CoT-lized Diffusion: Let’s Reinforce T2I Generation
Step-by-step
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Figure 1: Comparison of generated images across three challenging spatial scenarios: multiple-object
configuration (left), precise layout (middle), and complex spatial relations (right). CoT-Diff (ours)
achieves significantly better spatial alignment than FLUX [5], RPG [47], and EliGen [48], faithfully
following 3D-aware instructions in the prompt (highlighted in red).

Abstract

Current text-to-image (T2I) generation models struggle to align spatial composition
with the input text, especially in complex scenes. Even layout-based approaches
yield suboptimal spatial control, as their generation process is decoupled from
layout planning, making it difficult to refine the layout during synthesis. We
present CoT-Diff, a framework that brings step-by-step CoT-style reasoning into
T2I generation by tightly integrating Multimodal Large Language Model (MLLM)-
driven 3D layout planning with the diffusion process. CoT-Diff enables layout-
aware reasoning inline within a single diffusion round: at each denoising step,
the MLLM evaluates intermediate predictions, dynamically updates the 3D scene
layout, and continuously guides the generation process. The updated layout is
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converted into semantic conditions and depth maps, which are fused into the
diffusion model via a condition-aware attention mechanism, enabling precise
spatial control and semantic injection. Experiments on 3D Scene benchmarks show
that CoT-Diff significantly improves spatial alignment and compositional fidelity,
and outperforms the state-of-the-art method by 34.7% in complex scene spatial
accuracy, validating the effectiveness of this entangled generation paradigm.

1 Introduction

Diffusion models have shown remarkable capabilities in generating high-quality and diverse images
from textual descriptions [15, 11, 22]. However, these models lack explicit structural reasoning
abilities [51, 45, 52]. When tasked with complex scenes involving multiple objects, precise layouts,
and spatial relations, current models still face significant limitations in controllability, thereby limiting
their applicability to structured generation tasks.

Recent works have introduced layout-aware conditions into the diffusion process, incorporating
points, scribbles, 2D bounding boxes or semantic masks to enhance entity-level spatial control [49,
27,21, 50, 40]. Yet, most of these methods [23, 43] adopt a decoupled paradigm where layout
planning is conducted before generation, without any feedback from the image synthesis process.
Such static pipelines lack the ability to refine spatial arrangements, and thus often struggle to model
fine-grained structure in complex scenes. Some recent 3D-aware approaches [4, 10, 39] support
explicit object placement in space, but typically rely on manually crafted layouts and exhibit limited
generalization in automated generation settings. These limitations highlight the need for a unified
framework that can reason about 3D structure from text and dynamically control layout during
generation—a goal we aim to achieve in this work.

We present CoT-Diff, a 3D-aware text-to-image framework for stepwise, fine-grained spatial control
over complex visual scenes as shown in Figure 1. Unlike prior approaches that perform layout
planning as a static pre-process, CoT-Diff tightly entangles a multimodal large language model
(MLLM) with a diffusion model, enabling inline scene reasoning and generation within a single
sampling trajectory. Given a text prompt, CoT-Diff first uses the MLLM to plan an initial 3D scene
layout including entity descriptions, spatial positions, and size estimates. Then, at each denoising
step, the intermediate predicted image is passed back to the MLLM, which re-evaluates alignment
with the input text and adjusts the layout plan accordingly, modifying selected entities’ attributes.

The updated layout is immediately transformed into two types of spatial conditions: a semantic
layout, encoded from the global prompt and the entity local prompts, and a depth map, rendered
from the relative depth of each object given the scene geometry and camera view. These spatial
priors are encoded and injected into the latent features of the pretrained diffusion model to guide the
generation process with precise semantic and geometric constraints. In contrast to iterative editing
methods that regenerate images after layout revision, CoT-Diff performs all reasoning and control
within a single diffusion round, avoiding redundant denoising while maintaining stepwise structural
consistency. To support multi-source conditioning, we introduce separate semantic and depth control
branches, implemented via lightweight Low-Rank Adaptation (LoRA) modules [16], and propose a
condition-aware attention mechanism that spatially disentangles different modalities and injects
control signals only into relevant image regions.

To support structured layout supervision for training, we construct an automatically annotated 3D
layout dataset based on EliGen [48] and LooseControl [4]. Building upon the original annotations of
global prompts, per-entity descriptions, and 2D bounding boxes, we incorporate monocular depth
estimation and segmentation models to recover entity-level depth and generate 3D bounding boxes
via geometric fitting. To validate CoT-Diff, we present a new benchmark, dubbed 3DSceneBench,
consisting of diverse and complex compositions of spatial relationship. On 3DSceneBench and
two existing T2I benchmarks [34, 17], CoT-Diff outperforms state-of-the-art diffusion baselines,
including FLUX and RPG [47], by up to 34.7% in terms of complex scene spatial accuracy.

This paper makes the following contributions:

* We propose CoT-Diff, a novel framework that tightly couples multimodal large language models
(MLLMs) with diffusion models for stepwise 3D-aware image generation.



* We introduce an inline layout reasoning mechanism, where MLLM dynamically updates the 3D
layout at each denoising step, enabling CoT-style spatial control within a single diffusion round.

* We design disentangled spatial control modules that convert each layout plan into semantic masks
and depth maps, which are selectively injected via a condition-aware attention mechanism.

* We build an automatically annotated 3D-aware layout dataset, enabling entity-level layout supervi-
sion and structured evaluation of spatial consistency.

2 Related Work

2.1 Text-to-Image Diffusion Models

Recent advances in diffusion models have greatly improved the quality and diversity of text-to-image
(T2I) generation [15, 37]. Latent Diffusion Models (LDMs) [35, 31] further enhance efficiency
by operating in a compressed latent space. Modern systems like SD3 [11], Hunyuan-dit [22], and
FLUX [5] adopt transformer-based backbones such as DiT [30] and leverage pretrained text encoders
(e.g., CLIP [32], T5 [33]) to map text into rich visual content. However, these models treat text as a
static global condition and lack explicit control over spatial composition. When dealing with complex
scenes containing multiple entities and spatial relationships [49, 27], they often fail to reason about
relative positioning, depth, or occlusion. This limitation has led to efforts incorporating layout or
structure-based conditions into the generation pipeline.

2.2 Layout-guided Image Generation

To improve spatial controllability, layout-guided methods introduce object-level structure into T2I
generation. Training-based approaches [21, 40, 50] inject layout or mask annotations into attention
modules during training. EliGen [48] pushes this further by using fine-grained entity-level prompts.
Other methods avoid retraining by designing plug-and-play mechanisms. For example, MultiDiffu-
sion [3] applies region-specific denoising followed by fusion; RPG [47] and RAG-Diffusion [9] use
resize-and-concatenate schemes to combine regional latents. While these methods improve control,
they mainly operate in 2D and lack true 3D spatial reasoning. More recent works explore 3D-aware
generation [4, 10], but often rely on manually defined layouts and still lag behind top-performing
2D models in visual quality. These limitations motivate automated 3D planning and controllable
generation directly from text.

2.3 MLLM-Grounded Diffusion

Large Language Models (LLMs) exhibit strong reasoning capabilities through techniques such as
chain-of-thought prompting [42] and reinforcement fine-tuning [13]. Their multimodal counterparts
(MLLMs) [25, 53, 36] extend this ability to visual-linguistic understanding, enabling structured scene
interpretation from natural language. LayoutGPT [12] and LayoutVLM [38] use MLLMs to convert
captions into 2D or 3D layouts, which can support downstream image generation. RPG [47] incor-
porates layout planning into diffusion synthesis using regional generation. Despite these advances,
existing MLLM-guided diffusion systems [4 1, 24] focus primarily on static layout generation and
2D spatial arrangements. They lack iterative reasoning or full 3D understanding, which limits their
performance in dense or physically plausible scenes. In contrast, Plan2Pix uses MLLMs for dynamic
3D planning and integrates a feedback loop that adjusts layouts based on generation outcomes,
enabling more accurate and semantically aligned control over complex scenes.

3 Method

3.1 Overview of CoT-Diff Framework

As illustrated in Figure 2, CoT-Diff enables step-by-step coupling between a MLLM and a diffusion
model, allowing layout reasoning and image generation to proceed in tandem. At each step, the
updated 3D layout is converted into semantic masks and depth maps, which encode spatial priors and
are injected into the diffusion model via LoORA modules and a condition-aware attention mechanism
for disentangled and precise control.
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Figure 2: Overview of the CoT-Diff framework. Given a prompt, an MLLM first plans a 3D scene
layout and then collaborates with the diffusion model in a step-by-step manner. At each denoising
step, the MLLM inspects intermediate predictions, refines the layout through CoT-style reasoning,
and provides updated guidance to the diffusion model.

3.2 MLLM-guided 3D Scene Planning with Stepwise optimization

We propose a CoT-lized reasoning mechanism, where a MLLM collaborates with the diffusion model
to perform stepwise scene planning and optimization. Unlike previous approaches that decouple
layout from generation, our framework tightly integrates MLLM-driven layout reasoning into the
sampling trajectory, enabling dynamic updates to the 3D plan during generation.

Initial 3D Scene Planning. We use a MLLM to parse the input prompt p and generate a structured
3D scene plan. The model identifies key entities, estimates their physical attributes, and determines
their spatial arrangement in the scene. The MLLM first identifies k salient entities from the prompt,
forming an entity set:

E={e;}',. (1)

For each entity e; € E, the MLLM generates a local text prompt p; describing its appearance
and attributes. It also predicts a plausible 3D size size; = (I;,w;, h;) and a spatial coordinate
pos; = (z, Y, 2;). The overall output is represented as:

fviem(ejp) — (pj, sizej, pos;). (2)

This planning is based on entity semantics and spatial relationships implied in the prompt, guided by
the commonsense knowledge embedded in the MLLM. The final 3D scene plan is:

SP = (p, {(ps sizej, pos;)}j—y)- )

Stepwise Feedback-based Refinement. While the initial 3D layout provides strong spatial guidance,
discrepancies may still arise during generation. To address this, CoT-Diff introduces an iterative
optimization loop driven by MLLM feedback. At each timestep ¢, the model predicts a clean image
from noisy latent z; via:

j70|t = Zt — t- Vt. (4)

The MLLM evaluates o, by comparing it against both the input prompt p and the current plan SP.
If misalignment is detected, the MLLM proposes refined attributes for selected entities (e.g., size; or
pos;), producing an updated plan:

SP' = Refine(SP, Zo):, p), ©)
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Figure 3: Illustration of 3D layout conditioning and condition-aware attention. (a) 3D bounding boxes
are automatically labeled from input images using depth estimation, segmentation, and projection. (b)
Text and spatial inputs are encoded into semantic and geometric conditions via T5 and VAE encoders.
(c) Condition Injection LoRA activates modality-specific branches during QKV projection. (d) A
learned attention mask enforces condition-wise separation and spatially localized injection.

which is used to reguide the denoise process at timestep t. This predict-evaluate-refine cycle
progressively enhances spatial and semantic consistency. Evaluation continues for a maximum of 5
steps or until the MLLM deems the layout correct.

Unlike prior methods that rely on multi-round generation, our framework performs planning and opti-
mization within a single diffusion process, enabling efficient and interpretable 3D-aware generation.

3.3 3D Layout Control

Given the 3D scene plan SP from Section 3.2, we extract two types of conditional signals: (i) semantic
layout and (ii) depth maps. These are jointly injected into the diffusion model via a condition-aware
attention mechanism, enabling precise control over the spatial and semantic structure.

Semantic Layout Condition. This module focuses on injecting global and entity-specific semantics
into corresponding regions of the image. As illustrated on top-left of Figure 3(b), we extract global
embedding P and local embeddings { P;} from the global prompt p and local prompts {p,} using a
TS encoder, and train a Semantic LoORA module, denoted LoRAgy, to control this injection. The
model is optimized using the following conditional flow matching loss:

Lsp =Bz [llve(2,t, P Pr, ... Py) = ue(2]6)]?] ©)
where vg is the velocity field predicted by the model augmented by LoRAgr..

Depth Map Condition. This module focuses on extracting depth information to guide spatial
structure and object positioning, as illustrated on the bottom-left of Figure 3(b). Starting from the 3D
scene plan SP, we obtain the set of 3D bounding boxes {B,} and render a corresponding depth map
D. This depth map is then encoded using the DiT VAE to produce the latent depth condition Cp.
We inject C'p into the diffusion model via a dedicated Depth LoRA module, LoRAp;, which is
optimized using the following conditional flow matching loss:

Lpy = Et,z,e [||vq>(z,t, CD, Pemb) - ut(z|€)|‘2} ) @)



where vg is the velocity field predicted by the model augmented by LoRAgy, and LoRAp s, ui(z|e)
is the target velocity field, and P, is the all text prompt embedding.

Condition-Aware Attention Mechanism. To integrate semantic and depth conditions without
cross-interference, we design a Condition Attention mechanism that selectively controls how different
condition types attend to the image tokens, ensuring spatial alignment while avoiding modality
entanglement. We begin by constructing a unified token sequence by concatenating the semantic
tokens, image tokens, and depth tokens, as illustrated in Figure 3(c):

S:[P,Pl,...,Pk,CD,X], (8)

where P is the global prompt token, { P; }§:1 are local prompt tokens for each entity, C'p is the depth
condition token, and X denotes the image latent tokens.

To guide attention computation, we construct a binary attention mask M € {0, 1}1¥1%I5I that controls
which tokens are allowed to attend to one another, as illustrated in Figure 3(d). The mask is designed
to satisfy three principles: (i) tokens from different condition sources are mutually isolated to prevent
cross-condition interference, i.e.,

M(a,b) =0 ifa,be{P,...,P;,Cq}, a #; &)
(ii) all tokens are allowed to self-attend, i.e., M (a,a) = 1 for all a € S; and (iii) interactions between
condition tokens and image latents are modulated by spatial masks. Specifically, global conditions
P, and C} attend to all latents:

M(Po,X):M(X,Po):M(Cd,X):M(X,Od):l, (10)
while each local prompt P; is restricted to its associated region:
M(P;, X) = M(X, P;) = patchify(m,), (11)

where m; is a 2D mask derived by projecting the 3D bounding box B, onto the image plane. With
this mask M, the attention output is computed as:
T

K
Attn(Q, K, V') = Softmax (Q
Vi
This formulation allows the model to attend over spatially relevant regions for each condition while
avoiding semantic-depth entanglement and cross-entity confusion.

+logM> V. (12)

3.4 3D-Aware Dataset Construction Pipeline

As shown in Figure 3(a), we construct a 3D-aware dataset which automatically generates 3D bounding
boxes for each object. This dataset includes global prompts, local prompts, and 3D bounding boxes.

We generate depth maps using a monocular depth estimator (Depth Pro) [6], and apply the Segment
Anything Model (SAM) [20] with 2D bounding boxes to extract segmentation masks. For each object,
we extract its depth region and back-project it into a 3D point cloud: C = {(z,y,d;(z,y)) | (z,y) €
m;}, where d; denotes the depth values. We then fit an oriented 3D bounding box with minimal
volume: ming Volume(B) = fit(C).

Finally, we re-project the 3D bounding boxes onto the image space and render depth maps, ensuring
accurate and consistent 3D representations.

4 Experiments

4.1 Experimental Setup

Implementation Details. Our method is implemented using Gemini 2.5 Pro as the default multimodal
language model and FLUX.1-schnell [5] as the diffusion model. We perform all inferences with 20
denoising steps and use 5 different random seeds for fairness. The LoRA scale is set to 1. All models
are implemented in PyTorch and executed on NVIDIA A100 GPUs.

Baselines. We compare our method with two categories of existing approaches: (1) Pre-trained
121 diffusion models, including SD1.5 [35], SDXL [31], PixArt [9], and FLUX-schnell [5]; (2)
Layout-controlled methods, including RPG [47], EliGen [48], and Loose Control (LC) [4], which
incorporate external layout representations to guide spatial placement of objects. All baselines are
evaluated under consistent settings using their official or publicly available implementations.
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Figure 4: Qualitative comparison of CoT-Diff and baselines across spatial relation categories.

Datasets. We evaluate our CoT-Diff with one new Table 1: Dataset statistics. %Complex
dataset, 3DSceneBench, which we design to validate the is the rate of spatial complex prompts
generation ability in complex 3D scenes, and two existing  evaluated by GPT4. (See Appendix F).

datasets, DVMP [34] and T2I-CompBench [17, 18], for
general compositional image generation. As shown in Ta-
ble 1, 3DSceneBench includes more diverse and spatially ~ # Prompts 800
grounded relationships compared to existing benchmarks.

Datasets | 3DSceneBench DVMP T2I-CompBench

200 2400
% Complex 95.3 23.0 27.6

Further evaluation details can be found in the Appendix G.

1.

3DSceneBench: We design the 3DSceneBench dataset to cover a wide range of realistic 3D spatial
relationships. All prompts are categorized into two major types based on relational complexity:
Basic Relation and Hard Relation. The Basic Relation group includes six canonical spatial
configurations: Front, Behind, Front Left, Front Right, Back Left, and Back Right (e.g., “a
{objectl} in front of a {object2} in the {scene}”). The Hard Relation group contains more
challenging compositions, including Multi-Relation (e.g., “a {objectl} {relationl} a {object2},
a {object3} {relation2} a {object4} in the scene”) and Complex prompts to reflect complex 3D
spatial logic. We generate 100 prompts for each of the eight relation types, resulting in a total of
800 prompts. All prompts are manually validated to ensure semantic clarity and spatial correctness.
Constructing process of 3DSceneBench is detailed in Appendix E.

. DVMP: This dataset is built by randomly pairing 38 objects with 26 attributes (including 13

colors), covering both single-object and multi-object prompts, with 100 examples for each setting.

. T2I-CompBench: This benchmark contains multi-object prompts with relatively common com-

positions, serving as a baseline for evaluating spatial and semantic consistency.

4.2 Main Results of CoT-Diff

3DSceneBench. We first present a qualitative comparison as shown in Figure 4. Traditional
diffusion models (SD1.5, SDXL, PixArt, FLUX) perform poorly due to the absence of explicit layout



Table 2: Text-to-image alignment performances of CoT-Diff and other baselines on the
3DSceneBench dataset. The best values are in blue and the second best values are in green .

Models ) Basic Relq ) ) Hard Rela
Front | Behind | FrontLeft | FrontRight | Back Left | Back Right | MultiRela | Complex

SD1.5 32.8 36.8 26.5 28.6 34.1 33.7 21.8 34.0
SDXL 393 439 36.7 35.6 35.4 40.2 27.7 34.9
PixArt 39.4 43.7 33.8 322 354 36.4 27.0 37.65
Flux 48.0 45.9 40.7 40.8 333 37.4 35.2 40.5
RPG 40.5 38.2 37.1 39.8 38.8 42.1 25.2 36.5
EliGen 43.6 429 48.4 52.5 46.7 39.9 34.8 40.6
LC 25.3 28.5 26.9 29.0 35.5 27.0 12.7 23.7
CoT-Diff | 549 | 552 664 69.0 642 645 487 508

Table 3: T2I alignment performance of CoT-Diff and baselines on DVMP and T2I-CompBench.

Models DVMP T2I-CompBench
Single | Multi | Color | Shape | Texture | Spatial | Non-Spatial | Complex

SD1.5 65.0 37.8 37.5 38.8 441 09.5 31.2 30.8
SDXL 76.8 59.0 58.8 46.9 53.0 21.3 31.2 324
PixArt 73.5 44.0 66.9 49.3 64.8 20.6 32.0 343
Flux 66.8 72.5 74.1 57.2 69.2 28.6 31.3 37.0
RPG 740 | 300 | 641 | 458 56.6 488 302 443
EliGen 78.7 78.5 72.8 58.7 66.8 53.6 31.2 43.9
LC 516 | 457 | 279 | 29.1 26.4 26.7 30.2 28.1
CoT-Diff 80.9 78.8 78.1 61.1 69.1 55.8 31.3 50.0

guidance. While layout-guided methods like RPG and EliGen incorporate positional control, they
still demonstrate limited capability in modeling complex depth relationships. In contrast, CoT-Diff
accurately synthesizes the specified spatial relationships by tightly coupling layout reasoning and
generation, dynamically refining the scene plan, and injecting spatial guidance at each denoising step.

For quantitive experiment, Table 2 shows the spatial scene alignment accuracy of CoT-Diff compared
to all the baselines on the 3DSceneBench dataset. Overall, CoT-Diff consistently outperforms all
baselines across all spatial relationship categories. Numerically, CoT-Diff achieves the highest
alignment scores in both basic and complex relational categories, with improvements ranging from
+10.2% to +22.4% over the best baselines.

DVMP and T2I-CompBench. Table 3 summarizes the T2I alignment performance of CoT-Diff and
baseline models on DVMP and T2I-CompBench. On DVMP, CoT-Diff achieves the highest scores
across all attribute-binding categories—Color, Shape, and Texture—outperforming the strongest
baseline (EliGen) by 2.3% to 5.3%. This confirms that semantic-aware generation in CoT-Diff
strengthens consistency between visual attributes and textual descriptions. In contrast, traditional
diffusion models such as SD1.5, SDXL, and PixArt show clearly inferior performance due to the
lack of layout or semantic control. On T2I-CompBench, CoT-Diff also leads in most categories,
with notable improvements in Spatial (+2.2%) and Complex (+6.7%) over EliGen. While EliGen
incorporates 2D layout planning, its performance degrades in cases involving deeper relational
reasoning. In contrast, CoT-Diff demonstrates more robust behavior by leveraging structure-aware
generation guided by semantic planning. Overall, CoT-Diff excels not only in 3D-structured scenes
but also generalizes well to traditional T2I alignment tasks.

4.3 Ablation Study of CoT-Diff

Component Analysis. We conduct an ablation study to evaluate the contribution of each core
component in CoT-Diff, starting from the FLUX base model. As shown in Table 4, adding semantic
layout guidance significantly improves multi relationship (+4.9) and complex scene (+3.2) accuracy by
providing better object placement control. Introducing depth control further enhances performance,
especially in multi relationship (+1.6) and complex (+4.8) settings, by resolving occlusion and
ensuring accurate object ordering. Finally, the full CoT-Diff model, with optimized settings, achieves



Table 4: Ablation study of CoT-Diff. We progressively add layout, depth, and optimization compo-
nents on top of the FLUX base.

Model Variant | Front Behind FrontLeft FrontRight Back Left Back Right Multi Rela Complex
FLUX 48.0 45.9 40.8 333 37.4 35.2 40.5
+ Semantic Layout 44.5 48.0 58.0 51.9 50.6 40.1 437
+ Depth Map 51.3 51.2 61.4 59.9 56.7 41.7 48.5
+ Optim (Full CoT-Diff) | 54.9 55.2 69.0 64.2 64.5 48.7 50.8
Table 5: CoT-Diff with different MLLMs. Table 6: User Study.
Models ‘ Front Behind Front Left Front Right Back Left Back Right Method 3D Layout Visual
etho Accuracy Quality
Flux ‘ 48.0 459 40.7 40.8 333 374
FLUX 271 3.56
CoT-Diffquen | 48.3  49.1 59.2 61.4 58.3 58.2 RPG 3.57 3775
CoT-Diffgprao | 53.2 53.3 66.0 67.8 62.9 62.7 EliGen 3.65 3.81
CoT-DiffGemini | 54.9  55.2 66.4 69.0 64.2 64.5 CoT-Diff (Ours) 4.08 4.12

the highest scores across all categories, highlighting the complementary benefits of semantic layout,
depth, and 3D layout optimization.

Robustness across Different MLLMs. We further evaluate CoT-Diff with several different MLLMs,
including Qwen2.5-VL [2], GPT-40 [1] and Gemini 2.5 Pro, as detailed in Table 5. All tested MLLMs
significantly improve spatial consistency over the FLUX baseline, but CoT-Diff when paired with
Gemini 2.5 Pro consistently achieves the best results, particularly in handling front and behind
relations. This result indicates that Gemini 2.5 Pro offers superior semantic planning capabilities for
3D layout generation, ultimately leading to more accurate spatial alignment.

User Study. We conducted a user study comparing CoT-Diff against four baselines using 200
complex prompts from 3DSceneBench. Six evaluators rated 3D Layout Accuracy and Visual Quality
on a 1-5 scale. As shown in Table 6, CoT-Diff significantly outperformed all baselines, achieving
the highest scores in both Layout Accuracy (4.08) and Visual Quality (4.12). This demonstrates our
method’s ability to enhance spatial control without the fidelity degradation.

4.4 3D Layout Consistency
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Figure 5: 3D consistency under depth variation. (Left) CoT-Diff accurately adjusts spatial placement
across relative depths, while EliGen struggles to maintain correct object scale and distance. (Right)
CoT-Diff consistently outperforms EliGen in 3D alignment across varying depth gaps.

This experiment evaluates how well different models maintain spatial consistency when object depth
varies. We select two central objects from 3DSceneBench and construct a base 3D layout. One
object is shifted along the camera axis by a multiple of A, creating modified layouts. Each generated
image is compared to the ground-truth layout by computing a depth-based consistency score. See
Appendix H for details on setup and metric. Figure 5 presents both qualitative (left) and quantitative
(right) results across depth differences. EliGen performs well at close range, but its consistency drops
sharply as the depth difference increases. In contrast, CoT-Diff maintains stable consistency across
all ranges, demonstrating stronger adherence to 3D layouts.



Table 7: Inference time and success rate of different Table 8: Inference time across MLLM steps.

methods. MLLM Planning  Feedback  Generation =~ Whole
Method Planning Feedback Generation Whole S step Time Time Time Time
ctho Time  Time Time  Time |>"¢°®58 base(0) 234 - 19.0 43.8

1 23.4 19.3 19.5 62.2

FLux - - 28.1 28.1 | 41.6 2 23.4 38.9 20.3 82.6
RPG 19.8 - 8.5 283 | 49.6 3 234 58.8 21.4 102.5
EliGen 5.2 - 55.7 60.9 | 532 4 234 79.1 225 125.0
Image-CoT| - - 1144 1144 | 612 > 234 992 233 1459
CoT-Diff | 23.4 56.8 21.2 101.4 | 754 ada(2.9) | 234 56.8 212 101.4

4.5 Runtime Efficiency and Spatial Success Rate

To evaluate the efficiency and effectiveness of CoT-Diff in complex scenes, we randomly sample 50
real prompts from 3DSceneBench and compare different methods in terms of runtime efficiency and
spatial success rate. For efficiency, as shown in Table 7, while CoT-Diff’s iterative feedback time adds
overhead compared to simpler layout-based methods, its total inference time remains comparable to
other CoT frameworks like Image-CoT [14]. This trade-off enables significantly improved spatial
consistency. CoT-Diff achieves a 75.4% success rate, substantially outperforming baselines. In
contrast, FLUX lacks layout modeling, while RPG and EliGen show limited spatial precision.

Furthermore, we evaluated the inference time across different MLLM optimization steps in Table 8.
We found our adaptive early-stopping strategy (ada) achieves high performance in just 2.9 steps on
average, striking an effective balance between generation quality and computational cost.

5 Conclusion

We propose CoT-Diff, a 3D-aware image generation framework that tightly couples MLLM reasoning
with diffusion. It performs layout planning and generation jointly within a single diffusion round,
leading to improved spatial structure and semantic alignment. By combining semantic and depth
condition with a condition-aware attention mechanism, CoT-Diff enables precise and disentangled
multimodal control. Considering the limmitations in Appendix K, we aim to integrate layout reasoning
directly into the generative model for end-to-end CoT-lized generation in the future.
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A LLM Instruction for CoT-Diff

Key Identity Parsing Prompt Template |

|
You are tasked with identifying and extracting all the real object names from a caption.

An object name refers to any tangible or physical entity mentioned in the caption.
Ensure not to include any adjectives or single-word descriptions that do not refer to a specific
object, such as "background."

Please follow these instructions:

Identify all object names in the caption in the order they appear.

Maintain the exact wording of each object name as it is in the caption, including case
consistency.

Output the object names in a Python list format.

For example, consider the following caption: ~ <In-context Examples>

Now, given the following caption, extract the object names in the same format:  <caption>

MLLM-guided 3D Scene Planning Prompt Template |

|
As a 3D scene layout planner, generate a quantitative 3D layout (size, position) for specified
entities based on a text caption.

Input:
1. A text caption describing the scene.
2. A list of important entity names in the scene.

Output: a JSON object with two keys:
scene_parameters and entity_layout.

- scene_parameters: Describe the overall scene.

- scene_size (meters): Approximate scale of the main subject area.

- camera_pitch_angle (degrees): Vertical camera angle (positive = downward).
- entity_layout: A list of objects, each including:

- entity_name: Name of the entity.

- size: [length, width, height] in meters. Should be large enough to be visible in the
scene (each dimension > scene_size/10).

- position: [X, Y, Z] in meters, centered around the ground origin (Y = 0). Enforce
explicit spatial relationships in the caption.

Coordinate System: Right-handed. Origin (0, 0, 0) is the ground center. +X = right, +Y =
up, +Z = into the scene.

14



Prompt Template: Iterative 3D Layout Optimization Assistant I

System Role: You are an Al Layout Optimization Assistant. Your core mission is to iteratively
refine 3D JSON layouts through multi-turn dialogue with the user.

Key Principles:

1. Entity Focus: Evaluate and modify only the entity_list items for each turn.

2. Viewer’s Perspective: Interpret all spatial terms (e.g., "left", "right") from the viewer of the
generated_image.

3. Iterative Learning: Improve layout step-by-step based on prior adjustments.

4. Adhere to Task Definition: Strictly follow user-provided format and criteria.

5. Historical Context: Consider past actions and outcomes to inform new proposals.

Task:
Iteratively optimize the 3D JSON layout to align the generated_image with the
text_caption, improving the clarity and spatial correctness of entities in the entity_list.

Per-Iteration Inputs:

- text_caption: (string) natural language description of the scene.

-entity_list: (list of strings) entities to optimize.

- current_layout: (JSON) 3D layout with size = [X_len, Z_width, Y_height] and
position=[X, Y, Z], Y =0 is ground.

- generated_image: the image rendered from the current layout.

Step-by-Step Process:
Step 1: Parse Inputs
Receive and acknowledge all inputs.

Step 2: Evaluate Alignment (for entity_list)

2.1 Discernibility: Is each entity clearly visible?

2.2 Verifiability: Are their described attributes verifiable?

2.3 Spatial Accuracy: Are spatial relations correct from viewer’s perspective?
2.4 Determine isaligned: Set to true if 2.1-2.3 pass; else false.

Step 3: Diagnose Misalignment (if isaligned = false)
3.1 Identify which entities failed which checks.

3.2 Classify each as Incorrect or Insufficient.

3.3 Refer to previous adjustments and compare changes.

Step 4: Revise Layout

4.1 Strategize updates to size, position, or orientation of problematic entities.
4.2 Adjust other entities only if they cause conflicts.

4.3 Ensure layout format is valid.

Step 5: Generate Output

5.1 Text: Explain isaligned result and edits made.

5.2 JSON:

{ "isaligned": <true/false>, "optimized_layout": <layout_object> }

User Prompt Format:

text_caption: <caption>
entity_list: <entities>
current_layout: <layout>
generated_image: <image>
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Table 9: Performance across different optimization steps. ‘ada (2.9)’ is our adaptive strategy.

Steps Basic Rela Hard Rela
P Front | Behind | Front Left | Front Right | Back Left | Back Right | Multi Rela | Complex
base(0) | 51.3 51.2 62.2 61.4 59.9 56.7 41.7 48.5
1 53.3 51.9 63.4 66.0 61.2 59.8 45.8 48.4
2 576 | 53.6 66.6 67.1 62.8 63.3 479 50.4
3 552 | 545 67.5 69.5 62.2 64.9 47.6 49.7
4 56.0 | 54.5 68.3 69.9 61.9 64.9 48.8 51.4
5 56.2 | 564 67.9 71.2 64.4 66.1 51.0 51.8
ada (29)| 549 | 553 | 664 | 690 | 641 | 645 | 487 | 508
Table 10: Comparison with Unified and Image CoT models.
Steps Basic Rela Hard Rela
P Front | Behind | Front Left | Front Right | Back Left | Back Right | Multi Rela | Complex
Janus-Pro | 352 | 36.5 29.7 249 249 229 19.6 39.0
VILA-U 37.2 38.3 28.8 31.5 29.2 324 21.3 29.5
Image-CoT | 48.2 49.7 56.1 61.2 56.7 57.6 39.7 46.6
T2I-R1 47.0 | 46.8 47.2 453 50.4 51.1 35.5 41.5
CoT-Diff | 549 | 552 | 664 | 690 | 642 | 645 | 487 | 508

B Training Details

We employed FLUX.1 dev as the pre-trained DiT. For each LoRA training, we utilize 8 A100
GPUs(80GB), a batch size of 1 per GPU. We employ the Prodigy optimizer [26] with safeguard
warmup and bias correction enabled, setting the weight decay to 0.01 following OminiControl. For
semantic LORA LoRAgy,, we train the model 5000 iterations base on EliGen LoRA. For depth LoRA
LoRApy, we train the model 30000 iterations.

C Performance across Different Optimization Steps

To validate our adaptive strategy, we evaluated the performance at different fixed optimization
steps. As shown in Table 9, performance consistently improves as the number of steps increases,
and typically saturates around 3 steps. Our adaptive method ("ada (2.9)’) achieves considerable
performance in just 2.9 steps on average, striking an effective balance between performance and
efficiency.

D Comparison with Unified models and Image CoT models

We added a comparison with Janus-Pro [8], VILA-U [44], Image-CoT [14], and T2I-R1 [19]. The
results, shown in Table 10, demonstrate CoT-Diff’s superior performance in spatial reasoning and
text-image alignment. This suggests that current unified generation-understanding models still lack
explicit reasoning capabilities compared to our CoT-Diff framework. Furthermore, existing Image-
CoT methods primarily implement CoT at the semantic or token level, whereas CoT-Diff introduces
explicit 3D spatial reasoning, using an MLLM to generate and refine a physically interpretable 3D
layout as precise guidance for the diffusion model.

E Details for Constructing 3DSceneBench

Overview. 3DSceneBench aims to evaluate the T2I model’s compositional generation ability for
complex spatial relationship prompts across basic- and hard-relations. For basic-relations prompts, we
categorize non planar spatial relationships in the basic orientation in six cases: (1) front, (2) back, (3)
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front left, (4) front right, (5) back left and (6) back right. These cases represent a mixture of horizontal
and depth attributes defining the relative positions of typically two objects. The hard-relations prompts
are designed to challenge models with increased compositional complexity, categorized into two main
types based on how basic relations are combined or extended: (1)multi, combining two basic-relation
prompts; (2)complex, expanding a basic-relation prompt into a complex scene description.

Table 11: Object Categories, Associated Scenes, and Possible Objects.
Object Category | Associated Scenes Possible Objects

in the desert, .
. . dog, mouse, sheep, cat, cow, chicken,
. in the jungle, . .
Animals turtle, giraffe, pig, butterfly, horse,
on the road, bird, rabbit, frog, fish
on the beach ’ - 1108,
. bed, desk, key, chair, vase, candle, cup,
in the room,
. . phone, computer, bowl, sofa, balloon,
in the studio, . .
Indoor . plate, refrigerator, bag, painting,
in the apartment, .
. . suitcase, table, couch, clock, book, lamp,
in the library o
television
in the desert,
on the street, car, motorcycle, backpack, bench,
Outdoor Do .
on the road, train, airplane, bicycle
on a snowy landscape
Person ‘ All ‘ woman, man, boy, girl

Complex prompt generation. We choose 50 diverse objects from the MS-COCO dataset. These
objects are categorized into four types based on their nature: indoor, outdoor, animal, and person.
To provide contextual variation, four distinct scene contexts are defined for all categories except
“person”. Prompt generation is structured around basic spatial relationships and their compositions.
For basic-relations prompts, we employed a template of the form "a {object1} {relation} a {object2}
{scene}". Using this template with selected objects and defined scenes, we generated 200 prompts
for each of the six basic-relation categories (front, back, front left, front right, back left, back right).
Multi-relation prompts (200 in total) are created by combining pairs of the generated basic-relation
prompts. Complex-relation prompts (200 in total) are generated by leveraging GPT-40 to expand
selected basic-relation prompts into descriptions of more elaborate scenes. The final dataset undergo
a human filtering process, similar to methods used in other benchmarks [28, 29], where human
annotators review the generated prompts for suitability and quality before final inclusion.

F GPT Instruction for Calculating % Complex

To measure whether a prompt contains complex spatial relationships, following the approach of [29],
we ask GPT4 with the yes or no binary question using the following instructions. “ You are an
assistant to evaluate if the text prompt contains complex spatial relationships. Evaluate if complex
spatial relationships are contained in the text prompt: PROMPT, The answer format should be YES
or NO, without any reasoning. ”. Formally, the % complex of each test dataset Cyey is calculated as
%Complex(Cest) = 1/|Cest| ZCGCW 1(GPTcomplex (¢) == Yes), where GPTcomplex (€) is the binary
answer of complex from GPT.

G Details for Evaluation

We adopt different evaluation protocols for each benchmark. For 3DSceneBench, we use UniDet
to evaluate spatial layout consistency. For DVMP, we ask GPT40 with a detailed score rubric [7],
following the approach of [29]. For T2I-CompBench, we follow the official evaluation scripts
released [17].

GPT-based Evaluation. For DVMP dataset, we leverage GPT-40 to evaluate the image-text alignment
between the prompt and the generated image. The evaluation is based on a scoring scale from 1
to 5, where a score of 5 represents a perfect match between the text and the image, and a score
of 1 indicates that the generated image completely fails to capture any aspect of the given prompt.
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Table 12 presents the complete prompt with a full scoring rubric. We convert the original score scale
{1,2,3,4,5} to {0,25, 50, 75,100}, which is reflected in the reported results.

Table 12: Full LLM instruction for evaluation.

You are my assistant to evaluate the correspondence of the image to a given text prompt.

Focus on the objects in the image and their attributes (such as color, shape, texture), spatial layout, and action
relationships. According to the image and your previous answer, evaluate how well the image aligns with the
text prompt: [PROMPT]

Give a score from 0 to 5, according to the criteria:

: image perfectly matches the content of the text prompt, with no discrepancies.

: image portrayed most of the content of the text prompt but with minor discrepancies.

: image depicted some elements in the text prompt, but ignored some key parts or details.
: image depicted few elements in the text prompt, and ignored many key parts or details.
: image failed to convey the full scope in the text prompt.

— N W A W

Provide your score and explanation (within 20 words) in the following format:
### SCORE: score
### EXPLANATION: explanation

UniDet-based Spatial Relationship Evaluation. For 3DSceneBench evaluation, we decompose a
complex spatial relationship (e.g., "front left") into its constituent one-dimensional components: a
horizontal relationship ("left" or "right") and a depth relationship ("front" or "back").

As a prerequisite, we utilize the UniDet [54] model to detect relevant objects in the generated image
and obtain their bounding boxes and positional information.

Following detection, we evaluate the presence and accuracy of each individual decomposed relation-
ship based on a metric similar to the UniDet-based approach described in T2I-CompBench [17].

For horizontal relationships ("left" or "right"), we compare the bounding box center coordinates of the
involved objects and get a horizontal score. For depth relationships ("front" or "back"), we leverage
depth information, typically obtained via depth estimation alongside detection and get a depth score.

The final score for a complex relationship is computed as the average of the evaluation scores of its
constituent one-dimensional relationships.

H 3D Consistency Metric

The 3D layout consistency experiment evaluates depth consistency under controlled 3D layout
variations. A synthetic scene is configured with two objects selected from the 3DSceneBench,
initially placed centrally. Layout modification involves shifting one object along the camera axis by a
distance d1, defined as a multiple of a predefined unit distance and sampled across 12 discrete values
to cover a range of changes.

Following image generation for each modified layout, a monocular depth estimation model [46] is
applied to the generated image to obtain depth information. From the resulting depth map, the depth
difference do between the centers of the two objects is measured. The 3D consistency score is then
computed by comparing this measured depth difference ds to the original 3D shift distance d;, using
the following formula:
~di —dy|

|d1] + |da]

This score quantifies how well the depth relationship perceived in the generated image aligns with
the intended depth change in the 3D layout, with higher values indicating better 3D consistency.

3D Consistency = 1

I Further Visualization

Figure 6 displays images generated by CoT-Diff on 3DSceneBench. We randomly selected 8 prompts
from 3DSceneBench and generated images using 5 different random seeds. Overall, the generated
images show strong alignment with the input prompts while maintaining naturalness and high quality.
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J More Visualization Results of challenging spatial scenarios

Figure 7 shows more visualization examples of challenging spatial scenarios. For each scenario, we
display the 3D layout planned by CoT-Diff alongside five results generated using different random
seeds, demonstrating the precise spatial control capabilities of our method.

K Limitations

Although CoT-Diff demonstrates strong spatial control in complex scenes, it has two primary limita-
tions. First, the reliance on a MLLM for per-step reasoning introduces non-negligible inference cost.
Second, layout planning is currently fully dependent on the MLLM, without any spatial reasoning
capacity integrated into the generative model itself. Future work could explore endowing the generator
with internal reasoning ability to enable more efficient and unified control.

L. Boarder impacts

CoT-Diff enhances spatial alignment and composition fidelity in text-to-image generation, benefiting
creative and educational applications. However, risks remain, including misuse for fake content and
bias inherited from MLLMs. We encourage responsible deployment, bias auditing, and transparency
in future development.
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Prompt:

Prompt: A plate behind of a bowl in the library.

Prompt: A cat at the front left of a backpack ion the road.

Prompt: A bowl at the front right of a wallet in the apartment.

Prompt: A bench at the back Ieﬁ of a chicken in the desert.

i CE

Prompt: A phone at the back right of a cup in the room.

Prompt:

Loh 4
Prompt: An elegant vase holding fresh flowers brightens the art studio, while a travel-worn suitcase sits waiting to its back right.

Figure 6: CoT-Diff visualizations on 3DSceneBench: 3D layout depth maps (left) and corresponding
generated images (right), from 8 random prompts with 5 random seeds each.
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a4

Prompi On a beautiful white tabletop, a clear gloss vase filled with bright sunflowers is positioned to the back right of a classm white
ceramic teapot. To their right, a |urge, sllghtly antique mirror with a 5|mp|e frame leans cgclnst a softly lit, neutral-toned wall.

Prompt A cozy winter mght scene in a snowy forest. Warm yellow ||ghts glow from a cabin sitting in the center. To the front-left of the cabin's
main entrance, a child is busy building a snowman under the falling snow. Near a large snow-covered pine tree to the back-right of the cabin,
a deer stands watching quietly. Smoke gently rises from the chimney, and in the sky, the northern lights shimmer above the treetops.

Figure 7: More visualization results of challenging spatial scenarios.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction align with the paper’s contributions
and results, clearly stating the contributions, assumptions, and the scope of the work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Appendix K.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the full set of theoretical results, definitions, and formulas in Sec-
tion 3, including all necessary assumptions.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4.1 provides all the information needed to fully reproduce the main
experimental results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The complete code, datasets, and experimental setup required to reproduce the
main results will be included in the supplementary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4.1 and Appendix B provides complete details on the training and test
settings and other necessary information.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our experimental results include statistical tests for mean value of 5 random
inferences.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4.1 provide the necessary details on the compute resources required
for reproducing the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research fully conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the positive societal impacts of our work in Appendix L.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We have not released any data or models with high misuse risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators and original owners of all assets (e.g., code, data, models) used in
this paper have been properly credited.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All new assets introduced in the paper are well documented, and the documen-
tation is provided alongside the assets in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our experiments do not involve crowdsourcing or research with human sub-
jects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our experiments do not involve crowdsourcing or research with human sub-
jects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use MLLM for Chain-of-Thought (CoT) generation in our methodology.
A detailed description of this can be found in Section 3.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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