone model, our
search space allows each task to select more task-specific operators to increase the capability of the
backbone model. It turns out that a small amount of increase in model parameters could translate to a
significant gain in task performance.

The superiority of AutoMTL can be observed more clearly in Tables 2∼3 when more tasks are jointly
trained together. AutoMTL outperforms most of the baselines in both task performance and model
size. When compared with state-of-the-art NAS-based MTL methods, DEN, AdaShare, and Learn
to Branch, AutoMTL could achieve a substantial increase in task accuracy with only a few more
parameters. Although DEN and AdaShare need fewer model parameters, the representation power of
their multi-task models is limited by the backbone model due to their non-stretchable search space,
making it essential for users to select a suitable backbone model with sufficient capacity for multiple
tasks. This problem goes worse when the number of tasks increases. As shown in Table 3, DEN
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Figure 2: Ablation Study on CityScapes. The figures show the distributions of different evaluation
metrics for three groups of multi-task models. The orange bar corresponds to the group of models
generated from Random policies; the green and blue bars correspond to those sampled from the
trained policy with or without the policy regularization (AutoMTL w/o Lreg and AutoMTL w/ Lreg).

(a) Learned policy distributions

Shared

Semantic Seg.

Depth Est.

(b) Sampled feature sharing pattern

Figure 3: Policy Visualization for CityScapes.
and AdaShare have limited task performance improvement or even suffer from task performance
degradation (see columns ∆t2 and ∆t3) on the Taskonomy dataset with five tasks. Similarly, the
tree-like multi-task model search space in Learn to Branch limits the flexibility of the sharing patterns
in its generated multi-task model, causing severe task interference as shown in columns ∆t3 to ∆t5
in Table 3. In contrast, AutoMTL could generate a multi-task model with larger capacity if necessary,
leading to higher task performance, 13.6% higher than DEN, 3.1% than AdaShare, and 3.2% than
Learn to Branch.

Furthermore, for semantic segmentation in NYUv2 (see columns ∆t1 in Table 2) and surface normal
prediction in Taskonomy (see columns ∆t2 in Table 3), the performance of almost all the multi-task
baselines are worse than the Single-Task baseline. It indicates that this particular task is negatively
interfered by the other tasks when sharing parameters across them. In contrast, AutoMTL is still able
to improve the performance of the two tasks because they tend to select more task-specific operators
in our search space in order to reduce interference from the other tasks.

Table 4: Inference Time (ms).
Model CityScapes (2 tasks) NYUv2 (3 tasks)

Ind. Models 71.01 107.65
Multi-Task 29.52 32.43

Cross-Stitch 71.01 107.65
Sluice 71.01 107.65
NDDR 67.41 101.89
MTAN 98.99 133.33
DEN 87.05 127.41

AdaShare 56.79 71.06

AutoMTL 60.84 80.41

We also compare the inference time of different
multi-task models in Table 4. AutoMTL could
achieve a shorter inference time than indepen-
dent models, soft-parameter sharing methods,
and DEN. It is because AutoMTL allows some
computation reuse when consecutive initial lay-
ers are shared among tasks and uses skip connec-
tions to further reduce the computation overhead.
AutoMTL also achieves a competitive inference
speed compared with AdaShare even though we
provide additional task-specific options in the
multi-task models.

The time cost of each training stage in terms of GPU hours is reported in Table 5. The experiments
were conducted on an Nvidia RTX8000. Notice that the time cost of our architecture search process
(the policy-train stage) is 12-13 GPU hours on CityScapes, 36-37 GPU hours on NYUv2, and about
120 GPU hours on Taskonomy, which are 13 ∼ 133X faster than FBNetV5 [48] (1600 GPU hours
on V1002), a state-of-the-art multi-task architecture search framework.

2Since the work is not open-sourced, we have no task performance comparison with it and the search costs
here are extracted from the original paper. RTX8000 and V100 have similar computation capability and are
hence comparable.

8



Table 5: Time Cost of Training Stage (GPU hours).
Stage CityScapes NYUv2 Taskonomy

pre-train 8-9 20-21 ∼25
policy-train 12-13 36-37 ∼120
post-train 14-15 44-45 ∼140

Ablation Studies. We present ablation stud-
ies to show the effectiveness of the architecture
search process (the policy-train stage) and the
proposed policy regularization term (Eq. 2). In
Figure 2, we use a boxplot to show the distri-
butions of different evaluation metrics for three groups of multi-task models. The orange group
(Random) of models are generated from policies that are randomly initialized without policy-train,
while the green (AutoMTL w/o Lreg) and the blue (AutoMTL w/ Lreg) groups are sampled from
policies after the policy-train stage. The policy of the blue group is trained with the regularization but
that of the green group is not. We generate six different models with seed 10 ∼ 60 in each group to
compare their performance with less bias.

We make two main observations from Figure 2. First, both AutoMTL w/o Lreg and AutoMTL w/ Lreg

achieve better task performance than Random in terms of the mean and the standard deviation of all
the evaluation metrics. It indicates that the architecture search process is necessary and effective in
predicting a good sharing pattern among tasks. Second, the mean of all metrics for AutoMTL w/ Lreg

is also better than AutoMTL w/o Lreg, indicating that the proposed policy regularization term plays
an important role in improving task performance. It echos the well-recognized benefits of parameter
sharing among tasks in reducing overfitting and improving prediction accuracy.

To further illustrate the benefits of the proposed policy regularization term Lreg, we provide more
quantitative results on CityScapes with different λreg in Table 6. We also list the Single-Task model
and AdaShare as a comparison. All the other experiment settings including the training pipeline and
the hyper-parameter setting remain the same.

Table 6: Quantitative Results on CityScapes with Different λreg. (Abs. Prf. & Rel. Prf.)

Model
# Params ↓ Semantic Seg. Depth Estimation

∆t ↑Abs. (M) Rel. (%) mIoU ↑ Pixel
Acc. ↑ ∆t1 ↑ Error ↓ δ, within ↑

∆t2 ↑
Abs. Rel. 1.25 1.252 1.253

Single-Task 42.569 - 36.5 73.8 - 0.026 0.38 57.5 76.9 87.0 - -
AdaShare 21.285 -50.0 40.6 74.7 +6.2 0.018 0.37 71.4 86.8 93.1 +15.5 +10.9

λreg = 0.01 23.626 -44.5 43.4 74.9 +10.2 0.021 0.36 68.4 85.5 92.7 +12.2 +11.2
λreg = 0.001 25.584 -39.9 43.3 74.8 +10.0 0.020 0.34 71.1 87.5 93.7 +15.7 +12.9
λreg = 0.0005 28.819 -32.3 42.8 74.8 +9.3 0.018 0.33 70.0 86.6 93.4 +17.1 +13.2
λreg = 0.0001 30.735 -27.8 40.4 74.4 +5.7 0.019 0.37 68.1 84.5 92.0 +12.7 +9.2

As the λreg becomes larger, the probability of parameter sharing, especially those in initial layers, is
higher, leading to the fewer number of parameters in the identified multi-task model but relatively
lower task performance because of task interference. Users could adjust λreg to control the tradeoff
between resource efficiency and task accuracy. If the computation budget is limited, they could use a
larger λreg for a more compact model while sacrificing task accuracy. If the users call for the best
task performance, they could tune λreg to find the optimal setting.

Policy Visualization. We further visualize the learned sharing policies to reveal insights on the
discovered multi-task architecture. Figure 3 shows the visualization of the learned policy distribution
and the feature sharing pattern on CityScapes. For each layer in each task, Figure 3(a) illustrates its
policy distribution π introduced in Section 3.2. A brighter block indicates a higher probability of
that operator being selected. The figure indicates that tasks tend to share bottom layers. Besides,
Figure 3(b) provides a feature sharing pattern sampled from the learned policy distribution. The red
arrows connect the operators used by semantic segmentation and the blue ones correspond to depth
estimation. Operators that are not selected are semi-transparent. Overall, semantic segmentation is
more likely to share operators with other tasks than depth estimation. Depth estimation has more
than 25% of operators are skip connections, implying that this task prefers a more compact model
than the backbone. Skip connections and operator sharing among the two tasks decrease the number
of parameters in the multi-task model.

Results on Other Backbone Models. We also demonstrate the generality of AutoMTL by conducting
experiments on CityScapes with two other typical backbone models MobileNetV2 [39] and MNasNet
[45]. Without changing hyperparameters on this dataset, AutoMTL achieves 7.4% and 9.5% higher
relative task performance with 33.5% and 35.9% fewer model parameters than the single-task baseline
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and 6.5% and 11.1% higher relative task performance than the Multi-Task baseline for MobileNetV2
and MNasNet respectively.

User Study on Ease-of-Use. There is no re-implementation cost in AutoMTL when the backbone
model changes. The compilation of a given backbone specified in prototxt format to a multi-task
supermodel takes only ∼0.6s. On the contrary, users with proficient PyTorch skills in our user study
still expect 20 ∼ 40 hours to complete re-implementation of the state-of-the-art NAS-based MTL
approach Adashare [43].

5 Conclusion

In this work, we propose the first programming framework AutoMTL that generates compact multi-
task models given an arbitrary input backbone CNN model and a set of tasks. AutoMTL features
a multi-task supermodel compiler that automatically transforms any given backbone CNN into a
multi-task supermodel that encodes the proposed stretchable architecture search space. Then through
policy approximation and regularization, the architecture search component effectively identifies
good sharing policies that lead to both high task accuracy and memory efficiency. Experiments
on three popular multi-task learning benchmarks demonstrate the superiority of AutoMTL over
state-of-the-art approaches in terms of task accuracy and model size.

Limitations and Broader Impact Statement. Our research facilitates the adoption of multi-task
learning techniques to solve many tasks at once in resource-constraint scenarios. Particularly, we
offer the first systematic support for automating efficient multi-task model development for vision
tasks. The support of other AI tasks (e.g., NLP tasks) is left as future work. It has a positive impact on
applications that tackle multiple tasks such as environment perceptions for autonomous vehicles and
human-computer interactions in robotic, mobile, and IoT applications. The negative social impact
of our research is difficult to predict since it shares the same pitfalls with general deep learning
techniques that suffer from dataset bias, adversarial attacks, fairness, etc.

Acknowledgement. This work is supported by UMass Amherst Start-up Funding and Adobe
Research Collaboration Grant.
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